	PHOTOGRAPH THIS SHEET
A 95 I 935	The TPRC Data Series, Volume 1
A 95	DOCUMENT IDENTIFICATION 1970
AD A	DISTRIBUTION STATEMENT . Approved for public release; Distribution Unlimited
_	DISTRIBUTION STATEMENT
ACCESSION FOR NTIS GRA&I DTIC TAB UNANNOUNCED JUSTIFICATION	SUND THE D
BY DISTRIBUTION / AVAILABILITY COI DIST AVAIL	AND/OR SPECIAL DATE ACCESSIONED
DISTRIB	UNANNOUNCED UNANNOUNCED
	83 05 18 002
	DATE RECEIVED IN DTIC
	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
	DOCUMENT PROCESSING SHEE

DTIC FORM 70A

OF MATTER

The Trans Data Series

VOLUME 1

CONDUCTIVITY Metallic Elements and Alloys

1935

AD A 95

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Best Available Copy

PROPRIES RESEARCH CENTER

1

BELLEVILLE THE WAY

ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
AUA 951 935	
2.3	S. TYPE OF REPORT & PERIOD COVERED
Matter-The TPRC Data	Data Book(See block 18)
	1
•	6. PERFORMING ORG. REPORT NUMBER
	TPRC Data Series/Vol. 1
	8. CONTRACT OR GRANT NUMBER(4)
Ho, C.Y. and	
	F33615-68-C-1229
ADDRESS	10. PROGRAM ELEMENT, PROJECT TASK AREA & WORK UNIT NUMBERS
ESS	12. REPORT DATE
	1970
	13. NUMBER OF PAGES
	1,595
(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
esearch Center	
	Unclassified
	154. DEGLASSIFICATION/DOWNGRADING
	2. GOVT ACCESSION NO

Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES TEPIAC Publication (DTIC Source Code 413571) Limited hard copies on Data Book available from publisher: Flenum Publishing Corp, 227 W. 17th St., New York, NY 10011 Price: \$130/copy. Microfiche copy available from DTIC

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
*Thermal Conductivity--*Thermophysical Properties--*Elements--*Alloys--Stainless Steels--Iron Alloys--Aluminum--Aluminum Alloys--Antimony--Antimony Alloys--

(continue on reverse side)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The TPRC Data Series published in 13 volumes plus a Master Index volume constitutes a permanent and valuable contribution to science and technology. This 17,000 page Data Series should form a necessary acquisition to all scientific and technological libraries and laboratories. These volumes contain an enormous amount of data and information for thermophysical properties on more than 5,000 different materials of interest to researchers in government laboratories and the defense industrial establishment.

(continue on reverse side)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

19. KEYWORDS (cont)

Antimony selenide--Antimony tellurde---iron--arsenic--arsenic telluride--Barium alloys--Beryllium--Beryllium alloys--bismuth--Bismuth alloys--Bismuth compounds--Boron-Boron Silicides--Brass--Cadmium--Cadmium Alloys--Cadmium compounds -- Calcium compounds -- Cerium -- Cermets -- -- Cesium -- Chromium -- Chromium alloys -- Cobalt alloys -- Columbium -- Copper -- Copper Alloys -- Copper : compounds--Gallium--Gallium arsenide--Germanium--Germanium alloys--Germanium telluride--Gold--Gold Alloys--Hafnium--Hafnium alloys--Indium--Indium alloys--Indium compounds -- Intermetallic compounds -- Iridium -- Iridium alloys -- Lanthanum --Lanthanum compounds -- Lead -- Lead alloys -- Lead telluride -- Lithium -- Lithium alloys --Magnesium -- Magnesium alloys -- Magnesium compounds -- Manganese -- Manganese alloys --Mercury-Mercury compounds--Molybdenum--Molybdenum alloys--Silicides--Neodymium-Nickel--Nickel alloys--Niobium--Niobium alloys--Palladium--Palladium alloys--Platinum--Platinum alloys--Plutonium--Plutonium alloys--Potassium--Praseodymium-Rhenium--Rhenium compounds--Rhodium--Rubidium--Ruthenium--Steels--Scandium--Selenium--Selenium alloys--Silicon--Silicon alloys--Silver --Silver alloys--Silver compounds -- Sodium -- Sodium alloys -- Tantalum -- Tantalum alloys -- Tellurium --Tellurium alloys--Terbium--Thallium--Thallium alloys--Thorium--Tin--Tin alloys--Titanium--Titanium alloys--Titanium compounds--Uranium--Uranium alloys--Vanadium -- Vanadium alloys -- Ytterbium -- Yttrium -- Zinc -- Zinc alloys -- Zinc compounds --Zirconium -- Zirconium alloys --

20. ABSTRACT (cont)

Volume 1. 'Thermal Conductivity - Metallic Elements and Alloys,'
Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Klemens, P.G.,
1595 pp., 1970.

Volume 1 in this 14 volume TPRC Data Series covers metallic elements and alloys and intermetallic compounds of engineering importance, including 69 elements, 172 groups of nonferrous binary alloys, 80 groups of nonferrous multiple alloys, 25 groups of ferrous alloys, 60 intermetallic compounds, 16 mixtures of intermetallic compounds, and 13 miscellaneous alloys and mixtures. Data for all the elements and for some alloys have been critically evaluated, analyzed, and synthesized, and recommended values or provisional values are presented in addition to the original experimental data.

1595 pages, 1970 \$130.00 (\$156.00 outside US)

THERMAL CONDUCTIVITY

Metallic Elements and Alloys

THERMAL

Metallic Elements and Alloys

Y. S. Touloukian

Director
Thermophysical Properties Research Center and
Distinguished Atkins Professor of Engineering
School of Mechanical Engineering
Purdue University
and
Visiting Professor of Mechanical Engineering
Auburn University

R. W. Powell

Senior Researcher
Thermophysical Properties Research Center
Purdue University
Formerly
Senior Principal Scientific Officer
Basic Physics Division
National Physical Laboratory
England

C. Y. Ho

Head of Data Tables Division and Associate Senior Researcher Thermophysical Properties Research Center Purdue University

P. G. Klemens Professor and Head

Department of Physics
University of Connecticut
and
Visiting Research Professor
Thermophysical Properties Research Center
Purdue University

Library of Congress Catalog Card Number 73-129616

SBN (13-Volume Set) 306-67020-8 SBN (Volume 1) 306-67021-6

Copyright © 1970, Purdue Research Foundation

IFI/Plenum Data Corporation is a subsidiary of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011

Distributed in Europe by Heyden & Son, Ltd. Spectrum House, Alderton Crescent London N.W. 4, England

Printed in the United States of America

"In this work, when it shall be found that much is omitted, let it not be forgotten that much likewise is performed..."

SAMUEL JOHNSON, A.M.

From last paragraph of Preface to his twovolume Dictionary of the English Language, Vol. I, page 5, 1755, London, Printed by Strahan.

THE PROPERTY OF STREET

Foreword

In 1957, the Thermophysical Properties Research Center (TPRC) of Purdue University, under the leadership of its founder, Professor Y. S. Touloukian, began to develop a coordinated experimental, theoretical, and literature review program covering a set of properties of great importance to science and technology. Over the years, this program has grown steadily, producing bibliographies, data compilations and recommendations, experimental measurements, and other output. The series of volumes for which these remarks constitute a foreword is one of these many important products. These volumes are a monumental accomplishment in themselves, requiring for their production the combined knowledge and skills of dozens of dedicated specialists. The Thermophysical Properties Research Center deserves the gratitude of every scientist and engineer who uses these compiled data.

The individual nontechnical citizen of the United States has a stake in this work also, for much of the science and technology that contributes to his well-being relies on the use of these data. Indeed, recognition of this importance is indicated by a mere reading of the list of the financial sponsors of the Thermophysical Properties Research Center; leaders of the technical industry of the United States and agencies of the Federal Government are well represented.

Experimental measurements made in a laboratory have many potential applications. They might be used, for example, to check a theory, or to help design a chemical manufacturing plant, or to compute the characteristics of a heat exchanger in a nuclear power plant. The progress of science and technology demands that results be published in the open literature so that others may use them. Fortunately for progress, the useful data in any single field are not scattered throughout the tens of thousands of technical journals published throughout the world. In most fields, fifty percent of the useful work appears in no more than thirty or forty journals. However, in the case of TPRC, its field is so broad

that about 100 journals are required to yield fifty percent. But that other fifty percent! It is scattered through more than 3500 journals and other documents, often items not readily identifiable or obtainable. Nearly 50,000 references are now in the files.

Thus, the man who wants to use existing data, rather than make new measurements himself, faces a long and costly task if he wants to assure himself that he has found all the relevant results. More often than not, a search for data stops after one or two results are found—or after the searcher decides he has spent enough time looking. Now with the appearance of these volumes, the scientist or engineer who needs these kinds of data can consider himself very fortunate. He has a single source to turn to; thousands of hours of search time will be saved, innumerable repetitions of measurements will be avoided, and several billions of dollars of investment in research work will have been preserved.

However, the task is not ended with the generation of these volumes. A critical evaluation of much of the data is still needed. Why are discrepant results obtained by different experimentalists? What undetected sources of systematic error may affect some or even all measurements? What value can be derived as a "recommended" figure from the various conflicting values that may be reported? These questions are difficult to answer, requiring the most sophisticated judgment of a specialist in the field. While a number of the volumes in this Series do contain critically evaluated and recommended data, these are still in the minority. The data are now being more intensively evaluated by the staff of TPRC as an integral part of the effort of the National Standard Reference Data System (NSRDS). The task of the National Standard Reference Data System is to organize and operate a comprehensive program to prepare compilations of critically evaluated data on the properties of substances. The NSRDS is administered by the National Bureau of Standards under a directive from the Federal Council for Science

and Technology, augmented by special legislation of the Congress of the United States. TPRC is one of the national resources participating in the National Standard Reference Data System in a united effort to satisfy the needs of the technical community for readily accessible, critically evaluated data.

As a representative of the NBS Office of Standard Reference Data, I want to congratulate Professor Touloukian and his colleagues on the accomplishments represented by this Series of reference data books. Scientists and engineers the world over are indebted to them. The task ahead is still an awesome one and I urge the nation's private industries and all concerned Federal agencies to participate in fulfilling this national need of assuring the availability of standard numerical reference data for science and technology.

> EDWARD L. BRADY Associate Director for Information Programs National Bureau of Standards

Preface

Thermophysical Properties of Matter, the TPRC Data Series, is the culmination of twelve years of pioneering effort in the generation of tables of numerical data for science and technology. It constitutes the restructuring, accompanied by extensive revision and expansion of coverage, of the original TPRC Data Book, first released in 1960 in loose-leaf format, 11"×17" in size, and issued in June and December annually in the form of supplements. The original loose-leaf Data Book was organized in three volumes: (1) metallic elements and alloys, (2) nonmetallic elements, compounds, and mixtures which are solid at N.T.P., and (3) nonmetallic elements, compounds, and mixtures which are liquid or gaseous at N.T.P. Within each volume, each property constituted a chapter.

Because of the vast proportions the *Data Book* began to assume over the years of its growth and the greatly increased effort necessary in its maintenance by the user, it was decided in 1967 to change from the loose-leaf format to a conventional publication. Thus, the December 1966 supplement of the original *Data Book* was the last supplement disseminated by TPRC.

While the manifold physical, logistic, and economic advantages of the bound volume over the loose-leaf oversize format are obvious and welcome to all who have used the unwieldy original volumes, the assumption that this work will no longer be kept on a current basis because of its bound format would not be correct. Fully recognizing the need of many important research and development programs which require the latest available information, TPRC has instituted a Data Update Plan enabling the subscriber to inquire, by telephone if necessary, for specific information and receive, in many instances, same-day response on any new data processed or revision of published data since the latest edition. In this context, the TPRC Data Series departs drastically from the conventional handbook and giant multivolume classical works, which are no longer adequate media for the dissemination of numerical data of science and technology without a continuing activity on contemporary coverage. The loose-leaf arrangements of many works fully recognize this fact and attempt to develop a combination of bound volumes and loose-leaf supplement arrangements as the work becomes increasingly large. TPRC's Data Update Plan is indeed unique in this sense since it maintains the contents of the TPRC Data Series current and live on a day-to-day basis between editions. In this spirit, I strongly urge all purchasers of these volumes to complete in detail and return the Volume Registration Certificate which accompanies each volume in order to assure themselves of the continuous receipt of annual listing of corrigenda during the life of the edition.

The TPRC Data Series consists initially of 13 independent volumes. The initial ten volumes will be published in 1970, and the remaining three by 1972. It is also contemplated that subsequent to the first edition, each volume will be revised, updated, and reissued in a new edition approximately every fifth year. The organization of the TPRC Data Series makes each volume a self-contained entity available individually without the need to purchase the entire Series.

The coverage of the specific thermophysical properties represented by this Series constitutes the most comprehensive and authoritative collection of numerical data of its kind for science and technology.

Whenever possible, a uniform format has been used in all volumes, except when variations in presentation were necessitated by the nature of the property or the physical state concerned. In spite of the wealth of data reported in these volumes, it should be recognized that all volumes are not of the same degree of completeness. However, as additional data are processed at TPRC on a continuing basis, subsequent editions will become increasingly more complete and up to date. Each volume in the Series basically comprises three sections, consisting of a text, the body of numerical data with source references, and a material index.

The aim of the textual material is to provide a complementary or supporting role to the body of numerical data rather than to present a treatise on the subject of the property. The user will find a basic theoretical treatment, a comprehensive presentation of selected works which constitute reviews, or compendia of empirical relations useful in estimation of the property when there exists a paucity of data or when data are completely lacking. Established major experimental techniques are also briefly reviewed.

The body of data is the core of each volume and is presented in both graphical and tabular formats for convenience of the user. Every single point of numerical data is fully referenced as to its original source and no secondary sources of information are used in data extraction. In general, it has not been possible to critically scrutinize all the original data presented in these volumes, except to eliminate perpetuation of gross errors. However, in a significant number of cases, such as for the properties of liquids and gases and the thermal conductivity of all the elements, the task of full evaluation, synthesis, and correlation has been completed. It is hoped that in subsequent editions of this continuing work, not only new information will be reported but the critical evaluation will be extended to increasingly broader classes of materials and properties.

The third and final major section of each volume is the material index. This is the key to the volume, enabling the user to exercise full freedom of access to its contents by any choice of substance name or detailed alloy and mixture composition, trade name, synonym, etc. Of particular interest here is the fact that in the case of those properties which are reported in separate companion volumes, the material index in each of the volumes also reports the contents of the other companion volumes.* The rets of companion volumes are as follows:

Thermal cooductivity: Volumes 1, 2, 3 Specific heat: Volumes 4, 5, 6 Radiative properties: Volumes 7, 8, 9 Thermal expansion: Volumes 12, 13

The ultimate aims and functions of TPRC's Data Tables Division are to extract, evaluate, reconcile, correlate, and synthesize all available data for the thermophysical properties of materials with

the result of obtaining internally consistent sets of property values, termed the "recommended reference values." In such work, gaps in the data often occur, for ranges of temperature, composition, etc. Whenever feasible, various techniques are used to fill in such missing information, ranging from empirical procedures to detailed theoretical calculations. Such studies are resulting in valuable new estimation methods being developed which have made it possible to estimate values for substances and/or physical conditions presently unmeasured or not amenable to laboratory investigation. Depending on the available information for a particular property and substance, the end product may vary from simple tabulations of isolated values to detailed tabulations with generating equations, plots showing the concordance of the different values, and, in some cases, over a range of parameters presently unexplored in the laboratory.

The TPRC Data Series constitutes a permanent and valuable contribution to science and technology. These constantly growing volumes are invaluable sources of data to engineers and scientists, sources in which a wealth of information heretofore unknown or not readily available has been made accessible. We look forward to continued improvement of both format and contents so that TPRC may serve the scientific and technological community with everincreasing excellence in the years to come. In this connection, the staff of TPRC is most anxious to receive comments, suggestions, and criticisms from all users of these volumes. An increasing number of colleagues are making available at the earliest possible moment reprints of their papers and reports as well as pertinent information on the more obscure publications. I wish to renew my earnest request that this procedure becomesa universal practice since it will prove to be most helpful in making TPRC's continuing effort more complete and up to date.

It is indeed a pleasure to acknowledge with gratitude the multisource financial assistance received from over fifty of TPRC's sponsors which has made the continued generation of these tables possible. In particular, I wish to single out the sustained major support being received from the Air Force Materials Laboratory-Air Force Systems Command, the Office of Standard Reference Data-National Bureau of Standards, and the Office of Advanced Research and Technology-National Aeronautics and Space Administration. TPRC is indeed proud to have been designated as a National Information Analysis Center for the Department of Defense as well as a component of the National

^{*}For the first edition of the Series, this arrangement was not feasible for Volume 7 due to the sequence and the schedule of its publication. This situation will be resolved in subsequent editions.

Standard Reference Data System under the cognizance of the National Bureau of Standards.

While the preparation and continued maintenance of this work is the responsibility of TPRC's Data Tables Division at would not have been possible without the direct input of TPRC's Scientific Documentation Division and, to a lesser degree, the Theoretical and Experimental Research Divisions. The authors of the various volumes are the senior staff members in responsible charge of the work. It should be clearly understood, however, that many have contributed over the years and their contributions are specifically acknowledged in each volume. I wish to take this opportunity to personally

thank those members of the staff, research assistants, graduate research assistants, and supporting graphics and technical typing personnel without whose diligent and painstaking efforts this work could not have materialized.

Y. S. TOULOUKIAN

Director Thermophysical Properties Research Center Distinguished Atkins Professor of Engineering

Purdue University Lafayette, Indiana July 1969

THE PARTY OF THE WARRY

Introduction to Volume 1

This volume of Thermophysical Properties of Matter, the TPRC Data Series, is perhaps the most comprehensive of all the volumes of the Series. Indeed, it is the result of one of TPRC's oldest data tables programs, initiated in 1959.

The volume comprises three major sections: namely, the front text material together with its bibliography, the main body of numerical data and its references, and the material index.

The text material is intended to assume a role complementary to the main body of numerical data which is the primary purpose of this volume. It is felt that a moderately detailed discussion of the theoretical nature of the property under consideration together with a review of predictive procedures and recognized experimental techniques will be appropriate in a major reference work of this kind. The extensive reference citations given in the text should lead the interested reader to sufficient literature for a detailed study. It is hoped, however, that enough detail is presented for this volume to be self-contained for the practical user.

The main body of the volume consists of the presentation of numerical data compiled over the years in a most comprehensive and meticulous manner. The scope of coverage includes the metallic elements and most metallic alloys and intermetallic compounds of engineering importance. The extraction of all data directly from their original sources ensures freedom from errors of transcription. Furthermore, some gross errors appearing in the original source documents have been corrected. The organization and presentation of the data together with other pertinent information in the use of the tables and figures are discussed in detail in the section entitled *Numerica* Vata.

The part of the data tables covering the elements deserves special mention. We wish to point out that the extensive original literature data from near absolute zero to past the melting point have been critically reviewed and analyzed, and "recommended reference values" are presented.

Such recommended values are those that were considered to be the most probable when assessments were made of the information available in late 1968. Their inclusion adds a unique feature that is designed to provide the user with acceptable values. It should be realized, however, that these recommended values are not necessarily the final true values and that changes directed toward this end will often become necessary as more data become available. Future editions will contain these changes and will provide similar recommendations made for an increasing number of materials.

As stated earlier, all data have been obtained from their original sources and each data set is so referenced. TPRC has in its files all documents cited in this volume. Those that cannot readily be obtained elsewhere are available from TPRC in microfiche form.

The material index at the end of the volume covers the contents of all three companion volumes (Volumes 1, 2, and 3) on thermal conductivity. It is hoped that the user will find these comprehensive indices helpful.

This volume has grown out of activities made possible, initially by TPRC's Founder Sponsors, and, since 1960, through the principal support of the Air Force Materials Laboratory-Air Force Systems Command, under the monitorship of Mr. John H. Charlesworth. The effort to make critical assessment of the data for the elements was made possible through the support of the Office of Standard Reference Data-National Bureau of Standards, under the monitorship of Dr. Howard J. White, Jr. Over the past ten years, many graduate students and research assistants have rendered assistance for varying periods under the authors' supervision. We wish to acknowledge in chronological order of their association with TPRC, the contributions of Messrs. K. H. Chu, C. Y. Wang, A. Cezairliyan, K. C. Lin, D. Y. Nee, R. L. Feng, J. J. G. Hsia, M. Mangkornkanok, M. Nalbantyan, G. K. Kirjilian, and Mrs. E. K. C. Lee, and Mr. K. Y. Wu. The

two last mentioned are still at TPRC and participated in the final organization of the tables and figures and the demanding task of checking of details. We wish also to acknowledge the benefit of extensive discussions with Dr. J. Kaspar, Senior Staff Scientist, Materials Sciences Laboratory, Aerospace Corporation, and with Dr. A. Cezairliyan, Physicist, National Bureau of Standards. They are, respectively, Visiting Research Professor and Consultant at TPRC.

Inherent to the character of this work is the fact that in the preparation of this volume, we have drawn most heavily upon the scientific literature and feel a debt of gratitude to the authors of the referenced articles. While their often discordant results have caused us much difficulty in reconciling their findings, we consider this to be our challenge and our contribution to negative entropy of information, as an effort is made to create from the randomly distributed data a condensed, more orderly state.

While this volume is primarily intended as a reference work for the designer, researcher, experimentalist, and theoretician, the teacher at the graduate level may also use it as a teaching tool to

point out to his students the topography of the state of knowledge on the thermal conductivity of metals. We believe there is also much food for reflection by the specialist and the academician concerning the meaning of "original" investigation and its "information content."

The authors and their contributing associates are keenly aware of the possibility of many weaknesses in a work of this scope. We hope that we will not be judged too harshly and that we will receive the benefit of suggestions regarding references omitted, additional material groups needing more detailed treatment, improvements in presentation or in recommended values, and, most important, any inadvertent errors. If the Volume Registration Certificate accompanying this volume is returned, the reader will assure himself of receiving annually a list of corrigenda as possible errors come to our attention.

Lafayette, Indiana July 1969 Y. S. TOULOUKIAN R. W. POWELL C. Y. HO P. G. KLEMENS

Contents

roteword	•	•	•	•	-	•	•	•	•	•	•	VII
Preface		•	•	•								ix
Introduction to Volume 1	-	•										xiii
Grouping of Materials and List of Figure	s and Ta	bles			•							xvii
Theor	y, Estima	ation,	and	Meas	ureme	ent						
Notation									•			fa
Theory of Thermal Conductivity of Metalli	c Materi	als					,					3a
1. Introduction												3a
 Introduction Electronic Thermal Conductivity Lattice Thermal Conductivity Other Cases 												4a
3. Lattice Thermal Conductivity .												6a
4. Other Cases												10a
Experimental Determination of Thermal C	onductivi	ty –										13a
1. Introduction												13a
2. Steady-State Methods												14a
A. Longitudinal Heat Flow Method	s .										-	14a
A. Longitudinal Heat Flow Method a. Absolute Methods												14a
(i) Rod Method		,										14a
(ii) Plate (or Disk) Method									•			15a
b. Comparative Methods												16a
(i) Divided-Rod (or Cut-Bar) Metho	d			•							16a
b. Comparative Methods (i) Divided-Rod (or Cut-Bar (ii) Plate (or Disk) Method c. Combined Method												16a
c. Combined Method												16a
B. Forbes' Bar Method									,]7a
C. Radial Heat Flow Methods .												17a
a. Absolute Methods												17a
(i) Cylindrical Method .												17a
 a. Absolute Methods (i) Cylindrical Method . (ii) Spherical and Ellipsoidal 	Method	s										18a
(iii) Concentric Sphere and C	oncentri	c Cyli	inder	Met	hods					-		18a
(iv) de Sénarmont's Plate Me	thod											18a
b. Comparative Methods (i) Concentric Cylinder Met (ii) Disk Method												19a
(i) Concentric Cylinder Met	hod											19a
(ii) Disk Method												19a
D. Direct Electrical Heating Method	ds.											19a
a. Cylindrical Rod Methods .												20a
a. Cylindrical Rod Methods . (i) Longitudinal Heat Flow (ii) Rodial Heat Flow Methods	Method											20a
(ii) Radial Heat Flow Metho	od .				,							20a
(iii) Thin-Rod-Approximation	n Metho	d										20a
(ii) Radial Heat Flow Metho (iii) Thin-Rod-Approximation b. Rectangular Bar Method												21 a
E. Thermoelectrical Method .												22a
F. Thermal Comparator Method.												22a

xvi Contents

3. Nonsteady-State Methods								•
A. Periodic Heat Flow Methods	•		•	•	•	•	 •	
a. Longitudinal Heat Flow Methods								
b Padial Bast Flow Method	ou		•	•	•	•	 •	•
b. Radial Heat Flow Method. B. Transient Heat Flow Methods	•		•	•	•	•	 •	•
B. Transient Heat Flow Methods a. Longitudinal Heat Flow Method b. Flash Method			•	•	٠	•		•
a. Congitudinal Heat Flow Method	ou .			•	•	•	 •	•
c. Radial Heat Flow Method	•	•	•	•	•	•	 •	
d. Line Heat Source and Probe M	tetnoa	S .		•	•	•	 •	•
e. Moving Heat Source Method			•	•	•	•	 -	٠
e. Moving Heat Source Method f. Comparative Method References to Text	•	•	•	•	•	•	 •	
References to Text	•		•	•	•	•	 •	•
	N	umeric a	l Data					
Data Presentation and Related General Info	rmatio	n .			•		 •	
 Scope of Coverage Presentation of Data 					-	-		
3. Classification of Materials	-					-	 •	
4. Symbols and Abbreviations used in th	ne Figu	ires and	I Tables	.	-		 •	
5. Convention for Bibliographic Citation6. Conversion Factors for Thermal Con-	n.			•	-	-		
6. Conversion Factors for Thermal Con-	ductivi	ity Unit	S .		-			
7. Crystal Structures, Transition Temp								
Elements								
lumerical Data on Thermal Conductivity								
detailed listing of entries for each of the							 -	٠
1. Elements		•			•		 -	
2. Nonferrous Binary Alloys				•				•
3. Nonferrous Multiple Alloys				•			 •	
4. Ferrous Alloys								
A. Carbon Steels								
B. Cast Irons					•			•
C. Alloy SteelsIntermetallic CompoundsMixtures of Intermetallic Compounds		-				•		
5. Intermetallic Compounds						•		
6. Mixtures of Intermetallic Compounds	S.							
7. Miscellaneous Alloys and Mixtures								•
References to Data Sources								
•								
	N	/laterial	Index					
Material Index to Thermal Conductivity Co		an Valu		2				

GROUPING OF MATERIALS AND LIST OF FIGURES AND TABLES

1. ELEMENTS

Figure and/or Table No.	Name	Symbol															F	Page No.
1*	Aluminum	Al																1
2*	Antimony	So																10
3	Arsenic	As												•				16
4*	Beryllium	Be																18
5*	Bismuth	Bi			-													25
6•	Boron	В										•						41
7*	Cadmium	Cd			•					•								45
8*	Cerium	Ce					٠					-						50
9*	Cesium	Ca																54
10*	Chromium	Cr																60
11*	Cobalt	Co		٠														64
12*	Copper	Cu	-		-		-	•							٠			68
13⁴	Dysprosium	Dy																82
14*	Erbium	Er													٠			86
15	Europium	Eu								٠								90
16*	Gadolinium	Gd																93
175	Gallium	Ga																97
18*	Germanium	Ge								•							-	108
19*	Gold	Au																132
20*	Hafnium	Hf																138
21*	Holmium	Но																142
22*	Indium	In																146
23*	Iridium	Îr																152
24*	lron	Fe																156
25*	Lanthanum	La																171
26*	Lead	Pb														٠		175
27*	Lithium	Li						•.										192
28*	Lutetium	Lu																198
29*	Magnesium	Mg				,		•										202
30*	Manganese	Mn																208
31*	Mercury	Hg .					•											212
32*	Molybdenum	Mo							•									222
33*	Neodymium	Nd																230
34	Neptunium	Np					٠											234
35*	Nickel	Ni			•								ď			•	•	237
36♥	Niobium	Nb	•							•	•						•	245
37*	Osmium	Os																254
38*	Palladium	Pd																258
39*	Platinum	Pt																262

Number marked with an asterisk indicates that recommended values are also reported for this material on separate figure and table of the same number followed by the letter R.

一种一种的一种

xviii Grouping of Materials and List of Figures and Tables

1. ELEMENTS (continued)

Figure and/or Table No.	Name	Symbol											Page No.
40*	Plutonium	$\mathbf{P}\mathbf{u}$											270
41*	Potassium	K											274
42*	Praseodymium	Pr											281
	Promethium	Pm											285
44*	Rhenium	Re											288
45*	Rhodium	Rh						•		•		•	292
46*	Rubidjum	Rb									٠		296
47*	Ruthenium	Ru											300
48 **	Samarium	Sm											305
49**	Scandium	Sc											369
50 ³	Selenium	Se											313
51 °	Silicon	Si											326
52 "	Silver	Ag											340
5 3 °	Sodium	Na											349
54 ^	Tantalum	Ta											355
55	Technetium	Tc											363
5 6 %	Tellurium	Te											366
57 *	Terbium	Ть											372
58 ′	Thallium	Tl											376
59 °	Thorium	Th											381
60 [‡]	Thulium	Tm											385
61 "	Tin	Sn											389
62 "	Titanium	Ti											410
63°	Tungsten	w											415
64 *	Uranium	U								٠			429
65	Vanadium	v											441
66 *	Ytterbium	Yb											446
67*	Yttrium	Y											449
68"	Zinc	Zn			٠								453
69*	Zirconium	7.r			•	•	•						461

2. NONFERROUS BINARY ALLOYS

Figure and/or Table No.	Name	Formula	Page No.
70	Aluminum + Antimony	Al + St	. 469
71	Aluminum + Copper	Al + Cu	. 470
72	Aluminum + Iron	Al + Fe	. 474
73	Aluminum + Magnesium	Al + Mg	. 477
74	Aluminum + Silicon	Al + Si	. 480
75	Aluminum + Tin	Al + Sn	. 483
76	Aluninum + Uranium	Al + U	. 484
77	Aluminum : Zinc	Al + 2n	. 487
78	Antimony + Aluminum	Sb + Al	. 488
79	Antimony + Bismuth	Sto + Bi	. 489

Number marked with an asterisk indicates that recommended values are also reported for this material on separate figure and table of the same number followed by the letter R.

CHEST ME PARTY

2. NONFERROUS BINARY ALLOYS (continued)

Figure and/or Table No.	Name	Formula	Page No,
80	Antimony + Cadmium	Sb + Cd	492
31	Antimony + Copper	Sb + Cu	495
82	Antimony + Lead	Sb + Pb	496
83	Antimony + Tin	Sb + Sn	497
34	Beryllium + Aluminum	Be + Al	498
85	Beryllium + Magnesium	Be + Mg	499
86	Bismuth + Antimony	Bi + Sb	502
87	Bismuth + Cadmium	B1 + Cd	505
88	Bismuth + Lead	Bi + Pb	508
89	Bismuth + Tin	Bi + Sn	511
90	Cadmium + Antimony	Cd + Sb , ,	514
91	Cadmium + Bismuth	Cd + Bi	517
92	Cadmium + Thailium	Cd + Tl	52 0
৮১	Cadmium + Tin	Cd + Sn	521
94	Cadmium + Zine	Cd + Zn	524
95	Chromium + Nickel	Cr + Ni ,	525
96	Cobali + Carbon	co+C	526
97	Cobalt + Chromium	Co + Cr	527
98	Cobalt + Nickel	Co + Ni	. 528
99	Copper + Aluminum	Cu + Al	. 530
100	Copper + Antimony	Cu + Sb	. 534
101	Copper + Arsenic	Cu + Ab	. 535
102	Copper + Beryllium	Cu + Be	. 538
103	Copper + Cadmium	Cu + Cd	. 541
104	Copper + Chromium	Cu + Cr	. 542
105	Copper + Cobalt	Cu + Co	. 545
106	Copper + Gold	Cu + Au	. 548
107	Copper + Iron	Cu + Fe	. 551
103	Copper + Lead	Cu + Po	. 554
109	Copper + Manganese	Cu + Mn	. 557
110	Copper + Nickel	Cu + Ni	. 561
111	Copper + Palladium	Cu + Pd	. 568
112	Copper + Phosphorus	Cu + P	. 571
113	Copper + Platinum	Cu + Pt	. 574
114	Copper + Silicon	Cu + Si	. 575
115	Copper + Silver	Cu + Ag	. 578
116	Copper + Tellurium	Cu + Te	. 581
117	Copper + Tin	Cu + Sn	. 584
118	Copper + Zinc	Cu + Zn	. 588
119	Germanium + Silicon	Ge + Si	. 597
120	Gold + Cadmium	Au + Cd	. 600
121	Gold + Chromium	Au + Cr	. 603
122	Gold + Cobalt	Au + Co	. 606
123	Gold + Copper	Au + Cu	. 609
124	Gold + Palladium	Au + Pd	. 614
125	Gold + Platinum	Au + Pt	. 617
126	Gold + Silver	Au + Ag	. 620

MANAGE MASS OF THE REAL

2. NONFERROUS BINARY ALLOYS (continued)

Figure and/or Table No.	Name	Formula Page	e No.
127	Gold + Zinc	Au + Zn	623
128	Hafnium + Zirconium	Hf + Zr	624
129	Indium + Lead	In + Pb	627
130	Indium + Thallium	In + Tl	630
131	Indium + Tin	in + Sn	634
132	Lead + Antimony	Pb + Sb	637
133	Lead + Bismuth	Pb + Bi	640
134	Lead + Indium	Pb + In	643
135	Lead + Silver	Pb + Ag	646
136	Lead + Thallium	Pb + Tl	649
137	Lead + Tin	Ph + Sn	652
138	Lithium + Sodium	L1 + Na	655
139	Magnesium + Aluminum	Mg + Al	6 ວັວ
140	Magnesium + Cadmium	Mg + Cd	661
141	Magnesium + Calcium	Mg + Ca	662
142	Magnesium + Cerium	Mg + Ce	663
143	Magnesium + Copper	Mg + Cu	666
144	Magnesium + Manganese	Mg + Mn	669
145	Magnesium + Nickel	Mg + Ni	672
146	Magnesium + Silicon	Mg + Si	675
147	Magnesium + Silver	Mg + Ag	678
148	Magnesium + Tin	Mg + Sn	679
149	Magnesium + Zinc	Mg + Zn	680
150	Manganese + Copper	Mn + Cu	683
151	Manganese + Iron	Mn + Fe	684
152	Manganese + Nickel	Mn + Ni	685
153	Mercury + Sodium	Hg + Na	686
154	Molybdenum + Iron	Mo + Fe	690
155	Molybdenum + Titanium	Mo + Ti	691
156	Molybdenum + Tungsten	Mo + W	634
157	Nickel + Chromium	Ni + Cr	697
158	Nickel + Cobalt	Ni + Co	700
159	Nickel + Copper	Ni + Cu	703
160	Nickel + Iron	Ni + Fe	707
161	Nickel + Manganese	Ni + Mn	710
162	Niobium + Uranium	Nb + U	713
163	Niobium + Zirconium	Nb + Zr	716
164	Paliadium + Copper	Pd + Cu	720
165	Palladium + Gold	Pd + Au	723
166	Palladium + Platinum	Pd + Pt	726
167	Palladium + Silver	Pd + Ag	727
168	Platinum + Copper	Pt + Cu	730
169	Platinum + Gold	Pt + Au	733
170	Platinum + Iridium	Pt + Ir	734
171	Platinum + Palladium	Pt + Pd	737
172*	Platinum + Rhodium	Pt + Rh	738

Number marked with an asterisk indicates that recommended values are also reported for this material on separate figure and table of the same number followed by the letter R.

2. NONFERROUS BINARY ALLOYS (continued)

Figure and/or Table No.	Name	Formula	Pa	ge No.
173	Platinum + Ruthenium	Pt + Ru		743
174	Platinum + Silver	Pt + Ag		745
175	Plutonium + Aluminum	Pu + Al		746
176	Plutonium + Iron	Pu + Fe		747
177	Potassium + Sodium	K + Na		748
175	Rubidium + Cesium	Rb + Cs		751
179	Selenium + Bromine	Se + Br		754
180	Selenium + Cadmium	Se + Cd		755
181	Selenium + Chlorine	Se + C1		756
182	Selenium + Iodine	Se + I		757
183	Selenium + Thallium	Se + T1		758
154	Silicon + Germanium	Se + Ge		761
185	Silicon + Iron	$S_1 + F_2 $		764
186	Silver + Antimony	Ag + Sb		767
187	Silver + Cadmium	Ag + Cd		770
185	Silver + Copper	Ag + Cu		773
189	Silver + Gold	Ag + Au		774
190	Silver + Indium	Ag ' In		777
191	Silver + Lead	$A_{\rm g} + 1 ^{\rm th}$		780
192	Silver + Manganese	Ag + Mn		783
193	Silver + Palladium	$A_{\mathbf{g}} \leftarrow \mathbf{P}\mathbf{d} , , , , , , , , , $		786
194	Silver + Platinom	Ag + Pt		790
195	Silver + Tin	Ag + Sa . ,		791
196	Silver + Zinc	Ag+Zh 		792
197	Sodium + Mercury	Na + Hg		795
198	Sodium + Potassium	Na + K		798
199	Tantalum + Niobium	Ta + Nb		801
20υ	Tantalum + Tungsten	Ta + W		802
201	Tellurium + Selenium	Te + Se		805
202	Tellurium + Thallium	Te + Tl		808
20:3	Thallium + Cadmium	T1 + Cd		811
204	Thallium + Indium	T1 + In		812
205	Thallium + Lead	T1 + P6		815
206	Thallium + Tellurium	Tl + Te		818
207	Thallium + Tin	T1 + Sn		621
208	Thorium + Uranium	Th + U		822
209	Tin + Aluminum	Sn + A1	· •	823
210	Tin + Antimony	Sn + Sb		824
211	Tin + Bismuth	Sn + Bi		827
212	Tin + Cadmium	Sn + Cd	• •	830
213	Tin + Copper		• •	833
214	Tin + Indium	Sn + In	• •	834
215	Tin + Lead	Sn + Pb		839
216	Tin + Mercury	· · · · · · · · ·		842
217	Tin + Silver	Sn + Ag		845
218	Tin + Thallium	Sn + Tl	• •	846

xxii Grouping of Materials and List of Figures and Tables

2. NONFERROUS BINARY ALLOYS (continued)

	Name	Formula			Page No
219	Tin + Zinc	Sn + Zn ,	,		. 847
220	Titanium + Aluminum	Ti + Al			. 849
221	Titanium + Manganese	Ti + Mn			. 849
222	Titanium + Oxygen	Ti + O			. 852
223	Tungsten + Rhenium	W + Re			. 855
224	Uranium + Aluminum	U + Al			. 559
225	Uranium + Chromium	U + Cr			. 859
226	Uranium + Iron	U + Fe			. 862
227	Uranium + Magnesium	U + Mg			. 863
228	Uranium + Molybdenum	U • Mo			- 564
229	Uranium + Niobium	U · Nb			. 567
230	Uranium + Silicon	U + Si			. 868
231	Uranium + Zirconium	U + Zr			. 571
232	Vanadium + Iron	V + Fe			. 874
233	Vanadium + Yttrium	V + Y			. 877
234	Zinc + Aluminum	2n + Al			850
235	Zine + Cadmium	Zn + Cd			. 851
236	Zirconium + Aluminum	Zr + Al			. 582
237	Zirconium + Hafnium	Zr + Hf			
235	Zirconium + Niobium	Zr + No			
239	Zirconium + Tin	Zr + Sn			
-0-	••••				
240	Zirconium + Titanium	Zr + Ti			. 890
240 241	Zirconium + Titanium Zirconium + Uranium	Zr + Ti		•	. 890 . 891
241					
241 NONFERROU	Zirconium + Uranium S MULTIPLE ALLOYS	Zr + U	•		. 891
241 NONFERROU 242	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + X	Zr + U			. 891
241 NONFERROU 242 243	Zirconium + Uranium S MULTIPLE ALLOYS	Zr + U			. 891 . 893 . 903
241 NONFERROU 242 243 244	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + $\sum X_i$ Aluminum + Iron + $\sum X_i$ Aluminum + Magnesium + $\sum X_i$	$\begin{aligned} &\text{Al} + \text{Cu} + \Sigma X_i & . & . & . & . & . & . \\ &\text{Al} + \text{Fe} + \Sigma X_i & . & . & . & . & . \\ &\text{Al} + \text{Mg} + \Sigma X_i & . & . & . & . & . \end{aligned}$. 891 . 895 . 905
241 NONFERROU 242 243 244 245	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \sum_i Aluminum + Iron + \sum_i Aluminum + Magnesium + \sum_i Aluminum + Manganese + \sum_i	$Zr + U \qquad . \qquad . \qquad . \qquad .$ $Al + Cu + \sum X_i \qquad . \qquad .$ $Al + Fe + \sum X_i \qquad . \qquad .$ $Al + Mg + \sum X_i \qquad . \qquad .$ $Al + Mn + \sum X_i \qquad . \qquad .$. 891 . 895 . 905 . 908
241 NONFERROU 242 243 244 245 246	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \sum_i Aluminum + Iron + \sum_i Aluminum + Magnesium + \sum_i Aluminum + Manganese + \sum_i Aluminum + Nickel + \sum_i	$Zr + U \qquad . \qquad$. 891 . 893 . 903 . 908 . 911
241 NONFERROU 242 243 244 245 246 247	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \sum_i Aluminum + Iron + \sum_i Aluminum + Magnesium + \sum_i Aluminum + Manganese + \sum_i Aluminum + Nickel + \sum_i Aluminum + Nickel + \sum_i Aluminum + Silicon + \sum_i	$Zr + U$ $Al + Cu + \Sigma X_{i}$ $Al + Fe + \Sigma X_{i}$ $Al + Mg + \Sigma X_{i}$ $Al + Mn + \Sigma X_{i}$ $Al + Ni + \Sigma X_{i}$ $Al + Si + \Sigma X_{i}$. 891 . 895 . 905 . 908 . 911 . 914
241 NONFERROU 242 243 244 245 246 247 245	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\Sigma_i\) Aluminum + Iron + \(\Sigma_i\) Aluminum + Magnesium + \(\Sigma_i\) Aluminum + Manganese + \(\Sigma_i\) Aluminum + Nickel + \(\Sigma_i\) Aluminum + Silicon + \(\Sigma_i\) Aluminum + Zinc + \(\Sigma_i\)	$Zr + U$ $Al + Cu + \Sigma X_{i}$ $Al + Fe + \Sigma X_{i}$ $Al + Mg + \Sigma X_{i}$ $Al + Mn + \Sigma X_{i}$ $Al + Nl + \Sigma X_{i}$ $Al + Si + \Sigma X_{i}$ $Al + Zn + \Sigma X_{i}$. 891 . 893 . 905 . 908 . 911 . 914 . 917 . 922
241 NONFERROU 242 243 244 245 246 247 245 249	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + ΣX_i Aluminum + Iron + ΣX_i Aluminum + Magnesium + ΣX_i Aluminum + Manganese + ΣX_i Aluminum + Nickel + ΣX_i Aluminum + Silicon + ΣX_i Aluminum + Zinc + ΣX_i Aluminum + Zinc + ΣX_i	$Zr + U$ $Al + Cu + \Sigma X_{i}$ $Al + Fe + \Sigma X_{i}$ $Al + Mg + \Sigma X_{i}$ $Ai + Mn + \Sigma X_{i}$ $Al + Ni + \Sigma X_{i}$ $Al + Si + \Sigma X_{i}$ $Al + Zn + \Sigma X_{i}$ $Al + \Sigma X_{i}$. 891 . 893 . 905 . 908 . 911 . 914 . 917 . 922 . 925
241 NONFERROU 242 243 244 245 246 247 245 249 250	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\Sigma_i\) Aluminum + Iron + \(\Sigma_i\) Aluminum + Magnesium + \(\Sigma_i\) Aluminum + Manganese + \(\Sigma_i\) Aluminum + Nickel + \(\Sigma_i\) Aluminum + Silicon + \(\Sigma_i\) Aluminum + Zinc + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Antimony + Beryllium + \(\Sigma_i\)	$Zr + U$ $Al + Cu + \Sigma X_{1}$ $Al + Fe + \Sigma X_{1}$ $Al + Mg + \Sigma X_{1}$ $Al + Mn + \Sigma X_{1}$ $Al + Nl + \Sigma X_{1}$ $Al + Sl + \Sigma X_{1}$ $Al + Zn + \Sigma X_{1}$ $Al + \Sigma X_{1}$ $Sb + Be + \Sigma X_{1}$. 891 . 893 . 905 . 908 . 911 . 914 . 917 . 922 . 925
241 NONFERROU 242 243 244 245 246 247 245 249 250 251	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \sum_i Aluminum + Iron + \sum_i Aluminum + Magnesium + \sum_i Aluminum + Manganese + \sum_i Aluminum + Nickel + \sum_i Aluminum + Silicon + \sum_i Aluminum + Zinc + \sum_i Aluminum + \sum_i Antimony + Beryllium + \sum_i Beryllium + Fluorine + \sum_i	$Zr + U$ $Al + Cu + \Sigma X_{1}$ $Al + Fe + \Sigma X_{1}$ $Al + Mg + \Sigma X_{1}$ $Al + Mn + \Sigma X_{1}$ $Al + Nl + \Sigma X_{1}$ $Al + Sl + \Sigma X_{1}$ $Al + Zn + \Sigma X_{1}$ $Sb + Be + \Sigma X_{1}$ $Be + F + \Sigma X_{1}$. 891 . 895 . 905 . 908 . 911 . 914 . 917 . 922 . 925 . 926
241 NONFERROU 242 243 244 245 246 247 245 249 250 251 252	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\sigma_i\) Aluminum + Iron + \(\sigma_i\) Aluminum + Magnesium + \(\sigma_i\) Aluminum + Manganese + \(\sigma_i\) Aluminum + Nickel + \(\sigma_i\) Aluminum + Silicon + \(\sigma_i\) Aluminum + Zinc + \(\sigma_i\) Aluminum + \(\sigma_i\) Antinony + Beryllium + \(\sigma_i\) Beryllium + Fluorine + \(\sigma_i\) Beryllium + Magnesium + \(\sigma_i\)	$Zr + U$ $Al + Cu + \Sigma X_{1}$ $Al + Fe + \Sigma X_{1}$ $Al + Mg + \Sigma X_{1}$ $Al + Mh + \Sigma X_{1}$ $Al + Nh + \Sigma X_{1}$ $Al + Sh + \Sigma X_{1}$ $Al + Zh + \Sigma X_{1}$ $Al + Zh + \Sigma X_{1}$ $Bb + Be + \Sigma X_{1}$ $Be + F + \Sigma X_{1}$ $Be + Mg + \Sigma X_{1}$. 891 . 893 . 903 . 908 . 911 . 914 . 917 . 922 . 925 . 926 . 929
241 NONFERROU 242 243 244 245 246 247 245 249 250 251 252 253	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\Sigma_i\) Aluminum + Iron + \(\Sigma_i\) Aluminum + Magnesium + \(\Sigma_i\) Aluminum + Manganese + \(\Sigma_i\) Aluminum + Nickel + \(\Sigma_i\) Aluminum + Silicon + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Antimony + Beryllium + \(\Sigma_i\) Beryllium + Fluorine + \(\Sigma_i\) Beryllium + Magnesium + \(\Sigma_i\) Bismuth + Cadmium + \(\Sigma_i\)	$Zr + U$ $Al + Cu + \Sigma X_{i}$ $Al + Fe + \Sigma X_{i}$ $Al + Mg + \Sigma X_{i}$ $Al + Mh + \Sigma X_{i}$ $Al + Ni + \Sigma X_{i}$ $Al + Si + \Sigma X_{i}$ $Al + Zh + \Sigma X_{i}$ $Al + \Sigma X_{i}$ $Bb + Be + \Sigma X_{i}$ $Be + F + \Sigma X_{i}$ $Be + Mg + \Sigma X_{i}$ $Bi + Cd + \Sigma X_{i}$. 891 . 893 . 903 . 908 . 911 . 914 . 917 . 922 . 925 . 926 . 929 . 932
241 NONFERROU 242 243 244 245 246 247 245 249 250 251 252 253 254	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\Sigma_i\) Aluminum + Iron + \(\Sigma_i\) Aluminum + Magnesium + \(\Sigma_i\) Aluminum + Manganese + \(\Sigma_i\) Aluminum + Nickel + \(\Sigma_i\) Aluminum + Silicon + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Aluminum + \(\Sigma_i\) Antimony + Beryllium + \(\Sigma_i\) Beryllium + Fluorine + \(\Sigma_i\) Beryllium + Magnesium + \(\Sigma_i\) Bismuth + Cadmium + \(\Sigma_i\) Bismuth + Lead + \(\Sigma_i\)				. 891 . 893 . 903 . 908 . 911 . 914 . 917 . 922 . 925 . 926 . 929 . 933 . 935
241 NONFERROU 242 243 244 245 246 247 245 249 250 251 252 253 254 255	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\Sigma\)_i Aluminum + Iron + \(\Sigma\)_i Aluminum + Magnesium + \(\Sigma\)_i Aluminum + Manganese + \(\Sigma\)_i Aluminum + Nickel + \(\Sigma\)_i Aluminum + Silicon + \(\Sigma\)_i Aluminum + \(\Sigma\)_i Aluminum + \(\Sigma\)_i Aluminum + \(\Sigma\)_i Beryllium + Fluorine + \(\Sigma\)_i Beryllium + Magnesium + \(\Sigma\)_i Bismuth + Cadmium + \(\Sigma\)_i Bismuth + Lead + \(\Sigma\)_i Cadmium + Bismuth + \(\Sigma\)_i				. 891 . 893 . 903 . 908 . 911 . 914 . 917 . 922 . 925 . 926 . 929 . 933 . 938
241 NONFERROU 242 243 244 245 246 247 245 249 250 251 252 253 254 255 266	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\infty\)i Aluminum + Iron + \(\infty\)i Aluminum + Magnesium + \(\infty\)i Aluminum + Manganese + \(\infty\)i Aluminum + Nickel + \(\infty\)i Aluminum + Silicon + \(\infty\)i Aluminum + Zinc + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Beryllium + Fluorine + \(\infty\)i Beryllium + Magnesium + \(\infty\)i Bismuth + Cadmium + \(\infty\)i Bismuth + Lead + \(\infty\)i Cadmium + Bismuth + \(\infty\)i Chromium + Iron + \(\infty\)i	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 891 . 893 . 903 . 908 . 911 . 914 . 917 . 922 . 925 . 926 . 929 . 933 . 938 . 941
241 NONFERROU 242 243 244 245 246 247 245 249 250 251 252 253 254 255 266 257	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\infty\)i Aluminum + Iron + \(\infty\)i Aluminum + Magnesium + \(\infty\)i Aluminum + Manganese + \(\infty\)i Aluminum + Nickel + \(\infty\)i Aluminum + Silicon + \(\infty\)i Aluminum + Zinc + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Beryllium + Fluorine + \(\infty\)i Beryllium + Fluorine + \(\infty\)i Beryllium + Cadmium + \(\infty\)i Bismuth + Cadmium + \(\infty\)i Cadmium + Bismuth + \(\infty\)i Chromium + Iron + \(\infty\)i Cobalt + Chromium + \(\infty\)i				. 891 . 893 . 903 . 908 . 911 . 914 . 917 . 922 . 926 . 929 . 932 . 938 . 941 . 944 . 947
241 NONFERROU 242 243 244 245 246 247 245 249 250 251 252 253 254 255 266	Zirconium + Uranium S MULTIPLE ALLOYS Aluminum + Copper + \(\infty\)i Aluminum + Iron + \(\infty\)i Aluminum + Magnesium + \(\infty\)i Aluminum + Manganese + \(\infty\)i Aluminum + Nickel + \(\infty\)i Aluminum + Silicon + \(\infty\)i Aluminum + Zinc + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Aluminum + \(\infty\)i Beryllium + Fluorine + \(\infty\)i Beryllium + Magnesium + \(\infty\)i Bismuth + Cadmium + \(\infty\)i Bismuth + Lead + \(\infty\)i Cadmium + Bismuth + \(\infty\)i Chromium + Iron + \(\infty\)i	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 891 - 893 - 903 - 908 - 911 - 914 - 922 - 926 - 929 - 932 - 935 - 941 - 944 - 947 - 950

3. NONFERROUS MULTIPLE ALLOYS (continued)

Figure and/or Table No.	Name	Formula	Page No.
261	Copper + Beryllium + EX,	$Cu + Be + \Sigma X_i$	955
262	Copper + Cadmium + DN	$Cu + Cd + \Sigma X_1 \dots \dots \dots \dots \dots$	956
263	Copper + Cobalt + ΣX_i	$Cu + Co + \Sigma X_1$,	957
264	Copper + Iron + ΣX ₁	$Cu + Fe + \Sigma X_1 \dots \dots \dots \dots \dots \dots$	
265	Copper + Lead + \SX_i	$Cu + Pb + \Sigma X_1 \dots \dots \dots \dots$	
266	Copper + Manganese + \(\sum_{1}\)	$Cu + Mn + \Sigma X_{i}, \dots, \dots, \dots$	
267	Copper + Nickel + ΣX_1	$Cu + N_i + \Sigma X_i$	
268	Copper + Silicon + \(\Silico\)X	$Cu + S_i + \Sigma X_i$	
269	Copper + Tim + \(\sum_{1}\)	$Cu + Sn + \Sigma X_1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	
270	Copper + Zine + ΣX_i	$Cu + Zn + \Sigma X_1 \dots \dots \dots \dots \dots$	
271	Copper + Zirconium + 5X ₁	$-Cu + Zr + \Sigma X_{1} + \dots + $	985
272	Lanthanum + Neodymium + $\sum X_i$	La + Nd + ΣX_i	
273	Lead + Antimony + 🚉	$Pb + Sb + \Sigma X_i$	
274	Lathrum + Boron + ∑X	$-\text{Li} + \text{B} + \sum_{i} $	
275	Lithium + Sodium + 🚉	$La + Na + \Sigma X_1 + \dots + \dots + \dots + \dots + \dots$	
276	Magnesium + Aluminum + ΣX_1	$-Mg + Al + \Sigma X_i$	
277	Magnesium + Cerrum + \(\Sigma \text{X}_1\)	$Mg + Ce + \Sigma X_1$,	
278	Magnesium + Cobalt + ΣX_1	$Mg + Co + \Sigma X_1$	
279	Magnesium + Copper + ΣN ₁	$Mg + Cu + \Sigma X_1 \dots \dots \dots \dots \dots$	
280	Magnesium + Nickel + \(\Sigma\)	$-Mg + N_1 + \Sigma N_1 + \dots + \dots + \dots + \dots + \dots + \dots$	
281	Manganese + Iron + ΣX	$-Mn + Fc + \Sigma X_1 + \dots + \dots + \dots + \dots + \dots$	
282	Manganese + Silicon + ΣX_1	$Mn + Si + \Sigma X_1 \dots \dots \dots$	1012
283	Molybdenum + Iron + ΣN_4	$-Mo + Fc + \Sigma X_1 \dots \dots \dots \dots \dots \dots \dots$	
284	Nickel + Aluminum + ΣN_i	$Ni + Al + \Sigma x_i$	
285	Nickel + Chromium + \(\Sigma \text{X}_1\)	$N_i + C_r + \Sigma X_i$	
286	Nickel + Cobalt + ΣX_i	$N_1 + C_0 + \Sigma X_{\hat{1}}$	
287	Nickel + Copper + \(\Delta \text{X}_1\)	$N_1 + C_0 + \Sigma X_1 + \dots + \dots + \dots + \dots + \dots$	1031
288	Nickel + Iron + $\Sigma X_{\hat{1}}$	$-Ni+\Gamma_0+\Sigma N_1 \ldots \ldots \ldots$	1935
289	Nickel + Manganese + ΣX_1	$N_1 + M_0 + \Sigma X_1$	1038
290	Nickel + Molybdenum + $\Sigma X_{\hat{1}}$	$Ni + Mo + \Sigma X_1$,	1041
291	Nickel + ΣX_1	$NI + \Sigma X_i$	1044
292	Niobium + Molybdenum + $\Sigma X_{\hat{1}}$	$Nb + Mo + \Sigma X_i$	1046
293	Niobium + Tantalum + ΣX_i	Nb ' Ta + ΣX_1	
294	Niobium + ΣX_1	$-Nb + Ti + 2X_i + \dots + \dots + \dots + \dots + \dots$	1052
295	Niobium · Tungsten · 🔀	Nb + W + ΣX_i	1055
296	Silver + Cudmium + $\Sigma X_{\hat{1}}$	$Ag + Cd + \Sigma X_1 \dots \dots$	1058
297	Silver + ΣX_1	$Ag + \Sigma X_i$	1061
298	Tantalum + Niobium + ΣX_{i}	$Ta + Nb + \Sigma X_1 \dots \dots \dots \dots \dots$	1062
299	Tantalum + Tungsten + 🕮	$Ta + W + \Sigma X_1 \dots \dots$	1065
300	Tellurium + Arsenic + ΣX_i	Te + As + $\sum X_1$	
301	Tin + Antimony + \sum_{i}	$\operatorname{Sn} + \operatorname{Sb} + \Sigma X_i$	
502	Tin + Copper + \(\Sigma X_1\)	$\operatorname{Sn} + \operatorname{Cu} + \sum_{i=1}^{n} \ldots_{i} \ldots \ldots \ldots \ldots$	
303	Titanium + Aluminum + $\sum_{i=1}^{N}$	$Ti + AI + \sum_{i=1}^{N} i \cdot \dots \cdot$	
304	Titanium + Chromium + ΣX_1	$T_i + C_r + \Sigma X_i$	
305	Titanium + Iron + ΣX_1	$Ti + Fe + \sum_{i=1}^{n} \dots$	
.106	Titanium + Manganese + XX _i	$Ti + Mn + \Sigma X_1 \dots \dots$	1983

Number marked with an asterisk indicates that recommended values are also reported for this material on separate figure and table of the same number followed by the letter R.

xxiv Grouping of Materials and List of Figures and Tables

3. NONFERROUS MULTIPLE ALLOYS (continued)

Name	Formula		Page No.
$\begin{aligned} & \text{Titanium} + \text{Vanadium} + \Sigma X_i \\ & \text{Titanium} + \Sigma X_i \\ & \text{Tungsten} + \text{Iron} + \Sigma X_i \\ & \text{Tungsten} + \text{Nickel} + \Sigma X_i \\ & \text{Uranium} + \text{Molybdenum} + \Sigma X_i \\ & \text{Uranium} + \text{Zirconium} + \Sigma X_i \\ & \text{Zinc} + \text{Aluminum} + \Sigma X_i \\ & \text{Zinc} + \text{Lead} + \Sigma X_i \\ & \text{Zirconium} + \text{Aluminum} + \Sigma X_i \\ & \text{Zirconium} + \text{Hafnium} + \Sigma X_i \\ & \text{Zirconium} + \text{Molybdenum} + \Sigma X_i \\ & \text{Zirconium} + \text{Tantalum} + \Sigma X_i \\ & \text{Zirconium} + \text{Tantalum} + \Sigma X_i \\ & \text{Zirconium} + \text{Urandum} + \Sigma X_i \\ & \text{Zirconium} + \text{Zirconium} + \text{Urandum} + \Sigma X_i \\ & \text{Zirconium} + \text$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1089 1090 1091 1094 1097 1098 1099 1100 1101 1104 1105 1108
LOYS STEELS			
	Fe + C + ΣX_i Fe + C + ΣX_i	Group I	. 1113 . 1124
Iron + Carbon + $\sum X_i$ Iron + Carbon + $\sum X_i$	$Fe + C + \sum_{i} X_{i}$ $Fe + C + \sum_{i} X_{i}$		
STEELS			
Iron + Aluminum + ΣX_1 Iron + Aluminum + ΣX_1 Iron + Chromium + ΣX_1 Iron + Chromium + ΣX_1 Iron + Chromium + Nickel + ΣX_1 Iron + Cobalt + ΣX_1 Iron + Copper + ΣX_1 Iron + Manganese + ΣX_1 Iron + Manganese + ΣX_1 Iron + Molybdenum + ΣX_1 Iron + Nickel + ΣX_1 Iron + Nickel + ΣX_1 Iron + Nickel + ΣX_1	$ \begin{aligned} & \text{Fe} + \text{Al} + \sum_{i} \\ & \text{Fe} + \text{Al} + \sum_{i} \\ & \text{Fe} + \text{Cr} + \sum_{i} \\ & \text{Fe} + \text{Co} + \sum_{i} \\ & \text{Fe} + \text{Mn} + \sum_{i} \\ & \text{Fe} + \text{Mn} + \sum_{i} \\ & \text{Fe} + \text{Mn} + \sum_{i} \\ & \text{Fe} + \sum_{i} \\ &$	Group II	. 1145 . 1148 . 1152 . 1160 . 1164 . 1176 . 1179 . 1182 . 1191 . 1197 . 1202
	Titanium + Vanadium + EX _i Titanium + EX _i Tungsten + Iron + EX _i Tungsten + Nickel + EX _i Uranium + Molybdenum + EX _i Zinc + Aluminum + EX _i Zirconium + Hafnium + EX _i Zirconium + Tantalum + EX _i Zirconium + EX _i Zirconium + Tin + EX _i Zirconium + EX _i Iron + Carbon + EX _i Iron + Carbon + EX _i Iron + Chromium + EX _i Iron + Aluminum + EX _i Iron + Aluminum + EX _i Iron + Chromium + Nickel + EX _i Iron + Chromium + Nickel + EX _i Iron + Copper + EX _i Iron + Manganese + EX _i Iron + Molybdenum + EX _i Iron + Nickel + EX _i	Titanium + Vanadium + Σ_i	Titanium + Vanadium + EX ₁

Number marked with an asterisk indicates that recommended values are also reported for this material on separate figure and table of the same number followed by the letter R.

4. FERROUS ALLOYS (continued)

Figure and/o		Formula		ı	Page No.
C. ALLOY	STEELS (continued)				
341	Iron + Phosphorus + DX	Fe + P + ΣX_i	Group I		1216
342	lron + Silicon + ΣX _i	Fe + Si + $\sum X_i$	Group I		1217
343	Iron + Silicon + DX _i	Fe + Si + ΣX_i	Group II		1221
344	Iron + Titanium + ΣX_i	$Fe + Ti + \Sigma X_i$	Group!		1225
345	Iron + Tungsten + ΣX _i	Fe + W + ΣX_i	Group 1		1226
346	Iron + Tungsten + $\sum X_i$	$Fe + W + \Sigma X_1$	Group II		1229

5. INTERMETALLIC COMPOUNDS

Figure and/or Table No.	Formals	Page No.
347	Sb ₂ Te ₃	1241
348	As ₂ Te ₃	1244
349	· Ba ₂ Pb	1245
350	Ba ₂ Sn	1246
351	Be _x Nb _y	1247
352	Be _x Ta _y	1250
353	Bc_XU_Y	1253
354	Be ₁₃ Zr	1256
355	Bi ₂ Te ₃	1257
356	$\mathbf{B_xSi_v}$	1262
357	CdSb	1264
358	CdTe	1267
359	. Са _х Рь,	1270
360	, Ca ₂ Sn ,	1273
361	CoSi	1274
362	CuSbSe ₂	1275
363	Cu ₂ Se ₂	1276
364	GaAs	1277
365	GeTe	1280
366	· Au _x Cu _y	12*1
367	шиз	1205
368	. InSb	1387
369	lnAs ,	1292
370	ln ₂ 50 ₃	1295
371	Ing/1 og	1295
372	La8e	1301
373	LaTo	1304
374	PbTe ,	1307
375	· Mg _p Sb ₂	1310
376	¹ Mg₂Ge	1311
377	Mg ₂ Si	1314
375	• Mg ₂ 8n	1317

5. INTERMETALLIC COMPOUNDS (continued)

igure and/or Table No.	Formula															Page N
379	HgSe .															1320
380	HgTe .	,														1321
381	MoSi ₂															1324
382	· NiSb .									٠						1327
383	Re _p As ₁															1330
384	RexGey .															1331
385	RcSe ₂															1332
386	AgSbTe2															1335
337	/ AgCu															1335
358	Ag ₂ Sc															1339
389	Ag _X Te _y															134:
390																134
391	· Sr ₂ Sn .															1.14-
392	TaB ₂															1343
393	, TaGe ₂															134
394	Tl ₂ Pb .															134!
395	SnSe ₂															135.
396	SnTe															1351
397	TiB2															1365
398	' TiNi															1361
399	As ₁ ا															136
400	WB															1365
401	WSe ₂															1368
402	WS12															1:369
403	WTe ₂	 														1370
404	ZnSe															1371
405	ZnSiAs ₂														,	1374
406	ZrB	 	,													1375

6. MIXTURES OF INTERMETALLIC COMPOUNDS

407	Sly ₂ S	e3 + Ag3Se +	PoSe			٠	•	٠	•		٠	٠	•	٠		٠	1379
408	Sb ₂ 7	e, + Bi ₂ Te ₃															1380
409	Sb ₂ 7	e, + In ₂ Te,															1386
410	Bia7	e, + Sb,Te,															1388
411	Bi ₂ 7	'e2 + 80,Te,	+ Su ₂ Se	, .													1392
412	Big	e ₃ + Bi ₂ Se ₃															1393
413	Cd	As ₂ + Zn ₂ As ₂	,														1396
414	• CdS) + ZnSu															1397
415	CuS	Sez + Cu ₂ Se	2														1400
416	Cuj	e ₂ + Cu5b8e	2														1401
417	InSt.	+ ln ₂ Te ₂															1403
415	In ₂ T	e ₃ + Cu ₂ Te -	+ Ag ₂ Te														1406
419	HgT	e + CdTe															1407
420	Ags	oTe ₂ + SnTe															1410

6. MIXTURES OF INTERMETALLIC COMPOUNDS (continued)

Figure and/or Table No.	Formula																						I	Page No.
421	SnTe + AgSbTe	32.							٠															1411
422	ZnSo + CdSb	•				•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	1413
MISCELLANEOUS	ALLOYS AND MIX	т	UR	ES	S																			
423	$Bi_2Te_3 + Te$.																							1415
424	Be + BeO .																							1416
425	$Cr + Al_2O_3$.																							1419
426	Cu + BeCo .																							1420
427	GaAs + GaP .																							1423
428	lnAs + InP .																							1426
429	Mo + ThO2 .																							1429
430	Na + Na ₂ O .																							1432
431	TiNi + Cu .																							1433
432	TiNi + Ni .																							1436
433	W + ThO ₂ .																							1439

Theory, Estimation, and Measurement

Notation

4	Cross-sectional area	x	Reduced frequency $(x = h\nu/\kappa T)$
A	Cube root of the atomic volume; Half the	Δx	Distance difference
а	focal length of an ellipsoid; Axis of ellipse		Parameter
В	Coefficient of equation (19)	α, ,	
b	Axis of ellipse; Numerical constant	α', α"	Constants
	Specific heat per unit volume	β	Parameter
<i>C</i> ()	Spectral specific heat	γ	Anharmonicity coefficient
$C(\nu)$	Atomic concentration of point defects	δ	Amplitude decrement of temperature
c			wave; Coefficient of equation (11)
D	Intitiat Citizentity ;	€	Local thermal strain
_	equation (19)	ζ	Fermi energy
E	Energy; Voltage drop	в	Debye temperature
e	Electronic charge	K	Boltzmann constant
\boldsymbol{G}	Band gap energy	λ	Wavelength
h	Planck constant	λ_m	Minimum wavelength
1	Electric current	ν	Frequency
k	Thermal conductivity	νm	Debye limiting cutoff frequency
k_m	Thermal conductivity maximum	π	Peltier coefficient; Ratio of the circum-
k,	Thermal conductivity of a reference		ference of a circle to its diameter
	material	ρ	Electrical resistivity
L_{o}	Lorenz number	σ	Electrical conductivity
ı	Mean free path; Effective length of a	J	··································
	specimen	Subscripts	
М	Atomic mass	d	Dislocation
m	Constant	e	Electronic component
N	Number of atoms per unit volume	ee	Electron-electron scattering
N _a	Number of conduction electrons per atom	g	Lattice component
n	Exponent; Constant	gd	Lattice component due to the scattering
P	Slope		of phonons by dislocations
-	Heat flow per unit time (and length)	ge	Lattice component due to the scattering
q	Radial distance	_	of phonons by electrons
r S	Seebeck coefficient	g p	Lattice component due to the scattering
T	Temperature ·	0.	of phonons by point defects
	Superconducting transition temperature	i	Intrinsic
T_c	Temperature corresponding to thermal	j	Type of carrier
T_m		n	Normal state
	conductivity maximum	P	Phonon
ΔT	Temperature difference	pe pe	Phonon-electron scattering
l .	Time	RT	Room temperature
U	Coefficient of equation (24)	s S	Superconducting state
ν	Electrical potential	U U	Umkiapp process
v	Velocity	=	Type of scattering process
W	Thermal resistivity	æ	Residual
W_{∞}	Theoretical constant thermal conduc-	0	a e e e e e e e e e e e e e e e e e e e
	tivity at high temperature	1, 2, 3,	. Locations, times, or materials

Theory of Thermal Conductivity of Metallic Materials

1. INTRODUCTION

Heat in solids is conducted by various carriers: electrons, lattice waves (or phonons), magnetic excitations, and, in some cases, electromagnetic radiation. The total thermal conductivity is additively composed of contributions from each type of carrier. It can be shown that

$$k = \frac{1}{3} \sum_{j} C_j v_j l_j \tag{1}$$

where the subscript j denotes the type of carrier, C_j is the contribution of carriers of type j to the specific heat per unit volume, v_j is the velocity of the carrier (we regard the carrier as a particle; if the carrier is a wave, the appropriate velocity is the group velocity), and l_j is a suitably defined mean free path.

The theory of thermal conductivity of solids has been the subject of numerous investigations and several review articles and has constituted a large portion of the material in several books [1-15]. It is the purpose of this introductory text to present the major results of the theory only to the extent to which it is needed by the user of these tables: to caution him as to which results are likely to be structure sensitive and thus likely to vary from specimen to specimen, and to help him to judge which materials are likely to have similar properties and thus to guide him in guessing the thermal conductivities of materials which have not been measured.

The occurrence of a mean free path in equation (1) opens up the possibility that in some cases one cannot uniquely define the thermal conductivity of a material. This happens whenever a carrier mean free path becomes comparable to the smallest external dimension of the specimen. It happens particularly in insulators at low temperatures, because of long phonon mean free paths, and in transparent solids at high temperatures, where photons contribute signifi-

cantly to heat transport. In metals it is a relatively rare occurrence, to be considered only in the case of very small particles, very thin wires, or superconductors at extremely low temperatures.

The principal carriers of heat in metals are electrons and lattice waves, leading to an overall thermal conductivity

$$k = k_e + k_e \tag{2}$$

where k_c is the electronic component and k_s the lattice component.

Generally k_t of metals, alloys, and semimetals is of magnitude comparable to the lattice thermal conductivity of insulators of corresponding elastic properties, except at low temperatures (where phonon-electron interaction reduces k_t in metals). The relative importance of k_t and k_t thus depends on the magnitude of k_t . The electronic component often parallels the electrical conductivity (Wiedemann-Franz law), and the electrical conductivity is highest in pure metals, reduced in the case of alloys, and even lower in semimetals and semiconductors.

We thus have, as a rough rule, that in highly conducting metals, i.e., pure metals with room temperature resistivities of up to say $5 \mu\Omega$ cm, k_a is the dominant component over all or almost all temperatures. For poorly conducting metals of higher resistivity, k_s forms an appreciable component at ordinary temperatures. For alloys of more than 0.5 to 1 percent solute content, k_e is substantially decreased below the value of the parent metal at low temperatures (i.e., below room temperature) where k, becomes significant, but at higher temperatures k_e approaches the value of pure metals of comparable conductivity. Thus k_s is an important component of alloys below room temperatures; above room temperatures it is important when the parent metal is a poor conductor.

As we consider materials of increasingly poorer conductivity, k_e becomes less important relative to

٠

 k_s . In semimetals and degenerate semiconductors k_s and k_c are frequently comparable except at low temperatures, where k_c is small. In most semiconductors the electronic thermal conductivity has to be considered only at elevated temperatures.

Since k_e and k_f behave differently as functions of temperature and with the introduction of imperfections, it is important to know the relative roles of these two carriers if predictions are to be made; unfortunately, it is not always easy to know what fraction of the measured thermal conductivity can be ascribed to each (see, for example, reference [1]).

For purposes of the theory of conduction properties, we distinguish between three temperature regimes: high, intermediate, and low, with rough divisions at temperatures (on the absolute scale) of θ and $\theta/3$ respectively, where θ is the Debye temperature. For our purposes this temperature is related to the upper frequency limit ν_m of the spectrum of lattice waves by $h\nu_m = \kappa\theta$, where h and κ are the Planck and Boltzmann constants, respectively. Roughly speaking, at high temperatures each atom vibrates independently of its neighbors, and the theories of lattice vibration simplify. At low temperatures the vibrations are highly correlated and are best described by elastic waves in a continuum with corresponding simplification. The intermediate regime is somewhat awkward, and theoretical results are obtained by interpolation.

All the carriers have mean free paths which are limited in part by the structural imperfections of the solid and in part by the dynamic imperfections produced by thermal vibrations, so that, for each carrier,

$$1/l = \sum_{(\alpha)} 1/l_{(\alpha)} \tag{3}$$

the summation being over all processes α which scatter the carrier. The theory describing scattering by the thermal vibrations depends on the temperature regime, and this accounts for the different theories to be used for the conduction properties.

Most solids have Debye temperatures θ around 300 K, but atomically heavy solids have lower θ 's (well below 200 K for gold and lead), while most light-atom solids (diamond, beryllium) have much higher Debye temperatures.

2. ELECTRONIC THERMAL CONDUCTIVITY

In metals, where the density of electrons is high, the electron gas is highly degenerate, that is, all electron states of energy $E < \zeta$ are filled, ζ being

the Fermi energy, all states of $E > \zeta$ are empty, and all conduction properties occur in an energy interval $\zeta \pm 0 (\kappa T)$, where $\kappa T \ll \zeta$. Under these circumstances the electronic component of the specific heat $C_e \propto T$, v_e is typically 10^8 cm sec⁻¹ and independen of temperature. Thus

$$k_e = \frac{1}{3} C_e v_e l_e \propto T l_e \tag{4}$$

and its temperature dependence is governed by the i temperature dependence of l_e .

Now the electron mean free path $l_{\rm e}$ also determines the electrical conductivity. Theories of the electron mean free paths are thus at the same time theo.ies of the electrical conductivity σ of metals, while the thermal and the electrical conductivity are related by the Wiedemann-Franz-Lorenz law

$$k_e/\sigma T = L_0 = \frac{1}{3}\pi^2(\kappa/e)^2$$
 (5)

where e is the electronic charge. In practical units the Lorenz number L_0 is 2.443 \times 10⁻⁸ V² K⁻².

The electron mean free path is limited both by electron scattering by defects (chemical impurities and physical defects) and by the thermal vibrations; for in a perfectly periodic crystal lattice l_e would be infinite. To the extent to which the scattering rates due to different processes are additive,

$$1/l_e = 1/l_0 + 1/l_i(T)$$
 (6)

where l_0 is the residual mean free path and $l_i(T)$ the intrinsic mean free path. The first term on the right hand side of equation (6) describes scattering of electrons by defects, and varies from specimen to specimen, but is independent of temperature as long as the nature and concentration of defects are not functions of temperature.* The second term describes scattering of electrons by lattice vibrations and varies with temperature. In the simple case when the electron gas is isotropic, i.e., the velocity and apparent density of electrons do not depend upon direction relative to the crystal axes, equation (6) leads to an additivity of the corresponding electrical and electronic thermal resistivities i.e.,

$$1/\sigma = \rho = \rho_0 + \rho_i(T) \tag{7}$$

and

$$1/k_e = W_e = W_0 + W_i$$
(8)

An important exception would be the vacancy concentration just below the melting point, which in some metals depends on temperature.

Here ρ_0 is the residual electrical resistivity, varying from specimen to specimen, $\rho_i(T)$ the intrinsic electrical resistivity, and W_0 , W_i are corresponding components of the thermal resistivity.

The Wiedemann-Franz-Lorenz law, equation (5), is based on the following requirements:

- (a) The electron gas is highly degenerate—this appears to be the case in all metals except possibly some transition metals at elevated temperatures.
- (b) The electron mean free path l_e is the same for electrical as for thermal conduction, so that it cancels in the ratio k/σ .

An analysis of the second requirement shows that this is almost always satisfied for defect scattering [1, 2]; hence

$$\rho_0/W_0T=L_0\tag{9}$$

The exceptions are some cases of magnetic impurities, where scattering is simultaneously inelastic and anisotropic; even here the departure from (9) is significant only at low temperature, where κT is comparable to the Zeeman level splitting of the impurity.

As regards ρ_1 and W_1 , these are related by the Wiedemann-Franz-Lorenz law in the high-temperature limit only, while at lower temperatures

$$\rho_t/W_tT = L_t \tag{10}$$

is generally less than L_0 for reasons given in reference [2]. Generally $L_1 < L_0$ and in the limit of low temperatures

$$L_t = \delta(T/\theta)^2 \tag{11}$$

where the coefficient δ depends on the topology of the Fermi surface.

Explicit theoretical expressions for ρ_1 and W_1 have been obtained only for the very simplest of models, with the electron gas similar to a gas of free electrons, with spherical energy contours in momentum space, and the underlying crystal structure replaced by a uniform distribution of positive charge to compensate the charge of the electron gas. This model, the "jellium" model [12], thus foregoes any considerations of effects due to crystal structure and the corresponding electronic band structure of real metals. On such a model, using a Debye model for the spectrum of lattice vibrations, one obtains the following low-temperature limits [2]

$$\rho_i \propto T^6, \quad W_i \propto T^2$$
(12)

and

$$L_i = \rho_i / W_i T = 7.8 N_a^{-2/3} (T/\theta)^2$$
 (13)

where N_a is the number of conduction electrons per atom. The electronic thermal resistivity at low temperatures can thus be written in the form

$$W_a = \alpha T^2 + \beta/T \tag{14}$$

Thus

$$k_e = \frac{1}{\alpha T^2 + \beta/T} \tag{15}$$

where $\beta = \rho_0/L_0$ depends on the specimen, while α is an intrinsic property of the metal. Equation (15) implies that k_e , and thus the total thermal conductivity of pure metals, should pass through a maximum at low temperatures; the purer the specimen, the higher the maximum conductivity and the lower the temperature at which the maximum occurs.

In order to predict theoretically the magnitude of α , or the magnitude of ρ_i , one would need to predict the strength of the interaction between electrons and lattice waves and the corresponding electron scattering probabilities. This interaction can only be estimated very roughly.

In a similar manner, the ability of fundamental theory to predict the absolute magnitude of β for a given concentration of impurities or other defects is very limited. Since such calculations also predict ρ_0 , and since electrical resistivities are measured more readily than thermal conductivities, such calculations are usually classified under electrical resistivity calculations. There is an extensive literature on this subject [12], dealing both with theoretical methods and with the vexing question of determining from experiments the specific resistivity of a given number of physical defects of various kinds (i.e., vacancies, interstitials, dislocations, stacking faults) [16]. Even the specific resistivity (or ρ_0 per atomic percent) of a given species of solute atoms is not a trivial determination.

Generally speaking the theory is well able to predict ρ_0 due to point defects which scatter electrons mainly by virtue of a valence difference (vacancies, solute atoms), but does poorly when distortion effects are important (interstitials, dislocations).

The theoretical equation (15) has been extensively compared with low-temperature experimental data for high-purity metals, and disagreements are found [55-57] in that the power of T for most metals is not 2 but greater, and the coefficient α is not a constant for a metal. Considering the temperature

€-<u>∃</u>

The same of the same

dependence of the coefficient α and the interaction between intrinsic and residual thermal resistivities, equation (15) is modified semiempirically [55-57] to become

$$k_{\mathbf{Z}} = \frac{1}{\alpha' T^n + \beta/T} \tag{16}$$

where

$$\alpha' = \alpha'' \left(\frac{\beta}{n \alpha''}\right)^{(m-n)\cdot(m+1)}$$

and x^n , m, and n are constants for a metal. The value of n lies between 2 and 3 for most metals. Much better agreements are obtained in using equation (16) for fitting experimental data, and this equation has been used extensively for calculating the recommended values presented in this volume for highly conducting elements at temperatures below about 1.5 T_m , with T_m the temperature corresponding to the maximum conductivity k_m of the curve.

At high temperatures the theory becomes simpler in form, though it is still difficult to predict absolute values. The theory predicts in the limit, well above the Debye temperature,

$$\rho_1 \propto T$$

$$W_1 = \rho_1 / L_0 T = W_{\infty}$$
(17)

where W_{2} is a constant. This is essentially a consequence of the fact that, at high temperatures the intrinsic scattering probability, or $1/l_1(T)$, varies as $\langle \epsilon^2 \rangle$, the mean square thermal strain, which in turn varies as T.

All this needs qualification if finer details are to be investigated. Thus, for example, thermal expansion as well as high-order interactions might cause deviations from $l_t \propto T^{-1}$, and corresponding deviations of W_4 from constancy. There are further deviations of L_i from L_0 at high temperatures, generally small but not entirely negligible, arising from the transport equations [12]. Thus $W_i(T)$ tending to a constant value is a good picture only to a first approximation. Finally the assumption of high degeneracy, i.e., $\kappa T \ll \zeta$, which is required so that $\rho \propto 1/l$ and $W \propto T/l$, becomes questionable in some metals at elevated temperatures (i.e., transition metals, actinides), while in the simpler metals we believe it to be a good assumption right up to the melting point.

Finally, the fact that scattering of electrons by thermal vibrations is proportional to $\langle \epsilon^2 \rangle$ enables us to estimate the order of magnitude of point defect scattering in terms of thermal scattering at

room temperatures, and thus to estimate ρ_0 and W_0 in terms of the room temperature values of ρ_1 and W_1 . At room temperature $\langle \epsilon^2 \rangle$ is about 0.01 in most solids (depending somewhat on atomic volumes and elastic constants, which are not very variable). If we arbitrarily ascribe scattering by a point defect to be equivalent to unit shear strain over one atomic volume, we find that

$$\rho_0 \simeq (\rho_t)_{RT} c$$

$$W_0 T \simeq (W_t)_{RT} c T_{RT}$$
(18)

where $(\rho_t)_{RT}$, $(W_t)_{RT}$ are the room temperature intrinsic resistivities, $T_{RT} \simeq 300$ K, and c is the atomic concentration of point defects in percent. Actual values of ρ_0 and W_0T deviate from the estimates of equation (18) by factors of up to about 3 either way, but equation (18) is very useful in estimating resistivities due to unknown point defects, and applies to all metals and semimetals irrespective of the details of the band structure.

In addition to the scattering of electrons by defect and by thermal vibrations, it is also possible for the electrons to scatter each other, producing both an electrical and thermal resistivity. These effects seem important mainly in metals of high density of states such as transition metals, and lead to resistivities of the form

$$\rho_{ee} \simeq BT^2$$

$$W_{ee} \simeq DT$$
(19)

These effects are thus generally important at low temperatures, where they tend to dominate over the respectively T^5 and T^2 variation of ρ_i and W_i , provided of course that the samples are pure enough so that the residual resistivities ρ_0 and W_0 do not yet dominate at those low temperatures. As transition metals are obtained in increasingly pure form, the need of additional terms of the form (19) in the electrical and thermal resistivity equations is found in more and more cases.

Major results of the theory of electronic thermal conductivity have been briefly presented as above. For detailed theoretical developments and discussions, the reader is referred to the review papers and books cited before and to other papers on this subject [17-66].

3. LATTICE THERMAL CONDUCTIVITY

The thermal vibrations of solids contribute to the thermal conductivity. In insulators this is the

القامية مؤمية والمرتب القائم فالتخواجة كبمث مغيسا المميد والمريخ الإقلاقات بالعرفية مستجال مسلط فيلطا منسقيد بيناوا الفاقيد مساوا

only mechanism of heat transport except at elevated temperatures. The theory as it applies to insulators is described in somewhat greater detail in Volume 2. The lattice thermal conductivity of metals is governed by the same theoretical considerations, but a number of cases which occur in insulators are not relevant to metals, so that the present discussion is not as comprehensive. General reviews of lattice thermal conductivity are given in references [1-4]. Individual research papers on the theory of lattice thermal conductivity include [67-132].

The thermal vibrations of a perfect crystal are described in terms of lattice waves which occupy a spectrum of frequencies from the lowest frequencies to some upper limit, ν_m , of the order of 10^{13} Hz. At low frequencies these waves are identical to the elastic waves in the corresponding elastic continuum; at the higher frequencies the atomic structure of the crystal lattice leads to dispersion effects. The corresponding wavelengths range from long waves down to waves of length comparable to the interatomic distances.

These waves are randomly excited in thermal equilibrium and the energy content of the solid is given in terms of the laws of statistical mechanics. The specific heat of solids varies as T^3 at the lowest temperatures and is independent of temperature in the high-temperature regime $(T > \theta)$, where $\theta = h\nu_m/\kappa$). The spectral distribution of the specific heat per unit volume as given, to a first approximation, by the Debye theory, is of the form

$$C(\nu) d\nu = 9 N \kappa \left(\frac{T}{\theta}\right)^3 \frac{x^4 e^x}{(e^x - 1)^2} dx$$
 (20)

where $x = h\nu/\kappa T$ is a reduced frequency and N the number of atoms per unit volume. This holds for $\nu < \nu_m$; for $\nu > \nu_m$, $C(\nu) = 0$.

The Debye approximation disregards the dispersion of the high-frequency lattice waves, disregards differences of polarization of different lattice waves, and smears out the crystal structure of the solid. The only concession to the discreteness of the lattice is the choice of the cutoff frequency ν_m or the corresponding minimum wavelength $\lambda_m = v\nu_m$, where v is some average sound velocity. It is chosen so that the total number of waves corresponds to the correct number of normal modes (3N) which this assembly of N atoms ought to have.

In spite of the obvious inadequacy of the Debye approximation, it is frequently chosen as the basis of discussing thermal conductivity, because the inadequacy of that theory is such that small errors in

the theory of the specific heat are usually not too important.

In a perfectly periodic crystal which also obeys perfectly the laws of linear elasticity or Hooke's law (i.e., all restoring forces are linear functions of relative displacements, the elastic energy is a quadratic function of relative displacements), each elastic wave is completely independent of all other elastic waves and maintains forever whatever energy it possesses. Such a crystal could carry a heat current or net flow of elastic energy without a driving force, and would thus have an infinite thermal conductivity.

Real crystals, by virtue of structural defects and deviations from linear elasticity, have lattice waves which continuously interchange energy with each other, so that each lattice wave has a finite mean free path. From equation (1), generalized to take account of the fact that this mean free path $l(\nu)$ is generally a function of the frequency of the lattice wave, ν , the lattice thermal conductivity becomes

$$k_{g} = \frac{1}{3} \int_{0}^{\nu_{m}} C(\nu) v_{g} l(\nu) d\nu \qquad (21)$$

where $v_i = d\nu/d(1/\lambda)$ is the group velocity of the waves, and $C(\nu)$ is the spectral specific heat, given approximately by (20).

The lattice thermal conductivity is thus governed by the mean free path of the lattice waves, in an analogous manner to the electronic conduction properties which are governed by the electron mean free path.

Each individual wave can be regarded as a normal mode (or almost normal mode, if I is finite) of the crystal, and obeys the dynamical equations of a harmonic oscillator. According to the laws of quantum mechanics, the energy of each oscillator is not continuously variable, but an integral number of quanta, each of energy hv. In fact, this was included in the statistical mechanics leading to (20). Each quantum of energy is called a phonon, and each lattice wave contains an integral number of such phonons. By focusing attention on the phonons, as if they were particles, one can describe the thermal energy of vibration of a crystal as a gas of phonons, and use the concepts of the kinetic theory of gases. This description is completely equivalent to the description in terms of lattice waves, and also leads to (21); it has certain advantages of ease of conceptualization, particularly when we talk of the processes of energy interchange between different waves, which can be regarded as scattering of phonons from one wave into another, or the breaking up of a phonon into other phonons, etc. The final results are equivalent, and the phonon mean free path $l(\nu)$ can be defined in an equivalent manner. We shall use either description according to convenience.

At elevated temperatures in good crystals, the principal process limiting the mean free path is the interchange of energy, or scattering of phonons, due to departures from Hooke's law. A local strain ϵ introduces a fractional change in local sound velocity of $\gamma\epsilon$, where the coefficient γ , a measure of the anharmonicity, is of order unity (frequently $\gamma \simeq 2$). At high temperatures the thermal strain at neighboring atomic sites is almost uncorrelated, and scattering is proportional to $\langle \epsilon^2 \rangle$ and, in turn, proportional to T. Thus the intrinsic mean free path varies as

$$l_i \propto 1/T \tag{22}$$

analogously to the similar variation of the electron mean free path [see equation (17)]. This has been pointed out by Debye [67].

There is an important difference, however. The electrons contributing to the conductivity all have a short wavelength, but the lattice waves have a continuous spectrum of wavelengths. A perturbed atomic site, acting as an independent scattering source, would scatter long-wave lattice waves very weakly, and $l(\nu)$ would increase so rapidly with decreasing v that the thermal conductivity integral, equation (21), would diverge at the low-frequency limit. In fact this model would lead to $I_t(\nu) \propto 1/\nu^4$, and since $C(\nu) \propto \nu^2$ at lowest frequencies [see equation (20)], one can readily appreciate the divergence difficulty. This simple model is thus inadequate at low frequencies. To avoid this difficulty, Peierls [68] set up a theory of the anharmonic interaction between lattice waves, which is the basis of all subsequent theoretical work. The theory resolves the thermal vibrations into their proper spectral components of lattice waves, and treats in detail the interchange of energy between groups of three lattice waves, or breaking up of one phonon into two other phonons (or vice versa), satisfying certain interference conditions between the frequencies and the direction and wavelengths involved. The theory leads, with some approximation, to a variation

$$1/l_t \propto \nu^2 T \tag{23}$$

and avoids the divergence difficulties [3].

In detail, however, the theory is quite complicated, involving not only the strength of the anharmonic interaction γ , which cannot be estimated with accuracy, but also the detailed crystal structure. (An elastic continuum would not have a thermal resistivity.) Nevertheless, rough estimates have been made [3, 79] and the intrinsic thermal resistivity of the lattice component is of the form

$$W_U \simeq U \left(\frac{h}{\kappa}\right)^3 \frac{\gamma^2}{Ma} \frac{T}{\theta^3}$$
 (24)

where M is the atomic mass and a^3 the atomic volume. The numerical coefficient U, typically of order 1/3, is somewhat uncertain, and depends on the details of the crystal structure. The major factor controlling the intrinsic lattice conductivity, however, is the Debye temperature. Solids of high θ will generally have higher values of k_I .

The subscript U stands for Umklapp, or flipover; in Peierls' theory the resistive processes are processes in which the phonon interaction is combined with a Bragg reflection of the lattice wave, or Umklapp processes. These are distinct from the "normal" processes, phonon interactions which help establish thermal equilibrium, but do not change the net energy flow associated with the phonon gas. The need to distinguish between these processes and their different role in producing thermal resistivity adds further complexity to the theory, particularly at intermediate temperatures, and makes detailed numerical predictions very difficult.

At low temperatures the thermal resistivity decreases exponentially according to $W_U \propto e^{-\theta i b T}$, where b is a numerical constant, which also depends sensitively on the crystal structure and the dispersion of the high-frequency lattice waves. This exponential temperature variation has been observed in perfect insulators, but in many insulators it is overshadowed by the thermal resistance which arises from the scattering of lattice waves by various defects.

In metals, however, another resistive process usually dominates at low temperatures: scattering of the lattice waves or phonons by the free electrons. This is of course the very same process as the scattering of conduction electrons by lattice waves or thermal vibrations which had been invoked earlier to limit the electronic conduction properties and which gave rise to $\rho_i(T)$ and $W_i(T)$. These interactions limit the phonon mean free path; the corre-

sponding reciprocal mean free path for phononelectron scattering

$$1/l_{pe}(\nu) \propto \nu \tag{25}$$

must be added to the other scattering processes according to equation (3) to obtain $l(\nu)$ of equation (21).

The result of this scattering mechanism is that k_t of metals is lower than k_t of insulating crystals of the same elastic properties, particularly at low temperatures, where $k_t \propto T^2$. At high temperatures, however, anharmonic resistive processes dominate, and k_t tends to equal $1/W_U$ and thus varies as 1/T. The lattice conductivity will thus have some maximum value at intermediate temperatures. This maximum value is usually considerably smaller than that of insulating crystals, and also smaller than that of insulating crystals, and also smaller than k_c of most pure metals. Typical values of k_t at its maximum (which may lie between 20 and 50 K) would not exceed 0.5 W cm⁻¹ K⁻¹, while k_c of metals and k_t of insulators may peak at values ranging from tens to hundreds of watt-units.

Equation (25) was based on the assumption that the electrons have such a long mean free path that the lattice wave can interact with individual electrons. If I' is the electron mean free path, this is equivalent to requiring that

$$l' > \lambda$$
 (26)

where λ is the wavelength of the lattice wave (or phonon). In alloys, where l' is finite, this relation breaks down for sufficiently long waves, i.e., at sufficiently low temperatures. With l' typically 100a for 1 percent impurity and $\lambda \simeq \frac{1}{2} a(\theta/T)$ for the important thermal waves, where a^3 is the atomic volume, equation (26) is barely satisfied at liquid helium temperatures for a 1 percent alloy (a typical minimum concentration at which k_l can still be separated from k and studied).

In the opposite extreme $(l' \leq \lambda)$, the lattice wave no longer interacts with individual electrons, but with the electron gas as a whole [83]. The scattering is no longer given by equation (25), but reduced by a factor of order (l'/λ) , so that $1/l_{pe}(\nu) \propto \nu^2$ and $k_e \propto T$ instead of T^2 , and appropriately increased. This changed temperature dependence is clearly seen in concentrated alloys of $\rho_0 > 10~\mu\Omega$ cm. But even in more dilute alloys the effect is partially present at liquid helium temperatures and should be more apparent at lower temperatures. A theoretical analysis of these intermediate situations and a comparison with data for the lattice component of

alloys has been given by Lindenfeld and Pennebaker [105].

Finally we must consider the scattering of lattice waves by crystal defects or imperfections.

As a rough rule we can state that extended defects contribute to the lattice thermal resistivity, $1/k_z$, most importantly at lowest temperatures (long waves), while point defects make their most important contribution to $1/k_z$ at intermediate temperatures (at temperatures at or above the maximum in k_z).

At low temperatures the frequency dependence of the phonon mean free path is reflected in the temperature dependence of the lattice conductivity. This is readily seen from equation (21), using expression (20) for $C(\nu)$. If $l(\nu) \propto \nu^{-n} \propto T^{-n}x^{-n}$,

$$k_s \propto T^{3-n} \tag{27}$$

One can show (e.g., reference [3]) that the frequency dependence of $l(\nu)$ depends on the geometry of the imperfections. For point defects n=4, for line defects n=3, and for sheets n=2. Dislocations have a long-range strain field which is responsible for most of the scattering; for dislocations n=1. The additional scattering by the core has a frequency dependence n=3, but it is only a minor component.

At lowest temperatures dislocations are generally the most important imperfections scattering phonons. Since the frequency dependence is the same as that for scattering by electrons, these two resistive processes are additive, so that

$$\frac{1}{k_s} = W_t = W_{te} + W_{td} \propto T^{-2}$$
 (28)

where W_{ge} is the lattice resistivity due to electrons, and W_{gd} is that due to dislocations. Typically, W_{gd} becomes comparable to W_{ge} for dislocation densities of the order of 10^{10} per cm². The lattice thermal conductivity of alloys is thus sensitive to the state of cold work, even though cold work in alloys produces only small fractional changes in ρ_0 and thus only small changes in k_e .

Relation (27) does not hold, strictly speaking, for point defects, where n=4, for if $l \propto 1/\nu^4$ the integral (21) diverges at low frequencies, though the resulting resistivity frequently is of the form $W_{ep} \propto T$. Point defects must always be considered in conjunction with another resistive process—in conjunction with electron scattering at low temperatures, in conjunction with anharmonic interactions at high

THE PROPERTY OF

temperatures, and the corresponding integrals (21) can only be evaluated numerically.

At low temperatures point defects lead to a departure from $k_t \propto T^2$, which becomes progressively larger as the temperature is increased. Around the maximum of k_x they depress the maximum and tend to flatten the curve, and at even higher temperatures they depress the conductivity and lead to a temperature dependence slower than T^{-1} . As a consequence of the properties of equation (21), their resistivity effect increases more slowly than linearly with point defect concentration, and in the limit of high temperatures and high defect concentration c

$$k_t \propto [c(1-c)]^{-1/2} T^{-1/2}$$
 (29)

This is a result of the fact that in equation (21) point defect scattering leaves the mean free path of the lowest frequencies essentially unchanged.

Quantitative estimates of the strength of the point defect scattering can be made in terms of the difference in mass from that of a normal site and in terms of the volume misfit [3].

Equation (29) assumes absence of any correlation between the position of point defects. Short range order can lead to different frequency dependences and corresponding changes in the temperature dependence of k_g . An extreme case is presented by systematic spatial variations in the concentration, such as, for example, those due to the strain field of dislocations. These impurity atmospheres lead to scattering that simulates the scattering due to the dislocations which control the atmospheres [129].

4. OTHER CASES

With at least two types of carriers responsible for heat transport, and with each of them being limited by several possible mechanisms, thermal conductivity in metals and alloys [133-138] shows a wide range of differing behavior, which the present review cannot cover comprehensively. To add further to the variety, we have to consider other mechanisms of heat transfer and other mechanisms of resistivity, we also have to take into account cases of non-degeneracy of the electron gas, as are found in semi-metals and semiconductors [139-158] of high carrier density, and finally we have to consider the thermal conductivity of superconductors [159-184].

Cooperative effects between the magnetic moments arranged in a regular lattice, leading to the concept of spin waves or magnons, can act both as a

new mechanism of heat transport, and at the same time as a resistive mechanism of electronic and phonon transport [185-198].

In order for the localized magnetic moments arranged in a lattice to act as a carrier of heat, the magnetic dipoles of neighboring atoms must be coupled together, either by direct magnetic forces, or by indirect effects carried by the medium of the free electrons. Both the electronic magnetic moments and the nuclear magnetic moments can be involved in principle, though the latter would become important only at much lower temperature. The exchange energy is probably a rough criterion of the upper limit of temperature at which these effects need be considered. The rare earths, with their wide variety of magnetic effects, form a group of materials where magnetic effects are no doubt important, but their thermal conductivities are not well understood at present. Ferromagnetic and nearly ferromagnetic transition metals are another group where magnetic effects ould be important. We are unable at present to give a comprehensive treatment of this field compactly.

The thermal conductivity of semimetals is understood in principle, but in practice we do not always have enough information to interpret it. There are two practical complications: (1) the electronic and lattice components are comparable and (2) the electronic component does not follow the Wiedemann-Franz-Lorenz law except at low temperatures.

The departure from the Wiedemann-Franz-Lorenz law follows from the lack of degeneracy at higher temperatures, i.e., the density of states, the electron velocity, and the electron mean free path vary as a function of electron energy, and the fractional variation over an energy interval of the order of κT above and below the Fermi energy ζ is not negligible, as it is in the case of the degenerate electron gas of good metals. Rules can be stated concerning the departure of the Lorenz number $k_e/\sigma T$ from L_0 in terms of the functional form of this variation [1]; the trouble is that in many cases we do not have enough information about the electronic band structure of the semimetals to benefit from these rules. Where we have this information, as in the case of graphite, we can make fairly good predictions about the Lorenz number; again in the limit of low temperatures we expect the Lorenz number to tend toward L_0 .

Since in many cases we are not certain of the Lorenz number, we do not always know what

fraction of the total thermal conductivity should be ascribed to k_{ϵ} and to k_{ϵ} .

The same considerations apply to semiconductors. In many cases k_r predominates and semiconductors should be classed as insulators for purposes of thermal conductivity. There are, however, a few cases where k_e is not negligible at higher temperatures. Since in the case of intrinsic semiconductors the Lorenz number can exceed L_0 by a substantial fraction, of order $(G/\kappa T)^2/12$, where G is the band gap energy, the Wiedemann-Franz-Lorenz law is not always a reliable guide in estimating the magnitude of k_e . When $G/\kappa T$ is large, σ and k_e are in any case small, but for intermediate values this enhancement of the Lorenz number, also known as ambipolar diffusion, can be significant [1].

It remains to consider the thermal conductivity of superconductors. Below the transition temperature T_c , a fraction of the conduction electrons rearrange themselves into an ordered state, of zero entropy, which can carry current without electrical resistance, and also exhibits special magnetic properties. This phenomenon of superconductivity can be quenched by a magnetic field; in many cases the required critical field is quite moderate. It is thus possible to measure the thermal conductivity below T_c , not only in the superconducting, but also in the normal state.

In the superconducting state, the electronic component k_c is reduced. The ratio k_{cs}/k_{cn} is a function of T/T_c ; near T_c it also depends on the degree to which $W_{cn} = 1/k_{en}$ is composed of

intrinsic or defect-induced resistance. At sufficiently low temperatures, where the latter mechanism dominates, $k_{\rm cs}$ decreases exponentially as a function of $T_{\rm c}/T$.

While k_e is reduced, k_g is often increased in the superconducting state, because one mechanism of lattice thermal resistance, the scattering of phonons by electrons, is reduced. Well below the transition temperature, k_{gs} would be similar in character to k_g of a dielectric solid of corresponding mechanical properties, and be controlled by external boundaries, by lattice imperfections, and, in the case of polycrystalline aggregates, by the grain size.

In the case of pure superconductors, the total thermal conductivity k_s decreases below k_n , joining k_n at T_c ; with decreasing temperature it first falls rapidly, reaches a minimum (when k_k , becomes appreciable), and then increases again. In that region it is very structure sensitive. Finally k_s reaches a maximum, and decreases again with decreasing temperature. At this lowest temperature k_s should depend on external or grain size, and may also be influenced by dislocations.

Many superconductors form an intimate mixture of normal and superconducting regions, either for geometric reasons or because (in superconductors of the second kind) such a mixed state is inherently more stable. The phase boundaries will then also act to limit the carrier mean free paths, and rather complex dependences on the history of the specimen may ensue. These phenomena are at present only partly understood.

Experimental Determination of Thermal Conductivity

1. INTRODUCTION

In the experimental determination of the thermal conductivity of solids, a number of different methods of measurement are required for different ranges of temperature and for various classes of materials having different ranges of thermal conductivity values. A particular method may thus be preferable over the others for a given material and temperature range, and no one method is suitable for all the required conditions of measurement. The appropriateness of a method is further determined by such considerations as the physical nature of the material, the geometry of samples available, the required accuracy of results, the speed of operation, and the time and funds entailed.

The various methods for the measurement of thermal conductivity fall into two categories: the steady-state and the nonsteady-state methods. In the steady-state methods of measurement, the test specimen is subjected to a temperature profile which is time invariant, and the thermal conductivity is determined directly by measuring the rate of heat flow per unit area and temperature gradient after equilibrium has been reached. In the nonsteady-state methods, the temperature distribution in the specimen varies with time, and measurement of the rate of temperature change, which normally determines the thermal diffusivity, replaces the measurement of the rate of heat flow. The thermal conductivity is then calculated from the thermal diffusivity with a further knowledge of the density and specific heat of the test material.

The primary concern in most methods of measurement is to obtain a controlled heat flow in a prescribed direction such that the actual boundary conditions in the experiment agree with those assumed in the theory. Theor weally, the simplest method to obtain a controlled heat flow is to use a specimen in the form of a hollow sphere with a

heater in the center. The heat supplied by the internal heat a passes through the specimen in a radial direction without loss. However, in reality it is very difficult to fabricate a spherical heater which produces uniform heat flux in all radial directions. It is also difficult to fabricate spherical specimens and to measure the heat input and the temperature gradient in this experimental arrangement.

A more commonly used method of controlling heat flow in the prescribed direction is the use of guard heaters (combined with thermal insulation in most cases) so adjusted that the temperature gradient is zero in all directions except in the direction of desired heat flow. In most methods of measuring thermal conductivity, a cylindrical specimen geometry ranging from long rod to short disk is utilized, and the heat flow is controlled to be in either the longitudinal (axial) or the radial direction. Thus, most methods can be subdivided into longitudinal and radial heat flow methods, as discussed in more detail later.

Experimental study of the thermal conductivity of solids was started in the eighteenth century. Benjamin Franklin [199] seems first to have pointed out, in 1753, the different ability of different materials "to receive and convey away the heat." He observed materials such as metal and wood to be good or poor conductors of heat by the degree of coldness felt when touched. Fordyce [200] pioneered in 1787 with experiments on the "conducting powers" of pasteboard and iron. The first steady-state comparative method for the measurement of the thermal conductivity of solids was suggested by Franklin and carried out by Ingen-Hausz as reported in 1789 [201]. This method was improved by Despretz as reported in 1822 [202], and Despretz's method was later used by Wiedemann and Franz as reported in 1853 [17] to determine the relative thermal conductivity of a number of metals, leading to the postulation of the Wiedemann-Franz law. Since the first steady-state absolute method was reported in 1851 by Forbes [203, 204] (see also [205, 206]) and the first nonsteady-state absolute method was reported in 1861 by Angstrom [207], a number of different methods and their variants have been developed over the years. Several general surveys [208-218] are available for the experimental developments of the methods. The mathematical theories of the methods have been reviewed in several books [219-223].

In the sections that follow, the major methods and the extent of their applicability will be briefly described and discussed. For finer details of experimental designs and techniques, the reader is referred to the references given to the individual methods.

In the category of steady-state methods, we will discuss the longitudinal heat flow method, the Forbes' bar method (which is a quasi-longitudinal heat flow method), the radial heat flow method, the direct electrical heating method, the thermoelectrical method, and the thermal comparator method. In the longitudinal and radial heat flow methods, a distinction is made between absolute and comparative methods according to the means of measuring the heat flow. In an absolute method, the rate of heat flow into a specimen is directly determined, usually by measuring the electrical power input to a heater at one end of the specimen. The rate of heat flow out of a specimen may be measured with a flow calorimeter or boil-off calorimeter. With the latter the rate of heat flow is determined by the boil-off rate of liquid, such as water, of known heat of vaporization, while with the former it is determined by the flow rate and temperature rise of a circulating liquid, such as water, of known heat capacity. In a comparative method, the rate of heat flow is usually calculated from the temperature gradient over a reference sample of known thermal conductivity, which is placed in series with the specimen and in which, hopefully, the same heat flow occurs. The methods are further subdivided according to the various specimen geometries.

In the category of nonsteady-state methods, we will discuss the periodic and the transient heat flow methods. According to the direction of heat flow, each of them is also subdivided into longitudinal and radial heat flow methods. Within the transient heat flow methods, we will discuss also the flash method (which is a variant of the longitudinal heat flow method), the line heat source and probe methods (which are variants of the radial heat flow method),

the moving heat source method, and two comparative methods.

It is worth noting that some of the methods discussed below are not suitable for good conductors. They may be suitable for poor conductors such as semiconductors and some for materials such as metallic powders and insulators.

2. STEADY-STATE METHODS

A. Longitudinal Heat Flow Methods

In the longitudinal heat flow methods, the experimental arrangement is so designed that the flow of heat is only in the axial direction of a rod (or disk) specimen. The radial heat loss or gain of the specimen is prevented or minimized and evaluated. Under steady-state conditions and assuming no radial heat loss or gain, the thermal conductivity is determined by the following expression from the one-dimensional Fourier-Biot heat-conduction equation [224, 225]:

$$k = \frac{-q\Delta x}{A\Delta T} \tag{30}$$

where k is the average thermal conductivity corresponding to the temperature $(\frac{1}{2})(T_1+T_2)$, $\Delta T=T_2-T_1$, q is the rate of heat flow, A is the cross-sectional area of the specimen, and Δx is the distance between points of temperature measurements for T_1 and T_2 . The different variants of this method are discussed separately below.

a. Absolute Methods

(i) Rod Method. This method is suitable for good conductors and for all temperatures except for very high temperatures. In fact, this method has been used for almost all measurements below room temperature. The specimen used is in the form of a relatively long rod so as to produce an appreciable temperature drop along the specimen for precise measurement. A source of heat at a constant temperature is supplied at one end of the rod and flows axially through the rod to the other end, where a heat sink at a lower constant temperature is located. The radial heat loss or gain of the rod should be negligible. In order to calculate the thermal conductivity from equation (30), it is necessary to measure the rate of heat flow into and/or out of the rod, the cross-sectional area, the temperatures of at least two points along the rod, and the distance between points of temperature measurements.

For measurements at cryogenic temperatures, radial heat loss does not constitute a serious problem, and thermal insulation and guard heaters are normally not necessary. The measurement is usually made under high vacuum to prevent gas conduction and convection, and a radiation shield surrounding the specimen may be used to minimize radiation losses. The heat issupplied to one end of the specimen by a heating coil of fine resistance wire (which may be wound directly onto the specimen to eliminate contact resistance between heater and specimen) or by a carbon resistor attached to the end. The temperatures may be measured by gas thermometers, vapor-pressure thermometers, thermocouples, resistance thermometers, or magnetic-susceptibility thermometers. General reviews of the low-temperature measurements and experimental techniques have been presented by White [??6, 227]. For details of some of the useful low-tem, rature apparatus the reader may consult references [228-239].

For measurements at high temperatures, heat loss becomes a serious problem because radiant heat transfer increases rapidly with temperature. To prevent radial heat losses, a guard tube surrounding the specimen with controlled guard heaters may be utilized. Insulating powder is usually used to fill the space between the rod specimen and the guard tube, which should have the same temperature distribution along it as does the rod specimen. In fact, as early as 1887, Berget [240, 241] started the use of a guard ring surrounding (and with the same temperature distribution as) the specimen to prevent heat losses.

The rate of heat flow into the specimen may be determined by measuring the power input to a guarded electrical heater at the free end of the rod specimen [242-244], or by measuring the heat flow out of the specimen with a water-flow calorimeter at the low temperature end [245], or by both [246-248]. Temperature measurements are made usually with thermocouples. In order to get correct temperature measurements and to minimize heat conduction along thermocouple leads, the thermocouples should be made of fine wires of low-conductivity alloys, and the leads from the junction should be along isothermal lines.

This method, as used for measurements at high temperatures, has been comprehensively reviewed and discussed by Laubitz [249] and Flynn [250]. Systematic errors in measurements caused by the effects of heat losses, thermal contact resistance, poor thermocouple contacts, and temperature drift

have been analyzed by Bauerle [251].

A variation of this method has been used [252–254] in which the specimen heater is located in a cavity at the center of the rod specimen and a heat sink is at each end. A mean value of the temperature gradient established towards the two ends is used for the thermal conductivity calculation.

(ii) Plate (or Disk) Method. This method is suitable for poor conductors such as semiconductors and for low-conductivity materials such as compacted metallic powders and insulators. It is similar to the rod method except for the specimen length to width ratio being greatly reduced to a small fraction. This specimen geometry is favorable for measuring poor conductors, because, the smaller the length to width ratio, the smaller is the ratio of lateral heat losses to the heat flow through the specimen, and the shorter is the equilibrium time. The size of specimen used in various apparatus designed for different kinds of materials varies greatly. For apparatus designed to measure semiconductors, the specimen used may be about 1-cm wide [255], while the apparatus for measuring less homogeneous insulating or refractory materials may require a specimen of over 1 foot in width [256].

In this method, the thermal conductivity is also given by equation (30). The rate of heat flow may be determined by the electrical power input to a guarded heater [256-258], by a guarded water-flow calorimeter [259], by a boil-off calorimeter [260-263], or by a heat flow meter [264]. Temperature measurements are made generally with thermocouples inserted in the specimen or embedded in grooves on the specimen surfaces, depending on the materials tested. Lateral heat losses may be prevented either by utilizing guard heaters or by using a large specimen, of which only a relatively small central area is used for measurement. In the first detailed mathematical analysis of the plate method reported in 1898, Peirce and Willson [265] found already that if the radius of the specimen is five times larger than that of the central test section whose thickness equals its radius, the temperature at any point within the central test section would not sensibly differ from the temperature at the corresponding point in an infinite disk of the same thickness and same face temperatures. Further mathematical analyses of the errors due to lateral heat loss in guarded hot plate apparatus have been given in [266-268].

Detailed descriptions of recent apparatus for measurements at cryogenic temperatures can be

found in the articles collected in [269], and for measurements at high temperatures in [270]. A comprehensive review of the plate method has been given in [271]. A description of the NBS steam calorimeter apparatus and some useful discussions on this method have also been given in [250].

There are two main kinds of experimental arrangements for the absolute plate (or disk) method: the single-plate system and the twin-plate system. The single-plate system [255, 258-265] requires only one specimen, which is placed between a hot plate and a cold plate, while the twin-plate system [256, 2571 requires two similar specimens to be sandwiched between a hot plate in the middle and two cold plates on the outside. The plate method employing the single-plate system was probably first used by Clément, whose experiment on copper was cited by Péclet [272] in 1841. Péclet also used this method to measure the thermal conductivity of copper, and both of them obtained erroneous results. Later improvements on this method have been made by Peirce and Willson [265] and Lees [273] among others. The idea of a twin-plate system was developed by Lees [273] in 1898, but he did not actually adopt the twin-plate system for his plate method in the series of measurements as reported in [273]. However, he used the twin-plate system in his experiments on the effect of pressure on thermal conductivity reported in 1899 [274]. Great improvement on the plate method employing the twin-plate system was made by Poensgen [257] in 1912, who introduced the guard-ring heater to the system as the prototype of the modern guarded hot-plate apparatus.

b. Comparative Methods

In the earliest steady-state comparative method suggested by Franklin and carried out by Ingen-Hausz [201] as reported in 1789, rods of various metals were coated with wax and heated at one end to a common temperature in a bath of hot water or oil. The wax melted over a greater distance on a rod of better conducting material, and under steady-state conditions the ratio of the conductivities of the rods is roughly proportional to the squares of these distances. The modern comparative methods are divided-rod (or cut-bar) method and the comparative plate method as discussed below.

(i) Divided-Rod (or Cut-Bar) method. The divided-rod method was originated by Lodge 175] in 1878 and later used by Berget [276], Levy [277], and many others. In this method a reference sample

(or samples) of known thermal conductivity is placed in series with the unknown specimen with hopefully the same rate of heat flow through both the reference sample and the specimen. Under such ideal conditions, the thermal conductivity of the specimen is given by

$$k = k_r \frac{A_r (\Delta T/\Delta x)_r}{A(\Delta T/\Delta x)}$$
 (31)

where the subscript r designates the reference sample.

This method may be divided into two distinct groups: the "long-specimen" type [276, 278, 279] for measuring the thermal conductivity of good conductors, and the "short specimen" type [275, 277, 280-283] for measuring poor conductors.

Comparative methods have the advantages of simpler apparatus, easier specimen fabrication, and easier operation. Their disadvantages include additional measurement errors due to the required additional measurements of temperatures and thermocouple separations, difficulty in matched guarding, and lower accuracy due to the additional uncertainty in the conductivity of the reference sample, due to the conductivity mismatch between specimen and reference sample, and due to the interfacial thermal contact resistance. These have been carefully analyzed by Laubitz [249] and Flynn [250]. Flynn [250] has pointed out that the ASTM standard cut-har method C408-58 [282] is not well designed, and the data obtained by using this method can be subject to large errors.

(ii) Plate (or Disk) Method. This comparative method is suitable for poor conductors and insulators and is similar to the divided-rod method in principle except that the specimen and the reference samples are now flat plates (or disks) sandwiched between a hot and a cold plate. Christiansen [284] was the first to report in 1881 the use of this type of comparative method in which he compared the thermal conductivity of liquids with that of air. Peirce and Willson [265] used this method to measure the thermal conductivity of marble slabs with glass plates as reference material for comparison. Sieg [285] employed the guard ring in his apparatus to prevent lateral heat loss.

c. Combined Method

In using a "combined" method, the apparatus combines the features of both absolute and comparative methods. The rate of heat flow is determined both through a reference sample placed in series with the specimen and simultaneously by a

- materal Managarian at the above the section and and military of the section of the section of the section of

water-flow calorimeter [286-288] or by measuring the electrical power input to a heater [289]. In the measurements reported in [289], a "dual combined" method was employed in which a heater is located at the center of the divided rod between two short specimens with two longer reference samples at the two ends which are cooled by flowing water.

B. Forbes' Bar Method

Forbes' original method [203-206] consists of two separate experiments. The first was termed by Forbes the statical, and the second the dynamical, or cooling experiment. In the statical experiment a square wrought iron bar with 1.25-inch side and 8 feet long was heated at one end by molten lead or solder at a fixed high temperature, and the steadystate temperature distribution along the bar was determined with the surface of the bar losing heat by convection and radiation to a constant-temperature environment. In the dynamical or cooling experiment, a similar bar but only about 20 inches long was cooled in the same environment from a high uniform temperature, and the rate of heat loss was determined. From these two experiments, the thermal conductivity may be computed as follows.

Replacing $\Delta x/\Delta T$ in equation (30) by dx/dT, differentiating the resulting equation with respect to x, and rearranging gives

$$k = \frac{1}{A} \frac{dq}{dx} \frac{1}{d^2 T/dx^2}$$
 (32)

The statical experiment provides values for d^2T/dx^2 , and the heat loss per unit time per unit length of the bar in the cooling experiment is

$$\frac{dq}{dx} = AC\frac{dT}{dt} \tag{33}$$

where dT/dt is the measured cooling rate and C the specific heat per unit volume.

Hogan and Sawyer [290] have improved this method so that it is not necessary to know the specific heat of the material. They used a thin long rod enclosed in an isothermal furnace. Radial heat loss from the specimen was determined by passing an electric current through the specimen and measuring the electric power required to maintain it at a temperature slightly above that of the furnace. This replaces Forbes' cooling experiment, and it is not necessary to know the specific heat since a steady-state condition is prevailing.

Hogan and Sawyer's method was further improved by Laubitz [291]. In his comprehensive

review Laubitz [249] has discussed in detail the generalized Forbes' bar method, including the other major variants currently in use [292-294].

C. Radial Heat Flow Methods

There are several different types of apparatus all employing radial heat flow. The classification is mainly based upon specimen geometry. In the following we will briefly describe the cylindrical, spherical, ellipsoidal, concentric sphere, concentric cylinder, and plate methods. The reader is referred to the references given for the individual methods for finer details. A comprehensive review of radial heat flow methods has been made by McElroy and Moore [295].

a. Absolute Methods

(i) Cylindrical Method. The cylindrical method uses a specimen in the form of a right circular cylinder with a coaxial central hole, which contains either a heater or a heat sink, depending on whether the desired heat flow direction is to be radially outward or inward. The use of this method was first reported by Callendar and Nicolson [296] in 1897 for measuring the thermal conductivity of cast iron and mild steel. The cylindrical specimens used were 5 inches in diameter and 2 feet long with 1-inch coaxial holes heated by steam under pressure. The outside of the cylinder was cooled by water circulating rapidly in a spiral tube. Niven [297] in 1905 also used the radial heat flow method for measurements on wood, sand, and sawdust. His method is close to the so-called hot-wire method developed by Andrews [298] in 1840 and Schleiermacher [299] in 1888 for measurements on gases. Kannuluik and Martin [300] used the hot-wire method for measurements on powders as well as on gases.

In the early experiments and also in many later designs [301-304], end guards are not employed. The effect of heat losses from the ends of the specimen is minimized by using a long specimen and monitoring the electric power within only a small section of the specimen away from the ends.

The guarded cylindrical method employing end guards at both ends of the specimen to prevent axial heat losses was developed by Powell [305] and first reported in 1939 for measurements on Armco iron at high temperatures. In the guarded cylindrical method the specimen is generally composed of stacked disks with a coaxial central hole containing either a heater or a heat sink. Temperatures within the specimen are measured either by thermocouples or by an optical pyrometer. For details of some of

the useful apparatus employing the guarded cylindrical method, the reader may consult references [295, 305-310].

The thermal conductivity is calculated from the expression

$$k = \frac{q \ln(r_2/r_1)}{2\pi l(T_1 - T_2)}$$
 (34)

where l is the length of the central heater and T_1 and T_2 are temperatures measured at radii r_1 and r_2 , respectively.

Hoch et al. [311] have developed a quasi-radial heat flow method in which the specimen in the form of a disk or short cylinder is heated at its convex cylindrical surface in high vacuum by means of high frequency induction and is losing heat from its flat circular end faces by radiation. In this method the inward flow of heat from the cylindrical surface, at which the generation of heat is localized, into the interior of the specimen is, of course, not strictly radial, and the temperature gradient of the flat circular end faces along the radius is related to the thermal conductivity. The theory of this method has recently been revised by J. Vardi and R. Lemlich (to be published in the Journal of Applied Physics in 1970).

(ii) Spherical and Ellipsoidal Methods. In a spherical method, the heater is completely enclosed inside the specimen which is in the form of a hollow sphere. The heat supplied by the internal heater passes through the specimen radially without loss. Theoretically, this method is ideal. However, there are a number of practical difficulties such as difficult fabrication of a spherical heater which produces uniform heat flux in all radial directions, difficult fabrication of spherical specimens, difficult positioning of thermocouples along spherical isotherms, etc., which have prevented this method from being popular. Laws, Bishop, and McJunkin [312] seem the first to have used this method on solids (not loosefilled materials). A detailed description of a modern design may be found in [301]. The thermal conductivity is calculated from the expression

$$k = \frac{q(1/r_1 - 1/r_2)}{4\pi(T_1 - T_2)} \tag{35}$$

The ellipsoidal method is similar to, but has some advantages over, the spherical method. It was developed by a group of researchers at MIT [313-315]. The major advantage of using a specimen in the form of an ellipsoid instead of a sphere is that

the isothermal surfaces near the plane of the minor axes of an ellipsoid are rather flat so that straight thermocouple wires can be used without ill effect. If a is half the focal length of the ellipsoid and T_1 and T_2 are temperatures measured at respectively two radii r_1 and r_2 on the minor axis, the thermal conductivity is determined by the expression

$$k = \frac{q}{8\pi a (T_1 - T_2)} \times \ln\left(\frac{\sqrt{(a^2 + r_2^2)} - a}{\sqrt{(a^2 + r_2^2)} + a} \cdot \frac{\sqrt{(a^2 + r_1^2)} + a}{\sqrt{(a^2 + r_1^2)} - a}\right)$$
(36)

Despite the aforementioned advantage, the ellipsoidal method is also rarely used due to the other experimental difficulties common to both the ellipsoidal and spherical methods.

(iii) Concentric Sphere and Concentric Cylinder Methods. Concentric sphere and concentric cylinder methods are used mainly for measurements on powders, fibers, and other loose-filled materials. The specimen is filled in the space between two concentric spherical (or cylindrical) shells, with the inner sphere (or cylinder) being a heater or a heat sink. In a concentric cylinder apparatus, end guards are usually used to prevent axial heat flow.

A concentric sphere method was first used by Péclet [316] and reported in 1860 with the inner sphere filled with hot water as heater. However, a steady-state condition was not achieved in his pioneering measurements. Later Nusselt [317] succeeded in using this method for measurements on insulating materials with an electric heater installed inside the inner spherical shell. A modern apparatus using a boil-off calorimeter in the inner sphere was described in [318].

A concentric cylinder method was used by Stefan [319] and reported in 1872 for the measurements on gases. It was later adopted for measuring loose-filled materials. Reference [320] describes a modern apparatus employing a guarded boil-off calorimeter inside the inner cylinder. Recently, Flynn and Watson [321] used a concentric cylinder method to measure the high-temperature thermal conductivity of soil.

(iv) de Sénarmont's Plate Method. de Sénarmont [322-326] in 1847-48 used a radial heat flow plate method to determine the anisotropy in thermal conductivity of crystalline substances. However, this method does not yield absolute values of thermal conductivity, and furthermore, the axial heat loss is not prevented.

In his method, a thin plate of the sample was coated with a thin film of white wax; heat was applied at a central point by means of a hot, thin silver tube tightly fitted in a hole at the center of the plate. The wax melted around the region where heat was supplied and the bounding line of the melted wax was the visible isotherm, the shape of which indicated the variation of thermal conductivity in the different directions.

If the substance is isotropic, the bounding curve of the melted wax is a circle, whereas for anisotropic substances, this curve is elliptical. In such a case, the ratio of the two thermal conductivities k_a and k_b along the two axes a and b of the ellipse is given by the expression

$$\frac{k_a}{k_b} = \left(\frac{a}{b}\right)^2 \tag{37}$$

Powell [327] has modified the method in his simple test for anisotropic materials. In testing gallium, he cooled a slice of crystal locally by means of a piece of solid carbon dioxide and observed the contours of the dew and frost areas which formed around the cooled zone. For testing graphite, he followed de Sénarmont's original method but the surface of the plate used was covered with frost by precooling instead of being coated with wax.

b. Comparative Methods

(i) Concentric Cylinder Method. This method has been used for measurements on some special materials such as those that are radioactive or reactive [328-330] and not for ordinary materials, because it does not have any major advantage over the absolute method. A typical apparatus of this kind consists of a cylindrical specimen which is surrounded by a concentric cylindrical reference sample of known thermal conductivity. A coaxial central hole in the specimen contains a heat source, which produces heat flowing radially through both the specimen and the reference sample. The advantage of using this for measuring radioactive or reactive mater.. 's is that the reference sample which encloses the specimen serves also as a means of containment. The thermal conductivity is determined from the expression

$$k = k \frac{(T_3 - T_4) \ln(r_2/r_1)}{(T_1 - T_2) \ln(r_4/r_3)}$$
 (38)

where T_1 and T_2 are two temperatures measured in the specimen at two radii r_1 and r_2 , respectively, and

 T_3 and T_4 in the reference sample, at r_3 and r_4 , respectively.

(ii) Disk Method. Robinson [331] developed a method, which he termed the "conductive-disk method,"for comparative measurements on insulators. This method employs inward radial heat flow from a heater at the circular edge of a disk of suitable conductive reference material sandwiched between two like specimens, which are in turn sandwiched between two circular cold plates at a constant lower temperature. However, the heat flow in this case is not strictly radial, since, as the heat flows radially in the conductive disk toward the center, it flows also from the disk through the specimens to the cold plates. As a result, the steady-state temperature of the disk decreases toward its center, and the rate of decrease depends on the thermal conductivity of the specimens. Robinson obtained an expression for calculating the thermal conductivity of the specimens from the known thermal conductivity and thickness of the disk and from the temperatures of the cold plates and of the disk at its center and at a suitable radius.

D. Direct Electrical Heating Methods

In direct electrical heating methods, the specimen is heated directly by passing an electric current through it. These methods are therefore limited to measurements on reasonably good electrical conductors. Furthermore, they usually yield thermal conductivity in terms of electrical conductivity rather than directly. However, direct electrical heating methods have also certain advantages over other methods. They offer a means of easily attaining very high temperatures, use simpler apparatus and experimental techniques than other methods at high temperatures, use relatively small specimens, require relatively short time to reach equilibrium, and also offer the possibility of concurrent determinations of a number of physical properties on the same specimen. According to specimen geometry, these methods fall into two major categories: cylindrical rod and rectangular bar. They will be briefly discussed below. Comprehensive reviews [332-334] on direct electrical heating methods are available.

The thermoelectrical method to be discussed later involves also the direct passage of an electric current through the specimen. However, in that method the specimen is heated (and cooled) by the Peltier effect which is totally different from the Joulean heating responsible for maintaining the

specimen temperature in the direct electrical heating methods discussed here. It is therefore preferable to discuss the thermoelectrical method separately in another section.

a. Cylindrical Rod Methods

The direct electrical heating methods in this category involve heating specimens in the form of rods, thin wires, or tubes by the passage of regulated electric current, and measuring potential drops and temperatures for the calculation of thermal conductivity.

There are many different techniques and variants that have been employed over the years since Kohlrausch [335-338] first developed this method. The different variants may be divided into three categories as discussed below.

(i) Longitudinal Heat Flow Method. In this method the rod is well insulated or guarded to prevent radial heat losses so that the Joule heat generated in the specimen flows to the two ends. This is the method originally developed by Kohlrausch [335-338]. If the two ends of the rod are held at the same temperature and assuming that in a small temperature range the thermal and electrical conductivities are independent of temperature, the thermal conductivity is given by the simple relation

$$k = \frac{1}{8\rho} \frac{(V_1 - V_3)^2}{(T_2 - T_1)}$$
 (39)

where ρ is the electrical resistivity, V_1 and V_3 are the electrical potentials at locations 1 and 3 on the specimen which are at equal and opposite distances from the midpoint 2, and T_1 and T_2 are temperatures at locations 1 and 2. This method was first used for actual measurements by Jaeger and Diesselhorst [339]. A variant of it has been used by Mikryukov [332]. The so-called "necked-down-sample method" [340] may also be considered as a longitudinal heat flow method.

(ii) Radial Heat Flow Method. This method uses a thick rod or tube and allows radial heat transfer. Under steady-state conditions, the Joule heat generated in the specimen at regions remote from the ends flows radially to the surface and is then transferred by convection and radiation to the surroundings. This method was first suggested by Mendenhall and applied by Angell [341]. In the case of a cylindrical rod specimen and assuming that in a small temperature range the thermal and electrical conductivities are independent of temperature,

the thermal conductivity is given by the simple relation

$$k = \frac{El}{4\pi l(T_1 - T_2)} \tag{40}$$

All the second s

where I is the electric current, E is the electrical potential drop over a length I at the central region of the specimen, and T_1 and T_2 are the temperatures at the axis and surface, respectively, of the rod at the central region. These temperatures were too small for precise measurements on metals, but Powell and Schofield [342] used it for poorer conducting carbon and graphite, and they also took account of the variation of thermal and electrical conductivities with temperature.

(iii) Thin-Rod-Approximation Method. The general form of the present method uses a long thin filament heated electrically in vacuum and allows both longitudinal heat conduction and lateral heat transfer by radiation. The "thin-rod approximation" involves the assumption that the temperatures and potentials in all planes normal to the specimen axis are uniform, i.e., their differences in the radial direction are negligible. Worthing [343] first employed this method for measurements on U-shaped filaments at incandescent temperatures. There are many variants [344-358] of this method, all with more or less different experimental designs, mathematical assumptions, and/or computational techniques.

Taylor, Powell, and co-workers [354, 356-358] at TPRC have made improvements and advancements on this method. They have taken the Thomson effect into account, which had never been done before, and have included the temperature dependence of various physical properties. They used the general equation directly and their advanced computational techniques have eliminated the need for mathematical approximations and for matching certain experimental conditions.

It seems appropriate to mention the considerable discrepancies which have resulted from the data obtained by various workers, all of whom used different variants of the direct electrical heating method. One of the most recent of the TPRC papers [358] contains an interesting graphical presentation of all the determinations made on tungsten by these methods for the temperature range 1600 to 2800 K. Six of the fourteen groups of workers obtained results lying well above the recommended curve of Powell, Ho, and Liley [359], and one was well below it, the spread being of the order of 50 percent,

80 percent, and 70 percent at 1800, 2200 and 2600 K. respectively. The other seven had results within about 10 percent of the recommended curve, while the curve fitting the new results of [358] was some 3 to 5 percent below the recommended curve. Earlier reports [333, 356] had contained examples of similar discrepancies for other high-melting-point metals. such as molybdenum, stainless steel, and platinum. The main reasons for these differences include failure to measure accurately small temperature gradients at high temperature, failure to match boundary conditions, errors resulting from simplifying mathematical approximations, and the use of temperature regions in which the thermal conduction term is small compared with the Joulean heating and radiation loss terms.

Ĺ

These have been quoted as examples of current experimental work at the TPRC, which became necessary because of the need to resolve some seriously discordant data and to gain further insight into their causes. The impression must not be given, however, that such discrepancies are confined to metals or to direct electrical heating methods. This is by no means the case, and the literature of heat conduction contains many examples of discordant results for all types of methods used. Titanium carbide, one of the materials dealt with in Volume 2, may be mentioned. The first determinations reported on titanium carbide by Vasilos and Kingery [360] to high temperatures showed the thermal conductivity to decrease from about 0.2 W cm⁻¹ C⁻¹ at 200 C to 0.1 W cm⁻¹ C⁻¹ at 500 C and 0.04 W cm-1 C-1 at 1000 C. Two methods had been used: the divided-rod comparative method for a cube sample up to about 800 C and an ellipsoidal radial-flow method from about 500 to 1100 C. The former method gave results which were greater by from 30 percent to 20 percent over their common temperature range. In 1961 Taylor [361] used a better-substantiated radial heat flow method for cylindrical samples of titanium carbide, and found the thermal conductivity to increase linearly from 0.38 W cm $^{-1}$ C $^{-1}$ at 600 C to 0.47 W cm $^{-1}$ C $^{-1}$ at 1600 C.

These two sets of values, differing at about 1000 C by about one order of magnitude and having temperature coefficients of opposite sign, naturally aroused interest, and subsequent contributions by Laubitz [362], Hoch and Vardi [363], and Powell [364, 365] and the nonsteady-state measurements of Taylor and Morreale [366] all supported the higher values of Taylor [361]. It would seem that the higher thermal conductivity of titanium carbide led to

serious errors being associated with the method of Vasilos and Kingery, which were not apparent for substances of lower thermal conductivity. Incidently, had the much simpler measurement of electrical resistivity been also made, the unusually low resultant Lorenz function should have provided warning that abnormal data were being obtained. It might well be added that the inclusion of electrical resistivity measurements on all possible occasions is a simple extra measurement which also serves to provide very useful information about the properties of the material under test and its behavior on temperature cycling.

The foregoing example also indicates that users of the data tables of these volumes should, in the absence of any analysis that has produced a curve of recommended values, tend to be critical of the values presented, until these are seen to be well supported by independent experiments, correlations, or by additional checks such as that of a reasonable Lorenz function.

An additional outcome of the current TPRC investigation has been the development of a method and of equipment capable of determining a large number of high-temperature physical properties [367]. Their multiple-purpose apparatus is the first operational model that can accurately measure the thermal conductivity, electrical resistivity, total and spectral hemispherical emittance, Thomson coefficient, and Lorenz function on one and the same specimen. This apparatus can also measure the specific heat, enthalpy, thermal diffusivity, thermal expansion, Seebeck coefficient, Peltier coefficient, and Richardson coefficient. The merit of obtaining many different physical properties from one and the same specimen so as to permit meaningful quantitative cross-correlations between properties need not be emphasized here.

b. Rectangular Bar Method

This method was developed by Longmire [368] and is a geometrically-deformed variant of the radial heat flow method. The specimen used is in the form of a long rectangular bar. This special specimen geometry enables all temperature measurements to be made on the surface of the specimen. As the specimen is heated electrically in vacuum, the heat loss by radiation establishes a radial temperature gradient, and the temperature at the center line of the wider surface of the rectangular bar will be higher than that at the center line of the narrower surface. From measurements of these two

temperatures and the electrical conductivity and total hemispherical emittance of the bar, the thermal conductivity can be calculated using the equation derived by Longmire.

Longmire's method was improved by Pike and Doar [369-371] both in mathematical analysis and in experimental techniques. They further extended this method to the determination of anisotropy in thermal conductivity.

E. Thermoelectrical Method

The thermoelectrical method was developed by Borelius [372] and reported in 1917 for the combined measurement of the Peltier heat and thermal conductivity of the same material, and is particularly applicable to the measurements on thermoelectric materials.

In this method, the specimen is held between metallic contacts through which a small direct electric current is passed. Peltier heating thus occurs at one end of the specimen and Peltier cooling at the other end, which establishes a temperature gradient along the specimen. Under steady-state conditions, the rate of Peltier heat generation at the hot end is just balanced by the rate of heat conduction from the hot to the cold end. Thus the thermal conductivity can be calculated from the rate of Peltier heat production πI (π being the Peltier coefficient), the temperature difference between the ends ΔT , the cross-sectional area A, and the length I by the expression

$$k = \frac{\pi I l}{A \Delta T} \tag{41}$$

Since $\pi = ST$, S being the Seebeck coefficient, π can be determined by measuring the Seebeck coefficient from the potential difference between the ends after the temperature difference ΔT is established.

When the direct electric current is passed through the specimen, Joulean heating will occur, of course. However, the Joulean heating effect can be made negligibly small in a good thermoelectric material by choosing the current small enough, because the Joule heat production is proportional to I^2 while the Peltier heat production is proportional to I. The Thomson heat effect is generally small.

Borelius' method was used by Sedström [373, 374] for measurements on alloys. Some forty years later, Putley [375] and Harman [376, 377] reinvented this method. A recent apparatus is described in [378].

A transient thermoelectrical method was devel-

oped by Hérinckx and Monfils [379]. In this method a direct electric current is passed through the specimen and the time dependence of the resulting potential drop across the specimen is observed. The thermal conductivity can be derived from the shape and asymptote of this potential drop versus time curve provided that the Seebeck coefficient is known.

F. Thermal Comparator Method

The thermal comparator method was developed by Powell [380-383] and is a simple comparative method for the rapid, easy measurement of thermal conductivity.

The essential part of the thermal comparator is an insulated probe with a projecting tip. The probe is integral with a thermal reservoir held at a temperature about 15 to 20 degrees above room temperature. A surface thermocouple is mounted at the tip of the probe and is differentially connected to the thermal reservoir for the measurement of the temperature difference between the reservoir and the tip.

In operation, the probe is gently placed on the surface of the test material. Upon contact of the probe tip of known thermal conductivity k_1 and originally at temperature T_1 with the surface of the test material of thermal conductivity k_2 and at room temperature T_2 , the temperature of the probe tip drops quickly to an intermediate temperature, T, given by the expression

$$T_1 - T = (T_1 - T_2) \left(\frac{k_2}{k_1 + k_2} \right)$$
 (42)

This temperature difference is registered by the emf reading of the differential thermocouple after a brief transient period (1 to 2 seconds) has elapsed.

From the emf readings of tests on a series of reference samples of known thermal conductivity, a calibration curve is obtained, and the thermal conductivity of an unknown specimen can thus be determined from the emf reading through the calibration curve.

Powell [384] has made a comprehensive review on this method. Some subsequent developments are discussed in [385]. The thermal comparator has been developed by TPRC as an instrument [385] for the rapid determination of the thermal conductivity of solids and liquids and is commercially available from The McClure Park Corp., West Lafayette, Indiana.

3. NONSTEADY-STATE METHODS

In nonsteady-state methods, the temperature distribution in the specimen varies with time. The rate of temperature change at certain positions along the specimen is measured in the experiment, and no measurement of the rate of heat flow is required. These methods normally determine the thermal diffusivity, from which the thermal conductivity can be calculated with an additional knowledge of the density and specific heat of the test material. Nonsteady-state methods fall into two major categories, the periodic and the transient heat flow methods, as briefly discussed below. These methods have been comprehensively reviewed by Danielson and Sidles [386], and will be dealt with in Volume 10 of the TPRC Data Series.

A. Periodic Heat Flow Methods

In periodic heat flow methods, the heat supplied to the specimen is modulated to have a fixed period. The resulting temperature wave which propagates through the specimen with the same period is attenuated as it moves along. Consequently, the thermal diffusivity can be determined from measurements of the amplitude decrement and/or phase difference of the temperature waves between certain positions in the specimen. In most of the periodic heat flow methods, heat flow is in the longitudinal (axial) direction. However, methods with heat flow in the radial direction have also been used.

a. Longitudinal Heat Flow Method

The periodic heat flow method was first developed by Angström [207, 387] and reported in 1861. In his method a variable heat source capable of producing a sinusoidal temperature variation was attached to the center of a long thin rod specimen, and the temperatures as a function of time at two positions l apart towards the ends of the rod were measured. From these temperature-time measurements, the velocity, v, and the amplitude decrement δ of the temperature wave can be determined for the calculation of thermal diffusivity. This method has been modified and improved by King [388] and others [389-391]. The thermal diffusivity may be calculated from the expression [390]

$$D = \frac{vl}{2\ln\delta} \tag{43}$$

The Angström method, which uses a long rod, has its limitations. In some cases, specimens in the

form of long rods may not be available, and in other cases, such as in the measurements on poor conductors at high temperatures, heat guarding to prevent lateral heat losses from a long rod may be difficult. Consequently, methods using specimens in the form of a small plate or disk have been developed [392-394].

b. Radial Heat Flow Method

In this method, the specimen in the form of a cylinder is heated by a heat source capable of producing a periodical temperature variation either at the axis or at the circumference, and the radial temperature variations with time are measured. The thermal diffusivity may be calculated from the phase change of the temperature oscillations, or from the amplitude variation of the oscillations with frequency.

Tanasawa [395] used this method in 1935 for the measurements on humid materials. In his method, a sinusoidal temperature was produced on the surface of a cylindrical specimen, and the temperatures at different radial distances were measured for the calculation of thermal diffusivity.

Filippov and his co-workers have further developed a method of this type [396] and used it for the measurements on metals [397] and molten metals [398, 399] at high temperatures.

The nonsteady-state radial heat flow method has also been employed for measurements on insulators [400, 401].

B. Transient Heat Flow Methods

Transient heat flow methods, both longitudinal and radial, were first used by Neumann [402, 403] and reported in 1862. In his method, one end of a bar was heated by a flame until the temperature attained the equilibrium state. The flame was then suddenly removed and temperatures at two positions along the bar were measured as a function of time. Thermal diffusivity can then be calculated from these measurements. For the measurements on poor conductors, he used another method in which a cube or sphere was heated uniformly to a high amperature and then was allowed to cool in the air. The temperatures at the surface and at the center were measured as a function of time.

The modern transient heat flow methods have a wide variety. In the following a number of the major variants are briefly discussed.

a. Longitudinal Heat Flow Method

Similar to the longitudinal periodic heat flow method, the longitudinal transient heat flow method can also be subdivided into two major categories, those using a long rod and those using a small plate (or disk).

Methods in which one end of a long rod, which is initially at uniform temperature, is subjected to a short heating pulse have been developed [404, 405]. There are also methods in which steady heating is provided at one end of a rod and the temperatures as a function of time at two or more positions along the rod are observed [406-408].

Transient heat flow methods in which the specimen used is in the form of a small plate or disk have been developed by a number of workers [409-412].

b. Flash Method

Although the flash method is a variant of the longitudinal transient heat flow method using a small thin disk specimen geometry, it has a very special feature which makes it a class of its own. In the "flash" method, a flash of thermal energy is supplied to one of the surfaces of a disk specimen within a time interval that is short compared with the time required for the resulting transient flow of heat to propagate through the specimen. This method was developed by Parker, Jenkins, Butler, and Abbott [413] and reported in 1961.

In use, a heat source such as flash tube or laser supplies a flash of energy to the front face of a thin disk specimen, and the temperature as a function of time at the rear face is automatically recorded. The thermal diffusivity is given from the thickness of the specimen, l, and a specific time, $t_{1/2}$, at which the back-face temperature reaches half its maximum value by the expression

$$D = 1.37 \, l^2 / \pi^2 t_{1/2} \tag{44}$$

Other expressions for the calculation of thermal diffusivity have also been used.

Subsequent improvements on this method have been made [414, 415] by the application of corrections for the finite pulse-time effect and the radiation-loss effect.

c. Radial Heat Flow Method

As mentioned before, a radial heat flow method was used by Neumann [402, 403] for measurements on poor conductors. His specimens were of spherical shape.

In modern apparatus, specimens in the form of cylinders are used. A long cylindrical specimen, hollow or solid, which is initially at uniform temperature, is heated either at the axis or at the outer surface and the temperatures as a function of time at different radial distances are measured. In the methods developed by Ginnings [416] and by Cape, Lehman, and Nakata [417], cylindrical specimens were continuously heated at the outer surface.

Specimens in the form of hollow disks stacked on an axial heater with outer disks as end guards have been used by Carter, Maycock, Klein, and Danielson [418].

Although the line heat source and probe methods are also radial transient heat flow methods, they are quite different from other methods and will be discussed in a separate section below.

d. Line Heat Source and Probe Methods

The line heat source method was originally developed by Stalhane and Pyk [419] in 1931 and used for measurements on ceramic materials [420]. This method is suitable for the measurements on loose-filled materials such as powders.

In this method, a long thin heater wire which serves as a line heat source was embedded in a large specimen initially at uniform temperature. The heater is then turned on, which produces constant heat, q, per unit length and time, and the temperature at a point in the specimen is recorded as a function of time. The thermal conductivity is given by the expression

$$k = \frac{q}{4\pi(T_2 - T_1)} \ln \frac{t_2}{t_1} \tag{45}$$

where $(T_2 - T_1)$ is the temperature difference at two times t_1 and t_2 . Subsequently, this method was also developed by van der Held and his co-workers [421, 422], and others.

The probe method is a more practical line heat source method in which the heat source is enclosed inside a probe for protection and for easy insertion into a specimen. This method was developed by Hooper and his co-workers [423, 424], and others. Blackwell [425, 426] has derived theoretical treatments for practical departures from a true line source, and in the discussion of a paper [427] dealing with the use of a probe method in connection with the routing of electric power cables, he advocated the use of very small thermistors as an alternative to thermocouples.

e. Moving Heat Source Method

The moving heat source method was developed by Rosenthal and his co-workers [428-430], and involves the establishment of a quasi-steady-state temperature distribution in a long tubular-shaped specimen heated by a moving localized heat source of constant intensity. As the heat source approaches and moves away, each point in the specimen is subjected to a temperature rise and fall. When the heat source passes over the specimen, the temperature at a point remote from the ends is recorded as a function of time. From this record, a curve of the logarithm of the temperature variation with time is made. The thermal diffusivity is given from the velocity of the heat source, v, and the slopes P_r and P_f on the rising and falling portions of the curve at the same temperature by the expression

$$D = \frac{r^2}{P_r + P_t} \tag{46}$$

f. Comparative Method

A comparative method employing transient heat flow was developed by Hsu [431, 432]. In this

method, two identical sets of composite blocks are used. Each set consists of a test specimen and a reference sample whose properties are known. Initially, the two sets are heated separately to uniform but different temperatures, and then they are suddenly brought into contact, with the two test specimens touching each other. The transient temperature at the contact plane between the test specimen and reference sample corresponding to a certain time is measured, and from this the thermal diffusivity of the specimen can be calculated.

Another transient-heat-flow comparative method has been used by Deem et al. [433] for the measurements on irradiated materials. The method of measurement is to place the lower ends of a specimen and a reference sample, which are of the same size and initially at room temperature, in molten tin maintained at a constant elevated temperature and then measure the times required for the upper ends to reach a predetermined intermediate temperature. The ratio of the thermal diffusivities is assumed directly proportional to the ratio of the two times measured for the specimen and the reference material.

References to Text

Review Papers and Books

- Klemens, P. G., "Theory of the Thermal Conductivity of Solids," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 1, Chap. 1, Academic Press, London, 1-68, 1969.
- Klemens, P. G., "Thermal Conductivity of Solids at Low Temperatures," in *Handnuch der Physik* (Flügge, S., ed.), Vol. 14, Springer-Verlag, Berlin, 198-281, 1956.
- Klemens, P. G., "Thermal Conductivity and Lattice Vibrational Modes," in Solid State Physics, Vol. 7, Academic Press, New York, 1-99, 1958.
- Mendelssonn, K. and Rosenberg, H. M., "The Thermal Conductivity of Metals at Low Temperatures," in Solid State Physics, Vol. 12, Academic Press, New York, 223-74, 1961.
- Sommerfeld, A. and Bethe, H., "Electron Theory of Metals," in *Handbuch der Physik*, Vol. 24/2, Springer-Verlag, Berlin, 333-622, 1933.
- Born, M. and Göppert-Mayer, M., "Dynamic Lattice Theory of Crystals," in *Handbuch der Physik*, Vol. 24/2, Springer-Verlag, Berlin, 623-794, 1933.
- Mott, N. F. and Jones, H., Theory of the Properties of Metals and Alloys, Oxford University Press, 326pp., 1936
- Wilson, A. H., The Theory of Metals. Cambridge University Press, 1936; 2nd Edition, 346pp., 1953.
- Makinson, R. E. B., "The Thermal Conductivity of Metals," Proc. Camb. Phil. Soc., 34(3), 474-97, 1938.
- Peierls, R. E., Quantum Theory of Solids, Oxford University Press, 229pp., 1955.
- Jones, H., "Theory of Electrical and Thermal Conductivity in Metals," in *Handbuch der Physik* (Flügge, S., ed.), Vol. 19, Springer-Verlag, Berlin, 227-315, 1956.
- 12. Ziman, J. M., Electrons and Phonons, Oxford University Press, 554pp., 1960.
- Drabble, J. R., and Goldsmid, H. J., Thermal Conduction in Semiconductors, Pergamon Press, New York, 235pp., 1961.
- Olsen, J. L., Electron Transport in Metals, Interscience Publishers, New York, 121pp., 1962.
- Rosenberg, H. M., Low Temperature Solid State Physics, Oxford University Press, 420pp., 1963.
- Van Bueren, H. G., Imperfections in Crystals, North-Holland Publ. Co., Amsterdam, 676pp., 1960.

Electronic Thermal Conductivity

- 17. Wiedemann, G. and Franz, R., "The Thermal Conductivity of Metals," Ann. Physik, 89, 497-531, 1853.
- 18. Lorenz, L., "Determination of the Degree of Heat in Absolute Units, "Ann. Physik, 147(11), 429-52, 1872.
- Lorenz, L., "On the Thermal and Electrical Conductivities of Metals," Ann. Physik, 3, 13, 422-47, 582-606, 1881.

- Drude, P., "The Electron Theory of Metals," Ann. Physik, 4, 1, 566-613, 1900.
- Lorentz, H. A., "The Motion of Electrons in Metallic Bodies," Proc. Acad. Sci. Amsterdum, 7, 438, 585, 684, 1904-05
- Koenigsberger, J., "The Relation of the Thermal Conductivity to the Electrical Conductivity," *Physik. Z.*, 8, 237-9, 1907.
- 23. Bloch, F., "On the Quantum Mechanics of Electrons in Crystalline Lattice," Z. Physik, 52, 555-600, 1928.
- Sommerfeld, A., "The Electron Theory of Metals on the Basis of Fermi Statistics," Z. Physik, 47, 1-32, 1928.
- Peierls, R. E., "The Theory of the Electrical and Thermal Conductivity of Metals," Ann. Physik, 5, 4, 121-48, 1930.
- Wilson, A. H., "The Second Order Electrical Effects in Metals," Proc. Camb. Phil. Soc., 33(2), 371-9, 1937.
- Kroll, W., "On the Theory of Heat Conduction,"
 Sci. Papers Inst. Phys. Chem. Res., Tokyo, 34(756), 194-6, 1938
- 28. Akhieser, A. and Pomeranchuk, I., "Thermal Conductivity of Bismuth," J. Phys. (USSR), 9, 93-6, 1945.
- Sondheimer, E. H. and Wilson, A. H., "The Theory of the Magneto-Resistance Effects in Metals," Proc. Roy. Soc. (London), A190(1023), 435-55, 1947.
- Kohler, M., "Treatment of the Nonequilibrium Process with the Aid of Extreme Principle," Z. Physik, 124, 772-89, 1948.
- Kohler, M., "Thermal Conductivity of Metals in a Strong Magnetic Field," Ann. Physik, 6, 5(3), 181-9, 1949.
- 32. Kohler, M., "Theory of the Magneto-Resistance Effect in Metals," Ann. Physik, 6, 6, 18-38, 1949.
- Kohler, M., "A Similarity Rule for the Heat Conductivity of Metals." Naturwiss., 36(6), 186, 1949.
- Kohler, M., "Transpo.. Phenomena in Electron Gas," Z. Physik, 125, 679-93, 1949.
- Sondheimer, E. H., "The Theory of the Transport Phenomena in Metals," Proc. Roy. Soc. (London), A203(1072), 75-98, 1950.
- Sondheimer, E. H., "A Note on the Theory of Conduction in Metals," Proc. Phys. Soc. (London), A65, 561-2, 1952.
- Sondheimer, E. H., "The Thermal Conductivity of Metals at Low Temperatures," Proc. Phys. Soc. (London), A65, 562-4, 1952.
- Olsen, J. L. and Rosenberg, H. M., "The Thermal Conductivity of Metals at Low Temperatures," Advan. in Phys., 2(5), 28-66, 1953.
- Toda, M., "Diffusion on the Fermi-Surface and the Conductivity of Metals," J. Phys. Soc. Japan, 8(3), 339-42, 1953.
- 40 Klemens, P. G., "The Thermal Conductivity of

- Mone valent Metals," Proc. Phys. Soc. (London), A67, 194-6, 1954
- 41. Klemens, P. G., "The Thermal Conductivity of Pure Metals at Low Temperatures According to the Free Electron Theory," Australian J. Phys., 7, 64-9, 1954.
- 42. Klemens, P. G., "The Electrical and Thermal Conductivities of Univalent Metals," Australian J. Phys., 7, 70-6, 1954.
- Makinson, R. E. B., "The Thermal Conductivity of Metals," Proc. Phys. Soc. (London), A67(411), 290-1, 1954.
- 44. Ziman, J. M., "The Electrical and Thermal Conductivities of Monovalent Metals," *Proc. Roy. Soc.* (London), A226, 436-54, 1954.
- 45. Kasuya, T., "On the Theory of Thermal Conductivity of Monovalent Metals," *Progr. Theoret. Phys.* (Kyoto), 13(6), 561-70, 1955.
- 46. Evsecv, Z.Ia., "The Effect of a Transverse Magnetic Field on the Thermal Conductivity of Metals," Soviet Phys. JETP, 3, 440, 1956.
- 47. Klemens, P. G., "On the Theory of Thermal Conductivity of Pure Metals at Low Temperatures," *Progr. Theoret. Phys.* (Kyoto), 16(2), 154-6, 1956.
- 48. Pines, D., "Electron Interaction in Solids," Can. J. Phys., 34(12A), 1379-94, 1956.
- 49. Rosenberg, H. M., "The Properties of Metals at Low Temperatures," Progr. in Metal Phys., 7, 339-94, 1958.
- Kasuya, T., "Effects of s-d Interaction on Transport Phenomena," Progr. Theoret. Phys. (Kyote), 22(2), 227-46, 1959.
- Kasuya, T. and Yamada, K., "Electrical and Thermal Conductivity of Monovalent Metals; The Influences of Coulomb Interaction," J. Phys. Soc. Japan, 14(4), 416-35, 1959.
- Klemens, P. G., "Deviations from Matthiessen's Rule and Lattice Thermal Conductivity of Alloys," Australian J. Phys., 12, 199-202, 1959.
- 53. Ziman, J. M., "The Ordinary Transport Properties of the Noble Metals," Advan. in Phys., 10(37), 1-56, 1961.
- Appel, J., "Effect of "extron-Electron Scattering on the Electrical and Thermal Conductivity of Metals," Phil. Mag., 8, 8(90), 1071-5, 1963.
- Cezairliyan, A., "Prediction of Thermal Conductivity of Metallic Elements and Their Dilute Alloys at Cryogenic Temperatures," Purdue University, Thermophysical Properties Research Center, TPRC Rept. 14, 1-140, 1962; Air Force Materials Lab. Tech. Rept. ASD-TDR-63-291, 1-140, 1963.
- Cezairliyan, A. and Touloukian, Y. S., "Generation and Calculation of the Thermal Conductivity of Metals by Means of the Law of Corresponding States," Teplofiz Vysokikh Temperature, 3, 75-85, 1965; English translation: High Temperature, 3, 63-75, 1965.
- 57. Cezairliyan, A. and Touloukian, Y. S., "Correlation and Prediction of Thermal Conductivity of Metals through the Application of the Principle of Corresponding States," in Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 3rd Symposium on Thermophysical Properties, ASME, 301-13, 1965.
- Amundson, T. L. and Olsen, T., "Size-Dependent Thermal Conductivity in Aluminum Films," Phil. Mag., 11(111), 561-74, 1965.

- Colquitt, L., Jr., "Spin-Disorder Thermal Resistivity of the Ferromagnetic Transition Metals," Phys. Rev., 139(6A), A1857-65, 1965.
- Evangelisti, R., "Wiedemann-Franz-Lorenz Law and Its Application in the High Temperature Field," Rivista di Ingegneria, 4(8), 761-71, 1965; English translation: Special Libraries Association Translations Center, LA-TR-66-22, TT-66-15076, 1-20, 1966.
- Rösler, M., "The Effect of Electron-Electron Interaction on the Transport Coefficients of a Metal," Ann. Physik, 16(1-2), 70-80, 1965.
- van den Berg, G. J., "Anomalies in Dilute Metallic Solutions of Transition Metals," in Proc. 9th Intern. Conf. on Low Temperature Physics (1964), Plenum Press, New York, 955-84, 1965.
- Herring, C., "Simple Property of Electron-Electron Collisions in Transition Metals," Phys. Rev. Letters, 19(4), 167-8, 1967; Errata, Phys. Rev. Letters, 19(11), 684, 1967.
- 64. Rice, M. J., "Itinerant Electron Correlation and the Ideal Lorenz Number of Transition Metals," Phys. Letters, 26A(2), 86-7, 1967.
- Schriempi, J. T., "Three-Term Analysis of the Ideal Thermal and Electrical Resistivities of Transition Metals," Phys. Rev. Letters, 20(19), 1034-6, 1968.
- 66. Williams, R. K. and Fulkerson, W., "Separation of the Electronic and Lattice Contributions to the Thermal Conductivity of Metals and Alloys," in Thermal Conductivity—Proceedings of the Eighth Conference (Ho, C. Y. and Taylor, R. E., eds.), Plenum Press New York, 389-456, 1969.

Lattice Thermal Conductivity

- 67. Debye, P., "Equation of State and the Quantum Hypothesis with an Appendix on Thermal Conduction," in Vorträge über die kinetische Theorie der Materie und der Elektrizität, Planck, M. et al. (Mathematische Vorlesungen an der Universität Göttingen: VI.), Teubner, Leipzig and Berlin, 19-60, 1914.
- Peierls, R. E., "The Kinetic Theory of Heat Conduction in Crystals," Ann. Physik, 5(3), 1055-1101, 1929; English translation: OTS, AEC-TR-1849, 1-67. [TPRC No. 28 528]
- Peierls, R. E., "Some Typical Properties of Solid Bodies," *Ann. Inst. Henrl Poincaré*, 5, 177-222, 1935.
- 70. Casimir, H. B. G., "Note on the Conduction of Heat in Crystals," *Physica*, 5(6), 495-500, 1938.
- 71. Pomeranchuk, 1., "Thermal Conductivity of Dieletrics at Ten.p.ratures Higher than the Debye Temperature,"

 J. Exptl. Theoret. Phys. (USSR), 11, 246-24, 1941;
 English translation: J. Phys. (USSR), 4(3), 259-68, 1941.
- Pomeranchuk, I., "The Thermal Conductivity of Dielectrics," Phys. Rev., 60, 820-1, 1941.
- Pomeranchuk, I., "Thermal Conductivity of Dieletrics at Temperatures Lower than the Debye Temperature,"
 J. Exptl. Theoret. Phys. (USSR), 12, 245-63, 1942;
 English translation: J. Phys. (USSR), 6(6), 237-50, 1942.
- 74. Klemens, P. G., "The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical)," Proc. Roy. Soc. (London), A208, 108-33, 1951.
- Herpin, A., "The Kinetic Theory of Solids," Ann. Physlk, 7, 91-139, 1952.

- Berman, R., "The Thermal Conductivity of Dielectric Solids at Low Temperatures," Advan. in Physics (Phil. Mag. Suppl.), 2, 103-40, 1953.
- 77. Herring, C., "Role of Low-Energy Phonons in Thermal Conduction," Phys. Rev., 95(4), 954-65, 1954.
- Klemens, P. G., "The Lattice Component of the Thermal Conductivity of Metals and Alloys," Australian J. Phys., 7, 57-63, 1954.
- Leibfried, G. and Schlömann, E., "Heat Conduction in Electrically Insulating Crystals," Nachr. Akad. Wlss. Göttingen, Math.-Physik. Kl., 2a(4), 71-93, 1954; English translation: AEC-TR-5892, 1-36, 1963. [TPRC No. 28 158]
- Dugdale, J. S. and MacDonald, D. K. C., "Lattice Thermal Conductivity," Phys. Rev., 98(6), 1751-2, 1955.
 Klemens, P. G., "The Scattering of Low-Frequency Lattice Waves by Static Imperfections," Proc. Phys. Soc. (London), A68, 1113-28, 1955.
- Leibfried, G., "Lattice Theory of the Mechanical and Thermal Properties of Crystals," in Handbuch der Physik, Vol. 7, 105-324, 1955.
- Pippará, A. B., "Ultrasonic Attenuation in Metals," Phil. Mag. 7, 46(381), 1104-14, 1955.
- Mori, H., "A Quantum-Statistical Theory of Transport Processes," J. Phys. Soc. Japan, 11(10), 1029-44, 1956.
- Sondheimer, E. H., "Electron-Phonon Equilibrium and the Transport Phenomena in Metals at Low Temperatures," Can. J. Phys., 34(12A), 1246-55, 1956.
- Ziman, J. M., "The General Variational Principle of Transport Theory," Can. J. Phys., 34(12A), 1256-73, 1956.
- Ziman, J. M., "The Effect of Free Electrons on Lattice Conduction," Phil. Mag., 8, 1(2), 191-8, 1956.
- Klemens, P. G., "Thermal Resistance due to Isotopic Mass Variation," Proc. Phys. Soc. (London), A70(11), 833-6, 1957.
- Kubo, R., "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems," J. Phys. Soc. Japan, 12(6), 570-86, 1957.
- Kubo, R., Yokota, M., and Nakajima, S., "Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance," J. Phys. Soc. Japan, 12(11), 1203-11, 1957.
- Stratton, R., "The Effect of Free Electrons on Lattice Conduction at High Temperatures," Phil. Mag., 8, 2, 422-4, 1957.
- Ziman, J. M., "Corrigendum to 'The Effect of Free Electrons on Lattice Conduction," Phil. Mug., 8, 2(14), 292, 1957.
- Ambegaokar, V., "Thermal Resistance due to Isotopes at High Temperatures," Phys. Rev., 114(2), 488-9, 1959.
- Berman, R., Nettley, P. T., Sheard, F. W., Spencer, A. N., Sevenson, R. W. H., and Ziman, J. M., "The Effect of Point Imperfections on Lattice Conduction in Solids," Proc. Roy. Soc. (London), A253, 403-19, 1959.
- Callaway, J., "Model for Lattice Thermal Conductivity at Low Temperatures," Phys. Rev., 113(4), 1046-51, 1959.
- Keyes, R. W., "High-Temperature Thermal Conductivity of Insulating Crystals: Relationship to the Melting Point," Phys. Rev., 115(3), 564-7, 1959.

- Klemens, P. G., "Thermal Resistance due to Isotopes and Other Point Defects," Phys. and Chem. Solids, 8, 345-7, 1959.
- Callaway, J. and von Baeyer, H. C., "Effect of Point Imperfections on Lattice Thermal Conductivity," Phys. Rev., 120(4), 1149-54, 1960.
- Klemens, P. G., "Thermal Resistance due to Point Defects at High Temperatures," Phys. Rev., 119(2), 507-9, 1960.
- Callaway, J., "Low-Temperature Lattice Thermal Conductivity," Phys. Rev., 122(3), 787-90, 1961.
- Carruthers, P., "Theory of Thermal Conductivity of Solids at Low Temperatures," Rev. Modern Phys., 33(1), 92-138, 1961.
- Keyes, R. W., "Low-Temperature Thermal Resistance of n-type Germanium," Phys. Rev., 122(4), 1171-6, 1961.
- 103. Bross, H., "The Effect of Defects on Lattice Thermal Conductivity at Low Temperatures," Phys. Status Solidi, 2(5), 481-516, 1962; English translation: CFSTI, NP-TR-963, 1-73, 1962. [TPRC No. 23 110]
- 104. Klemens, P. G., White, G. K., and Tainsh, R. J., "Scattering of Lattice Waves by Point Defects," Phil. Mag., 7, 1323-35, 1962.
- Lindenfeld, P. and Pennebaker, W. B., "Lattice Conductivity of Copper Alloys," Phys. Rev., 127(6), 1881-9, 1962.
- 106. Schieve, W. C. and Peterson, R. L., "Correlation Function Calculation of Thermal Conductivity," Phys. Rev., 126(4), 1458-60, 1962.
- Abeles, B., "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures," Phys. Rev., 131(5), 1906-11, 1963.
- 108. Griffin, A. and Carruthers, P., "Thermal Conductivity of Solids, IV. Resonance Fluorescence Scattering of Phonons by Donor Electrons in Germanium," Phys. Rev., 131(5), 1976-95, 1963.
- Holland, M. G., "Analysis of Lattice Thermal Conductivity," Phys. Rev., 132(6), 2461-71, 1963.
- Klein, M. V., "Phonon Scattering by Lattice Defects," Phys. Rev., 131(4), 1500-17, 1963.
- Nettleton, R. E., "Foundations of the Callaway Theory of Thermal Conductivity," Phys. Rev., 132(5), 2032-8, 1963.
- Parrott, J. E., "The High-Temperature Thermal Conductivity of Semiconductor Alloys," Proc. Phys. Soc. (London), 81, 726-35, 1963.
- Wagner, M., "Influence of Localized Modes on Thermal Conductivity," Phys. Rev., 131(4), 1443-55, 1963.
- 114. Greig, D., "Lattice Imperfections and the Thermal Conductivity of Solids," Progr. In Solid State Chem., 1, 175-208, 1964.
- Luttinger, J. M., "Theory of Thermal Transport Coefficients," Phys. Rev., 135(6A), A1505-14, 1964.
- Schieve, W. C. and Leaf, B., "Correlation Function Calculation of the Lattice Thermal Conductivity by Classical Liouville Methods," *Physica*, 30, 1208-16, 1964.
- Steigmeier, E. F. and Abeles, B., "Scattering of Phonons by Electrons in Germanium-Silicon Alloys," Phys. Rev., 136, A1149-55, 1964.
- 118. Erdős, P., "Low-Temperature Thermal Conductivity of Insulators Containing Impurities," Phys. Rev., 138(4A), A1200-7, 1965.

小人员工的

- Krumhansl, J. A., "Thermal Conductivity of !nsulating Crystals in the Presence of Normal Processes," Proc. Phys. Soc. (London), 5, 85(547), 921-30, 1965.
- Krumhansl, J. A. and Guyer, R. A., "Extension of the Relaxation-Time Approximation to Solution of the Phonon Boltzmann Equation," Bull. Am. Phys. Soc., 10, 530, 1965.
- Krumhansl, J. A. and Matthew, J. A. D., "Scattering of Low-Wavelength Phonons by Point Imperfections in Crystals," Phys. Rev., 140(5A), A1812-7, 1965.
- 122. Ranninger, J., "Lattice Thermal Conductivity," Phys. Rev., 140(6A), A2031-46, 1965.
- Deo, B. and Behera, S. N., "Calculation of Thermal Conductivity by the Kubo Formula," Phys. Rev., 141(2), 738-41, 1966.
- 124. Guyer, R. A. and Krumhansl, J. A., "Solution of the Linearized Phonon Boltzmann Equation," *Phys. Rev.*, 148(2), 766-78, 1966.
- 125. Guyer, R. A. and Krumhansl, J. A., "Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals," Phys. Rev., 148(2), 778-88, 1966.
- Klein, M. V., "Phonon Scattering by Lattice Defects. II," Phys. Rev., 141(2), 716-23, 1966.
- Berman, R., "Heat Conduction in Nonmetallic Crystals," Set. Prog. (Oxford), 55, 357-77, 1967.
- Ranninger, J., "Therma! Conductivity in Nonconducting Crystals," Ann. Phys., 45, 452-78, 1967.
- Klemens, P. G., "Phonon Scattering by Cottrell Atmospheres Surrounding Dislocations," J. Appl. Phys., 39(11), 5304-5, 1968.
- Ranninger, J., "A Simple Microscopic Model for the Lattice Thermal Conductivity," Ann. Phys., 49(2), 297-308, 1968.
- Hamilton, R. A. H. and Parrott, J. E., "Variational Calculation of the Thermal Conductivity of Germanium," *Phys. Rev.*, 178(3), 1284-92, 1969.
- 132. Nil'sen, Kh. and Shklovskii, B. I., "Nonlinear Thermal Conductivity of Dielectrics in the Region of Viscous Flow of a Phonon Gas," Fiz. Trerdogo Tela, 10(12), 3602-7, 1968; English translation: Soviet Phys.—Solid State, 10(12), 2857-61, 1969.

Thermal Conductivity of Alloys

- 133. Smith, A. W., "The Therma! Conductivities of Alloys," The Ohio State Univ., Univ. Studies, 2(7), 1-61, 1925; also designated as the Eng. Expt. Sta. Bull. No. 31.
- 134. Klemens, P. G., "Deviations from Matthicssen's Rule and Lattice Thermal Conductivity of Alloys," Australian J. Phys., 12, 199-202, 1959.
- 135. Kemp, W. R. G. and Klemens, P. G., "The Lattice Thermal Conductivity of Alloys," Australian J. Phys., 13(2A), 247-54, 1960.
- White, G. K., "Thermal Transport in Dilute Alloys," Australian J. Phys., 13(2A), 255-9, 1960.
- Chari, M. S. R., "The Lorenz Parameter in Dilute Silver-Manganese Alloys at Liquid Helium Temperatures," Proc. Phys. Soc. (London), 78(6), 1361-71, 1961.
- 138. Natarajan, N. S. and Chari, M. S. R., "The Anomalous Thermal Conductivity of Dilute Ag-Mn Alloys at Helium Temperatures," *Physica Status Solidi*, 21(2), K127-30, 1967.

Thermal Conductivity of Semiconductors

- Davydov, B. I. and Shmushkevich, I. M., "Electron Theory of Semiconductors," *Uspekhi Fiz. Nauk*, 24(1), 21-67, 1940.
- Joffé, A. F., "Estimation of the Heat Conductivity of Semiconductors," Dokl. Akad. Nauk SSSR, 87, 369-72, 1957
- 141. Madelurg, O., "Theory of Conductivity in Isotropic Semiconductors," Z. Naturforsch., A9, 667-74, 1954; English translation: RAE Lib./Trans. 638, 1-16, 1957. [AD J32 216]
- Price, P. J., "Electronic Thermal Conduction in Semiconductors," Phys. Rev., 95, 596, 1954.
- 143. Price, P. J., "Ambipolar Thermodiffusion of Electrons and Holes in Semiconductors," Phil. Mag., 46, 1252-60, 1955
- Joffé, A. F., "Heat Transfer in Semiconductors," Can. J. Phys., 34(12A), 1342-55, 1956.
- 145. Pikus, G. E., "Thermomagnetic and Galvanomagnetic Effects in Semiconductors, Taking into Account the Variations in the Concentration of Current Carriers. II. Galvanomagnetic Effects in Strong Fields. Electron and Phonon Thermal Conductivity," Zh. Tekh. Fiz., 26(1), 36-50, 1956; English translation: Soviet Phys.—Tech. Phys., 1(1), 32-46, 1956.
- 146. ter Haar, D. and Neaves, A., "On the Thermal Conductivity and Thermoelectric Power of Semiconductors," Advan. in Phys., 5(18), 241-69, 1956.
- Madelung, O., "Semiconductors," in Handbuch der Physik, Vol. 20, Springer-Verlag, Berlin, 1-245, 1957.
- 148. Parrott, J. E., "Some Contributions to the Theory of Electrical Conductivity, Thermal Conductivity and Thermoelectric Power in Semiconductors," Proc. Phys. Soc. (London), Section B, 70, 590-607, 1957.

ansuralla in militari di mara ana ara i (confidenti indutati mana ana ana ana

- Herring, C., "Transport," J. Phys. Chem. Solids, 8, 543-9, 1959.
- Appel, J., "Thermal Conductivity of Semiconductors," in Progress in Semiconductors, Vol. 5, 141-87, 1960.
- 151. Keyes, R. W. and Bauerle, J. E., "Thermal Conduction in Thermoelectric Materials," Chapter 5 in Thermoelectricity: Science and Engineering (Heikes, R. R. and Urc, R. W., Jr., eds.) Chap. 5, Interscience Publishers, New York, 91-119, 1961.
- 152. Pyle, I. C., "The Scattering of Phonons by Bound Electrons in a Semiconductor," Phil. Mag., 6, 609-16, 1961.
- 153. Korolyuk, S. L., "On the Theory of Exciton Thermal Conductivity," Fiz. Tverdogo Tela, 4(3), 790-800, 1962; English translation: Soviet Phys.—Solid State, 4(3), 580-6, 1962.
- 154. Griffin, A. and Carruthers, P., "Thermal Conductivity of Solids IV. Resonance Fluorescence Scattering of Phonons by Donor Electrons in Germanium," Phys. Rev., 131(5), 1976-95, 1963.
- 155. Zukotynski, S. and Kolodziejczak, J., "Theory of Transport Phenomena in Semiconductors Possessing Nonspherical and Nonquadratic Energy Bands," Phys. Status Solidi, 3(6), 990-1000, 1963.
- 156. Holland, M. G., "Thermal Conductivity," in Semi-conductors and Semimetals (Willardson, R. K. and Beer, A. C., eds.), Vol. 2 (Physics of III-V Compounds), Academic Press, New York, 3-31, 1966.

- 157. Probert, S. D. and Thomas, C. B., "The Thermal Conductivity of Semiconductors at Low Temperatures, UKAEA, TRG Report 977 (R/X), 1-34, 1966.
- 158. Steigmeier, E. F., "Thermal Conductivity of Semiconducting Materials," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 2, Chap. 4, Academic Press, London, 203-51, 1969.

Thermal Conductivity of Superconductors

- Hulm, J. K., "The Thermal Conductivity of Tin, Mercury, Indium and Tantalum at Liquid Helium Temperatures," Proc. Roy. Soc. (London), A204(1076), 98-123, 1950.
- 160. Cornish, F. H. J. and Olsen, J. L., "Calculation of the Thermal Conductivity of Superconductors in the Intermediate State," Helv. Phys. Acta, 26, 369-76, 1953.
- Klemens, P. G., "Electronic Thermal Conduction in Superconductors," Proc. Phys. Soc. (London), Section A, 66(6), 576-7, 1953.
- Laredo, S. J. and Pippard, A. B., "Thermal Conduction in the Intermediate State of Superconductors," Proc. Camb. Phil. Soc., 51, 368-76, 1955.
- 163. Gorter, C. J., "On the Magnitude of the Contribution of a Circulation Effect to the Thermal Conductivity of a Superconductor," Can. J. Phys., 34(12A), 1334-5, 1956.
- 164. Bardeen, J., Rickayzen, G., and Tewordt, L., "Theory of the Thermal Conductivity of Superconductors," *Phys. Rev.*, 113(4), 982-94, 1959.
- Geilikman, B. T. and Kresin, V. Z., "Phonon Thermal Conductivity of Superconductors," Soviet Physics— Dokludy, 3(6), 1161-3, 1959.
- 166. Khalatnikov, I. M., "The Influence of Anisotropy on the Thermal Conductivity of Superconductors," Zh. Eksper. Teor. Fiz., 36(6), 1818-22, 1959; English translation: Soviet Phys.—JETP, 9(6), 1296-9, 1959.
- Kresin, V. Z., "On the Problem of Thermal Conductivity and Absorption of Sound in Superconductors," Soviet Phys.—JETP, 36(6), 1385, 1959.
- 168. Éliashberg, G. M., "Interactions between Electrons and Lattice Vibrations in a Superconductor," Zh. Eksper. Teor. Fiz., 38(3), 966-76, 1960; English translation: Soviet Phys.—JETP, 11(3), 696-702, 1960.
- Kadanoff, L. P. and Martin, P. C., "Theory of Many-Particle Systems. II. Superconductivity," Phys. Rev., 124(3), 670-97, 1961.
- Bardeen, J., "Review of the Present Status of the Theory of Superconductivity," IBM J. Res. Develop., 6(1), 3-11, 1962.
- 171. Geilikman, B. T. and Kresin, V. Z., "Thermal Conductivity of Pure Superconductors and Absorption of Sound in Superconductors," Zh. Eksper. Teor. Fiz., 41(4), 1142-50, 1961; English translation: Soviet Phys.—JETP, 14(4), 816-21, 1962.
- 172. Ginzburg, V. L., "Second Sound, the Convective Heat Transfer Mechanism, and Exciton Excitations in Superconductors," Zh. Eksper. Teor. Fiz., 41(3), 828-34, 1961; English translation: Soviet Phys.—JETP, 14(3), 594-8, 1962.
- Tewordt, L., "Lifetime of a Quasi-Particle in a Superconductor at Finite Temperatures and Application to the

- Problem of Thermal Conductivity," Phys. Rev., 128(1), 12-20, 1962.
- 174. Chaudhuri, K. D., "Thermal Conductivity of Superconductors," Physica, 29, 816-18, 1963.
- Tewordt, L., "Theory of the Intrinsic Electronic Thermal Conductivity of Superconductors," Phys. Rev., 129(2), 657-63, 1963.
- 176. Ambegaokar, V. and Tewordt, L., "Theory of the Electronic Thermal Conductivity of Superconductors with Strong Electron-Phonon Coupling," Phys. Rev., 134, A805-15, 1964.
- Andreyev, V. V. and Slezov, V. V., "Theory of Super-conductor Thermal Conductivity," Fiz. Metal—Metalloved., 17(3), 477-80, 1964; English Translation: Phys. Metals Metallog. (USSR), 17(3), 150-4, 1964.
- 178. Gupta, A. K. and Verma, G. S., "Phenomenological Model for the Electronic Thermal Conductivity of Superconductors," Phys. Rev., 135(1A), A16-9, 1964.
- 179. Klemens, P. G. and Tewordt, L., "Reduction of the Lattice Conductivity of Superconductors due to Point Defects," Rev. Mad. Phys., 36(1), 118-20, 1964.
- 180. Luttinger, J. M., "Thermal Transport Coefficients of a Superconductor," Phys. Rev., 136, A1481-5, 1964.
- Maki, K., "Effect of Magnetic Fields on Heat Transport in Superconductors," Prog. Theoret. Phys. (Kyota), 31(3), 378-87, 1964.
- Ambegaokar, V. and Griffin, A., "Theory of the Thermal Conductivity of Superconducting Alloys with Paramagnetic Impurities," Phys. Rev., 137(4A), A1151-67, 1965.
- 183. Gunther, L., "On the Possibility of a Discontinuity in the Thermal Conductivity of Superconductors at the Transition Temperature," MIT Solid-State and Molecular Theory Group Quarterly Progress Rept. No. 56, 69-72, 1965.
- 184. Bennemann, K. H. and Mueller, F. M., "Anomalous Thermal Conductivity of Superconductors due to Impurity Spin Ordering," Phys. Rev., 176(2), 546-50, 1968.

Electron-Magnon and Phonon-Magnon Scattering and Magnon Thermal Conductivity

- Sato, H., "Thermal Conductivity of Ferromagnetic Substances," Busselron Kenkyu, No. 77, 68-73, 1954.
- Sato, H., "On the Thermal Conductivity of Fertomagnetics," Progr. Theoret. Phys. (Kyoto), 13, 119-20, 1955.
- Kaganov, M. I., Tsukernik, V. M., and Chupis, I. E., "Theory of Relaxation Process in Antiferromagnetics," Fiz. Metal. i Metalloved., Vral. Fillal, 10, 797-8, 1960.
- 188. Douthett, D. and Friedberg, S. A., "Effects of a Magnetic Field on Heat Conduction in Some Ferrimagnetic Crystals," Phys. Rev., 121(6), 1662-7, 1961.
- 189. Chari, M. S. R., "Lattice Thermal Conductivity of Dilute Silver-Manganese Alloys at Helium Temperatures," Proc. Phys. Soc. (London), 79(512), 1216-20, 1962.
- Callaway, J., "Scattering of Spin Waves by Magnetic Defects," Phys. Rev., 132(5), 2003-9, 1963.

- Friedberg, S. A. and Harris, E. D., "Heat Transport by Magnons at Low Temperatures," in Proc. Eighth Internat. Conf. Low Temp. Phys., Butterworths, London, 302-3, 1963.
- Kawasaki, K., "On the Behavior of Thermal Conductivity Near the Magnetic Transition Point," Progr. Theoret. Phys. (Kyoto), 29(6), 801-16, 1963.
- 193. Petrova, L. N., "Thermal Conductivity of Ferromagnetic Metals," Fis. Tverdogo Tela, 5(6), 1682-6, 1963; English translation: Soviet Phys.—Solid State, 5(6), 1223-6, 1963.
- Callaway, J. and Boyd, R., "Scattering of Spin Waves by Magnetic Defects," Phys. Rev., 134(6A), A1655-62, 1964.
- 195. Stern, H., "Thermal Conductivity at the Magnetic Transition," J. Phys. Chem. Solids, 26(1), 153-61, 1965.
- Gurevich, L. É. and Roman, G. A., "Heat Conductivity of Ferrites at Low Temperatures and the Entrainment of Phonons and Magnons," Fiz. Tverdogo Tela, 8(2), 525-31, 1966; English translation: Soviet Phys.—Solid State, 8(2), 416-20, 1966.
- 197. Gurevich, L. É. and Roman, G. A., "Thermal Conductivity of Antiferromagnets at Low Temperatures under Conditions of Mutual Magnon and Phonon Drag," Fiz. Tverdogo Tela, 8(9), 2628-32, 1966; English translation: Soviet Phys.—Solid State, 8(9), 2102-5, 1967.
- Schindler, A. I. and Rice, M. J., "s-Electron-Paramagnon Scattering in Dilute Pd-Ni Alloys: Theory and Experiment," Phys. Rev., 164(2), 759-64, 1967.

Experimental Methods

- 199. Franklin, B., "Meteorological Observations" (written in reply to Cadwallader Colden, Nov. 19, 1753 and read at the Royal Society of London, Nov. 4, 1756), in The Wrltings of Benjamin Franklin (Smyth, A. H., ed.), Vol. III (1750-59), The Macmillan Co., New York, 186-8, 1905.
- Fordyce, G., "An Account of an Experiment on Heat," Phil. Trans. Roy. Soc. (London), 77, 310-7, 1787.
- Ingen-Hausz, J., "On Metals as Conductors of Heat," J. de Physique, 34, 68, 380, 1789.
- Despretz, C. , "On the Conductivity of Several Solid Substances," Ann. Chim. Phys., 19, 97-106, 1822.
- Forbes, J. D., "On the Progress of Experiments on the Conduction of Heat, Undertaken at the Meeting of the British Association at Edinburgh, in 1850," Brit. Assoc. Adv. Sci., Rept. Ann. Meeting, 21, 7-8, 1851.
- Forbes, J. D., "On Experiments on the Laws of the Conduction of Heat," Brit. Assoc. Adv. Sci., Rept. Ann. Meeting, 22, 260-1, 1852.
- Forbes, J. D., "Experimental Inquiry into the Laws of the Conduction of Heat in Bars, and into the Conducting Power of Wrought Iron," Trans. Roy. Soc. Edinburgh, 23, 133-46, 1864.
- 206. Forbes, J. D., "Experimental Inquiry into the Laws of the Conduction of Heat in Bars. Part II. On the Conductivity of Wrought Iron, Deduced from the Experiments of 1851," Trans. Roy. Soc. Edinburgh, 24, 73-110, 1865.
- Angström, A. J., "A New Method of Determining the Thermal Conductivity of Solids," Ann. Physik, 2, 114, 513-30, 1861.
- 208. Thomson, W. (Lord Kelvin), "Heat," in Encyclopaedia Britannica, Vol. 11, 9th Ed., 1880; reprinted in Mathema-

- tical and Physical Papers, Vol. 3, Cambridge University Press, 113-235, 1890.
- Preston, T., The Theory of Heat, Macmillan and Co., London, 719 pp., 1894; 4th Ed. (J. R. Cotter, ed.), Macmillan and Co., Ltd., London, 836 pp., 1929.
- 210. Chwolson, O. D., "Thermal Conductivity," in Traité de Physique (Translated into French by Davaux, E. and reviewed and augmented by the author), Vol. 3, Chap. VII, Librairie Scientifique A. Hermann et Fils, Paris, 320-408, 1909.
- Schofield, F. H., "Conduction of Heat," in A Dictionary of Applied Physics (Glazebrook, R., ed.), Vol. 1, The Macmillan Co., New York, 429-66, 1922 (reprinted 1950).
- Ingersoll, L. R., "Methods of Measuring Thermal Conductivity in Solids and Liquids," J. Optical Soc. Am., 9, 495-501, 1924.
- Griffiths, E., "A Survey of Heat Conduction Problems," Proc. Phys. Soc. (London), 41, 151-79, 1929.
- 214. Partington, J. R., "Thermal Conductivity of Solids," in An Advanced Treatise on Physical Chemistry, Vol. III, Longmans, Green and Co., London, 410-61, 1952.
- 215. Scibel, R. D., "Survey and Bibliography on the Determination of Thermal Conductivity of Metals at Elevated Temperatures," Watertown Arsenal Lab. Rept. No. WAL 821/9, 1-65, 1954. [AD 51 228]
- Kingery, W. D., Property Measurements at High Temperatures, John Wiley and Sons, Inc., New York, 416 pp., 1959.
- Slack, G. A., "Heat Conduction in Solids, Experimental," in Encyclopaedic Dictionary of Physics (Thewlis, J., editor-in-chief), Vol. 3, Pergamon Press, Oxford, 601-6, 1961.
- 218. Tye, R. P. (ed.), Thermal Conductivity, Vol. 1 and 2, Academic Press, London, 422 pp. and 353 pp., 1969.
- Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford University Press, 1946; 2nd Ed., 510 pp., 1959.
- Ingersoll, L. R., Zobel, O. J., and Ingersoll, A. C., Heat Conduction, McGraw-Hill, New York, 1948; 2nd Ed., University of Wisconsin Press, 325 pp., 1954.
- 221. Jakob, M., Heat Transfer, Vol. 1, John Wiley and Sons, Inc., New York, 758 pp., 1949.
- 222. Schneider, P. J., Conduction Heat Transfer, Addison-Wesley Publ. Co., Cambridge, Mass., 395 pp., 1955.
- Arpaci, V. S., Conduction Heat Transfer, Addison-Wesley Publ. Co., Reading, Mass., 550 pp., 1966.
- 224. Biot, J. B., Tralté de Physique, Vol. 4, Paris, 669, 1816.
- Fourier, J. B. J., The Analytical Theory of Heat, Gauthier-Villars, Paris, 1822; English translation by Freeman, A., Cambridge University Press, 466 pp., 1878; new edition of the English translation, Dover Publications, New York, 1955.
- White, G. K., Experimental Techniques in Low Temperature Physics, Oxford University Press, 1959; 2nd Ed., 1968.
- White, G. K., "Measurement of Solid Conductors at Low Temperatures," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 1, Chap. 2, Academic Press, London, 69-109, 1969.
- 228. Lees, C. H., "The Effects of Temperature and Pressure on the Thermal Conductivities of Solids. Part II. The Effects of Low Temperatures on the Thermal and Electrical Conductivities of Certain Approximately

- Pure Metals and Alloys," Phil. Trans. Roy. Soc. (London), A208, 381-443, 1908.
- Berman, R., "The Thermal Conductivities of Some Dielectric Solids at Low Temperatures (Experimental), Proc. Roy. Soc. (London), A208, 90-108, 1951.
- White, G. K., "The Thermal Conductivity of Gold at Low Temperatures," Proc. Phys. Soc. (London), A66, 559-64, 1953.
- Mendelssohn, K. and Renton, C. A., "The Heat Conductivity of Superconductors below 1 K," Proc. Roy. Soc. (London), A230, 157-69, 1955.
- Rosenberg, H. M., "The Thermal Conductivity of Metals at Low Temperatures," Phil. Trans. Roy. Soc. (London), A247, 441-97, 1955.
- 233. White, G. K. and Woods, S. B., "Thermal and Electrical Conductivities of Solids at Low Temperatures," Can. J. Phys., 33, 58-73, 1955.
- 234. Powell, R. L., Rogers, W. M., and Coffin, D. O., "An Apparatus for Measurement of Thermal Conductivity of Solids at Low Temperatures," J. Res. Nat. Bur. Stand., 59(5), 349-55, 1957.
- Slack, G. A., "Thermal Conductivity of Potassium Chloride Crystals Containing Calcium," Phys. Rev., 105(3), 832-42, 1957.
- Williams, W. S., "Phonon Scattering in KCl-KBr Solid Solutions at Low Temperatures," Phys. Rev., 119(3), 1021-4, 1960.
- Slack, G. A., "Thermal Conductivity of CaF₂, MnF₂, CoF₂, and ZnF₂ Crystals," Phys. Rev., 122(5), 1451-64, 1961.
- 238. Berman, R., Bounds, C. L., and Rogers, S. J., "The Effects of Isotopes on Lattice Heat Conduction. II. Solid Helium," Proc. Roy. Soc. (London), A289(1416), 46-65, 1965.
- 239. Jericho, M. H., "The Lattice Thermal Conductivity of Silver Alloys between 4 K and 0.3 K," Phil. Trans. Roy. Soc. (London), A257, 385-407, 1965.
- 240. Berget, A., "Measurement of the Thermal Conductivity of Mercury, of Its Absolute Value," Compt. Rend., 105, 224-7, 1887.
- 241. Berget, A., "Thermal Conductivity of Mcrcury and Certain Metals," J. Phys. (Paris), 2, 7, 503-18, 1888.
- "The Physical Society's Exhibition. No. III, " Engineer, 159, 68-70, 1935.
- 243. Armstrong, L. D. and Dauphinee, T. M., "Thermal Conductivity of Metals at High Temperatures. I. Description of the Apparatus and Measurements on Iron," Can. J. Res., A25, 357-74, 1947.
- Ditmars, D. A. and Ginnings, D. C., "Thermal Conductivity of Beryllium Oxide from 40 to 750 C," J. Res. Nat. Bur. Stand., 59(2), 93-9, 1957.
- 245. Wilkes, G. B., "An Apparatus for Determining the Thermal Conductivity of Metals," Chem. Met. Eng., 21(5), 241-3, 1919.
- Powell, R. W., "The Thermal and Electrical Conductivities of Some Magnesium Alloys," Phil. Mag., 27, 677-86, 1939.
- Powell, R. W. and Tye, R. P., "High Alloy Steels for Use as a Thermal Conductivity Standard," Brit. J. Appl. Phys., 11, 195-8, 1960.
- 248. Larsen, D. C., Powell, R. W., and DeWitt, D. P., "The Thermal Conductivity and Electrical Resistivity of a

- Round-Robin Armco Iron Sample, Initial Measurements from 50 to 300 C," in *Thermal Conductivity—Proceedings* of the Eighth Conference (Ho, C. Y. and Taylor, R. E., eds.), Plenum Press, New York, 675-87, 1969.
- 249. Laubitz, M. J., "Measurement of the Thermal Conductivity of Solids at High Temperatures by Using Steady-State Linear and Quasi-Linear Heat Flow," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 1, Chap. 3, Academic Press, London, 111-83, 1969.
- 250. Flynn, D. R., "Thermal Conductivity of Ceramics," in Mechanical and Thermal Properties of Ceramics (Wachtman, J. B., Jr., ed.), NBS Spec. Publ. 303, 63-123, 1969.
- Bauerle, J. E., "Thermal Conductivity," Section 10.1 in Thermoelectricity: Science and Engineering (Heikes, R. R. and Urc, R. W., Jr., eds.), Interscience Publishers, New York, 285-311, 1961.
- Honda, K. and Simidu, T., "On the Thermal and Electrical Conductivities of Carbon Steels at High Temperatures," Sci. Reprs. Töhoku Univ., 1, 6, 219-33, 1917.
- Schofield, F. H., "The Thermal and Electrical Conductivities of Some Pure Metals," Proc. Roy. Soc. (London), A107, 206-27, 1925.
- 254. Powell, R. W., "The Thermal and Electrical Conductivities of Metals and Alloys: I. Iron from 0 to 800 C," Proc. Phys. Soc. (London), 46, 659-78, 1934.
- 255. Goldsmid, H. J., "The Thermal Conductivity of Bismuth Telluride," Proc. Phys. Soc. (London), B69, 203-9, 1956.
- 256. ASTM, "Standard Method of Test for Thermal Conductivity of Materials by Means of the Guarded Hot Plate," ASTM Designation: C177-63, in 1967 Book of ASTM Standards, Part 14, 17-28, 1967.
- 257. Poensgen, R., "A Technical Method for Investigating the Thermal Conductivity of Slabs of Material," VDI Zeitschrift, 56(41), 1653-8, 1912.
- Jakob, M., "Measurement of the Thermal Conductivity of Liquids, Insulating Materials, and Metals," VDI Zeitschrift, 66, 688-93, 1922.
- ASTM, "Standard Method of Test for Thermal Conductivity of Refractories," ASTM Designation: C201-47 (1958), in 1967 Book of ASTM Standards, Part 13, 170-7, 1967.
- Wilkes, G. B., "Thermal Conductivity, Expansion, and Specific Heat of Insulators at Extremely Low Temperatures," Refrig. Eng., 52(1), 37-42, 1946.
- Schröder, J., "A Simple Method of Determining the Thermal Conductivity of Solids," *Phillips Tech. Rev.*, 21(12), 357-61, 1959-60.
- Schröder, J., "Apparatus for Determining the Thermal Conductivity of Solids in the Temperature Range from 20 to 200 C," Rev. Sci. Instr., 34(6), 615-21, 1963.
- 263. ASTM, "Tentative Method of Test for Thermal Conductivity of Insulating Materials at Low Temperatures by Means of the Wilkes Calorimeter," ASTM Designation: C420-62T, in 1967 Book of ASTM Standards, Part 14, 172-9, 1967.
- 264. ASTM, "Standard Method of Test for Thermal Conductivity of Materials by Means of the Heat Flow Meter," ASTM Designation: C518-67, in 1967 Book of ASTM Standards, Part 14, 230-8, 1967.
- 265. Peirce, B. O. and Willson, R. W., "On the Thermal

- Conductivities of Certain Poor Conductors. I," Prac. Am. Acad. Arts and Sci., 34(1), 1-56, 1898.
- van Dusen, M. S., "The Thermal Conductivity of Heat Insulators," J. Am. Soc. Heating Vent. Engrs., 26(7), 625-56, 1920.
- Somers, E. V. and Cyphers, J. A., "Analysis of Errors in Measuring Thermal Conductivity of Insulating Materials," Rev. Sci. Instr., 22(8), 583-6, 1951.
- Woodside, W., "Analysis of Errors due to Edge Heat Loss in Guarded Hot Plates," ASTM Spec. Techn. Publ. 217, 49-62, 1957.
- American Society for Testing and Materials, "Thermal Conductivity Measurements of Insulating Materials at Cryogenic Temperatures, ASTM Spec. Tech. Publ. No. 411, 118 pp., 1967.
- 270. Ferro, V. and Sacchi, A., "An Automatic Plate Apparatus for Measurements of Thermal Conductivity of Insulating Materials at High Temperatures," in *Thermal Conductivity—Proceedings of the Eighth Conference* (Ho, C. Y. and Taylor, R. E., eds.), Plenum Press, New York, 737-60, 1969.
- 271. Pratt, A. W., "Heat Transmission in Low Conductivity Materials," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 1, Chap. 6, Academic Press, London, 301-405, 1969.
- 272. Péclet, M. E., "Note on the Determination of the Conductivity Coefficients of Metals for Heat," Ann. Chim. Physique, 3, 2(1), 107-15, 1841.
- 273. Lees, C. H., "On the Thermal Conductivities of Single and Mixed Solids and Liquids and their Variation with Temperature," Phil. Trans. Roy. Soc. (London), A191, 399-440, 1898.
- Lees, C. H., "Some Preliminary Experiments on the Effect of Pressure on Thermal Conductivity," Manchester Memoirs, 43(8), 1-6, 1899.
- 275. Lodge, O. J., "On a Method of Measuring the Absolute Thermal Conductivity of Crystals and Other Rare Substances. Part I," Phil. Mag., 5, 5, 110-7, 1878.
- Berget, A., "Measurement of the Coefficients of Thermal Conductivity of Metals," Compt. Rend., 107, 227-9, 1888.
- Lees, C. H., "On the Thermal Conductivities of Crystals and Other Bad Conductors," *Phil. Trans. Roy.* Soc. (London). A183, 481-509, 1892.
- 278. van Duscn, M. S. and Shelton, S. M., "Apparatus for Measuring Thermal Conductivity of Metals up to 600 C," J. Res. Natl. Bur. Stand., 12, 429-40, 1934.
- Powell, R. W., "The Thermal and Electrical Conductivity of a Sample of Acheson Graphite from 0 to 800 C," Proc. Phys. Soc. (London), 49, 419-25, 1937.
- Franci, J. and Kingery, W. D., "Apparatus for Determining Thermal Conductivity by a Comparative Method. Data for Pb, Al₂O₃, BeO, and MgO," J. Am. Ceram. Soc., 37, 80-4, 1954.
- Stuckes, A. D. and Chasmar, R. P., "Measurement of the Thermal Conductivity of Semiconductors," Rept. Meeting of Semiconductors (Phys. Soc., London), 119-25, 1956.
- 282. ASTM, "Standard Method of Test for Thermal Conductivity on Whiteware Ceramics," ASTM Designation: C408-58, in 1967 Book of ASTM Standards, Part 13, 348-52, 1967.
- 283. Mirkovich, V. V., "Comparative Method and Choice of

- Standards for Thermal Conductivity Determinations," J. Am. Ceram. Soc., 48(8), 387-91, 1965.
- 284. Christiansen, C., "Some Experiments on Heat Conduction," Ann. Physik, 3, 14, 23-33, 1881.
- Sieg, L. P., "An Attempt to Detect a Change in the Heat Conductivity of a Selenium Crystal with a Change in Illumination," Phys. Rev., 6, 213-8, 1915.
- Powell, R. W., "The Thermal and Electrical Conductivities of Metals and Alloys: II. Some Heat-Resistant Alloys from 0 to 800 C," Proc. Phys. Soc. (London), 48, 381-92, 1936.
- 287. Powell, R. W. and Hickman, M. J., "The Physical Properties of a Series of Steels. 3. Thermal Conductivity and Electrical Resistivity," Iron and Steel Institute, Special Report No. 24, 242-51, 1939.
- 288. Powell, R. W. and Tye, R. P., "The Thermal and Electrical Conductivities of Some Nickel-Chromium (Nimonic) Alloys," The Engineer, 209, 729-32, 1960.
- Sugawara, A., "The Precise Determination of Thermal Conductivity of Pure Fused Quartz," J. Appl. Phys., 39(13), 5994-7, 1968.
- Hogan, C. L. and Sawyer, R. B., "The Thermal Conductivity of Metals at High Temperatures," J. Appl. Phys., 23(2), 177-80, 1952.
- 291. Laubitz, M. J., "Transport Properties of Pure Metals at High Temperatures. 1. Copper," Can. J. Phys., 45(11), 3677-96, 1967.
- 292. Watson, T. W. and Robinson, H. E., "Thermal Conductivity of Some Commercial Iron-Nickel Alloys," ASME J. of Heat Transfer, Part C, 83(4), 403-8, 1961.
- Laubitz, M. J., "The Unmatched Guard Method of Measuring Thermal Conductivity at High Temperatures," Can. J. Phys., 41(10), 1663-78, 1963.
- 294. Laubitz, M. J., "The Unmatched Guard Method of Measuring Thermal Conductivity. II. The Guardless Method," Can. J. Phys., 43(2), 227-43, 1965.
- 295. McElroy, D. L. and Moore, J. P., "Radial Her. Flow Methods for the Measurement of the Thermal Conductivity of Solids," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 1, Chap. 4, Academic Press, London, 185-239, 1969.
- 296. Callendar, H. L. and Nicolson, J. T., "Experiments on the Condensation of Steam, Part I. A New Apparatus for Studying the Rate of Condensation of Steam on a Metal Surface at Different Temperatures and Pressures," Brit. Assoc. Adv. Sci., Reps. Ann. Meeting, 418-22, 1897.
- 297. Niven, C., "On a Method of Finding the Conductivity for Heat," Proc. Roy. Soc. (London), A76, 34-48, 1905.
- 298. Andrews, T., Proc. Roy. Irish Acad., 1, 465, 1840.
- 299. Schleiermacher, A., "On the Heat Conduction in Gases,"

 Ann. Physik Chemie, 34(8a), 623-46, 1888.
- 300. Kannuluik, W. G. and Martin, L. H., "Conduction of Heat in Powders," Proc. Roy. Soc., A141, 144-58, 1933.
- Kingery, W. D., "Thermal Conductivity. VI. Determination of Conductivity of Al₂O₃ by Spherical Envelope and Cylinder Methods," J. Am. Ceram. Soc., 37, 88-90, 1954
- 302. Feith, A. D., "A Radial Heat Flow Apparatus for High-Temperature Thermal Conductivity Measurements," USAEC Rept. GEMP-296, 1-29, 1964.
- 303. Glassbrenner, C. J. and Sle k, G. A., "Thermal Conductivity of Silicon and Germanium from 3 K to the

- Melting Point," Phys. Rev., 134(4A), A1058-69, 1964.
- 304. Banaev, A. M. and Chekhovskoi, V. Ya., "Experimental Determination of the Coefficient of Thermal Conductivity of Solid Materials in the Temperature Range 200-1000 C," Teplofiz. Vysokikh Temperature, 3(1), 57-63, 1965; English translation: High Temperature, 3(1), 47-52, 1965.
- Powell, R. W., "Further Measurements of the Thermal and Electrical Conductivity of Iron at High Temperatures," Proc. Phys. Soc. (London), \$1, 407-18, 1939.
- 306. Powell, R. W. and Hickman, M. J., "The Physical Properties of a Series of Steels. Part II. Section IIIc. Thermal Conductivity of a 0.8 percent Carbon Steel (Steel 7)," J. Iron Steel Inst. (London), 154, 112-21, 1946.
- Rasor, N. S. and McClelland, J. D., "Thermal Properties of Materials. Part I. Properties of Graphite, Molybdenum, and Tantalum to Their Destruction Temperatures," WADC Tech. Rept. 56-400 Pt I, 1-53, 1957. [AD 118 144]
- Råsor, N. S. and McClelland, J. D., "Thermal Property Measurements at Very High Temperatures," Rev. Sci. Instr., 31(6), 595-604, 1960.
- 309. McElroy, D. L., Godfrey, T. G., and Kollie, T. G., "The Thermal Conductivity of INOR-8 between 100 and 800 C," Trans. Am. Soc. Mctals, 55(3), 749-51, 1962.
- 310. Fulkerson, W., Moore, J. P., and McElroy, D. L., "Comparison of the Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of a High-Purity Iron and an Armco Iron to 1000 C," J. Appl. Phys., 37(7), 2639-53, 1966.
- 311. Hoch, M., Nitti, D. A., Gottschlich, C. F., and Blackburn, P. E., "New Method for the Determination of Thermal Conductivities between 1000 C and 3000 C," in Progress in International Research on Thermodynamic and Transport Properties (Masi, J. F. and Tsai, D. H., eds.), ASME Second Symposium on Thermophysical Properties, Academic Press, New York, 512-8, 1962.
- 312. Laws, F. A., Bishop, F. L., and McJunkin, P., "A Method of Determining Thermal Conductivity," Proc. Am. Acad. Arts Sci., 41(22), 455-64, 1906.
- 313. Adams, M. and Loeb, A. L., "Thermal Conductivity: II. Development of a Thermal Conductivity Expression for the Special Case of Prolate Spheroids," J. Am. Ceram. Soc., 37(2), 73-4, 1954.
- 314. Adams, M., "Thermal Conductivity: III. Prolate Spheroidal Envelope Method; Data for Al₂O₃, BcO, MgO, ThO₂, and ZrO₂," J. Am. Cerum. Soc., 37(2), 74-9, 1954.
- 315. McQuarrie, M., "Thermal Conductivity: V. High Temperature Method and Results for Alumina, Magnesia, and Beryllia from 1000 to 1800 C," J. Am. Ceram. Soc., 37(2), p. 84, 1954.
- 316. Péclet, E., Traité de la Chaleur, Vol. 1, Paris, 1860.
- 317. Nusselt, W., "Thermal Conductivity of Thermal Insulators," VDI Zeitschrift, 52(23), 906-12, 1908.
- "Design Aspects of Plant for Production of Heavy Water by Distillation of Hydrogen," USAEC Rept. NYO-2134, 1957
- 319. Stefan, J., "Investigations on the Thermal Conductivity of Gases," Sitzber Akad.-Wiss. Wien. Math-Naturw., Kl. IIA, 65, 45-69, 1872.
- 320. Kropschot, R. H., Schrodt, J. E., Fulk, M. M., and

- Hunter, D. J., "Multiple-Layer Insulation," in Advances in Cryogenic Engineering, Vol. 5, Plenum Press, 189-97, 1960.
- 321. Flynn, D. R. and Watson, T. W., "High Temperature Thermal Conductivity of Soils," in *Thermal Conductivity —Proceedings of the 8th Conference* (Ho, C. Y. and Taylor, R. E., eds.), Plenum Press, New York, 913-39, 1969.
- 322. de Sénarmont, H., "Memoir on the Conductivity of Crystalline Substances for Heat," Ann. Chim. Phys., 3, 21, 457-70, 1847.
- 323. de Sénarmont, H., "Memoir on the Conductivity of Crystalline Substances for Heat," Compt. Rend., 2, 25, 459-61, 1847.
- de Sénarmont, H., "Memoir on the Conductivity of Crystalline Substances for Heat," Ann. Chem. Phys., 3, 22, 179-211, 1848.
- 325. de Sénarmont, H., "Experiments on the Effects of Mechanical Agents on the Thermal Conductivity of Homore are Solids," Ann. Chim. Phys., 3, 23, 257-67, 1848
- 326. de Sc H., "Thermal Conductivity in Crystallized Sul Ann. Physik, 73, 191-2, 1848.
- 327. Pc ... W., "A Simple Test for Anisotropic M. ... "J. Sci. Instr., 30, 210-1953.
- Cohen, I., Lustman, B., and Eichenberg, J. D., "Measurement of the Thermal Conductivity of Metal-Clad Uranium Oxide during Irradiation," J. Nuclear Mater als, 3(3), 331-53, 1961.
- 329. Dumas, J. P., Mansard, B., and Rausset, P., "Uranium Monocarbide Shaping and Irradiation Study. Final Report No. 2, March 1, 1962—December 31, 1963," United States—Euratom Joint Research and Development Program Rept. EURAEC-1179, 1-110, 1964. [English translation of the original French Report.]
- 330. Clough, D. J. and Sayers, J. B., "The Measurement of the Thermal Conductivity of UO₂ under Irradiation in the Temperature Range 150-1600 C," UKAEA Rept. AERE-R-4690, 1-55, 1964.
- Robinson, H. E., "The Conductive-Disk Method of Measuring the Thermal Conductivity of Insulations," Bull. Intl. Inst. Refrig. Annexe 1962-1, 43-50, 1962.
- 332. Mikryukov, V. E., The Thermal Conductivity and Electrical Conductivity of Metals and Alloys, Metallurgizdat, Moscow, 260 pp., 1959.
- 333. Powell, R. W., DeWitt, D. P., and Nalbantyan, M., "The Precise Determination of Thermal Conductivity and Electrical Resistivity of Solids at High Temperatures by Direct Electrical Heating Methods," Air Force Materials Laboratory Techn. Rept. AFML-TR-67-241, 1-100, 1967.
- 334. Flynn, D. R., "Measurement of Thermal Conductivity by Steady-State Methods in which the Sample is Heated Directly by Passage of an Electric Current," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 1, Chap. 5, 241-300, 1969.
- 335. Kohlrausch, F., "On Thermoelectricity, Heat and Electricity Conduction," Göttlngen Nachr., Feb. 7, 1874.
- 336. Kohlrausch, F., "The Activities at the Physical-Technical Institute in the Year 1 February 1897 to 31 January 1898," Z. Instrumentenkunde, 18(5), 138-51, 1898.

- 337. Kohlrausch, F., "On the Stationary Temperature State of a Conductor Heated by an Electric Current," Sitz. Berlin Akad., 38, 711-8, 1899.
- 338. Kohlrausch, F., "On the Stationary Temperature State of an Electrically Heated Conductor," Ann. Physik, 1, 132-58, 1900.
- Jaeger, W. and Diesselhorst, H., "Thermal Conductivity, Electrical Conductivity, Heat Capacity, and Thermal Power of Some Metals," Wiss. Abhandl. Physiktech Reichsanstalt, 3, 269-425, 1900.
- 340. Holm, R. and Störmer, R., "Measurement of the Thermal Conductivity of a Platinum Probe in the Temperature Range 19-1020 C," Wiss. Veröff. Siemens-Konzern 9(2), 312-22, 1930.
- 341. Angell, M. F., "Thermal Conductivity at High Temperatures," *Phys. Rev.*, 33(5), 421-32, 1911.
- 342. Powell, R. W. and Schofteld, F. H., "The Thermal and Electrical Conductivities of Carbon and Graphite to High Temperatures," *Proc. Phys. Soc.* (London), 51(1), 153-72, 1939.
- 343. Worthing, A. G., "The Thermal Conductivities of Tungsten, Tantalum, and Carbon at Incandescent Temperatures by an Optical Pyrometer Method," *Phys. Rev.*, 4(6), 535-43, 1914.
- Osborn, R. H., "Thermal Conductivities of Tungsten and Molybdenum at Incandescent Temperatures," J. Opt. Soc. Am., 31, 428-32, 1941.
- Krishnan, K. S. and Jain, S. C., "Determination of Thermal Conductivities at High Temperatures," Brit. J. Appl. Phys., 5, 426-30, 1954.
- 346. Lebedev, V. V., "Determination of the Coefficient of Thermal Conductivity for Metals in the High Temperature Range," Phys. Metals Metallog. (USSR), 10(2), 31-4, 1960.
- 347. Bode, K. H., "A New Method to Measure the Thermal Conductivity of Metals at High Temperatures," Allgem. Wärmetech., 10(6), 110-20, and 10(7), 125-42, 1961.
- 348. Gumenyuk, V. S. and Lebedev, V. V., "Investigation of the Thermal and Electrical Conductivity of Tungsten and Graphite at High Temperatures," Phys. Metals Metallog. (USSR), 11(1), 30-5, 1961.
- 349. Bode, K. H., "Measurement of the Thermal Conductivity of Metals at High Temperatures," in *Progress in International Research on Thermodynamic and Transport Properties* (Masi, J. F. and Tsai, D. H., eds.), ASME Second Symposium on Thermophysical Properties, Academic Press, New York, 481-99, 1962.
- 350. Gumenyuk, V. S., Ivanov, V. E., and Lebedev, V. V., "Determination of the Heat and Electric Conductivity of Metals at Temperatures in Excess of 1000 C," *Instrum. Exper. Techn.*, No. 1, 185-92, 1962.
- 351. Rudkin, R. L., Parker, W. J., and Jenkins, R. J., "Measurements of the Thermal Properties of Metals at Elevated Temperatures," in *Temperature—Its Measurement and Control in Science and Industry*, Vol. 3, Part 2, 523-34, 1962.
- 352. Filippov, L. P. and Simonova, Yu. N., "Measurement of Thermal Conductivity of Metals at High Temperatures," High Temperature (USSR), 2(2), 165-8, 1964.
- 353. Platunov, E. S., "Measurement of Heat Capacity and Heat Conductivity of Rod Subjected to Monutonic

- Heating and Cooling," High Temperature (USSR), 2(3), 346-50, 1964.
- 354. Taylor, R. E., Powell, R. W., Nalbantyan, M., and Davis, F., "Evaluation of Direct Electrical Heating Methods for the Determination of Thermal Conductivity at Elevated Temperatures," Air Force Materials Laboratory Techn. Rept. AFML-TR-68-227, 1-74, 1968.
- 355. Bode, K. H., "Possibilities to Determine Thermal Conductivity Using New Solutions for Current-Carrying Electrical Conductors," in Thermal Conductivity— Proceedings of the Eighth Conference (Ho, C. Y. and Taylor, R. E., eds.), Plenum Press, New York, 317-37, 1969.
- 356. Taylor, R. E., Powell, R. W., Davis, F., and Nalbantyan, M., "Evaluation of Direct Electrical Heating Methods," in *Thermal Conductivity—Proceedings of the Eighth Conference* (Ho, C. Y. and Taylor, R. E., eds.), Plenum Press, New York, 339-54, 1969.
- 357. Taylor, R. E., Davis, F. E., Powell, R. W., and Kimbrough, W. D., "Determination of Thermal and Electrical Conductivity, Emittance and Thomson Coefficient at High Temperatures by Direct Heating Methods," Air Force Materials Laboratory Techn. Rept. AFML-TR-69-277, 1-90, 1969.
- 358. Taylor, R. E., Davis, F. E., and Powell, R. W., "Direct Heating Methods for Measuring Thermal Conductivity of Solids at High Temperatures," High Pressures—High Temperatures, 1, 663-72, 1969.
- 359. Powell, R. W., Ho, C. Y., and Liley, P. E., "Thermal Conductivity of Selected Materials," National Standard Reference Data Series—National Bureau of Standards (NSRDS-NBS) 3, 1-163, 1966.
- Vasilos, T. and Kingery, W. D., "Thermal Conductivity.
 XI. Conductivity of Some Refractory Carbides and Nitrides," J. Am. Ceram. Soc., 37, 409-14, 1954.
- Taylor, R. E., "Thermal Conductivity of Titanium Carbide at High Temperatures," J. Am. Ceram. Soc., 44(10), 525, 1961.
- 362. Laubitz, M. J., "On the Series Comparator Methods of Measuring Thermal Conductivity," in Proceedings of the Black Hills Summer Conference on Transport Phenomena (1962), S. Dakota School of Mines and Technology, Rapid City, Issued under Office of Naval Research, Contract No. Nonr(G)-00064-62, 8-22, 1962.
- 363. Hoch, M. and Vardi, J., "Thermal Conductivity of TiC," J. Am. Ceram. Soc., 46(5), 245, 1963.
- 364. Powell, R. W., "Correlation of the Thermal and Electrical Conductivity of Metals, Alloys, and Compounds," in Proceedings of the 3rd Conference on Thermal Conductivity (1963), Vol. 1, Oak Ridge National Laboratory, 79-112, 1963.
- 365. Powell, R. W. and Tye, R. P., "The Thermal Conductivities of Some Electrically Conducting Compounds," in Special Ceramics, 1964 (Popper, P., ed.), Academic Press, London, 243-59, 1965.
- 366. Taylor, R. E. and Morreale, J., "Thermal Conductivity of Titanium Carbide, Zirconium Carbide, and Titanium Nitride at High Temperatures," J. Am. Ceram. Soc., 47(2), 69-73, 1964.
- 367. Powell, R. W. and Taylor, R. E., "Multi-property Apparatus and Procedure for High Temperature

- Determinations," Rev. Int. Hautes Temp. Réfract., in course of publication in 1970.
- Longmire, C. L., "Method for Determining Thermal Conductivity at High Temperatures," Rev. Sci. Instrum., 28(11), 904-6, 1957.
- Pike, J. N. and Doar, J. F., Union Carbide Research Institute Rept. UCRI-2787, Appendix 1, 1960.
- 370. Pike, J. N. and Doar, J. F., "High Temperature Thermal Conductivity Measurements. Part 2. The Rectangular Bar Method, Experimental Techniques," Union Carbide Corp. Parma Research Lab. Res. Rept. No. C-10, 1-43, 1961. [AD 266 897]
- 371. Pike, J. N. and Doar, J. F., "High Temperature Thermal Conductivity Measurements. Theory of Longmire's Method and the Rectangular Bar Method," Appendix X to Volume II of the Final Report "Research on Physical and Chemical Principles Affecting High Temperature Materials for Rocket Nozzles" (Submitted by Aspinall, S. R.), Union Carbide Research Institute, 1965.
- Borelius, G., "A Method for the Combined Measurement of Peltier Heat and Thermal Conductivity," Ann. Physik, 4, 52, 398-414, 1917.
- Sedström, E., "Peltier Heat and Thermal and Electrical Conductivity of Some Solid Metallic Solutions," Ann. Physik, 4, 59, 134-44, 1919.
- 374. Sedström, E., "On the Knowledge of Gold-Copper Alloys," Ann. Physik, 75, 549-55, 1924.
- 375. Putley, E. H., "Thermoelectric and Gatvanomagnetic Effects in Lead Selenide and Telluride," *Proc. Phys. Soc.*, (London), B68, 35-42, 1955.
- Harman, T. C., "Special Techniques for Measurement of Thermoelectric Properties," J. Appl. Phys., 29(9), 1373-4, 1958.
- Harman, T. C., Cahn, J. H., and Logan, M. J., "Measurement of Thermal Conductivity by Utilization of the Peltier Effect," J. Appl. Phys., 30(9), 1351-9, 1959.
- 378. Calvet, E., Bros, J.-P., and Pinelli, H., "Perfection of an Apparatus for the Measurement of Thermal Conductivities of Solids, under Steady-State Conditions, by Use of the Peltier and Joule Effects," C. R. Acad. Sci. (France), 260(4), 1164-7, 1965.
- 379. Hérinckx, C. and Monfils, A., "Electrical Determination of the Thermal Parameters of Semiconducting Thermo-Elements," Brit. J. Appl. Phys., 10(5), 235-6, 1959.
- 380. Powell, R. W., "Improvements in and Relating to the Measurement of Thermal Conductivity," British Patent No. 855 658, application date 29 November 1956, complete specification published 7 December 1960.
- Powell, R. W., "Experiments Using a Simple Thermal Comparator for Measurement of Thermal Conductivity, Surface Roughness and Thickness of Foils or of Surface Deposits," J. Sci. Instrum., 34, 485-92, 1957.
- Powell, R. W., "Thermal Conductivity as a Non-destructive-Testing Technique," in *Progress in Non-destructive Testing*, Vol. 1, Heywood & Co., Ltd., 199-226, 1958.
- Powell, R. W., "Single-End Probe, or Modified Thermal Comparator," British Patent No. 1 036 124, application date 19 January 1962, complete specification published 13 July 1966.
- 384. Powell, R. W., "Thermal Conductivity Determinations by Thermal Comparator Methods," in Thermal Conduc-

- tivity (Tye, R. P., ed.), Vol. 2, Chap. 6, Academic Press, London, 275-338, 1969.
- 385. Powell, R. W., DeWitt, D. P., Wolffa, L. H., and Finch, R. A., "An Instrument Embodying the Thermal Comparator Technique for Thermal Conductivity Measurements," in Temperature Measurements Society—Sixth Conference and Exhibit, Western Periodicals Co., North Hollywood, Calif., 233-44, 1969.
- 386. Danielson, G. C. and Sidles, P. H., "Thermal Diffusivity and Other Nonsteady-State Methods," in *Thermal Conductivity* (Tye, R. P., ed.), Vol. 2, Chap. 3, Academic Press, London, 149-201, 1969.
- Angström, A. J., "New Method of Determining the Thermal Conductivity of Bodies," *Phil. Mag.*, 25, 130-42, 1863.
- King, R. W., "A Method of Measuring Heat Conductivities," Phys. Rev., 6(6), 437-45, 1915.
- Starr, C., "An Improved Method for the Determination of Thermal Diffusivities," Rev. Sci. Instrum., 8(1), 61-4, 1937.
- 390. Sidles, P. H. and Danielson, G. C., "Thermal Diffusivity of Metals at High Temperature," J. Appl. Phys., 25(1), 58-66, 1954.
- Abeles, B., Cody, G. D., and Beers, D. S., "Apparatus for the Measurement of the Thermal Diffusivity of Solids at High Temperatures," J. Appl. Phys., 31(9), 1585-92, 1960.
- 392. Cowan, R. D., "Proposed Method of Measuring Thermal Diffusivity at High Temperatures," J. Appl. Phys., 32(7), 1363-70, 1961.
- 393. Hirschman, A., Dennis, J., Derksen, W., and Monahan, T., "An Optical Method for Measuring the Thermal Diffusivity of Solids," in *International Developments in Heat Transfer*, Part IV, ASME, New York, 863-9, 1961.
- 394. Wheeler, M. J., "Thermal Diffusivity at Incandescent Temperatures by a Modulated Electron Beam Technique," Brit. J. Appl. Phys., 16(3), 365-6, 1965.
- 395. Tanasawa, Y., "A New Method for the Measurement of the Thermal Constants of Wet Substances (The Second Report)," Trans. Soc. Mech. Engrs. Japan, 1(3), 217-26, 1935.
- Filippov, L. P. and Pigal'skaya, L. A., "Measurement of the Thermal Diffusivity of Metals at High Temperatures," High Temperature, 2(3), 351-8, 1964.
- Pigal'skaya, L. A. and Filippov, L. P., "Measurement of the Thermal Diffusivity of Metals at High Temperatures. Part 2. Experimental Method of Alternating Heating in a High-Frequency Furnace," High Temperature, 2(4), 501-4, 1964.
- 398. Yurchak, R. P. and Filippov, L. P., "Measuring the Thermal Diffusivity of Molten Metals," *Teplofiz. Vysokikh Temperatur*, 2(5), 696-704, 1964; English translation: *High Temperature*, 2(5), 628-30, 1964.
- 399. Yurchak, R. P. and Filippov, L. P., "Thermal Properties of Molten Tin and Lead," Teplofiz. Vysokikh Temperatur, 3(2), 323-5, 1965; English translation: High Temperature, 3(2), 290-1, 1965.
- 400. van Zee, A. F. and Babcock, C. L., "A Method for the Measurement of Thermal Diffusivity of Molten Glass," J. Am. Ceram. Soc., 34, 244-50, 1951.
- Kirichenko, Yu. A., Olenik, B. N., and Chadovich, T. Z., "Thermal Properties of Polymers," *Inzh-Fiz. Zh.*, 7(5), 70-5, 1964.

A MARIA

- 402. Neumann, F., "Experiments on the Thermal Conductivity of Solids," Am. Chim. Phys., 3, 66, 183-7, 1862.
- 403. Neumann, F., "Experiments on the Calorific Conductibility of Solids," Phil. Mag., 25, 63-5, 1863.
- Oualid, J., "Determination of the Diffusivity Coefficient of Metals and Semiconductors," J. Phys. Radium, 22, 124-6, 1961.
- Woisard, E. L., "Pulse Method for the Measurement of Thermal Diffusivity of Metals," J. Appl. Phys., 32(1), 40-5, 1961.
- 406. Butler, C. P. and Inn, E. C. Y., "Thermal Diffusivity of Metals at Elevated Temperatures," in Thermodynamic and Transport Properties of Gases, Liquids and Solids (Touloukian, Y. S., ed.), Am. Soc. Mech. Engrs. Symp. Thermal Prop., McGraw-Hill, N.Y., 377-90, 1959.
- Kennedy, W. L.; Sidles, P. H., and Danielson, G. C., "Thermal Diffusivity Measurements on Finite Samples," Advan. Energy Conv., 2, 53-8, 1962.
- Penniman, F. G., "A Long-Pulse Method of Determining Thermal Diffusivity," Sol. Energy, Pt. 11, 9(3), 113-6, 1965.
- Fitch, A. L., "A New Thermal Conductivity Apparatus," Am. Phys. Teacher, 3, 135-6, 1935.
- Joffé, A. V. and Joffé, A. F., "Measurement of Thermal Conductivity of Semiconductors in the Vicinity of Room Temperatures," Soviet Phys.—Tech. Phys., 3(11), 2163-8, 1958.
- 4i1. Plummer, W. A., Campbell, D. E., and Comstock, A. A., "Method of Measurement of Thermal Diffusivity to 1000 C," J. Am. Ceram. Soc., 45(7), 310-6, 1962.
- Cutler, M. and Cheney, G. T., "Heat-Wave Methods for the Measurement of Thermal Diffusivity," J. Appl. Phys., 34(7), 1902-9, 1963.
- 413. Parker, W. J., Jenkins, R. J., Butler, C. P., and Abbott, G. L., "Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity," J. Appl. Phys., 32(9), 1679-84, 1961.
- 414. Cape, J. A. and Lehman, G. W., "Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity," J. Appl. Phys., 34(7), 1909-13, 1963.
- 415. Taylor, R. E. and Cape, J. A., "Finite Pulse-Time Effect in the Flash Diffusivity Technique," Appl. Phys. Lett., 5(10), 212-23, 1964.
- 416. Ginnings, D. C., "Standards of Heat Capacity and Thermal Conductivity," in *Thermoelectricity* (Egli, P. H., ed.), Chap. 20, John Wiley & Sons, New York, 320-41, 1960.
- 417. Cape, J. A., Lehman, G. W., and Nakata, M. M., "Transient Thermal Diffusivity Technique for Refractory Solids," J. Appl. Phys., 34(12), 3550-5, 1963.
- 418. Carter, R. L., Maycock, P. D., Klein, A. H., and Danielson, G. C., "Thermal Diffusivity Measurements

- with Radial Sample Geometry," J. Appl. Phys., 36(8), 2333-7, 1965.
- Stalhanc, B. and Pyk, S., "New Method for Measuring the Thermal Conductivity Coefficient," Tekn. Tidskr., 61(28), 389-93, 1931.
- 420. Stalhane, B. and Pyk, S., "Determination of the Thermal Conductivity of Ceramic Bodies at High Temperatures," Tekn. Tidskr., 64(48), 445-8, 1934.
- van der Held, E. F. and van Drunen, F. G., "A Method of Measuring the Thermal Conductivity of Liquids," Physica, 15(10), 865-81, 1949.
- 422. van der Held, E. F., Hardebol, J., and Kalshiven, J., "The Measurement of the Thermal Conductivity of Liquids by a Nonstationary Method," *Physica*, 19(3), 208-16, 1953.
- Hooper, F. C. and Lopper, F. R., "Transient Heat Flow Apparatus for the Determination of Thermal Conductivities," Heating, Piping and Air Conditioning, ASHVE J. Sect. 22(8), 129-34, 1950.
- 424. Hooper, F. C. and Chang, S. C., "Development of the Thermal Conductivity Probe," Heating, Piping, and Air Conditioning, ASHVE J. Sect. 24 (10), 125-9, 1952.
- 425. Blackwell, J. H., "Radial-Axial Heat Flow in Regions Bounded Internally by Circular Cylinders," Can. J. Phys., 31(4), 472-9, 1953.
- Blackwell, J. H., "A Transient-Flow Method for Determination of Thermal Constants of Insulating Materials in Bulk. I. Theory," J. Appl. Phys., 25, 137-44, 1954.
- Makowski, M. W. and Mochlinski, K., "An Evaluation of Two Rapid Methods of Assessing the Thermal Resistivity of Soil," Proc. Instn. Elect. Engrs., 103A(11), 453-70, 1956.
- 428. Rosenthal, D. and Ambrosio, A., "A New Method of Determining Thermal Diffusivity of Solids at Various Temperatures," Trans. ASME, 73(7), 971-4, 1951.
- Rosenthal, D. and Friedmann, N. E., "Thermal Diffusivity of Metals at High Temperatures," J. Appl. Phys., 25(8), 1059-60, 1954.
- 430. Rosenthal, D. and Friedmann, N. E., "The Determination of Thermal Diffusivity of Aluminium Alloys at Various Temperatures by Means of a Moving Heat Source," Trans. ASME, 78(8), 1175-80, 1956.
- Hsu, S. T., "Theory of a New Apparatus for Determining the Thermal Conductivities of Metals," Rev. Sci. Instr., 28(5), 333-6, 1957.
- 432. Hsu, S. T., "Determination of Thermal Conductivities of Metals by Measuring Transient Temperatures in Semi-Infinite Solids," Trans. ASME, 79, 1197-1203, 1957.
- Deern, H. W., Pobereskin, M., Lusk, E. C., Lucks, C. F., and Calkins, G. D., "Effect of Radiation on the Thermal Conductivity of Uranium-1.6 Wt. percent Zirconium," USAEC Rept. BMI-986, 1-19, 1955.

Data Presentation and Related General Information

1. SCOPE OF COVERAGE

Presented in this volume are the thermal conductivity data for 69 elements, 172 nonferrous binary alloy systems, 80 nonferrous multiple alloy systems, 25 ferrous alloy systems, 60 intermetallic compounds, 16 mixtures of intermetallic compounds. and 13 miscellaneous alloys and mixtures. These data were obtained by processing over 2150 research documents on the thermal conductivity of metallic materials dated from around 1800 to 1967, of which 1000 contain usable data. Materials within each group are arranged in alphabetical order by name, as listed in the Grouping of Materials and List of Figures and Tables in the front of the volume. In all, this volume reports 5539 sets of data on 892 materials. which are listed in the Material Index at the end of the volume. The Material Index lists also the materials contained in the companion volumes (Volumes 2 and 3) on thermal conductivity.

In addition to metals, semimetals and semiconductors are included in this volume. Although a nonmetal, boron is also included because of its extensive use as an alloying element for metallic alloys. Of vourse, it is also contained in Volume 2, which covers nonmetals.

The temperature ranges covered by the thermal conductivity data for many materials are from near absolute zero to past the melting point, though for most high-temperature alloys the available data are limited to the solid range.

The data for the elements and a small number of alloys have been critically evaluated, analyzed, and synthesized, and recommended reference values are presented. This procedure involves critical evaluation of the validity of available data and related information, resolution and reconciliation of disagreements of conflicting data, correlation of data in terms of various affecting parameters, and comparison of the resulting values with theoretical

predictions or with results derived from semitheoretical relationships or from generalized empirical correlations. Besides critical evaluation and analysis of the existing data, thermodynamic principles and semi-empirical techniques are employed to fill in gaps and to extrapolate existing data so that the resulting recommended values are internally consistent and cover as wide a range of the controlling parameters as possible. Future editions of this volume will contain recommended values for an increasing number of materials.

2. PRESENTATION OF DATA

The thermal conductivity data and information on test specimens for each material are generally presented in three sections arranged in the following order: Original Data Plot, Specification Table, and Data Table. For the elements and a small number of alloys, a Graph and Table of Recommended Values is added as a fourth section. Furthermore, for a number of materials for which there exists only a small number of data, the Original Data Plot may be omitted.

The Original Data Plot is a full-page log-log-scale graphical presentation of the original thermal conductivity data as a function of temperature. When several sets of data are coincident, some of the data sets may be omitted from the plot for the sake of clarity. They are, however, reported in the Data Table and Specification Table.

The Specification Table provides in a concise form the comprehensive information on the test specimens for which the data are reported. The curve numbers in the Specification Table correspond exactly to the numbers which also appear in the Original Data Plot and in the Data Table. The Specification Table gives for each set of data the reference number which corresponds to the number in the list of References to Data Sources, the year

of publication of the original data, the method of measurement, the temperature range, the reported estimate of error of the data, the specimen designation, and the specimen characterization and test conditions. The information of the last category, which is reported to the extent provided in the original source document, includes the following:

- (1) Purity, chemical composition, carrier concentration;
- (2) Type of crystal, crystal axis orientation, type and concentration of crystal defects;
- (3) Microstructure, grain size, inhomogeneity, and additional phases;
- (4) Specimen shape and dimensions, method and procedure of fabrication;
- (5) Thermal history and cold work history, heat treatment, mechanical, irradiative, and other treatments:
- (6) Manufacturer and supplier, stock number, and catalog number;
- (7) Test environment, degree of vacuum or pressure, heat flow direction, strength and orientation of the applied magnetic field;
- (8) Pertinent physical properties such as density, porosity, hardness, electrical resistivity (residual, ratio, and temperature variations), Lorenz function services temperature (9) Reference material of a comparative
- method of measurement;
- (10) Form in which the extracted data are presented in the original source document other than raw data points;
- (11) Additional information obtained directly from the author.

Unfortunately, in the majority of cases the authors do not report in their research papers all the necessary pertinent information to fully characterize and identify the materials for which their data are reported. This is particularly true for the authors of earlier investigations. Consequently, the amount of information on specimen characterization reported in the Specification Tables varies greatly from specimen to specimen.

In the Data Table, tabular presentation is given for all the data described in the Specification Table and shown or not shown in the Original Data Plot. Many tabular data which are not presented in the original source documents have been obtained directly from the authors through private communications. Attempts have often been made to contact the authors for tabular data whenever the original data are given in the research paper only in a figure too small to warrant accurate data extraction compatible with the reported accuracy of the measurement. The thermal conductivity data are given in watts per centimeter per degree Kelvin, and the temperatures in degrees Kelvin. For data conversion, the reader is referred to the Conversion Factors for Thermal Conductivity Units given later.

The recommended thermal conductivity values for a material are reported in a separate graph and table following the Data Table. The estimated accuracy of the recommended values and special remarks on material characterization and identification are also noted in the table.

3. CLASSIFICATION OF MATERIALS

The classification scheme as shown in the table for the elements and alloys contained in this volume is based strictly upon the chemical composition of the material. This scheme is mainly for the convenience of materials grouping and data organization, and is not intended to be used as basic definitions for the various material groups.

4. SYMBOLS AND ABBREVIATIONS USED IN THE FIGURES AND TABLES

In the Specification Tables, the code designations used for the experimental methods are as follows:

- C Comparative method Ê Direct electrical heating method
- F Forbes' bar method
- L Longitudinal heat flow method
- Periodic or transient heat flow method P
- Radial heat flow method R
- Thermoelectrical method

Other symbols and abbreviations used in the figures and/or tables are as follows:

- Body-centered cubic b.c.c.
- Cubic C.
- c.p.h. Close-packed hexagonal
- Density ď
 - Diamond (crystal structure) d.
- Decomposition Decomp.
- f.c.c. Face-centered cubic
- f.c.t. Face-centered tetragonal
- Hexagonal

Classification of Materials

		Li	mits of composit	ion (weight p	ercent)*
	Classification	Xı	$X_1 + X_2$	Xa	X,
1. Metallic elements		>99.5		< 0.2	< 0.2
2. Nonferrous	A. Binary		≥99.5	> 0.2	≤ 0.2
alloys		<u> </u>	≥99.5	> 0.2	_
$(X_1 \neq Fe)$	B. Multiple		<99.5	> 0.2	•
(, ,)	alioys		<99.5	> 0.2	> 0.2
		_≤99.5	-	< 0.2	< 0.2
		\mathbf{X}_{i}	X ₂	X ₂	Mn, P, S, or Si
	Group I	Fe	C ≤ 2.0	≤ 0.2	≤ 0.6
	steels —	⊢Fe	C ≤ 2.0	≤ 0.2	> 0.6
	└ Group I	! Fe	$C \leq 2.0$	> 0.2	≤ 0.6
		⊢F¢	$C \leq 2.0$	> 0.2	> 0.6
3. Ferrous	Group I	Fe	C > 2.0	≤ 0.2	≤ 0.6
alloys	irons —	~Fe	C > 2.0	< 0.2	> 0.6
$(X_1 = Fe)$	-Group I	I—— Fe	C > 2.0	> 0.2	≤ 0.6
• • • • • • • • • • • • • • • • • • • •		-Fe	C > 2.0	> 0.2	> 0.6
	C. Alloy	Fe	≠ C	≤ 0.2 an C ≤ 2.0	d ≤ 0.6
	steels†	_Fc	≠ C	≤ 0.2	> 0.6
	Group II	I Fe	≠ C	> 0.2	
	Oroup I	⊢Fe	≠ C ≠ C	> 0.2 > 0.2	> 0.6

 $^{{}^{\}bullet}X_1 \geq X_2 \geq X_3 \geq X_4 \dots.$

†In case Mn, P, S, or Si represents X_2 , this particular element is dropped from the last column. Alloy cast irons are also included in Group II of this category.

I.D.	Inside diameter
k	Thermal conductivity
M.P.	Melting point
monocl.	Monoclinie
NTP	Normal temperature and pressure
O.D.	Outside diameter
orthorh.	Orthorhombic
۲.	Rhombohedral
S.C.	Superconducting
Subl.	Sublimation
T	Temperature
t.	Tetragonal
Temp.	Temperature
T.P.	Transition point
Vit.	Vitreous
ρ	Electrical resistivity
μ	Micro
>	Greater than
<	Less than

Approximately

3 Curv number
Single data point number

5. CONVENTION FOR BIBLIOGRAPHIC CITATION

For the following types of documents the bibliographic information is cited in the sequences given below.

Journal Article:

- a. Author(s)—The names and initials of all authors are given. The last name is written first, followed by initials.
- b. Title of article—In this volume, the titles of the journal articles listed in the References to Text are given, but not of those listed in the References to Data Sources.
- c. Journal title—The abbreviated title of the journal as used in *Chemical Abstracts* is given.

CONVERSION FACTORS FOR INITS OF THERMAL CONDUCTIVITY

OLIVERAL IN ALLIANS AL	814Thr-1	Btu _l T ^{in.}	Hu, h, '1	134 S 11	p. D p. tua p. D p. tua	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Part of the state	1- 505-1. cm-1 K-1	W cm. 1 K. 1	W 13 -1 K -1	mW cm⁻¹ K⁻¹
Bluggering i F	-	2	2. G UUS?	7	4.1 miles v 18-2	4,1105 v 16-5	1,4-910	F-01 - 3 2012 '1	1. 7 to 7's x 10 -5	1, 71071	17,367.8
Rtu _{lT} in, hr -l _i t - F -l	F. 5233 < 10 2 1		1 7	1. eubt.7	7 7 9 47 -	7	0.1240.0	L. 44,22% x 10°3	1, 44224 x 10 ⁻³	b, 14422 h	1. 44228
Bus hrifa-1 g-1	103866 0	11. 2000 11. 2000	·		7 01 7 200 1 7	4.1 0.02 × 10 -2.4 (4.14 (5.5 × 10 -2.4)	100	1, 7,2958 x 10-4	1, 72% H \ 10 ⁻²	1, 7295A	17.2958
Health in, hy that grad	8. 22 Tile x 10 4	5	The court of		, at 25 c 2 a	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	0, 124011	1.44113 + 16-5	1, 44131 x 10 ⁻³	0, 144[3]	1.44133
دهائق معد إدلتا والأدو	2 41309 × 103	1. 302701 × 10.0	(a) × 1100 + 7	2.3mt 45 × 10 ³	_	t and t	101 × (120) (, j	4. J 46:s	4,1868 x 102	4, 1868 × 10 ³
cal _{th} see "tem" C"	2,41747 \ 107	1. Jacobs 10 ³	<u> </u>	2 -	1110000		4.5 1.10	7.	\$ T.	4.3% x 302	4, 184 v 10 ³
ktallh br-1m-1 C-1	0. 671.52v	7.	\$ 11g 5		2 17 18 X 18 4	: ::		7 2	1 16222 x 10-2	1.16222	11. 6222
J acc. 'fcm-1 K-1	6,11.10	C 30 HZ v 10 ²	6	(A) (A)		e, ? (Sanist.	4. 0421		-	1 x 102	1 × 10²
W. em ⁻³ K ⁻³	ex ::	6, 21817 x 10 ³	77, 413v	A. 9 (*) 1 (*) (*) (*)	0 Inde	U. 2 cimbiri.	12 BS 77			1 × 10²	; x 10³
#- H g - K- #	ONSTERNO	h. 91147	8,778,75 8,778,75		2. Tv46 x 19 ⁻³	2. dgmu v. 10 %	d. 440423	1 × 10-2	7 01	_	10
mW cm-1 K-1	14:124-20 ¥ 01 √ 6×022-5	1.67 1.74 .9	5, 74176 × 100.4	6, 621531)	1 01 × 03 88 3	2.19006 × 10.4	8, 60421 × 10 ⁻² 1 × 10 3		1 . 10-1	0.1	_

- d. Series, volume, and number—If the series is designated by a letter, no comma is used between the letter for series and the for volume, and they are underlined together. In case series is also designated by a numeral, a comma is used between the numeral for series and the numeral for volume, and only the numeral representing volume is underlined. No comma is used between the numerals representing volume and number. The numeral for number is enclosed in parentheses.
- e. Pages—The inclusive page numbers of the article.
- f. Year-The year of publication.

Report:

- a. Author(s).
- b. Title of report—In this volume, the titles of the reports listed in the References to Text are given, but not of those listed in the References to Data Sources.
- c. Name of the responsible organization.
- d. Report, or bulletin, circular, technical note, etc.
- e. Number
- f. Part
- g. Pages
- h. Year
- i. ASTIA's AD number—This is given in square brackets whenever available.

Book:

- a. Au...or(s)
- b. Title
- c. Volume
- d. Edition
- e. Publisher
- f. Place of publication
- g. Pages
- h. Year

6. CONVERSION FACTORS FOR THERMAL CONDUCTIVITY UNITS

The conversion factors given in the table on page 42a are based upon the following basic definitions:

```
1 in. = 0.0254 (exactly) m*

1 lb = 0.45359237 kg*

1 cal<sub>th</sub> = 4.184 (exactly) J*

1 cal<sub>JT</sub> = 4.1868 (exactly) J*

1 \operatorname{Btu}_{th} lb<sup>-1</sup> \operatorname{F}^{-1} = 1 cal<sub>th</sub> \operatorname{g}^{-1} \operatorname{C}^{-1}†

1 \operatorname{Btu}_{IT} lb<sup>-1</sup> \operatorname{F}^{-1} = 1 cal<sub>tT</sub> \operatorname{g}^{-1} \operatorname{C}^{-1}†
```

The subscripts "th" and "IT" designate "thermochemical" and "International Steam Table," respectively.

7. CRYSTAL STRUCTURES, TRANSITION TEMPERATURES, AND OTHER PERTINENT PHYSICAL CONSTANTS OF THE ELEMENTS

The table on the following pages contains information on the crystal structures, transition temperatures, and certain other pertinent physical constants of the elements. This information is very useful in data analysis and synthesis. For example, the thermal conductivity of a material generally changes abruptly when the material undergoes any transformation. One must therefore be extremely cautious in attempting to extrapolate the thermal conductivity values across any phase, state, magnetic, or superconducting transition temperature, as given in the table.

No attempt has been made to critically evaluate the temperatures/constants given in the table and they should not be considered recommended values. This table has an independent series of numbered references which immediately follows the table.

- National Bureau of Standards, "New Values for the Physical Constants Recommended by NAS-NRC," NBS Tech. News Bull., 47 (10), 175-7, 1963.
- †Mucller, E. F. and Rossini, F. D., "The Calory and the Joule in Thermodynamics and Thermochemistry," Am. J. Phys., 12 (1), 1-7, 1944.

CRYSTAL STRUCTURES, TRANSITION TEMPERATURES, AND OTHER PERTINENT PRIYSICAL CONSTANTS OF THE ELEMENTS

Name	Atomic Number	Atomic Weight	Density,b	Crystal Structure	Transition Temp.,	Transition Temp	Curlo Temp K	Nisel Temp 1	Debye Te at 0 K, K	Debye Temperature t 0 K, at 296 K, K K	Melting Point. K	Boiling Point, K	Critical Temp
Actinium	69	(221)	10.07	f.c.c.					124	100 (at~50 K)	1323	3200 ± 300	
Alumbum	13	26.9815	2.702	f.e.e.		1, 196 1, 17 1, 10		٠	123 ±5	390	933.2	2723	8650 7740
Americtum	95	(2.6)	11.73	Pouble c.p.h.							1473	2880	
Andimony	ž.	121.75	6.684	2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	367.8 (7-7) 2. 690 (7-7) h m	3 (7-7) 2.6 (Sb II, 1 (7-7) high-pressure (7-7) modification)			150	700 F	903.7 903.65	1907 ± 10	2989 n
Argea	84	33.948	0.0017824 (at 273.2 K and 1 atm)	f.c.c.						90 (at~45 K)	83.8		151
A reestic	2	74. 92 16	5.73 (gray, at 287.2 K) 4.7 (black) 2.0 (yellow)	r. (gray) c. (yeliow)					236 3	275 ts	1090 1090 (35.9 atm) (35.8 atm) audi. 886	1090 35.8 atm)	
Astatibe	જ	(210)									573. 2	650	-
Berlum	95	137,34	3.5	b.c.c. (n)	648 ^{n. 1} (n-β)				110.5±1,	110.5±1.8 116	996. ?		3663
Berbellum	46	(249)											
Beryllum	•	9.0122	1,85	c. p. h. (a) b. c. c. (B)	1533 (n-f) ~ 6	1 2 80 2 4 60 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1160	1001	1550	3142 ± 100	6163
Nsmuth	8	208.986	9. 78	~ _{ii}		3.9 (Bt II, at 25 kbar) 7.2 (Bt III, at 27 kbar)			119 ±2	116±5		544, 525 * 1824 ± 8	F 0 294
Boron	w	10.811	2. So ta	Simple r. ¹ (a) r. (8)	1473 (0-8)				1315	1362	2573	# 000 ∓ 100	
Bromine	35	79, 309	3, 119	orthorb.							266.0	\$31.93	284 16

Atomic weights are based on PC = 12 as adopted by the international Union of Pure and Applied Chemistry in 1961; those in parentheses are the mass numbers of the isotopes of longest known half-life.

and the control of the second of the second

Superscript numbers designate references listed at the end of the table.

^b Dengity values are given at 233.2 K unless otherwise noted.

Neme Series	Atomic: Number	Atomic Weight	Density,	Crystal Structure	Phase Transition Temp.	Superconducting Curte Transition Temp., Temp.,	Curfe Temp.	Neel Temp	Debye Temperature at 0 K. at 298 K.		Melting Point,	Bolling Point, K	Critical Temp
			kg m-3. 10-7		×	¥							*
Cadmium	₩ ₩ ₩	112.40	8. 63 th	C. D. N. D. C. C. (?)		0.56 0.52			252 ±48	221 170 (b.c.c	221 594.18 100 170 b.c.c., Subl. p at~85 K) (at 0.11 mm Hg)	1036 1 HE)	
Calcium	50	40.08	1. SS #	(, c. c. ⁷ (α) b. c. c. ¹ (β)	737 ^{e7} (a-8)				234 ±5	230	1123 1765 Subl 1123 (at 0.35 mm Hg.)	1765 B	3267
Californium	86	(251)	£								Subl. , 4473	, 4473	
Carbon (amorphous)	(8)	12, 61115	1.8~2.1						*	•	3925-3970	•	
Carbon (diamond)	ø	12.0:115	3. 51	* .					2240±5	1674	288 ×	5100 5133	
Carbon (graphite)	v	12.01115	2. 26 (a)	h. (g) r. (g)						120	3925-3970	<u>.</u>	. 2
Cerlum	88	140. 12	6. 90	f. c. c. (a) Double c. p. h.? (β) f. c. c. (γ)	103 ± 5 (α-β)) 263 ± 5 (β-γ) 1003 (γ-δ)	ፍ ጆ		# E1	146	x 861	101	3972	10400
Cestum	\$\$	132, 905	1, 973	b.c.c.(6) # b.c.c.					40±5	u Z	301.9 959 301.9 B Subl. 301.9 (at 1.2 µHg)	26. 28. 28. 28. 28. 28. 28. 28. 28. 28. 28	
Chlorine	ŗ.	35, 453	0.003214	*							172.2	239, 10	417 a
Chrombum	24	51.996	(at 273, 2 k.) 7, 16	c.p.h. (a)	~299 (2-8)			311	598 ± 32	, 123 1	2118	2918 + 35	
Cobelt	23	58. 9332	86. 23	b.c.c. (9) c p.h. (9)	(g-0) 069		1430		452 ± 17	386	1765	3229	
Copper	29	8. 2.	3	f.c.c. (Ø) f.c.c.					342 + 2	310	1356		2811±20 8500 166 8280
Curtum Dysprostum	8. 95.	(247) 162. SO	7 7 8.556	C. P. P. (C.)	Near m.p. (rs-8)	(8		174 ts 83.5	172 ± 35	158	1773 B	3011	1991 1991
				6.5.5.6				(lerro antife	(lerro- antiferromag.)				

diose-packed hexagonal crystaline modification of chromium may be formed by electrodeposition below 283 K under special conditions of deposition process. This c.p.h. form is unstable and will irreversibly transform into b.c. c. form on heating.

157.25 5.00° C. p. b. do 1642 dc-4) 15 ' 60' 134410° 151.26 5.243" b.c.c. do b.c.c. do 1373 15.36 C. p. b. do 1353 dc-4) 1.691 1.691 157.25 7.57" C. p. b. do 1353 dc-4) 1.691 1.691 157.25 7.57" C. p. b. do 1353 dc-4) 1.691 1.691 157.25 7.57" C. p. b. do 1253 dc-4) 1.691 1.691 157.25 5.31" C. p. b. do 1253 dc-4) 1.691 1.691 158.39 13.28" C. p. b. do 1.691 1.691 178.49 13.28" C. p. b. do 1.691 1.691 178.49 13.28" C. p. b. do 1.691 1.691 158.30 1.6026 C. p. b. do 1.602 1.602 164.300 8.60" C. p. b. do 1.602 1.602 164.300 8.60" C. p. b. do 1.602 1.602 164.300 8.60" C. p. b. do 1.602 1.602 165.5044 4.50" C. p. b. do 1.602 1.602 158.3044 4.50" C. p. b. do 1.602 1.602 159.3044 4.50" C. p. b. do 1.602 1.602 1.602 168.305 C. p. b. do 1.602 1.602 1.602 1.602 168.306 C. p. b. do 1.602 1.602 1.602 1.602 1.602 168.307 C. p. b. do 1.602 1.602 1.602 1.602 1.602 1.602 1.602 1.602 168.308 C. p. b. do 1.602	Atcmlc Number	a r	Atomic Weight	Density.	Crystal Structure	Phase E Tracattlen Temp., K	Superconducting Transitton Tenp.,	Curle Temp., K	Pee! Tevil.	Debyc Temperatura at 0 K, at 298 K, K K K	nperebura at 298 K. K	Melting Point, K	Boiling Point, K	Critical Temp K
151. 58 5 243	66		(\$52)											
151,88 5,243 1,001 1,1	63		167.26	8 8	6, p. b. (2) b. c. c. (8)	1643 [n_8)		19	9	134 ± 10	163	1770	3000	7250
(12.3) (12.3) (12.3) (12.2)	8		151.36	5 245	b. c. c.				•06~	, ta		1099	1871	# 009 1
18. 9954 (1.671.2 K (1.67.2 K (1.67.	5		(253)											
157. 25 7 67	o.	_	18, 9964	0. (91695 (at 273, 2 K and 1 atm)	c. (6-F ₁)							53. 58		# #
157.25 7 67 6. C. P. P. (b) 1533 (b-p) 292 170 1 69.72 5.91 0rthorh. (c) 273.6 (b-p) 1.091 1.091 217 2. (ca. f) 72.59 5.36 d. (a. f.	26	_	(223)							39		300.2	879	
69.72 5.91 crtborn. (c) 72.5 (d-f) 1.091 (sta 8.65 10° 7.2 (G. II.) 1. (g) min Hg high-pressure (sta 8.65 10° 7.2 (G. II.) 1. (g) min Hg high-pressure (sta 8.65 10° 7.2 (G. II.) 1. (az -118 kbar) 1.	4	•	157. 25	7, 87 ts	C. p. b. (a)	1535 (0- β)		\$ 5 ^A 5		170	155±3	1579	3540	8670
72. 59 5. 36 7 4 7 5.5 7 (sec. 118 kbm) 196. 967 19.3 6 6 0.0001765 1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	6	31	69, 72	2. 91. E	ortion. 🔄	275. 6 (α-β) (24 8. 86 x 10 ⁴ mro Hg)	1.691 7.2 (Ga II, htch-pressure nudification)				_	302.93 275.6 (at 8.86 x 10 mm Hg)	2510	n 0292
178.49 13.28	e	ы	72. 59	s. 36. 3	~ ***	·	5.5 (at ~118 kbar)			378 ±22	- 89 •	1210.6	3100	1842 n
178.49 13.28	,	ġn.	196.967	y 6 61	f. c. c.		•			165 ± 1	178 ± 8	1336.2":	3240	95.00 11 806.0
4.0026 0.0001765 C.P.h. (a1 273.2 K and 1 atm) 164.500 8.60		ę,	178. 49	13. 28	2. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	2023±20 4-B					213 #	2495	4575 ± 150	
164,900 8.80 73 C.p.h., 79 Nearm.p., 60-6) 20 132 114±7 b.c.c., (6) b.c.c., (6) b.c.c., (7) 1.00797 0.00006897 c.p.h., (1.0073.2 K and 1 atm) 114,82 7.3 f.c.t. 3.4035 1.06.8±0.3 126.9044 4.93 orthorh. (6) 114,72 7.3 f.c.c. (7) (6.6.8±0.3 1.06		64	4. 0026	0. 0001765 (at 273.2 K and 1 atm)	C. P. P.						30 3.45 m (at~15 K) 1.8 ± 0.2 (at 30 atm)	3.45 m 1.8±0.2 (at 30 atm)		# .v.
1.00797 0.00008987 C.p.h., (at 273.2 K and latm) 114.82 7.3 f.c.l. 3.4035 1.06.8 ± 0.3 1.26.9044 4.33 orthorh. (c.c. 1 0.14.) (c.c. 1 0.14.)	•	52	164, 930	8. 8c		Near m. p. 60-5	6	20	132	114 ±7	161	u 221	m	
114.82 7.3 f.c.l. 3.4035 106.8±0.3 126.904 4.93 orthorh. 192.2 22.5 f.c.c. 105.2±5		-	1. 30797	0. 00006987 (at 273.2 K and 1 atm)							116 (para., 13 at ~58 K) 2 (ortho., at ~53 K)	116 (para., 13.8±0.1 at~58K) 26 (ortho., at~53 K)	11 20.39 20.37	. 3. * E. 3.
126, 9044 4, 93 orthorh.	•	6	114.82	7.3	f.c.l.		3,4035			106.8±0.	3 129	29.76 22	2270 ±6	
192.2 22.5 [.c.c. 0.14", 425.±5	v	m	126, 9044	4. 8. \$	orthorh.						106 (at~53K)	105 4 386.8 (at~53 K) ubl. 298.18 (at 0.31 mm Hg)	457.50 Hg)	785
		7	192.2	22. S.	f.c.c. 1		0.14			425 ±5	226 1	2716 3, 19	4820±30	

L.c.c. [47] L.c.c. [48] L.c.c	Mame	Atomic Number	Atomic Weight	Density,	Crystal Structure	Phace Transition Temp., K	Superconducting Transition Temp K	Curte Temp., K	N bel Temp K	Debye Ter at 0 K. K	Debye Temperature at 0 K. at 298 K, K K	Melting Point, K	Boiling Point. K	Critical Temp
13. 13.	8	%	55, 847	7. 83 ts		(G) 1183 (G-7) (G) 1673 (7-4)		1043		457 ± 12 ³	Į.	1910	*	675 9400 9400
100 138 31 138 13 138 13 138 13 13	Crypton	88		0. 003708 (st 273.2K and 1 atm)							60 (at~30K)	116.6	119.93	209.4
10 10 10 10 10 10 10 10	-authanum	52	138.91	6. 18 B	Double c. p. h. (a) f. c. c. (b) b. c. c. (γ)	585 a-d) 1141 a -y)	. 3 (§ 3)			142 ±3	135 ± 5	1180	3713±70 10500	10500
## 17. 174.97 9.85	Avrencium.	163	(257)		-		-			-	•	•	-	:
1	ij	28	207. 19	11.34	f.c.c. ¹		7. 190			102 ± 5	87 ± 1	600.576	2022 ± 10	\$400 F
11 174, 97 9, 85 0. c. p. b. dot) Near m. p. 3pc 396 ±54 390 323 th 1823 1833	mi di	•	6.939	0.534	Þ. c. c.	•	1 -			352 ± 17		48.7 a	1599	4150 3720
### 20.1312 1.74** C. D. D. T. C. D. D. D. C. C. D. D. D. D. C. C. D. D. D. D. C. C. D. D. D. D. D. C. C. D.	atedum	2	174. 97	8 58 G	્રિક કુલ (છે. ૧ લ (છે. ૧ લ () ૧ લ	Near m.p. Ar.	6			210 H	116	1823	4140	
25 54.5360 7.436)	la presidum	ឌ	24, 312	1.74	C. P. P.	ı				396 ±54		3 823	1365	3530
ury 80 200.59 13.546 r. (a) Martenatic (4.153 (a) 75 (a) 224.28 118 (a) 204.28 11.18 (a) 204.28 11.18 (a) 204.28 11.18 (a) 204.28 (b) 204.28 (c) 204.2	ingro-	8	22. 23.85 85.82	7.43(a) 7.29(b) 7.18(y)		(67)1000 (6-8) 1374 (6-7) 1,000 (7-6)				418 ±32		1517 ±3		6050
ury 80 200.59 13.546 7. (g) Martenatite 6 4.153 (g) ~ 75 82 48 234.28 18.18	lendelevium	101												
Address 45.5.4 10.24 b.c.c. b.c.c. 6.5.6.6 1135 (η-β) 8 (ordinary) 159 (ordinary) 1462 (ordinary) 1292 (ordinary)	le r cury	8		13,546 14,19 (at 234,25K)	r. (2) b. c. t pressure Induced structure (A)	Martenaitic transformatio at low temp.	_			~ 75 ×	8	234. 28 .	10 629.73 ^{3, 10} 1733 ¹⁷ 1705 ¹⁸⁸	1733 W
mulum 60 144.24 7.507 Double c. p. b. d. m (ordinary) b. c. c. del mulum 60 144.24 7.507 (ordinary) 10 20.183 0.0006002 1.c. c. del mulum 10 20.183 and 1 min)	lolybdenum	3		10.24	6 . c. c.		0. 92 ¹ . b			459 ± 11		2,863	\$165 ± 175 17000 1000 1000 1000 1000 1000 1000	17000 H
10 20.183 0.000002 f.c.c. M 50 (at 772.2 K at 772.2 K (at ~30 K)	eody mium	0	14.24	7.607	Double c. p. b. (a) b. c. c. (b)	1135 [4-4]		<u> </u>		159	148±8	1292	2 286 8	7900
	5	90	20.183		n						60 (mt~30 K)	24. 48	27.23 27.88	1. **

,

1

1.00 1.00	Name	Atomic	Atomic ³	Density.	Crystal	Phase	Superconducting C			Debye Ten	nocrature	Melting		
28 (237) 26.46			- 1	1		Tcmp.				# 0 K.	at 298 K.	Foint,	Point,	Temp.,
28 58.71 8.90 8.57 1.725.11 41 92.306 8.57 1.50.0.7 41 92.306 8.57 1.50.0.7 41 92.306 8.57 1.50.0.7 42 14.27.7 43 15.90 1.50.0.7 44 1.50.0.7 44 1.50.0.7 45 15.90 1.50.0.7 45 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 46 15.90 1.50.0.7 47 15.90 1.50.0.7 48 15.90 1.50.0.7 49 15.90 1.50.0.7 40 1	leptun lum	S.	(337)	20,46	orthorh. (a) t. (b) b. c. c. (y)	[:	, 121	1 59 F	913. 2 b	4150 ¹	×
11 92.306 8.57	Nickel	89 61	58.71	8. 90 1	f. c. c.		·ú	31.6			345	3, 10 1726 44	3055	6294
102 (254) 103 (254) 104 (254) 105 (254) 105 (254) 106 (254) 107 (250) 107 (250) 108 (250) 109 (2	Nioblum		92: 908	8. S7 ⁶²	7 . 0. 0.		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6						4 013	19000
102 (254) 75 190.2 22.48	Nitrogen	•	14, 0067	0.0012506		35. 62 17-1				J	70 at~35 K)	63.29	77, 34 B, 23	126.2
76 150.2	Nobelium	102	(254)											
8 15.994 0.001423 b.c.orthorn. (jq 23, 876.20, 11 (lp, β) (41-125 K) (41-125	Osmium	92		22.48			0.655 0.65					3283 ± 10	5300 ± 100	
46 106.4 12.02 1 1.82 (9) h. 7 (9) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) 196 11 p. 1 1.82 (1) h. 7 (1) h. 1 1.82 (1) h.	Oxygen	œ		0.001429 (at 273, 2 K and 1 atm)		23, 876 ± 0, U1 (43, 818 ± 0, O1	ι; (α-β) (Αγ)			.	250 tt~125 K) 500 t~250 K)	** ***	90.19 23	± 8. ± 1
15 30.9738 1.82 (g) h. 7 (g) 136 (19, g) 156 (19, g) 1	Palladien	4	106.4	12.02	f. c. c.				•	31 + 18				
78 195.09 21.45	Phosphorus	22	30, 9738	1.82 (9) 2.22 (3) 2.69 (6)	h. ? (α) b. c. c. (β) c. (γ) l. c. orthorh. (δ)	196 ⁽¹ 7- B) 298.16 ⁽⁶ -7) 298.16 ⁽⁶ -6)			,	153 (white)	576 (white) 800 (red)	317, 3 Lbiu	14553 ts	993 8
94 (24C) 19,737 Simple monocel. (g) 396, 77 (g-y) 10, c. monocel. (g) 475 (g-y) 11, c. orthorn, (y) 591, 4(y-b) 12, c. orthorn, (y) 591, 4(y-b) 12, c. orthorn, (y) 591, 4(y-b) 13, c. c. (b) 729, 4(y-b) 14, c. c. (c) 727 ± 3 (b. c.) 15, c. c. (d) 327 ± 1, 5 (a-b) 16, c. c. (d) 17, 17, 17, 17, 17 19, 12, 17 10, 17, 17, 17 10, 17, 17, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11, 17 11,	Platinum	7.8	195.09	21.45	f.c.e.				8				•	9 8
84 (210) 9.3 th Simple c. (a) 327±1.5 (a-b) 81 527.2 81	Plutonium Plutonium	\$			Simple monoci, (g) b.c. monoci, (g) i.c.orthorh, (y) f.c.e. (b) h.c.t. (0') b.c.e. (c)									8 · · · ·
19 35.102 0.86 b.c.c. 338.8 5 140.907 6.769 Double c. p. h. (a) 1071 (a-\eta) 25 150 25 ± 1 138 1192 ± 2 150 25 ± 1 138 1192 ± 1	Polonium	Z	(210)	9.3 % 3.5 %	Simple c. (a) r. (b)	327±1.5 ^R (α-β)			-	۴1 ء			1235	2811
59 140.907 6.769 Double c.p.h. ω 1στ1 α-β) 25 85 ±1 136 1192 ± 2 150.c. (β	Masshim	6	35, 102	2 98 0	b.c.c.				-	99.4 ±0,5 1			1027	2450
	Taseodymium		140, 907		Double c. p. h. (a) b. c. c. (A)	1071 ¹³ (0-β)		25				1192 ± 2 3	3616	9800

.

• !

i

Name	Atomic Number	V conc.	Density b	Crystal Structure	Phase Transition Temp K	Superconducting C Transition T Temp.,	Curie Temp.	Yeel Temp	Debye Ter	Debye Temperature at 0 K. at 298 K, K K	Meiting Point,	Boiling Point,	Critical Temp.,
Promethium	19	(145)		7. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1145 ta-ga			91.9			1353 ± 10	2	
Protectinium	91	(231)	15.37	b.c.t.		1.4			159	262	1503	4680	
Radium	88	(226)	ກູ						68		973.2	1900	
Radon	*	(2 2)	0.00973 (at 273.2 K and 1 atm)	£ 0:0';						400 (at~200 K)	202.2	211	377. 16
Shenlum	75	186.2	21.12	c. p. h.		1.698			429 * 22	275	3453	\$ 110 0000 TIN 110 110 110 110 110 110 110 110 110 11	20060
Rhodium	45	102,905	12.45		possible transfor- 87 matton at 1373-1473 K	3.K			480 ±32 ³	350	3,10, EE 22.233	3960±60	
Rubidium	37	85.47	1, 53	b.c.c.					\$4 ± 4.	a 265	312.04	# %	2100 13,116,119
Ruthenium	2	101, 07	12.21	C. P. h. (a)	1308 $(\alpha - \beta)$ 1473 $(\beta - \gamma)$ 1773 $(\gamma - \delta)$	0,49			600	41 5 3	2523 ± 10	4325±25	
Samartum	39	150.35	7.34	r. ⁿ (a) b.c.c. ⁿ (b)	1190 (a-b)	٦	• • • • • • • • • • • • • • • • • • •	106	116	184 ± 4	1345. 2	2140 3	5400
Scandium	12	4 . 956	3.00	c. p. h. ² (a) b. c. c. ² (b)	1607 (a-β)				470 ± 80	476 3	1812	3537 ±30	
Selerium	*	78. 96	4. So (9)	monocl. $\langle \sigma \rangle$ h. $\langle \beta \rangle$ amorphous	304 (2.11) 304 (304) 398 (71(β) 423 (3β)	# 7.3 (at∼11t char)			151.7 ± 0.4 89 (at~45	1 89 (at~45 K) 150 (at~75 K)	490.2	1009 [Se ₆) 1757 ³⁵ 958.0 ⁶ (Se _{6,31}) 1027 (Se _{6,31})	1757 1757
Sakoo	5	28, 086	2.33	÷ ė		7.5 (at 118-128 kbar)			647 ± 11	28	1685 ± 2	2753	5159
3dver	4.	107.870	10.5	f. c. c. *					228 +3	2213	1234.0	2468±15	7460
Sodium	a	22 . 98 98	0.9712	و. ن ن و. م	Martenaltic transformation at low temp.				157 ± 1	•	371.0 ¹⁵	1154	2400 11
Strootium	88	87.62	2.60	f. c. c. (g) c. p. h. (g) b. c. c. (y)	488 (A-A) 878 (A-Y))47±1	348 248	1042	1645	3059 163 3810
Sulfur	18	32. 064	2. 07 (n) 1. 96 (s)	r. [†] (α) monocl. [†] (β)	368. 5 ¹³ (α-β)				200 (3)	527 (cr) 250 (cr) at <0 K) Subj	(c) 386.0 (c) 7 (c) 392.2 (b) Subl.368.6 (at 0.0047 mm Hg)	717.75 ** 10 1313 ¹⁶ 1315 ¹⁸	1313 tr
Tantalum	22	180.948	16.6 a	b.c.c.		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			247±13	225 H	3269	5750 ± 60 22000	2000

Neme	Atomic Number	Atomic ³ Weight	Density,	Crystal Structure	Phase Si Transition Temp.,	Superconducting Curie Transition Temp., K K	te Neel p., Temp.,		Debye Temperature at 0 K, at 298 K, K	Melting Politi.	Boiling Point.	Critical Temp.,
Techrettum	â	8	11, 50	c.p.h.		8.22 11.2		35,	, ŝ	2473±50	B	
Tellurlum	52	127.60	6.24 (c) h. (a) 6.00 (amorph.) 7 (β) morph	h. (a) () 7 (b) smorth	621 ^{ts} (7- A)	3.3 (Te II, at 56 kbar)		161±12	~	722.7	1163±1	2329 14
Terblun	Š	158.924	9. Z5 2. Z5	c.p.h. * (a) b.c.c. (A)	Near m.p. (a-8)	219	230	150	158	1629	3810	
Thalltum	81	204.37	11, 85	c.p.h. (c) b.c.c. (f)	508.3 (A-B)	2, 39 s 2, 38 s 2, 37 s		86 ± 1	%	576. 2	1939	3219
Thortum	8	232, 038	11.7	f. c. c. f. (a)	1673±25 (c3)	1, 368		110	100	2023	4200	14550
Thelium	69	168, 934	9.32 8.32	c. p. h. ² (x) b. c. c. ¹ (3)	Near m. p. (n-8)		₹ 23 *	127 ± 1	167	1618	2266	6430
T'la	80	118, 69	5,750 % 7,31 (A	f. c. c. '(a) b. c. t. '(b) r. '(c)	286.2±3 (n-fl)	3. 722 ^{\$} (B)		236 ±24 (gray) 196 ±9 (white)		254 (gray) 505.06 ^{3.18} 2766±14 ³ 170 (white)	2766±14 ³	8000 18 8300 18
Theolum	22	47.30	4.5	C. p. h. [6]	1155 ^{tr} (α-β)	0.39		426 ±5	380 11	1863	3586	
Pugsten	*	180.85	19.3	b, c, c, 2		0.011		388 ± 17	312 ± 3	3653 3.16, 13	\$ 6000±200 23000	23000
Uradum	8	233. 03	19.07	orthorth. (a) t. (b) b. c. c. (c)	37±2 ¹¹⁸ ¢10-12 939 ¹³ (0-13) 1049 ¹³ (3-1)	0.68 (a) 1.80 (y)		200	300	1405.6±0.6	3950 ±250 1	12500 11
Vanadium	23	50.942	6.1	b, c. c.	:	5.3 5.03		326 ±54	390 1	2192 ±2	3582 ±42³	11200
Xenco	ž	131.30	0.005851 (at 273.2 K and 1 atm)	Le.c.						161. 2 M	165. 1	289.75
Ytterblum	70	173.04	7.02	f.c.c. #(n) b.c.c. #(s)	1071 ^{2. 5} (α-β)			118 ME		1097 a	1970	442C
Yetrium	38	88.905	4, 47	C. p. h. (3)	1753 (a-b)			268 ± 32	214	17.98	3670	8950
Zinc	30	65.37	7.140	c. p. h.		0.875 0.85		316 ±20	237 ±3	3 110 100 692, 655 * 1175	1175	2169
21rcon lum	\$	91.22	6.57	c.p.h. (2)	1135 (4-β)	0.546 0.55		289 ±24	3 250 M	871 Z	¥650	12300
											7	

REFERENCES

(Crystal Structures, Transition Temperatures, and Other Pertinent Physical Constants of the Elements)

- l. Farr, J.D., Giorgi, A.L., and Bowman, M.G., USAEC Rept. LA-1545, 1-15, 1953.
 - 2. Elliott, R. P., Constitution of Binary Alloys, 1st Suppl., McGraw-Hill, 1965.
 - 3. Gechneider, K.A., Jr., Solid State Physics (Statz, F. and Turnbull, D., Editors), 16, 275-426, 1964.
 - 4. Gopal, E.S.R., Specific Heat at Low Temperatures, Plenum Press, 1966,
 - Weast, R.C. (Editor), Handbook of Chemistry and Physics, 47th Ed., The Chemical Rubber Co., 1966-67.
 - Foster, K.W. and Fauble, L.G., J. Phys. Chem., 64, 958-60, 1960.
 - 7. The Institution of Metallurgists, Annual Yearbook, pp. 68-73, 1960-61.
 - 8. Meaden, G. T., Electrical Resistance of Mevals, Plenum Press, 1965.
 - 9. Matthias, B. T., Geballe, T.H., and Compton, V.B., Rev. Mod. Phys., 35, 1-22, 1963,
 - Stimson, H. F., J. Res. NBS, 42, 209, 1949.
 - 11. Grosse, A.V., Rev. Hautes Tempér. et Réfract., 3, 115-46, 1966.
 - Spedding, F.H. and Daane, A.H., J. Metals, 6 (5), 504-10, 1954.
 - 13. Rossini, F. D., Wagman, D.D., Evans, W.H., Levine, S., and Jaffe, L., NBS Circ, 500, 537-822, 1952.
 - 14. deLaunay, J., Solid State Physics, 2, 219-303, 1956.
 - 15. Gates, D.S. and Thodos, G., AIChE J., 6 (1), 50-4, 1960.
 - 16. Gray, D. E. (Coordinating Editor), American Institute of Physics Handbook, McGraw-hil, 1957.
- 17. Sasaki, K. and Sekito, S., Trans. Electrochem. Soc., 59, 437-60, 1931.
- 18. Anderson, C.T., J. Am. Chem. Soc., 52, 2296-300, 1930.
- 19. Trombe, F., Bull. Soc. Chim. (France). 20, 1010-2, 1953.
- Stull, D. R. and Sinke, G.C., Thermodynamic Properties of the Elements in Their Standard State, American Chemical Soc. 1956.
- 21. Rinck, E., Ann. Chim. (Paris), 18 (10), 455-531, 1932.
- 22. Roberts, L.M., Proc. Phys. Soc. (London), B70, 738-43, 1957.
- 23. Zemansky, M.W., Heat and Thermodynamics, 4th Ed., McGraw-Hill, 1957.
- 24. Martin, A.J. and Moore, A., J. Less-Common Metals, 1, 85, 1959.
- 25. Hill, R.W. and Smith, P.L., Phil. Mag., 44 (7), 636-44, 1953.
- Moffatt, W.G., Pearsall, G.W., and Wulff, J.. The Structure and Properties of Materials, Vol. 1, pp. 205-7, 1964.
- 27. Grosse, A.V., Temple Univ. Research Institute Rept., 1-40, 1960.
- 28. Lyman, T. (Editor), Metale Handbook, Vol. 1, 8th Ed., American Soc. for Metals, 1961.
- 29. Lange, N.A. (Editor). Handbook of Chemistry, Revised 10th Edition. McGraw-Hill, 1967.
- 30. Paule, R.C., Dissertation Abstr., 22, 4206, 1962.
- 31. Burk, D. L. and Friedberg, S. A., Phys. Rev., 111 (6). 1275-82, 1958.
- 32. Spedding, F. H. and Daane, A. H. (Editors), The Rare Earths, John Wiley, 1961,
- 33. McHargue, C.J., Yakel, H.L., and Letter, C.K., ACTA Cryst., 10, 832-33, 1957.
- 34. Arajs, S. and Colvin, R.V., J. Less-Common Metals, 4, 159-68, 1962.
- 36. Bonilla, C.F., Sawhney, U.L., and Makansi, M.M., Trans. Am. Soc. Metals, 55, 877, 1962.
- 36. Rosenberg, H.M., Low Temperature Solid State Physics, Oxford at Clarendon Press, 1965.
- 37. Arajs, S., J. Leas-Common Metals, 4, 46-51, 1962.
- 38. Edwards, A.R. and Johnstone, S.T.M., J. Inst. Metals, 84 (8), 313-7, 1956.
- 39. Lagneborg, R. and Kaplow, R., ACTA Metallurgica, 15 (1), 13-24, 1967,
- 40. Kittel, C., Introduction to Solid State Physics, 3rd Ed., John Wiley, 1967.
- 41. Kirahenbaum, A.D. and Cahill, J.A., J. Inorg. and Nucl. Chem., 25 (2), 232-34, 1963.
- 42. Toulouktan, Y. S. (Ed.), Thermophysical Properties of High Temperature Solid Materials, MacMillan, Vol. 1, 1967.
- 43. Griffel, M., Skochdopole, R. E., and Spedding, F. H., J. Chem. Phys., 26 (1), 75-9, 1956.
- 44. Gechneidner, K.A., Jr., Rare Earth Alloys, Van Nostrand, 1961.
- 45. Dreyfus, B., Goodman, B.B., Lacaze, A., and Trolliet, G., Compt. Rend., 253, 1764-6, 1961.

- 46. Spedding, F.H., Hanak, J.J., and Daane, A.H., Trans. ADIE, 212, 379, 1958.
- 47. Buckel, W. and Wittig, J., Phys. Lett. (Netnerland), 17 (3), 167-8, 1965.
- 48. Deardorff, D. K. and Kata, H., Trans. AME, 215, 876-7, 1959.
- 49. Panish, M. B. and Reif, L., J. Chem. Phys., 38 (1), 253-6, 1983.
- 50. Miller, A.E. and Daanc, A.H., Trans. AIME, 230, 568-72, 1964.
- 51. Spedding, F.H. and Daane, A.H., USAEC Rept. IS-350, 22-4, 1951.
- 52. Montgomery, H. and Pells, G.P., Proc. Phys. Soc. (London), 76, 622-5, 1961.
- 53. Kautman, L. and Clougherty, E.V., ManLabs, Inc., Semi-Annual Rept. No. 2, 1963.
- 54. Lounasmas, O.V., Proc. 3rd Rare Earth Conf., 1963, Gordon and Breach, New York, 1964.
- 55. Baker, H., WADC TR 57-194, 1-24, 1957.
- 36. Reed, R.P. and Breedis, J.F., ASTM STP 387, pp. 60-132, 1966.
- 57. Hansen, M., Constitution of Binary Alloys, 2nd Edition, McGraw-Hill, p. 1268, 1958.
- 58. Smith, P. L., Conf. Phys. Basses Temp., Inst. Intern. du Froid, Paris, 261, 1956.
- 59. Powell, R.W. and Tye, R.P., J. Icss-Common Metals, 3, 202-15, 1961.
- 60. Yamamoto, A.S., Lundin, C.E., and Nachman, J.F., Denver Res. Inst. Rept., NP-11023, 1961.
- 61. Oriena, R.A. and Jones, T.S., Rev. Sci. Instr., 25, 248-51, 1954.
- 62. Smith, J. F., Carlson, O. N., and Vest, R. W., J. Electrochem, Soc., 103, 409-13, 1956.
- 63. Edwards, J. W. and Marshal, A. L., J. Am. Chem. Soc., 62, 1382, 1940.
- 64. Morin, F.J. and Maita, J.P., Phys. Rev., 129 (3), 1115-20, 1963.
- 65. Pendleton, W. N., ASD-TDR-63-164, 1963.
- û6. Woerner, P. F. and Wakefield, G. F., Rev. Sci. Instr., 33 (12), 1456-7, 1962.
- 67. Walcott, N.M., Conf. Phys. Basses Temp., Inst. Intern. du Froid. Paris, 266, 1956.
- 68. White, G.K. and Woods, S.B., Phil. Trans. Roy. Soc. (London), A251 (995), 273-302, 1959.
- 69. Douglass, R. W. and Adkins, E. F., Trans. ADIE, 221, 248-9, 1961.
- 70. Panish, M. B. and Reif, L., J. Chem. Phys., 37 (1), 128-31, 1962.
- 71. Bridgman, P.W., J. Am. Chem. Soc., 36 (7), 1344-63, 1914.
- 72. Slack, G.A., Phys. Rev., A139 (2), 507-15, 1965.
- 73. Sandenaw, T.A. and Gibney, R.B., J. Phys. Chem. Solids, 6 (1), 81-8, 1958.
- Sandensey, T.A., Olsen, C.E., and Gibney, R.B., Plutonium 1960, Proc. 2nd Intern. Conf. (Grison, E., Lord, W.B.H., and Fowler, R.D., Editors), 66-79, 1961.
- 75. Mulford, R. N. R., USAEC Rept. LA-2813, 1-11, 1963.
- 76. Goode, J.M., J. Chem. Phys., 26 (5), 1269-71, 1957.
- 77. Cable, J.W., Moon, R.M., Koehler, W.C., and Wollan, E.O., Phys. Rev. Letters, 12 (20), 553-5, 1964.
- 78. Murao, T., Progr. Theoret. Phys. (Kyoto), 20 (3), 277-86, 1958.
- Grigor'ev, A. T., Sokolovskaya, E. M., Budennaya, L.D., Iyutina, I.A., and Maksimona, M.V., Zhur. Neorg. Khim., 1, 1052-63, 1956.
- 80. Daane, A.H., USAEC AECD-3209, 1950.
- 81. Weigel, F., Angew. Chem., 75, 451, 1963.
- 82. Nassau, K. and Broyer, A. M., J. Am. Ceram. Soc., 45 (10), 474-8, 1962.
- 63. McKeown, J.J., State Univ. of Iowa, Ph.D. Dissertation, 1-113, 1958.
- 84. Abdullaev, G.B., Mckittyeva, S.L., Abdinov, D.Sh., and Aliev, G.M., Phys. Lett. ., 23 (3), 215-6, 1966.
- 85. Wittig, J., Phys. Rev. Letters. 15 (4), 159, 1965.
- 86. Fukurol, T. and Muto, Y., Tohoku Univ. Res. Inst. Sci. Rept., A8, 213-22, 1956.
- 87. Olette, M., Compt. Rend., 244, 1033-6, 1957.
- 85. Sheldon, E.A., and King, A.J., ACTA Cryst., 6, 100, 1953.
- 59. Eastman, E.D. and McGavock, W.C., J. Am. Chem. Soc., 59, 145-51, 1937.
- 90. Arajs, S. and Colvin, R.V., Phys. Rev., A136 (2), 439-41, 1964.
- 91. Roach, P.R. and Lounasmaa, O.V., Bull. Am. Phys. Soc., 7, 408, 1962.
- 92. Shchukarev, S.A., Semenov, G.A., and Rat'kovskli, LA., Zh. Neorgan, Khim., 2, 469, 1962.
- 93. Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, 1955.

- 54. Smith, P.L. and Walcott, N.M., Conf. Phys. Basses Temp., Inst. Intorn. do Froid, 283, 1956.
- 95. Davis, D.D. and Bozorth, R.M., Phys. Rev., 118 (6), 1543-5, 1966.
- 96. Aliev, N.G. and Volkenstein, N.V., Soviet Physics JETP, 22 (5), 997-8, 1966.
- 97. Spedding, F.H., Barton, R.J., and Daane, A.H., J. Am. Chem. Soc., 79, 5160, 1957.
- 98. Raynor, G.V. and Smith, R.W., Proc. Roy. Soc. (London), A244, 101-9, 1958.
- 99. Savitskii, E.M. and Burhkanov, G.S., Zhur. Neorg. Khim., 2, 2009-16, 1957.
- Argent, B.B. and Milne, J.G.C., Niobium, Tantalum, Molyodenum and Tungsten, Elsevier Publ. Co. (Quarrell, A.G., Editor), pp. 160-8, 1961.
- 101. Argonne National Laboratory, USAEC Rept. ANL-5717, 1-67, 1957.
- 102. Holden, A.N., Physical Metallurgy of Uranium, Addison-Wesley, 1958,
- 103. Lounasmaa, O.V., Phys. Rev., 129, 2460-4, 1963.
- 104. Jannings, L.D., Miller, R.E., and Spedding, F.H., J. Chem. Phys., 33 (6), 1849-52, 1960.
- 105. Ackerman, R.J. and Rauh, E.G., J. Chem. Phys., 36 (2), 445-52, 1962.
- 106. Rosenblatt, G.M. and Birchenall, C.E., J. Chem. Phys., 35 (3), 788-94, 1961.
- 107. Streib, W. E., Jordan, T. H., and Lipscomb, W. N., J. Chem. Phys., 37 (12), 2962-5, 1962.
- 105. Samsorov, G.V. (Editor), Handbook of the Physicochemical Properties of the Elements, Plenum Press, 1968.
- 109. Kopp, L.Z., Russ, J. Phys. Chem., 41 (6), 762-3, 1967.
- Stimson, H. F., in Temperature, its Measurement and Control in Science and Industry (Herzfeld, C. M., Ed.),
 Vol. 3, Part 1, Reinhold, New York, pp. 55-66, 1962.
- McLaren, E.H., in Temperature, Its Measurement and Control in Science and Industry (Herzfeld, C.M., Ed.), Vol. 3, Part 1, Reinhold, New York, pp. 185-98, 1962.
- Orlova, M. P., in Temperature. Its Measurement and Control in Science and Industry (Herzfeld, C.M., Ed.), Vol. 3. Part 1, Reinhold, New York, pp. 179-63, 1962.
- 113. Grosse, A.V., J. Inorg. Nucl. Chem., 28, 2125-9, 1966.
- Hochman, J.M. and Bonilla, C.F., in Advances in Thermophysical Properties at Extreme Temperatures and Pressures (Gratch, S., Ed.), ASME 3rd Symposium on Thermophysical Properties, Purdue University, March 22-25, 1965, ASME, pp. 122-30, 1965.
- 115. Dillon, I.G., Illinois Institute of Technology, Ph.D. Thesis, June 1965.
- 116. Hochman, J.M., Silver, I.L., and Bonilla, C.F., USAEC Rept. CU-2660-13, 1964.
- Abdullacv, G. B., Mekhtieva, S.I., Abdinov, D.Sh., Aliev, G.M., and Alieva, S.G., Phys. Status Solidi, 12(2), 315-23, 1966.
- 118. Fisher, E.S. and Dever, D., Phys. Rev., 2, 170(3), 607-13, 1968.
- 119. Beaudry, B.J., J. Less-Common Metals, 14(3), 370-2, 1968.
- 120. Williams, R. K. and McElroy, D. L., USAEC Rept. ORNL-TM 1424, 1-32, 1966.
- 121. Jacger, F. M. and Rosenbaum, E., Proc. Nederland Akademie van Wetenschappen, 44, 144-52, 1941.
- 122. Gibson, J.W. and Hein, R.A., Phys. Letters, 12(25), 688-90, 1964.
- 128. Grosse, A.V., Research Institute of Temple Univ., Report on USAEC Contract No. AT (30-1) 2082, 1-71, 1965.

SPECIFICATION TABLE NO. 1 THERMAL CONDUCTIVITY OF ALUMINUM

fingurity < 0.20% each; total impurities < 0.50%a

(For Data Reported in Figure and Table No. 1 1

Composition (weight percent). Sprcifications and Remarks	99.99 pure: 0.5 in. dla x 20 in. long: supplied by Aluminum Company of America; cold-drawn with 55% reduction in dia; measured in a vacuum of < 10.5 mm Hg.	Fure: 1.9 x 1.32 cm; thermal conductivity value calculated from measured data fure 1.9 x 1.32 cm; thermal diffusivity and heat capacity and the density value take from Smithsonian Physical Tables (9th ed. 1954).	Extremely pure; electrical resistivity reported as 0,725, 2,700, 3,922, and 5,160 uohm cm at ~9, 273, 374, and 476 K, respectively.	99.92 A1, 9.04 St. 0.03 Fe. 0.006 Cu. 9.005 Tt; annealed at 450 C.	High purity.	99.9% A1.0.0062 St. 0. Ditts Fe. 0.005 Cu, and 0.0001 in 1.00 Cm ⁻³ at 20 C. manufactured by Metaligeschischoff AG, density 2.691 g cm ⁻³ at 20 C.	99.99* pure: supplied by Aluminum Company of America; aluminum used as comparative material.	High purity; as rolled; measured in a vacuum of $< 5 \times 10^{-6}$ mm Hg.	Commercial aluminum; U.3 cm dia x 3. cm cdg, incommercial aluminum; U.3 cm dia x 40, and 50 to [001]. [011]. and	99.995 pure; Sugge Crystal, specified and of dia 3.68 mm made by Horizons Inc.; ground [111] direction, respectively and of dia 3.68 mm made by Horizons Inc.; ground down to 3.66 mm in dia, then annealed in vacuum at ~400 C for two hours; electrical down to 3.66 mm in dia, then annealed in vacuum at ~400 C for two hours; electrical down to 3.69 mm in dia, then annealed in vacuum at ~100 resistantly reported as 0.025, 0.026, 0.028, 0.065, 0.45, and 2.7 uohm cm at 4, 10.	20. 40, 100, and 300 3, respectively. Pure; 7 cm long har specimen obtained from Aluminum Company of America, anneated in vacuo in 300 C for 2.5 hrs. electrical resistivity reported as 0.0188, 0.3065, and 2.50 vacuo in 300 C for 2.5 hrs. electrical resistivity reported as	μολη cm at -252, -190, and 0 C, respectively. Commercial nluminum, annealed in vacuo at 250 C; electrical resistivity reported as 0.1577, 0.458, and 2.65 μολη cm at -252, -190, and 0 C, respectively.	Pare.	maximum temperature of 700 C, annealed at 500 C for 2, 5 hrs. extruded at 420 C to maximum temperature of 700 C to 2,5 hrs. density 2, 70 g cm ⁻³ at 21 C; electrical control of 15 in dis. then annealed at 450 C for 2,5 hrs. density 2, 70 g cm ⁻³ at 8, 6, 5, 8, 23	resistivity reported as 2.83, 2.79, 2.81, 3.45, 3.53, 3.53, 3.53, 3.71, 0.71,0, 79.0, 6.24, 7.39, 8.77, 8.79, and 9.31 u ohm cm at 16.2, 16.8, 16.8, 13.0, 77.0, 79.0, 160.0, 161.0, 302.7, 304.4, 306.2, 399.0, 500.0, 502.4, and 540.7 C, respectively.	99, 994 pure; polycrystalline; $1\sim 2$ mm dia x 5 cm long; supplied by Johnson-Matthey Coannealed.
Name and Specimen Designation										JM 340	Al-1	A1-100				JM 4899
Reported Error, %	0,6-1.9	13 4	Ī		-	٠.,										61 61
Temp. Range, K	25-238	295.2	90-460	379-570	353-423	311-357	94-147	16-87	85,273	4 .0-128	21.53	. 1 c	389-1073	342-645		2.5-46
Year	1951	1961	1929	1981	1927	\$561	1944	1921	1916	1957	1927	7261	1919	25.01		1952
Method Used	ند ا	ے	ب	_	: <u>sa</u>	د	ပ	د	-	ن	-	<u>.</u>	ن	-		
Ref.	7	¥0\$	8	2 2	: 3	<u> </u>	161	Š	619	₹? G	រភ	Ŀ	\$ *	137		<u>ب</u>
Curve	<u> </u>	• •	n	•	r in	9	(~	9	, on	. .	2	: 2	5	=		13

SPECIFICATION TABLE NO. 1 (continued)

Composition (weight percent). Specifications and Remarks	99.994 pure; polycrystalline; 0.394 mm dia x 2.97 cm long; supplied by Johnson-Matthey Co.; annealed in vacuum at 600 C for several hrs; electrical resistivity ratio p(293 K)/ p(20 K) = 279.	99.95 pure; 2. cm dla x 25 m long.	99.996* Al. 0.001 Mg, 0.001 Sl. 0.0006 Fe. 0.0004 Cu, and 0.0004 Na; single crystal; 0.15 in, dia x 4 in, long; supplied by Aluminum Company of America; residual electrical resistivity $\rho_{\rm r} \approx 0.00304$ μ ohm cm; electrical resistivity ratio $\rho(2.73~{\rm K})/\rho(4.2~{\rm K}) \approx 840$.	Similar to the above specimen except $ ho_{ m r} \approx 0.00385$ yohm cm and Q273 K)/Q4.2 K) \approx 676.	99.995* A1, 6.002 Mg. 0.001 Si, traces of Fe, Cu, and Na; polycrystal, same dimensions and supplier as the above specimen; $\rho_r = 0.00551$ µohm cm; $\rho(273~K)/\rho(4.2~K) = 467$.	Density 2.7 g cm ⁻³ , Armco iron used as comparative material.	99.97* pure; 1.9 cm dia x 10 cm long; electrical conductivity 33.9 x 104 ohm-1cm-1 at 23 C.	Polycrystalline; in superconducting state.	99.996" pure; single crystal; supplied by Aluminum Company of America; machined and then etched; crystal slightly damaged by machining.	99.992 Al. 0.0030 Fe. 0.0027 Si. and 0.0024 Cu; cast at 700 C in a mold and cooled to 200 C. rolled to 15 mm dia. drawn to 12.5 mm dia, then reduced to 6.5 mm dia.	99.93 Al. 0.038 Fe. 0.03 St. and 0.0022 Cu; same fabrication method as above.	99.5 Al. impurities unknown; same fabrication method as above.	99.7 pure; cylindrical specimen of 3 cm long; zinc used as comparative material.	99.998 pure; 2.00 mm dia x 9.88 cm long; annealed in vacuo for 5 hrs at 500 C.	99.7 pure; electrical conductivity 37.10 x 104 ohm tm 1 at 0 C.	0.01 impurity; with large crystals; amealed in vacuum for 4 hrs at about 600 C; measured in a magnetic field of 0.2 cersted; in superconducting state.	The above specimen in normal state; measured in a longitudinal magnetic field of 115 oersted	Same specification as the above specimen A1-1; in superconducting state.	The above specimen in normal state.	99.99* pure; 0.5 in. rod specimen; supplied by Aluminum Company of America; cold-drawn.	Pure; 4.00 mm dia x 60.0 mm long.	99.99* pure; supplied by Aluminum company of America; cold-drawn.
Name and Specimen Designation	JM-4899	Al-1	Al-1	A1-2	A I-3	25-AI		A1-2							A1-1	. I-1A	A1-1	A1-:	A1-2			
Reported Error, ₹	n	1-5	•	4	4	ຕ			4	+	+	± 1	ß			10	10	01	10			
Temp. Range, K	2,6-42	298-1173	2.6-17	2.1-22	2.4-27	343.2	326	0, 36-0, 81	2.6-16	398-543	388-629	399-623	313.2	1.8-3.9	273.2	0,13-1.3	0.44-2.2	0.16-1.2	0.21-1.2	38-238	80,273	25-32
Year	1955	1947	1951	1981	1981	1953	3675	15.0	1950	1940	1940	1940	1922	1955	1935	1958	1958	1058	1958	1949	1940	1949
Method		Ça.	a.		æi	ں		. .;	٦	س '	` ພ	w	ن		æ	. ;	نہ	ı		-	υ	- :
No No	<u> </u>	15	~1	ຕ	٣	376	230	00	į	40 5	\$0\$	405	90	7 6	610	€0\$	600	60	409	695	496	497
Curve	91	11	81	61	30	ē:	61	E1	N T	35	36	51	61	ÇŞ	£	31	32	8	Ť	35	36	ĸ

March Vear Tenp Reported Name and Composition (weight percent) , Specifications and Remarks	Composition (weight percent), Specifications and Remarks Longostion (weight percent), Specifications and Remarks	long with a bore us over the long with a bore us over the long long long long long long long long	(10° ohm 'cm', prodessy a yrear.)	perconducting state. repared by dissolution of reactor grade uranium repared by dissolution of reactor grade uranium	(99.5° pure) in aluminum (93.99 pure) at 100°C. machined to required dimensions; measure tures, cast in a graphite mould at 100°C. machined to require material. In a vacuum of < 5 x 10°4 mm Hg; copper used as comparative material.	eat treated at 520 C tot 5 cm.	ye 11); drawn and annealed 2. 5% stretched, recrystallizative 11);	nm long; electrical resistivity reported and of and of c. respectively.	12130. and then 3% stetched, recrystallized by annealing	me material as Al-100 (curve 1st, temperated grains; electrical resistivity reported thermal conductivity measuring length = 2 crystal grains; electrical respectively. thermal conductivity measuring length = 2 crystal grains; electrical resistivity reported as 0.219, 0.525, and 2.72 µ ohm cm at -252, -190, and 0.219, 0.525, and 1.72 µ ohm cm at -252, -190.	oderately pure; single cryetal; grown by rectystalization, c. respectively. 88 0.340, 0.663, and 2.84 u.ohn cm at 1.282, 1.190, and 0. respectives 2.53 cm to dis and	om British Armin 2.86 and 7.12 nohm cm at 40 and 400 c	as comparative matter and the comparative men 2.31 cm as more from British Aluminum Co.; specimen 2.31 cm at	p. (super pure) aluminum; 39.395 pure;	50 and 600 C. Repressional from Eritish Aluminum Co.; specimen 8.0 x 0.44 x 0.44 x 0.44 cm; S. P. (super pure) aluminum from Eritish Aluminum Co.; specimen 3.02 and 50 C. respectively.	electrical resistivity reported. electrical resistivity reported from British Aluminum Co.; in molten state; electrical resistivity of temper cure) sluminum from British Aluminum Co. at John C. respectively; Morgan Crucible Co.	Fr. Septred as 26, 3 and 30, 9 p ohm cm at 700 and 1000 cm. responded as 26, 3 and 30, 9 p ohm grade EY 9 graphite used as comparitive material.
Method Year Temp. Tem		99. 996 pure; tube specimen of 1.2 in Norton's RA 99 material.	Electrical constant of and 17.31 and author reported 22, 46 and 17.31 and the aluminum wire; in normal 6480	The above specimen measured in sur	(99.5 toure) in aluminum (99.5 toure) in a graphite mould a tures. cast in a graphite mould a tures. cast in a graphite mould a vacuum of < 5 x 10 tourn Mg;	similar to shove except specimen he	eg. 99 pure; extruded.		0, 319, and 2, 52 µ ohm cm at -22		Mo	ŝ					'n
Method Year Rang Used Used Pang E. 1950 273	Reported Error, %	1	5	.96				<u>~</u>	2	83	283	•	-673	-873		1-323	3-1273
Method v Used Used C C C C C C C C C C C C C C C C C C C		`\						מי									
	1 #			-			c	U	نب	'n		د	U	•	1	٦	ນ
	- {	P %											•	ý	Ż.	9	φQ

į

ب والعالاي والرفيا الكومل المحر المواليات ما يقيمان فيما الإليال الباليال والدائية المالي المدورة بقرات

TO A TOWN THE PARTY AND A

THERMAL CONDUCTIVITY OF ALUMINUM

DATA TABLE NO. 1

"Impurity $\sim 0,\,20\%$ cach; total impurities $\sim 0,\,30\%$

Temperature, T. K. Thermal Conductivity, k, Watt. cm⁻¹K⁻¹ !

 *	(cont.)	18, 1	19. 4	21. 12	30, 2	32, 5	38.0	× .05.	44. 0			4.5. O	0 T		17.2	-	. 21		2, 27		, 55		2. i.l		<u>.</u>		0, 0063	C, 066%	0, Unite	O. 0075	0.0089	0.0130	0, 0121	0,015	0.020	0. 0445	0. 069.5		
۲	CURVE 20 (cont.	3, 90	4, 55	 	7.73	9. 70	11.6	13, 5	15, 1	16. 0	17.2	17. S	19. 2	21.0	26. 6		CURVE 21		343.2		CURVE 22		326.0		CURVE 21			0, 37	0.38	0, 41	ે 1	F(4)	0, 57.5	0, 65	0.71	0, 76	0.81		
*	8 (cont.)	42, 8	4 	त: ज	50.6	52. x	55, 4	59, 1	64, 9	63, 7	63, 4		11 2		11. x	16, 6	18, 1	21. 1	e. '.'.	28.2	32. 0	35, 7	42, 3	45, 4	50, 3	<u>4</u> .	51. a	59. o	6 % 8	# (g	ъ. 107 107	55, 4	52.8	50, 3		E 20	1	FO. 8	14, 2
Ħ	CURVE 18 (cont.)	80 °9	7, 05	7,64	₹1 .≭	10 10 10 10 10 10 10 10 10 10 10 10 10 1	9, 33	10, 7	11.3	13.3	Je. 6		CURVE 19		3.07	(၄ က	3, 00	3, 47	4, 35	4, 65	01.30	G. 17	7. 40	90 Y	9, 48	10, 6	11, 9	7 12	5 T	15, 2	16, 5	17, 6	19. 4	21, 8		CURVE		98 13 13 13 13 13 13 13 13 13 13 13 13 13	3. 00
-	(cont.)	5) 5)	32, 0	34. 5	5. 3£	r ;	27. 1.	7	6 'S#	9.54	43, 3	0 =	35.3		 	19, 3	17.0	14.3		<u>:</u>	i	51 51	5, 04	3 이	1, 90	£.	0.600	0,750		ž.	ì	5. 5.	۱- ۱-	25, 5	29, 2	32. 0	35, 2	37.0	38, 6
. +	CURVE 16 (cont.)	7, 15	93.7	8, 60	10.0	11, 3	E. 5	14.4	27.2	16. 7	20, 3	5. T.3	24.3	10, 6	33, 7	36, 3	0 3 0	x T		CURVE 17		29%, 2	513, 2	523, 2	723, 2	923, 2	1013, 2	1173, 2		CURVE 18		5. S	3, 00	3, 43	3, 93	4, 35	4, 92	5, 30	5.30
¥	E 14	2, 21	5i 5i	6 6 7	2:3	7. 2.i	57.57		E 1		0, 974	: :	1, 53	1, 92	25.1	F . ::	5, 00	6, 00	2] g	v. U.S.	21 7 2	1- 7 2	2.95	7.	£, ž	S S	1. 50	£. (5)	6, 71		3 H	Ì	11. 1	16, 5	17.3	19, 1	21.4	22. 6	35. X
. 4	CURVE 14	381.9	+ 0 T 0+	12 TO T	427, 2	527, 3	5 S		CURVE 15		: ::	.; .;	10 N	(- - -	6,45	<u>1</u> 2	12.51	15, 0	17, 4	21. 5	۳. دور	9.1.2	 	 	8 .c.	7 3	39, 6	ي د . ت	9 -1		CURVE 16	ļ	:3: :3:	1, 60	3. 30	6, 35	4, 90	5. 10	58 K
¥	CURVE	D1	1,93		CURVE 10		5, 42	?: ;-	2.32	<u>'</u> .	٠ <u>٠</u>	y ::1	15.3	P. 27	F. 7	e. ::	4 €:	(; ;;		CLRVE 11		20.0	494.25		CURVE 12		2. 2.	(; ?)		CURVE 13		121.5	1.97	7 -	y 1	1.65	1.31	0.933	065.0
-		<u>.</u>	0.757		EL.	7	သှ	,	2	<u>-</u>	ę,	7,	R	ş	Ë.	÷.	lud	120		ะ		: <u>:</u>	7! ÿ		2 J		2) (2	7		E S		0.000	51 E	27,780	100.2	7.43.2	21.4.5	0174.0	1073.2
	CHRVE ST	2, 03	1	?; ;;	: •i		CURVE 6	1	2, 34	표 원	₹ ÷i	ig d	#: ;;		:: :i	:: ::		CURVE 7:	1	11 12	7 1	19.0	(3 51	16 i	[- 2i		CURVES		;! ::	۱ - ۲	∺ ∓	,3 .+	9 4	06 7	13. 15	7. 1.	5.65	55 H	3, 90
⊢	5	553. 2	37.1.2	393, 2	61 1161 17		#35]	311, 3	313. 7	346, 1	9.77	138.1	337. 7	21 21 27 27 27	51 152		#:15		:: 1 6	107, 7	117.5	136. T	E35, n	141.1		3 3 3		(+ -() -()	17.	5 Z	20.1	4.4.	κ. Υ	71 13	e â	D : x ::	, ; ; .	1- Ž
¥	CURVE 1	5) 5)	f: [2]	51 	£ :	4,	7	4	€ ::	.7 :i	۶ ۵	12	.4 -i	원 63	\$ -i	;	∓ •:	ā si	fi N	# - i	Ð -;	6 1		CURVE 2	,	: - i		:: :::	J I	i Si	ń si	-1	£ 5		~/ [a]		5 11	ā ti	≅ ⊹i
-	CITR	- 31 51	· ·	7.17		1	ţ	7.7	÷.;	101	1	1.1	6.75	70	147.3	1.00	1 7 11	= '(-)	1,57,1	20.5.3	7	(- (-))		SUB		230.2		: 3.VE ::		÷	0.5.4	353, 0	40.0		CURVE		27.5	E (E)#	51.0.2

*	2 49	2. 40 40°	2.375*	2, 335	2.275	2, 205"	2. 135	Š	8	2, 485	2.30	2.25	2.315	2. 415	3		0.90	916 0	0. 9:12	9.48	1 5 6 5 6	0.95°	0, 388°	52	1	2.552*	2. 406	2.377	2,268	. 100	2, 155	201 :3	53		2, 39		<u>ئ</u> ة	97.0	e i				-	
۲	CURVE 49	323.2	473.2	573.2	673.2	773.2	873.2	ě	CORVE	123.2	173.2	223. 2	273. 2	323. 2	CHRVE		973, 2	1023	1973	121	5717	1223	1213	CURVE		338.0	401.6	457.2	553.0	0.00	730.2		CURVE		298.2		CORVE Y	0 006	1.06.1				-	
*	CERVE 41 (cont.)	3, 05	3, 65	3, 73	4, 30	S	4. S	9	E 42	2.0.6		/E 43*		2, 25	2.21	CHRVE 447		2, 26		CURVE 45	:	11.9	3, 45	CHIRVE 46	2	2, 13	2, 45		75 47		1.37	8.3	CURVE 481	ļ	2, 38	2.39	2.38	2,34	62.7					
٤٠	CURVE	0, 78 0, 815	0, 835	0.845	0.91	0, 925	0.955		CORVE	0.00	1	CURVE		338. 2	338. 2	CHBA		338, 2		CURV		23.53	83.2	CHIE		21.2	3.3.2		CURVE 47		21.2	33.50	CURV		313, 2	37.3, 2	473, 2	573, 2	67.1. 2					
¥	GE 31	1,437	•	£ 40		ញ្ញា ភ : ស :	:: :0::	9 3	공 61 :	5.2	: n	3, 40	3, 60	ည်း က်	00.5	4. 65	27	4, 15	4. 35	1.40	÷	90 ;	जुल प	7 7	96.4	5, 05	5. is	ر ان ان	5. 75	:	7	05.00	9.66	0.65	0. 80	O. #3	1.45	2 5	. c.	7 6	9 6 8 6	2. 65	5. 88 5.	
۲	CURVE 39	273, 2	•	CORVE		0, 445		0. 505	20 20 20 20 20 20 20 20 20 20 20 20 20 2		0.585	U. 598	0, 623	0,653	0.655	0.675	0.71	0, 73	0, 765	0.750	18.0 0	0.815	20 2 20 2	0.00 kg	0, 855	0, 915	0, 935	0, 95	0. 9GS		CURVE 41	0.43	0, 45	0, 465	0, 485	0, 495	0.59	. e.	00000	600.0	0.000	0.73	0, 755	
74	, 35 35	17. 2	7. 01	5, 31	3, 83	21 : 21 :	S0 % €	9 (ci :	× 5	5 c	: .; i ::i	(- - - - -	<u>:</u> 1		2 : oi o	i ei	2, 37	2.35		3 3 3		5. E		E 37"		27.0	11.	10. 9	-:-	:: ::	.:. 77	X		2,39	₹ ei	2.28		2. 13	2.03	.;.	1. 0.3 	;		
Ţ	CURVE 35	क अ अंति स	59.3	61.9	32.1	9.40 12.00	97. G	107. 7	107.	1.361	0.801	147.1	155, 5	175, e	0 1 KH	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	() () () () () () () () () ()	237.6		CURVE :16		ei F	273, 2	CUNVE		25. 0		13 mg	. 59. 9	0.5	32.0	CHRVE 38		273, 2	17.1. 2	473.2	01 ·	S) :	51 G	813, 2	1071.0	:		
×	CURVE 32	₹ 7	: ::: : -::		CURVE 33	2	0, 0008:1	0.000.4	0.00.1	e. 0014	0.00185	0,0024	0.0044	0.0038	0, 021 0, 0	6.080°	6.14	0, 15	0.20	6, 12	U. 3.2	0.30	0. 94 0. 94	1.00	27.70	7. 73	8.5		CURVE 34	4	19:00 0:00 0:00	2 7 3 €		v. 76	1, 10	1.30 1.30	1. 70	2, 10	9. P.					
۳	CUR	0.0	1.20		COR		0. 16	0.17	, c	0.7.0	500.0	0.21	0, 22	6. 3 4	(- f 6) f 6 c		9: °0	0. 41	0.41	0.46	6, 53	0, 65		0 ° 0	i ç	3, 00	1.15		SCIN		0, 205	5.0	0, 37	0.44	75.5	0. E	0. 20	0.93	1.15					
¥.	E 2Nª	2, 34	52 33	1	3, 95	€: : `	₹. †	to :	25 d	ສີ ຄື ກໍ່ນ	5 4	7, 35	S. 35	8, 95	`.	2	t e		14 H		0.00041	0.000.0	0, 0014		0.010	0, 012	0. U.I.;	0.051	0.090	<u></u>	٠ ن ن	7. 4 0 =	7 T	6, 59	0. 7.	J. 00	1, 10	o: .	ş	÷ .	·: •	: 0	ia T	
Т	CURVE	313.2	CHRVE		1. 31	1. 93	2. 03	5 G	ည်း (၁)	ei e 4 3	r d i m	H :	3, 63	3, 92		ררטיניים	27.3	1	CURVE 31	} 	0, 1:	0. 15	0.17	* : :	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	(S)	0.27	G. 30	6. ::	é. 	0, 40 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: ÷	9, 51	0, 36	0. 1 .	979 16	= :	;; =	; 5			 	
¥	E 24	20. U.	, . 	31.15	7 68	30.0°	11 8	ູກີ 7 70 . 70 .	i- t	- i	<u>.</u>	, , , ,	¥.	+ 1.+	ام تاریخ	7 (* 7 (*	10	0.64	51, 5	51.1	7.1 1.7	40.4	:	2	£ ,	i 1	(: -i		8 12			i i] \{\ i = i	د: ۱۰:		1		÷ .	¥ :	=		: -; ; -;	· •	
۲	CURVE	8 5 el 2		. 	3.90	æ.÷	19. ₹	7	ु •	in in	o i	¥ Tio	19 Y	6, 36	3	77	79 . x		10, 01		u :: 1			2	6 900	7 T. F	## 15 G		CURVE 28		21 : 21 : 4 :	11 T	1 71	7 1 2 2		C1 11.5 P	İ	6	· · ·	77.7	11 1	1 1 2 2 2 2	1	;

T k CURVE 63 (20nt.)	10.2 172		-	21.6 S	27.3 60	33.4 38		CURVE 64	2.5 101				7.3 225		10.4 224			15.5		24.8	939 EVB.112	CONVERS	23000 0	233.2	CHRVE 66*	248.9 0.00364													
H x 10 -3 K (De:rst.ed)	CURVE 61 (con'.)		3.44 87.2				6,51 82.2		8.94 81.3			12.3		CURVE 62°	(T = 4,2K)		_	_	~	1.14	•	1.91 10.			4.25 123		77.0		Ė		CURVE 63	2.3 59				3.8 101	S. S. 145		
H x 10 ⁻³ k (Oersted)	CURVE 59 (cont.)	1.09 112										7.51 102			9.05 89.0			10.3	10.7 97.6		CURVE 50	(T-4.2N)			0.085 224	0.450				1.91 136	_	5.98 136	CURVE 61	(T=4.2K)			0.309 123	0.926 93.6	
H×10 ⁻³ k (Oerstod)	CURVE ST	(Y7:F: 1)	104 %	0.543 61.4											11.2 50.9		12.7 49.6		CURVE 58	(T - 4.2K)		~			1.34 54.0		0.36 00.0	E. CO 11.5						CURVE 59	(T = 4.2K)		0 25.4	0.109 210	
H × 10 ⁻³ k (Oersted)	CURVE 55	(T · 4.2K)	676	1.62			2 05 66.6			(1.65) 89 K		5 52 73.5		5 27 72.3		2009 800		10.2 61.9*				12.8 65.2		CURVE 56	T = 4.2K			_		1.42 (3.0		0.38	5 29 99.6	_	8 33 154	_	11.4	•	

Ē

The first that is a little of the little of

*Values in parentheses are extrapolated or estimated. Tin K. k, in Watt cm 1 K 1. T, in F, and k, in Btu 1b-1 ft-1 F 1.

11

SPECIFICATION TABLE NO. 2 THERMAL CONDUCTIVITY OF ANTIMONY

(impurity $\leq 0.20\%$ each; total impurities $\leq 0.50\%$)

[For Data Reported in Figure and Table No. 2 .]

1 Year Temp. Reported Name and Composition (weight percent), Specifications and Remarks Range, K. Error, R. Specifications	1912 83-273 Pure; cold-drawn.	1913 83-373 Pure.	1919 386-965 No details reported.	2, 4-35 Sb 1	1956 2, 0-130 Sb 1 High purity polycrystalline specimen; 0, 43 x 0, 25 x 6 cm; sawn from a lump of extra high purity grade antimony supplied by Bradley Mining Co.; electrical resistivity 41,7 µohm cm at 295 K; residual electrical resistivity 0, 057 µohm cm.	1958 2.0-91 Sh.2 High purity polycrystatiline specimen; 5 min dia, 6 cm long; crystal width 2 to 5 mm; supplied by Bradley Mining Co.; prepared by zone-refining high purity grade antimony; annealed at 600 C for one wk, electrical resistivity 41.3 pohm cm at 295 K; residual electrical resistivity 0.054 pohn cm.	1958 4.4-91 Sb 2a Second run of the above specimen.		1924 90, 273 5 Polycrystalline specimen with fine grains; electrical conductivity at 90 and 273 being 8, 13 and 2, 38 x 104 ohm ⁻¹ cm ⁻¹ respectively.	1924 90, 273 5 Polycrystalline specimen with medium size grains; electrical conductivity at 90 and 2.35 x 10 ⁴ ohm ⁻¹ cm ⁻¹ respectively.	1924 S0. 273 5 Polycrystalline specimen with coarse grains; electrical conductivity at 90 and 273 K being 7, 89 and 2, 32 x 10 ⁴ ohm ⁻¹ cm ⁻¹ respectively.	1925 327, 2 Total impurity less than . 03%; made from Baker's Analyzed Metal.		1947 79.5 The above specimen similarly measured at a temp of 79.5 K.	91.2	1947 79.5 S 14 The above specimen similarly measured at 79.5 K.	1947 91.2 S 10 Similar to the above specimen except longitudinal axis perpendicular to z-axis and
Method Y	L	T 1	T		T 7	נ	-			ر	n T	1		1			
Ref. Met	35 L	49 L	85 T	1 221	424 I	424 I	424		425 I	425 l	425 I	230		426		436	
Curve No.	-	2	m) प	i3	9		. 20	6	10	11	13	1 21	14	12	16	1.2

SPECIFICATION TABLE NO. 2 (continued)

Composition (weight percent), Specifications and Remarks	The above specimen similarly measured at a temp of 81.2 K.	Specimen pressed from powder at wood in the case of th	Similar to the above specimen except pressed at 2500 Kg cm ⁻² for 1 hr.	Specimen 0.45 cm dia; supplied by Erba; measured under 1.5 and process.c.	Electrical conquectivity at 213 and 313 no. 318 sectors as 2, 199 and 1, 522 x 10 ⁴ respectively (the usper gives electrical resistivity values as 2, 199 and 1, 522 x 10 ⁴ ohm ⁻¹ cm ⁻¹ , obviously a typographical error).	Molton metal placed in a hole 21 mm in dia drilled in an aabestos cement cylinder 30 mm in height; sucel Ifbl8N9T used as comparative material.	Molten spectmen contained in a thin-walled stainless steel cylindrical crucible of dimensions 24 mm dia x 100 mm long; electrical resistivity reported as 82.5. 80.2, and 100 tobin cm at 620, 700, and 800 C respectively; thermal conductivity	values calculated from measured thermal diffusivity and the specific heat data using the density data taken from Bientas. A. and Sauerwald, F. (Z. Anorg. Chem., 41, 51, 1927).
Name and Specimen Designation	S 10							
Reported Error, %							αō	
Temp. Range, K	81. 2	193-373	273, 373	297	273, 373	825-1023	1073. 2	
Ref. Method Year	1967	1913	1913	1918	1881	1961	1966	
Method Used	ı	1	-1	ר	ı	ပ	<u>α</u>	
Ref	426	577	577	511	706	83	319. 320	
Curve	89	19	20	ដ	22	গ্ৰ	54	

DATA TABLE NO. 2 THERMAL CONDUCTIVITY OF ANTIMONY

(Impurity <0.20 each; total impurities <0.50%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

*	CURVE 23	0.1674	0.1716	0.2553	0.2637	0.2679	0.2721	:	CURVE 24	3	, 30°																															
H	CUR	825.2	864.2	305.2	927.2	970.2	1023.2		E S		10/3.2																															
×	RVE 17*	teds)			0.426			CURVE IN	(T = 81.2K)	iteds)			5 9.495				بح		CURVE 19		0. 137	0. 121	0, 105		CURVE 20		0.0456	0. 0582		CURVE 21		0. 186		CURVE 22		0. 185	0. 166					
Ξ	CURVE 17*	(kilooera	0	5.6	10. :	11. 6		n)	T)	(kilooersteds)		9	5.65	10.1	11.6		⊣		ี่	•	193	273	373		<u>ರ</u>		273	373		히	•	297	į	티		273	373					
¥	CURVE 12	0. 201	24		CURVE 132	* 91.2K	ds)		0.448					VE 14"	79. SK)	eds)		0.490	0.471		0.413			IVE 15*	(T = 91.2K)	cds)		0.458	0.451					CURVE 16	(3) 5 K)	(ds)				0.472	0.464	
H		327.2	H		COL	L	(kiloversteds)		0	5, 65	10. 1	11. 6		50 50	<u> </u>	(xiloo: rateds)		0	3, 43	6.75	10.1	11.6		cn	<u>"</u> ב	(kilooersteds)		Þ	3.43	6.7	10.1	11.6		5	(T)	(Liloseratids)		0	5.65	8.7	10. 1	
×	6 (cont.)	3.66*	2,62	2.22*	1.88	1.56	1, 23 *	0.76*	0.67	0.58	0.51		CURVE 7		2.07	4.26*	2, 74 *	1. 93 *	1, 34 *	0.74*	0.53		CURVE 8	ł	0.1925	0. 1716		CURVE 9		0.2025	0.1716		CURVE 10		0.2205	0.1320		CURVE 11		9, 4519	0.2452	
۲	CURVE 6 (cont.	13, 45	18.1	21.4	24.9	29	36. 7	55.9	64. 6	78. 1	91.0		5 5		4.35	11. 4	17. 2	24.0	ა გ	58.0	91.2		CCI		96	273		CC		90	273		ET)		90	273		55		06	273	
¥	15.5	0.753*	0.014	1.13#	1, 28.	1.59*	2,32*	* * *	3, 32*	3, 34 *	3, 35*	2, 95*	2, 30 *	1.89	1.61	1.41*	1.16	1.02	0.72*	0.61*	0.57	0.53	0.47	0.40	0, 37		VE 6	ĺ	0.873	0.992^{*}	1. 697	1.30*	1.62*	2. 14*	2, 22*	3, 594	* %	4.69*	4, 924	4.684	4.21*	
H	CURVE 5	1. 96 3. 36	0 ° 0	4 e	3.58	88	6, 13	7, 74	8, 92	10, 10	10.88	13, 17	16.85	20.7	24. 5	28.5	27	6 85	55.1	4	70.5	77.8	90.8	120.0	138.0		CURVE 6		1, 97	2, 31	2, 59	3.05	3.68	4, 35	4. 51	6, 36	7.87	9. 22	9. 26	10.6	11. 9	ŀ
*	CURVE 1	0.248	0.186		CIRVE 2	ļ.	6. 444	0.263	0.225	0.215		CURVE 3	1	0.168	0.162	0, 173	161 0	0.213	0.241	0.210		CURVE 4		0.026*	0.050	G. 080	0.162	0, 236	0.308	0.356	980.0	0.392	6, 374	938.0	0.362	0.342	0, 340					Mary and American
Н	CUR	83.2	134.2	4.5.4	S		83. 2	196.2	273, 2	373.2		SCC		386.2	455.2	617.2	74.9 9	2.0.8	883.2	965.2	9	CUR		2.36	3,43	4. 43	6. 16	7. 90	10 00	11, 30	14, 10	16. 75	21.90	23.95	25 70	29, 30	34, 70					1

Not shown on plot

The recomment of values are for well-anneated high-purity antimony with residual electrical reliativity $\rho_0 = 0.054 \ \mu M$ cm (claracterization by ρ_0 becomes important below room temperature). The values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 10% at other temperatures.

T₁ in K, k₁ in Watt cm⁻¹ K⁻¹, T₂ in F, and k₂ in Bouhr⁻¹ ft⁻¹ F⁻¹.

A MARINE TO STATE OF

*Values in parentheses are extrapolated

THERMAL CONDUCTIVITY OF ARSENIC

TEMPERATURE, K THERMAL CONDUCTIVITY, Wall

SPECIFICATION TABLE NO. 3 THERMAL CONDUCTIVITY OF ARSENIC

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 3]

nation	Polycrystalline; specimen dimensions 2. 7 x 1.1 x 0,02 cm obtained by diffilling frought crystal in vacuum at about 400 C, the deposit on the containing glass tube polished and smoothed to size; electrical resistivity 46 mbm cm at 20 C; measured in magnetic fields of 4000 and 8000 gauss which were found to have no effect on the thermal conductivity.
Name Specimen	
Reported Name and Error, % Specimen Designation	
Temp. Range, K	293. 2
Year	1926
Method	ដ
Surve Ref. No. No.	813
Curve	-

The second of th

THERMAL CONDUCTIVITY OF ARSENIC DATA TAPLE NO. 3

(Impurity < 0, 20% each; total impurities < 0, 50%)

[Temperature, T, K, Thermal Conductivity, k, Watt cm-1K-1]

293.2 0.368

SPECIFICATION TABLE NO. 4 THERMAL CONDUCTIVITY OF BERYLLIUM

(Impurity $\leq 0.29\%$ each; total impurities $\leq 0.50\%$)

[For Data Reported in Figure and Table No. 4]

Composition (weight percent), Specifications and Remarks	Specimen 1 x 1 x 6.6 cm, spectral analysis showed Mg. Ca, Ba, Sl, Fe, Cu, Ti, Al and Mn as impurities; prepared from a block of beryllium by American G.E.C.; sintered; density 1.83 cm ⁻³ ; electrical resistivity reported as 5.2, 6.2, 7.7, 10.9, 14.5, 18.2, 22.2, 26.4, and 30.8 john cm at 20, 50, 100, 200, 300, 400, 500, 600, and 700 C, respectively.	The above specifican heat treated at 700 C; electrical resistivity reported as 4.1, 5.0, 6, 6, 9, 9, 13, 5, 17, 1, 20, 9, 25, 2 and 29, 9 jobin cm at 20, 50, 100, 200, 300, 400, 500, 600, and 700 C, respectively.	Pure specimen; 2,01 cm long, 0,231 cm dia; made from beryllium powder supplied by Atomic Energy Research Establishment; compressed and sintered at 1100 C in vacuo for several hrs; electrical resistivity ratio p(293K)/p(20K) = 352.	Single crystal; heat flow perpendicular to hexagonal axis; electrical resistivity reported as 0, 0078, 0, 0452, and 0, 0755 John cm at 20, 36, 78, 00, and 90, 17 K, respectively.	Single c.ystal; electrical resistivity reported as 0, 0124, 0, 0537, and 0, 0868 µohm cm at 20, 37, 77, 83, and 90, 29 K, respectively; heat flow perpendicular to becagonal axis.	Single crystal; electrical resistivity reported as 0, 0076, 0, 0473, and 0, 0770 John cm at 20, 34, 77, 95, and 89, 8C K, respectively; heat flow perpendicular to hexagonal axis.	Commercially pure specimen; traces of Al, Mg, Cr, Fe, Si, and Mg; ~0.5 total impurities; 21 cm long, 1 cm in dis; supplied by Beryllium Co. of America; electrical resistivity reported as 1.50, 6.45, 14.64, 22.45, 32.45, and 39.00 µohm cm at 84, 294, 496, 674, 880, and 973 K, respectively.	Vacuum cast.	Pure; 2. 553 cm long, 5. 047 cm2 cross-sectional area.	Single crystal; hexagonal parallelepiped; supplied by Degussa Co.; length 1.6 cm; hexingonal cross section 0.00648 cm ² ; electrical resistivity reported as 0.00458, 0.00454, and 3.58 µohm cm at 20.33, 79.02, and 273.15 K, respectively; density 1.84 g cm ⁻³ ; heat flow parallel to the hexagonal axis.	The above specimen measured at H (the transverse magnetic field strength) = 4490 ocreteds and at θ (angle of rotation of the magnetic field in a plane perpendicular to the specimen axis) = -6°. H perpendicular to one of the binary lateral axes.	The above specimen measured at H = 8750 cerateds and at $\theta = -6^{\circ}$.	The above specimen measured at $H = 10880$ cersteds and at $\theta = -6$.	The above specimen measured at H ≈ 2280 oersteds and at $\theta \approx -6$.
Name and Specimen Designation	Vi-A.R.	Vi-H.T.	Be-1	Be-3	Bc 4	Be-8				Be 2	Be 2	Be 2	Be 2	Be 2
Reported Error, %			2-3				9 8							
Temp. Range, K	323-673	323-673	1, 8-38	23-81	23-91	23-91	97-464	319. 2	307-338	89. 80	23-81	23.81	23, 81	23. 70
Year	1953	1953	1955	1940	1940	1940	1929	1959	1944	1938	1938	1938	1938	1938
Method Used	O	ပ	J.	J	ı	J	(II)		_1	ı	ı	-1	1	J
Ref.	Ξ	111	122	8	99	99	278	753	235	436	436	436	1 36	436
CLIVE	1	61	6	*	က	æ	7	œ	œ	10	=	12	13	14

SPECIFICATION TABLE NO. 4 (continued)

Composition (weight percent), Specifications and Remarks	The above specimen measured 2.4 H $^\circ$ 12200 oersteds and at $\theta \approx -6^\circ$	The above epecimen measured at H = 10880 oersteds and at θ = +24° at which H is parallel to one of the binary lateral axes.	The above specimen measured at H $^{\circ}$ 2280 ocrateds and at θ = $\pm 24^{\circ}$.	The above specimen measured at H = 4490 oersteds and at θ = +24°.	The above specimen measured at H = 8750 oersteds and at θ = +24°.	The above specirien measured at H = 12200 oersteds and at θ = +24°.	High purity, < 0.1 Mg and trace of Fe; specimen 4 mm in dia; machined from a sintered rod of high purity beryllium; electrical resistivity at 295 K being 4.95 µohm cm; residual resistivity (extrapolated to 0 K) 1.20 µohm cm.	Powder; sintered.	Vacuum cast; extruded.	Flake, extruded.	Single crystal; hexagonal parallelepiped; supplied by Degussa Co.; iength 1.6 cm. hexagonal cross-section 0. 00648 cm²; electrical resistivity reported as 0.0450, 0.0763, and 3.58 pohm cm at 79.0, 99.2, and 273.2 K, respectively; density 1.84 g cm²; masured in magnetic field of strength 0 to 11.7 k Oe at 6 (angle of rotation of magnetic field in a plane perpendicular to the specimen axis) = -53 with the magnetic field perpendicular to one of the binary lateral axes.	The above specimen measured at $\theta \approx -23^\circ$ and with the magnetic field parallel to one of the binary lateral axes.	Single crystal; electrical resistivity reported as 0.0835, 0.0789, and 0.1002 pohm cm at 20.36, 78.00, and 90.17 K, respectively; heat flow perpendicular to the hexagonal axis z; measured in a magnetic field of strength 3.4 kOe perpendicular to z.	The above specimen measured with the magnetic field of strength 3.4 kOe parallel to z; electrical resistivity reported as 0.1349, 0.0946, and 0.1114 pohm cm at 20.36, 79.00, and 90.17 K, respectively.	The above specimen measured in a magnetic field of strength 6.8 kOe perpendicular to z; electrical resistivity reported as 0.2037, 0.1465, and 0.1444 whom cm at 20.36, 78.00, and 90.17 K, respectively.	The above specimen measured with the magnetic field of strength 6.8 kOe parallel to 2; electrical resistivity reported as 0.3367, 0.1740, and 0.1756 pohin cm at 20.36, 78.00, and 90.17 K, respectively.
Name and Specimen Designation	Be 2	Be 2	Be 2	Be 2	Be 2	Be 2	Be 2				Be 2	Be 2	Be 3	Be 3	Be 3	Be 3
Reported Error, %	í															
Temp. Range, K	23, 50	23, 81	23, 70	23, 45	23.40	23.50	9-102	363-573	499-840	476-840	92.1	92.1	23, 81	23, 81	80.6	23.81
Year	1538	1938	1938	1938	1938	1938	1955	1959	1959	1959	1942	1942	1540	1540	1540	1540
Method Used	7	,a	7		J	1	٦				- 3	٦	- 1	د	ے	-i
Ref.	436	436	436	436	436	436	355	75.3	75.3	75.3	066	066	98	ક્ષ	落	B
Curve No.	15	16	17	18	19	20	21	22	23	24	25	36	27	50 T	20	910

SPECIFICATION TABLE NO. 4 (continued)

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
31	95	J	1940	23, 81		Be 3	The above specimen measured in a magnetic field of strength 10.1 kDe perpendicular to z; electrical resistivity reported as 0.4829, 0.8422, and 0.2074 µbhm cm at 20.36, 78.00, and 99.17 K, respectively.
32	3 5	u	1940	23, 81		Be 3	The above specimen measured with the magnetic field of strength 10.1 kOe parallel to 2; electrical resistivity reported as 0,6137, 6,2707, and 0,2533 John cm at 20,36,78,00, and 50,17 K, respectively.
ສູ	99	ū	150	23, 81		Вс 3	The above specimen measured with the magnetic field of strength 11.7 kOe perpendicular to 2; electrical resistivity reported as 0.6271, 0.2992, and 0.2435 polm cm at 20.36, 78,00, and 90.17 K, respectively.
1 5	92	1	1940	23, 81		Бе З	The above specimen measured with the magnetic field of strength 11,7 kOe parallel to z; electrical resistivity reported as 0,7755, 0,3210, and 0,2968 johm cm at 20,36,78,00, and 90,17 K. respectively.
35	26	-i	1940	79.0		Be 4	Single crystal; electrical resistivity reported as 0,0746, 0,0865, and 0,1114 jubm cm at 20,37,77,83, and 92-29 K, respectively; heat flow perpendicular to z; measured in a magnetic field of strength 3,4 kOe perpendicular to z.
36	99	ы	1940	19.0		Be 4	The above specimen measured with the magnetic field of strength 3, 4 kOe parallel to 2; electrical resistivity reported as 0,1226, 0,1038, and 0,1240 µbhm cm at 20,37, 77,83, and 90,29 K, respectively.
37	%	ے ا	1940	23, 79		Be 4	The above specimen measured in a ranguetic field of strength 6, 8 kOe perpendicular to z; electrical resistivity reported as 0, 1989 and 6, 1508 jobin em at 20, 37 and 77, 85 K, respectively,
38	33	ے	1940	23, 79		Be 4	The above specimen measured with the magnetic field of strength 6. 8 kOe parallel to z; electrical resistivity reported as 0, 2847 and 0, 1886 john cm at 20,37 and 77,83 K, respectively.
နှင့်	8	႕	1940	23-91		Be 4	The above specimen measured in a magnetic field of strength 10.1 kOc perpendicular to z; electrical resistivity reported as 0,3754, 0,2437, and 0,2184 johm cm at 20,37, 77,83, and 90,29 K, respectively.
40	26	ı	1940	23-91		Be 4	The above specimen measured with the magnetic field of strength 10, 1 kOe parallel to z; electrical resistivity reported as 0,4939, 0,2934, and 0,2763 John cm at 20,37, 77,83, and 90,29 K. respectively.
41	8	H	1940	23-91		Be 4	The above specimen measured in a magnetic field of strength 11.7 kOe perpendicular to z; electrical resistivity reported as 0.480, 9.2972, and 0.2548 john cm at 20.37, 77.83, and 90.29 K, respectively.
42	8	₽ ì	1940	2:3-91		Be 4	The above specimen measured with the magnetic field of strength 11.7 kOe parallel to 2; electrical resistivity reported as 0.612, 0.345, and 0.3228 polum cm at 20.37, 77,83, and 50,29 K. respectively.

SPECIFICATION TABLE NO. 4 (continued)

Composition (weight percent), Specifications and Remarks	Single crystal; electrical resistivity reported as 0.0338 and 0.1028 unhm cm at 78.1 and 89.86 K, respectively; heat flow perpendicular to 2; measured in a magnetic field of strength 3.4 kOc perpendicular to 2.	The above specimen measured with the magnetic field of strength 3.4 kOe parallel to z; electrical resistivity reported as 0.0962 and 0.1119 John cm at 78.1 and 89.86 K, respectively.	The above specimen measured in a magnetic field of strength 6,8 kOc perpendicular to z; electrical resistivity reported as 0, 1566 and 0, 1507 pohm cm at 78,9 and 69,86 K, respectively.	The above specimen measured with the magnetic field of strength 6, 8 kOe parallel to 2; electrical resistivity reported as 0.1790 and 0.1767 John cm at 78, 1 and 89, 86 K. respectively.	The above specimen measured in a magnetic field of strength 10.1 kOe perpendicular to z; electrical resistivity reported as 0.2596 and 0.2187 pohm cm at 78.1 and 89.86 K, respectively.	The above specimen measured with the magnetic field of strength 10.1 kNe parallel to 2; electrical resistivity reported as 0.2781 and 0.2572 john cm at 78.1 and 89.86 K. respectively.	The above specimen measured in a magnetic field of strength 11.7 kOe perpendicular to z; electrical resistivity reported as 0,3180 and 0,2582 john cm at 78,1 and 89,86 K, respectively.	The above specimen measured with the magnetic field of strength 11, 7 kOe parallel to z; electrical resistivity reported as 0,3312 and 0,3002 polm cm at 78,1 and 89,86 K, respectively.
Name and Specimen Designation	Be 8	Be 8	Ве 8	Bc 8	Be &	œ æ	Be 8	Bc 8
Reported Error, %								
Temp. Range, K	23-91	23-91	23-91	23-91	23-91	23-91	2391	23-91
Year	1940	1910	1940	1940	1940	1940	1940	1940
Method Used	H	٦	J	ı	J	J	ı	٦
Ref. No	99	%	95	88	26	Z	26	\$
Curve No.	43	‡	45	46	4.	4 20	6	20

ल त्यान् वर्षेत्रम् क्राप्तिक वर्षेत्रस्

DATA TABLE NO. 4 THERMAL CONDUCTIVITY OF BERYLLIUM

Impurity < 0.20% each; total impurities < 0.50%)

[Temperature, T, K; Thermal Conductivity, k. Watt cm-1K-1]

**	CURVE 49"	0.91	7.92	CURVE 50*	0.84	6.91																						
Ŧ	5	22.6	90.9	CUB	22.6	90.7																						
*	CURVE 42	0.96	6.45	CURVE 43*	6.14	10.80	CURVE 44*	4.36	13.02	10.39	CURVE 45	2.26	11.0	e 4	CURVE 46	1.84	9.71	8.31	CURVE 47*		1.16	8.36	1	CURVE 48°	1.05	93.5	%g	
Т	CUR	22.7	99.6	CUR	22.6	6.06	CUR	22.6	73.7	90°.	CUR	22.6	79.7	90.9 6.08	Sis	22.6	79.7	90.9	CUR		27. 6	6.06			22.6	79.7	5 5	
*	CURVE 33	9.90	CIRVE 34	5	6.56	CURVE 35%	12.27	CURTE 355	1	9.6	CURVE 37	2.71	10.28	CIRVE 385	3	17.60		CURVE 39"	1.58	8.32	.×.	CURVE 40*	ļ [;]	1.13 6.36	6.95	# 7	CURVE 31	7.72
۲	CUE	23.3	CIR	;	8.0° 8.0°	CUR	79.0	CUR		o.6.	S S	22.7	79.0	CIR		. 6. - 79. c	•	CUR	22.7	79.0	9.06	CUR		722.7	90.6	0.00	5	22.7 79.0 90.6
*	E 25	14.61	1. X.	F. 26	5 7	6,99		¥.	\$17.50 kT°	12, 59	8.01	CURVE 28"	! .	4, 45 11, 66	%06 H	2000	16,31		CURVE 30	1.72	9,06	CURVE 31*	, ·	F: 68	}	CURVE 32*	1.04	 9
H(kOe)	CURVE 25	င	10.1	CURVE 26		101	-	_	57.7	: : ::		CURV		23.2 50.3 50.3	3 4115		30.6		2	23.2	9. 9.	CURV		23.5 80.5	;	CORN	23.5	90.e
*	E 21	0.233	0.480	589°0	20.5	1.75	; ; ;	2 2 2	1.607	1.515	į	ادُ	1.326	1.276	200	620.1	1.176	1.067	1,021	1.113	7. 7.4		1.247	1.234	1.130	1.173	1.079	0.979 1.075 0.946
۲	CURVE 21	8,72	17.7	25.7	36.7	70.07	6.101	CURVEZ	363.2	573.2	30135	CONVERS	494,2	555.2	594.2	650.2	673.2	746.2	337.2	840.2	CUBUE 34		176.2	563.2	611.2	613.2	758.2	766.2 839.2 840.2
יצי	<u>2 11</u>	2.00	10.40	E 12	0.736		<u> </u>	0.517 6.720		<u>*</u>	5,46	E 15	}	9.445	F 16	6, 362	6, 15	;	E 17	4.17	91.3		1.47	6	<u>.</u>	0.510	E 20	0.313
T	CURVE 11	22,74	80.7	COUVE 17	23.40		CORVE	80.9	į	CORVE 14	25.70	CURVE 15		23.50	CURVE 16	23.40	6.08		CORVE 17	23.70	PI TUBLE		23.45	CHRVE 19		23.40	CURVE 20	23.40
×	8	25,30	11.04	9	38.40	12.27	٦	0,971	1.360	1.912	2.125	æ	į	1,464	6	1.887	1.874	1.853	1.858	1.854	2, 428 428 624 739	1.812	1.731	1.791	E 10	200	16.35	
H	CURVE	22.7	90.6	CURVE	22.6	90.9	CURVE	6.76	20%.2	378.4	463.6	CURVE		319.2	CURVE	307.1	313.1	314.3	319.8	320.9	326.9	328.4	333.3	338.1	CURVE 10	9	80.3	
×	1 3	1.730	1.360	1.130	2)	1.950	1.400	1.130			0.008	0.018	0.025	0.032 0.042	0.053	0.070	0.086	0.106	0.144	0.178	0.206	0.266	0.294	4	;}	31.00	ca.*1	
ŧ -	CURVE	323.2	473.2	673.2	CURVE	323.2	473.2	573.2 673.2	7,610	CURV	1.75	3.40	4,40	5.40 6.91	8.56	11.60	14.13	16.81	21.96	26.40	28.87	34,33	37.84	CIRVE		23.2	0.00	

* Not chown on plot

FIGURE AND TABLE NO. 4R - RECOMMENDED THER MAL CONDUCTIVITY OF BERYLLIUM

The second secon

 2.56×10^{-1} , and 3 ± 0.553 . The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature

and 5 to 15% at other temperatures.

T₁ in K, k₁ in Watt cm⁻⁴ K⁻¹, T₂ in F, and k₁ in Btu Ib⁻¹ (t⁻¹ F⁻¹, - * Values in parentheses are extrapolated).

SPECIFICATION TABLE NO. 5 THERMAL CONDUCTIVITY OF BISMITH

(Impurity $\leq 0.20\%$ each; total impurities $\leq 0.50\%$

[For Data Reported in Figure and Table No. 5]

I 1944 2.3-76 1 Hi E 1960 291.373 5 F C 1955 293-373 5 Pu L 1913 83-373 5 PZ Hi L 1936 19-83 5 PZ PZ PS L 1919 362-857 No. 1 Hi Hi L 1934 105-208 No. 1 P 99. L 1934 17-81 P S ₁ 99. L 1934 17-81 S ₁ 99.	Ref. M No. L	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
F 1960 291,373 5 Pu C 1957 573-523 Fu Pu L 1913 83-373 5 Pu Pu L 1936 19-83 5 PZ 2 93. L 1919 362-857 No. 1 H1 L 1934 112-228 No. 1 H1 L 1934 105-208 No. 2 H4 L 1934 17-81 P 99. L 1934 17-81 S1 99.		-	1944	2.3-76	-		Highly purified; single crystal; cylindrical specimen of 7.5 cm long and 0.1 cm² cross-sectional area; supplied by Higer Co.; electrical resistivity ratio of 1/200. 0.320, 0.0725, 0.039 and 0.019 at 77,35, 20.4, 14.1 and 4.2 K, respectively.
C 1955 293-373 5 Pu L 1913 83-373 5 PZ 2 Pu L 1936 19-83 5 PZ 4 93-33 L 1936 19-81 5 PZ 4 93-33 L 1919 362-857 No. 1 Hij L 1934 112-228 No. 2 Hij L 1934 17-81 P 99- L 1934 17-81 Sq 99-	7.7	ы	1900	291,373			Impurities, < 0.03 again This deep cast wire, 8.95 cm long, 1.795 cm dla; density 9.7% g cm ⁻¹ at 1% C; electrical conductivity at 1% and 100 C being 0.840 and 0.624 x 10 ⁴ ohm ⁻¹ cm ⁻¹ , respectively.
C 1957 573-623 High L 1913 83-373 Pu L 1936 19-83 5 PZ 2 93-83 L 1919 362-857 No. 1 Hij L 1934 112-228 No. 1 Hij L 1934 17-81 P 99-81 L 1934 17-81 P 99-81	126. 324	ĹL.	1955	293-373	ဖ		Pure; east from granular bismuth; electrical conductivity 7360, 6760, 6330, 5920, 5500 ohm"en: 1 at 293, 313, 333, 333, and 373 K, respectively.
L 1913 85-373 FZ 95. L 1936 19-81 5 FZ 95. L 1919 362-857 No. 1 Hij L 1934 112-228 No. 2 Hij L 1934 105-208 No. 2 Hij L 1934 17-81 P 99. L 1934 17-81 Sq. 99.	113	၁	1957	573-523			High purity; molten metal; contained in a cavity 3,5 in. long, 0.94 in. dia; electrical resistivity 12%,6, 131.1, 1, 7,6, 136,0 and 13%,5 uohm cm at 300, 356, 400, 450 and 500 C respectively; stainless steel used as comparative material.
L 1936 19-83 5 72 2 95. L 1936 19-81 5 PZ 4 99. L 1919 362-857 No. 1 Hii L 1934 112-228 No. 1 Hii L 1934 105-208 No. 2 Hii L 1934 17-81 P 99. L 1934 17-81 Sq. 99.	49		1913	85-373			Pure: electrical conductivity reported as 2,640, 1,190, 9,915, and 0,612 x 104 ohm ⁻¹ cm ⁻¹ at -190, -77, 0, and 100 C, respectively.
L 1936 19-81 5 FZ 4 59 L 1919 362-857 L 1934 112-228 No. 1 Hii L 1934 17-81 P 99. L 1934 17-81 P 99.	19	<u></u>	19:36	19-83	က	5 % 5 %	93,997 B), 0,002 Ag, traces of Pb and Cu; single crystal; length 3 cm, cross-sectional area 0.1 cm ² ; crystal grown from 'Bi 9506 bis.nuth' supplied by Adam Hilger Ltd., London; heat flow parallel to trigonal axis; electrical resistivity ratio p(T)/p(0C) = 0,0711, 0,0634 and 0,0452 at 20,37, 18,47 and 14,15 K, respectively.
L 1919 362-857 C3 L 1934 112-228 No. 1 Hij L 1934 105-208 No. 2 Hij L 1934 17-81 P 99. L 1934 17-81 P 99.	e1	_	1936	19-81	ro.	PZ 4	99.998 Bi; 0.001 Ag; trace of Pb; single crystaf; length 3 cm, cross-sectional area 0.1 cm², crystal grown from 'Bi 102%3 bismuth' supplied by Adam Hilger Ltd London, heat flow parallel to trigonal axis; p(T)/p(0C) = 0.244, 0.0540, 0.0474, and 0.0524 at 70.85, 20.37, 18.47 and 14.15 K, respectively.
L 1934 112-228 No. 1 His His L 1934 105-208 No. 2 His L 1934 17-81 P 99.	S	د	1919	362-857			Cylindrical specimen.
L 1934 105-208 No. 2 Hi, L 1934 17-81 P 99. L 1934 17-91 S ₁ 99.	•	ı	1934	112-228		No. 1	High purity, single crystal, specimen 1,231 cm in length and cross-section roughly triangular in shape with dimension: ~ 3 nm on a side; specimen prepared at California Institute of Technology; heat flow parallel to trigonal axis; measured in vacuum of 10^6 nm Hg.
1934 17-81 P 99.	120	ı,	1934	105-208		No. 2	High purity; single crystal; specimen 1.3 cm long and similar in form to No. 1; specimen prepared at California Institute of Technology; heat flow perpendicular to trigonal axis; measured in a vacuum of 10% mm Hg.
L 1934 17-91 S ₁ 99.	æ	7	1934	17-81		۵	99,995 B); major impurity, Ag, single crystal; specimen consisted of two rods each of size 2×x5 x5 mm; grown from H.S. Brand. Laboratory No. 8016 bismuth, supplied by Adam Hilger Ltd., London; heat flow parailel to trigonal axis (the specimen axis).
	Ç	J	1934	17-81		v.	99,995 Bi, major impurity. Ag, single crystal, specimen consisted of two rods each of size 28 x 5,4 x 4,5 mm; grown from material supplied by Adam Hilger Ltd., London; material melted and pressed into mould to be in contact with a seed crystal, then cooled slowly to crystalize, heat flow parallel to a binary axis.

्ड, ३ स. द्र^{ापू}

SPECIFICATION TABLE NO. 5 (continued)

Composition (weight percent), Specifications and Remarks	Similar to the above specimen except heat flow parallel to a biscetrix, between two binary axes.	High purity, spectroscopic examination showing traces of Pb and Cu. single crystal; spectrom of disks 25 mm in dia and 2 mm thick from a large crystal grown by Bridgman's method; supplied by Kahlbaum; density 9.73 g cm ⁻³ at room temp, electrical resistivity reported as 114 µohm cm at 25 C; heat flow perpendicular to trigonal axis. (Data extracted from smooth curve.)	Similar to the above specimen except electrical resistivity 144 µ ohm cm at 25 C and heat flow parallel to trigonal axis.	99.97 pure when received; specimen 2 rim dia, 6 cm long, it contained columnar crystals penetrating to the centre of the rod, 16 to 18 crystals being exposed on the circular section; metal supplied by Mining and Chemical Products (London); cast and cooled quickly, residual electrical resistivity $\rho_0=104\mu$ ohm cm; $\rho(295K)=136\mu$ ohm cm.	99.39 pure: 6 rolunnar cristals per circular section; specimen 3 mm dia. 6 cm long: grapular bismuth supplied by the General Chemical Division of Alfied Chemical and Div. (orp., cast in a biass former, cooled stowly, residual electrical resistivity ρ _i , = 5.9 μ ohm chi; A256 K) · 120 μ ohm cm.	99,999 pure; cristals about 1 cm long and had the lateral dimensions of the rod. specifican about 3.5 mm dia, 6 cm long; bismuth supplied by Varlacoid Chemical Co. specifican about 3.5 mm dia, 6 cm long; bismuth supplied by Varlacoid Chemical Co. point; resultant letterical and annicaled for several days at a temp just below melting point; resultant electrical resistivity $\rho_0 \approx 2.07$ gohm cm; 2026 K, assumed) = 11st about cm.	99,939 pure, specimen contained about 3 erystals; it had a triangular cross-section of sides 5, 5, and 2,5 mm, 6 cm long, cut from zone-refined bar; supplied by Varlacoid sides 5, 6, and 2,5 mm, 6 cm long, cut from zone-refined bar; supplied by Varlacoid Chemical Co.; residual electrical resistivity $\rho_0=1.70$ gohn cm; 0295 K, assumed) = 118 gohn cm.	Cut from the same bar as the above specimen; contained crystals 2 to 4 mm wide and 1 to 2 cm long, square cross-section 6 x 6 mm; residual electrical resistivity θ_0 = 2.4 μ ohm cm; μ (295 K, assumed) + 118 μ ohm cm.	0.02 Pb, trace of Fe, single crystal; 1.842 x 1.023 x 0.168 cm; annealed; heat flow parallel to trigonal axis.	Similar to above specimen except dimensions 1,843 x 1,022 x 0,167 cm and heat flow perpendicular to trigonal axis.	Pure single crystal; 0, 9114 cm cubic specimen, biamuth supplied by Merch; heat flow parallel to trigonal axis.	The above specimen; heat flow perpendicular to the trigonal axis.
Name and Specimen Designation	8,	Bi-1	Bi-2	Bi-1	В2	Bi-3	Bi4	B1-5				-
Reported Error, %				-	-	-	-	-				
Temp. Range, K	17-81	298-423	29%-423	2-80	2-91	5. 7.	2-79	2-91	219	915	2.742	287.2
Year	1934	1939	1939	1958	195н	1958	1958	1958	1923	1923	1949	1949
Method Used	ند	<u></u>	_;	-1	<u> -</u>	.2	ن	٦	7	ü	-	٦
Ref.	3	27.7	27.7	424	424	424	424	424	469	169	470	470
Curve	2	4.	15	16	17	2 :	19	20	21	22	23	24

SPECIFICATION TABLE NO. 5 (continued)

1	Cerve	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
470 L 1949 287.2 2 470 L 1949 287.2 3 470 L 1949 287.2 3 233 L 1956 313-453 3 471 L 1957 91.5 Bi 66 472 L 1957 91.5 Bi 66 472 L 1957 91.4-91.5 Bi 66 472 L 1957 91.5 Bi 66 472 L 1957 91.5 Bi 66 472 L 1957 91.7 Bi 66 472 L 1957 91.5 Bi 66 473	25	470	٦	1945	287.2		71	Similar to the above specimen except heat flow parallel to the trigonal axis.
470 L 1949 295.2 3 470 L 1949 295.2 4 230 L 1956 313-453 3 248 E 1956 313-453 3 471 L 1903 87-291 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.4-91.5 Bi 66 472 L 1937 91.5 Bi 66 472	92	470	-1	1949	287.2		71	The abuve specimen; heat flow perpendicular to the trigonal axis.
470 L 1949 247.2 4 230 L 1925 329.2 3 248 E 1956 313-453 3 471 L 1903 87-291 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5 Bi 66 472	2.1	410	ü	1949	287.2		n	Pure, polycrystalline, cubic specimen 0.93 x 0.93 x 0.93 cm; bismuth supplied by Merch.
233 L 1925 329.2 248 E 1956 313-453 3 471 L 1903 87-291 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5 Bi 66 473 L	28	470	-1	1949	287.2		7	Similar to the above specimen.
248 E 1956 313-453 3 471 L 1903 87-291 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5 Bi 66 473 L 1937 91.6 Bi 66 473 <td>28</td> <td>233</td> <td>.1</td> <td>1925</td> <td>328.2</td> <td></td> <td></td> <td>Total impurities < 0.03; specimen 10 cm long, 1.9 cm in dia; bismuth from Baker's Analyzed Metal; electrical conductivity 0.84 x 10^4 ohm⁻¹cm⁻¹ at 22 C.</td>	28	233	.1	1925	328.2			Total impurities < 0.03; specimen 10 cm long, 1.9 cm in dia; bismuth from Baker's Analyzed Metal; electrical conductivity 0.84 x 10^4 ohm ⁻¹ cm ⁻¹ at 22 C.
471 L 1903 87-291 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.4-91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.6 Bi 66 473 L 1937 91.6 Bi 66 473 L<	30	248	ш	1956	313-453	n		99.997 pure.
472 L 1937 91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.4-91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 473 L 1937 91.6 Bi 66 473 L 1937 91.8 Bi 66	31	471	٦	1903	87-291			Pure, density 9.67, 10.04 and 10.44 g cm ⁻³ at 18, -79, and -186 C, respectively; electrical conductivity 0.861, 1.196 and 2.452 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 18, -79, and -186 C, respectively. (Note: the paper gives electrical conductivity as 10 ⁵ ohm ⁻¹ cm ⁻¹ which is probably an error)
472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 473 L 1937 91.8 Bi 66	35	472	. 1	1937	91.5		Bi 66	Pure; single crystal; the angle between rod axis and trigonal axis Φ : 2".
472 L 1937 91.6 Bi 66 472 L 1937 91.4-91.5 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.6 Bi 66 473 L 1937 91.8 Bi 66	83	472	٦	1937	91.5		B1 66	The above specimen measured in a nagnetic field approximately paraitel to the z-axis and the xz-plane (x-axis coincident with the trigonal axis; x-axis paraillel to a diagonal, which does not intersect with the trigonal axis of one face of the crystal i.e., paraillel to a two-fold secondary axis, with strength H-650 persteds.
472 L 1937 91.4-91.5 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.8 Bi 66	34	472	1	1937	91.6		Bi 66	The above specimen measured at H-650 oersteds approximately parallel to x-ax.s.
472 L 1937 91.5 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.8 Bi 66	35	473	u	1937	91.4-91.5		Bi 66	The above sperimen menaured at H-1500 oersteds (H in xz-plane) and at ψ (angle between H and z-axis) ranging from 0 to -10°.
472 L 1937 91.7 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.6 Bi 66 472 L 1937 91.8 Bi 66	98	472	_	1937	91.5		Bi 66	The above specimen measured at H 2520 oersteds (H parallel to xz-plane) and at $\Phi=0^\circ$
472 L 1937 91.6 Bi 66 472 L 1937 91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 81.6 Bi 66 472 L 1937 91.8 Bi 66	33	472	ħ	1937	91.7		Bi 66	The above specimen measured at H-2520 oersteds (H parallel to xz-plane) and at $\psi=90^\circ$
472 L 1937 91.7 Bi 66 472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 81.6 Bi 66 472 L 1937 91.8 Bi 66	38	472	H	1937	91.6		Bi 66	The above specimen measured at H 4850 oersteds (H parallel to xz-plane) and at $\psi = 0^\circ$.
472 L 1937 91.5-91.7 Bi 66 472 L 1937 91.5 Bi 66 472 L 1937 81.6 Bi 66 472 L 1937 91.8 Bi 66	65	472	1	1937	91.7		Bi 66	The above specimen measured at H 4850 oersteds (H parallel to xz-plane) and at $\psi=1$.
472 1. 1937 91.5 Bi 66 472 L 1937 81.6 Bi 66 472 L 1937 91.8 Bi 66	\$	472	Ħ	1937	91.5-91.7		Bı 66	The above specimen measured at H:6100 oersteds (H parallel to xz-plane) and at \$\psi\$ ranging from 0 to -20\dagger.
472 L 1937 91.6 Bi 66 472 L 1937 91.8 Bi 66	Ŧ	472	.4	1937	91.5		Bi 66	The above specimen measured without magnetic field.
472 L 1937 91.8 Bi 66	\$	472	ı	1937	31.6		Bi 66	The above specimen measured in a magnetic field parallel to the yz-plane with H=650 oerstedr and \$\psi\$ = 10 th approximately parallel to the trigonal axis).
	43	472	ı	1837	91.8		Bi 66	The above specimen measured at H·650 cersteds (H parallel to yz-plane) and at $\psi=100^{\circ}$ (H approximately parallel to y-axis).

SPECIFICATION TABLE NO. 5 (continued)

・ 高級 から から 仏堂 しんかけい 特別 砂路 一般 ちんり きない かんたい 国際 一種 神経 かくき 高島 まままか としじる トラインス こうけんせいき

Curve	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
7	57 4	-1	19:17	91.7-92.0		Bi 66	The above specimen measured at H 1500 oersteds (H parallel to yz-plane) and at \$\psi\$ ringing from 10 to -*0'.
S T	473	شر	19.77	91,37-91,40		BI 56	The above specimen measured at H. 2520 oversteds (H parallel to yz-plane) and as \$\psi\$ ranging from 10 to 100'.
46	472	-1	1937	8.16		Bi 66	The above specimen measured at H 4450 oersteds (H parallel to yz-plane) and at $b \approx 10^\circ$.
4,7	473		1937	92.0		Bi 66	The above specimen measured at H-4850 ocrateds (H parallel to yz -plane) and at $\psi=100^\circ$.
4 T	473	i	1637	91.8-92.0		Bi 66	The above specimen measured at H 6400 ocrsteds (H parallel to vz-plane) and at 5 ranging from 10-10'.
49	472	J	1937	19.2		99 i e	The above specimen nicusured without magnetic field.
20	472	-1	1937	8.09		Bi 66	The above specimen measured without magnetic field.
S	472	٠.;	1937	19.2		Bi 66	The above specimen measured at H 650 oersteds (9 parallel to yz-plane) and at \$\infty\$ 10°.
33	472	J	1937	79.3		Bi 66	The above specimen measured at H 650 ocrateds (B parallel to yz-plane) and at $\vartheta=100^\circ$.
2.2	47.2	ı	1937	79.1		Bi 66	The above specimen measured at H:1500 oersteds (H parallel to yz-plane) and at $\psi=10^3$.
5:	472	-1	1937	79.4		Bi 66	The above specuren measured at II 1500 oersteds (H parallel to vz-plane) and at \$\psi\$ - 100°.
55	472	-1	1937	79.3		Bi 66	The above specimen measured at H 2520 oersteds (H parallel to yz-plane) and at $\psi \sim 10^2$.
26	472	, ,	1937	19.4		Bi 66	The above specimen measured at H 2530 oersteds (H parallel to yz-plane) and at $\mathfrak c=100^\circ$.
57	472	1	1937	19.4		Bi 66	The above specimen measured at H-4850 persteds (H parallel to yz-plane) and at $b \approx 10^\circ$.
58	472	-	1937	79.4		Bi 66	The above specimen measured at H 4850 ocrateds (H parallel to yz-plane) and at $\psi=100^\circ$.
59	472	u	1937	19.2		Bi 66	The above specimen measured at $B=100$ bersteds (H parallel to yz-plane) and at $\psi=10^{\circ}$.
9	472	٦	1937	79.4		Bi 66	The above specimen measured at H 6100 oersteds (H parallel to yz-plane) and at $\psi = 100^{\circ}$.
19	472	J	19.77	79.4		Bi 66	The above specimen measured at H 6100 oersteds (H parallel to vzplane) and at \$6 -80°.
29	472	-1	1937	91.2		Bi 51	Pure, single crystal, the angle between rod axis and trigonal axis • "6",
ß	575	ų	1937.	91.2-91.5		Bi Si	The above specimen measured in a magnetic field parallel to the plane containing the trigonal axis (z-axis) and the rol axis with strength if 2520 cersteds and at ψ (angle between field direction and a line such that at $\psi = \gamma'$. If perpendicular z-axis and at $\psi = 97'$, H perallel z-axis) ranging from 8 to -10°.
2	472	u	1937	91.6-91.8		Bi ŏi	The above spectrien measured at H 6100 cersteds (H parallel to the plane containing z -axis and the rot axis) and at ψ ranging from 7 to -5.
65	473	_	1934	80-297		Bi 9	Single crystal; 0,55 cm dia x 3,6 cm long; the angle between rod axis and trigonal axis about 80?; electrical resistivity reported as 46,95, 48,32, 49,41, 103,6 and 112,2 µ ohn cm at -193,92, -188,19, -183,62, 0, and 21,02 C, respectively.

SPECIFICATION TABLE NO. 5 (continued)

Curve	ا يوا	Method	Year	Temp.	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
g 99	473		1934	81.1		Ві 9	The above specimen measured in a transverse magnetic field (H perpendicular to rod axis) axis) with H (field strength) - 5900 gauss and at 9 (the angle between field and rod axis) ranging from 25 to 110°; electrical resistivity at -194.5 C reported as 601, 620, and axis, and at 8 = 25, 35, and 17°; respectively.
61	473	٦	1934	89.4-90.5		6 18	The above specimen measured in a transverse magnetic field; H-5900 gauss and 9 ranging The above specimen measured in a transverse magnetic field. H-5900 gauss and 97 anging from 35 to 1746; electrical resistivity at -183.5 C reported as 510, 408, and 391 μ ohm em at θ - 35, 95 and 1740, respectively.
89	425	1	1924	, je	ıo		Polycrystal with fine grains; electrical conductivity 2.61 and 9.29 x 103 ohm-lcm ⁻¹ at 90 and 273 K respectively. (Note the paper gives 104, probably a typographical error.)
9	425	ı	1924	90,273	Ŋ		Polycrystal with coarse grains; electrical conductivity 2, 55 and 8, 98 x 104 ohm fem fat 90 and 273 K respectively. (Note the paper gives 104 probably a hypographical error.)
20	368		1954	298.2			Fine-crystalline extruded specimen; concentration of current carriers 8.8 x 10% cm 3; electrical conductivity 6760 ohm? at 25 C.
ŗ	431	ш	1944	:72-501			Pure: polycrystal; electrical resistivity 179,20 to 277,00 gohm cm at 372,3 to 501.11 K.
22	75%	٦	1963	2.1-4.1			Very pure, Single Cristal, in spired from Johnson Matthey and Co.; crystal, parallepiped 24. 3 x 6. 9 x 2. 5 mm; colained from Johnson Matthey and Co.; crystal, resistance ratio R(300 Ki/R(4.2 K) × 40.
73	474	1	1950	82-90		Bi-S ₄	Single crystal, red axis perpendicular to the trigonal axis and approximately parallel cone of the two-fold secondary axes (one side of the base triangle); electrical essistivity reported as 39.93 and 99.4 uohm cm at -187.5 and 0 C, respectively.
7.	474	-	1950	83-89		Bi-S ₇	Single crysta!; rod axis perpendicular to trigonal axis and perpendicular to one of the two-fold secondary axes (one side of the Pase triangle); electrical resistivity remorted as 40.18 and 100.7 μ ohm cm at -187.5 and 0 C. respectively.
75	415	٦	1936	78,90		B1 66	Pure; single crystal; the angle between trigonal axis and rod axis $\phi = 2^{\circ}$; 3 mm dia x 4 ~ 5 cm long; electrical resistivity reported as 36.1, 41.0 and 127.4 μ ohm cm at 195, 39, -182, 98 and 0.C, respectively.
92	475	1	1936	78,90		Bi 13	Pure, single crystal; $\phi=16\%$ 3 mm dia x 4 ~ 5 cm long; electrical resistivity reported as 37.4.42.0, 86.6 and 25.6 μ ohm cm at -194.84, -183.20, -78.36 and 0 C, respectively.
77	475	ה	1936	78,90		Ві 51	Pure; single crystal; 5 = M6
78	475	٦	1936	90.0		Bi 72	Pure; single crystal; 3 × 85, 5°; 3 mm dia x 4 ~ 5 cm long; electrical resistivity reported as 43,0 and 102,9 g ohm cm at -183,13 and 0 C, respectively.
ę.	475	'n	1936	91.8		Bi 66	Pure, single crystal; $\phi \in 2^{9}$; 0, 0898 cm ² x 2, 23 cm long.

encie Malanagia

SPECIFICATION TABLE NO. 5 (centinued)

Curve	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
80	475	2	1936	92.2		Bi 66	The above specimen measured in a transverse magnetic field (H perpendicular to rod axis) with strength his 250 oersteds and field orientation θ (the angle between field direction and a line perpendicular to the rod axis such that at $\theta = -12^{\circ}$. H is parallel to the x-axis and at $\theta = 70^{\circ}$. H is parallel to the y-axis $\theta = -10^{\circ}$. A saxis such that the twu-fold secondary axes; v-axis coincided with the trigonal axis.
81	475	ب.	1936	79. E		Bi 66	The above specimen measured without magnetic field.
82	475		1936	79.8		Bi 66	The above specimen measured at H-1500 ocrateds and at $9 imes 108^\circ$.
59	475	٦	9261	79.9		Bi 66	The above specimen measured at H=2520 oersteds and at θ = -41°.
35 44	475	u	1936	9.9.		Bi 56	The above specimen measured at H 4850 oersteds and at mean 9 (averaged from values which varied from 15-30).
\$2	475		1936	79.9		Bi 66	The above specimen measured at H:6100 oersteds and at mean H.
98	475	יי	9261	91.0		Bi 13	Pure, single crystal; the angle between trigonal axis and rod axis $\phi\approx 16^\circ$ 0.1452 cm² x 3.10 cm long.
84	475	Ħ	1936	91.2		Bi 13	The above specimen mensured in a transverse magnetic field (H perpendicular to rod axis) with strength H-2460 cersteds and field orientation at $9-4$ and 38° , where θ is the angle between field direction and a line perpendicular to the rod axis such that at $9-6^\circ$, H approx, parallel to x-axis.
88	475	ı	1936	19,91		Bi 13	The above specumen measured at H:6100 oersteds and at mean 5 (averaged from values which varied from 15-30).
88	475	n	1936	78.5		Bi 13	The above specimen measured without magnetic field.
8	475	u	1936	78.7		Bi 13	The above specimen measured at H-2460 cerateds and at $\theta \approx$ -4 and $3R^2$.
91	475	Ļ	1936	78.7		Bi 13	The above specimen measured at $\mathrm{H}\text{-}6100$ corsteds and at $\mathrm{\theta}$ $^{\circ}$ $^{\circ}38^{\circ}$.
92	475	ı	1936	19,91		Bi 51	Pure; single crystal; the angle between trigonal axis and rod axis $\phi = 86^\circ$, 0.0749 cm ² x 2.18 cm long.
2	475	ı	1936	91.1		Bi 51	The above specimen measured in a transverse magnetic field (H perpendicular to rod axis) with strength H. 2520 cersteds and field orientation at $9 \approx -152^\circ$, where 9 is the angle between field direction and a line perpendicular to the rod axis such that at $9 \approx 35^\circ$, H parallel to negative x-axis and at $9 \approx -55^\circ$; H parallel to z-axis.
\$	475	J	1936	91.4		Bi 51	The above specimen measured at H 4900 oersteds and at $9 \approx -152^{\circ}$.
95	475	ı,	1936	79.3		BI 52	The above specimen measured at H $\cdot 2520$ ocrateds and at mean 9 (averaged from values which varied from $15 \cdot 30^3$).

Composition (weight percent), Specifications and Remarks	Pure; single crystal; the angle between trigonal axis and rod axis $\phi = 85.5^{\circ}$; $\theta.0907$ cm ² x 2.51 cm long.	The above specimen measured in a transverse magnetic field (H perpendicular to 19 angle axis) with strength H=650 cersteds and field orientation at $\theta = 2$, where θ is the angle between field direction and a line perpendicular to the rod axis such that at $\theta = R$, H is perpendicular to z-axis.	The above specimen measured at H-650 cersteds and at θ = -124°. The above specimen measured at H-1500 cersteds and at θ ranging from 2 to -34°.	The above specimen mensured at H-2520 oersteds and at 9 · 2.	The above specimen measured at H-2520 oersteds and at 9 = -124.	The above specimen measured at H-4900 cerateds and at $ heta$ = 2 .	The above specimen measured at H-4900 cersteds and at 8124.	The above specimen measured at H 6100 oersteds and at θ ranging from 2 to -34.	Pare: electrical conductivity reported as 0.744, 0.684, 0.562, 0.544, 0.516, 0.516, 0.509, 0.477.	0.446, 0.421 and 0.380 x 10' ohm cm at 46.7, 69.1, 103.8, 134.9, 110.1,	Pure.	Pure: single crystal; bismuth plate, 2 x 9.3 x 9.3 mm; supplied by Merch; d (the angl)	between the trige al axis of the crystal and the direction of near tion,	Similar to the above specimen except 9 - 14.7.	Similar to the above specimen except $3 - 50$. 7 .	Similar to the above specimen except $\theta = 67.9^\circ$.	similar to the above specimen except 9 - 74.3.	cimilar to the above specimen except $\theta=89.0^{\circ}$.	Dure cylindrical specimen, made from bismuth supplied by C.A.F. Kahibaum; bismuth	powder pressed at 5000 kg cm ⁻² for 1 hour; density 1% less than test of common powder pressed at 5000 kg cm ⁻² for 1 hour; density of conductivity reported as 3.5, 3.8, and 3.2 x 10 ³ ohm ⁻¹ cm ⁻¹ at -190, 0, and 100	C, respectively.	Measurements inade on soing speciments appearing used to determine data in liquid state; speciment; 3 mm in diameter, 64 mm long used to determine data in liquid state; melting point 544.2 K.
Name and Specimen Designation	Bi 72	Bi 72	Bi 72	Bi 72	191 72 191 73	20 12	Bi 72	Bi 72														
Reported Error. %																						ις
Temp. Range, K	91.3	91.3	91.3	91.2-91.4	91.2	91.3	91.6	91.6	91.3-91.5	320-500		373.2	287.2	287.2	287.2	287.2	287.2	287.2	287.2	83-373		313-630
Year	1936	1936	1936	1936	1936	1936	1936	1936	1936	1956		1957	1949	1949	1949	1949	1949	1949	1949	1913		1961
Method	1	'n	u	٦	٦	u	د.	u	-1					u	1	٦	7	1	J	ı.		ت
Ref.	475	475	475	475	475	475	475	475	475	383		460	470	470	470	170	470	470	470	517		597,
Culto	ş \ 8	97	ec on	66	100	101	102	103	104	105		901	107	801	109	110	111	112	113	7:1		115

監論 Marie riska Sandaria (1987) - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985

SPECIFICATION TABLE NO. 5 (continued)

Marking all the control of the filler of the filler of the control
Composition (weight percent). Specifications and Remarks	271°	In liquid State, include points 2 2 x 10 min; provided by American Smelting 99, 999 pure; single crystal, specimen 2 x 2 x 10 min; provided by 42, 42, 44, 46.3 and 134.8 and Reining Co.; as received, electrical resistivity 34.2, 42, 4, 46.3 and 134.8 and Reining Co.; as received, electrical flow parallel to trigonal axis. ush men at 79, 100, 200 and 300 K. respectively; had 100 parallel to trigonal 13.7	Similar to the above specimen except electrical resistivity 42.3, 53.9, 73.1, 12.1,	Density 9.74 g cm ⁻³ ; electrical conductivity 0.929 and 0.63 x 10° onm cm 100 C respectively. (electrical conductivity reported as 0.929 and 0.63 x 10° ohm cm ⁻¹ cm ⁻¹ , probably a typographical crror)	Single crystal with rhombohedral structure; 16, 8 x 4, 33 x 2, 0 mm. porallel to the small dimension and biscetrix parallel to the large dimension; porallel to the small dimension and biscetrix parallel to the large dimension; specimen taken from cylindrical usgot supplied by Texas Instruments Corporation; electrical resistivity reported as 1.1 and 1.2 pohm cm at 1.12 and 4.2 K, respectively; electrical resistivity reported as 1.1 and 1.2 pohm cm at 1.12 and 4.2 K, respectively; electrical resistivity reported as 1.1 and 1.2 pohm cm agnetic field directed along the 0.59s.2 0.4.2 reported as 0.1.2 in customed with the magnetic field directed along the	trigonal axis, and the neat 110% arous. from 1.02 to 17.98 kilogauss.	Single crystal; disk specimen 25 mm in diameter and 2 mm that in 2199 to 10554 to the trigonal axis; measured in magnetic fields (H) ranging from 2199 to 10554 gauss perpendicular to the trigonal axis.	Similar to the above specimen except measured in making axis ranging from 0 to 10773 gauss. axis ranging from 0 to 10773 gauss.	Single crystal, was appeared in magnetic fields perpendicular to the trigonal axis; measured in magnetic fields from 0 to 11161 gauss.	Similar to the above specimen except disk 2.02 film than Lander and single from 5071 to 9847 gauss. Tanging from 5071 to 9847 gauss.	conditions as above with magnetic fields ranging from 4551 to 5515 conditions as above with magnetic fields in dia drilled in asbestos cement cylinder	The motion speciment of the RNST used as comparative material. of 30 mm height, stell IKh18NST used as comparative material. of 30 mm height, stell IKh18NST used as comparative material.	dimensions about 3 nm on a side; trigonal axis partitle to the side of A. Goetz of CIT; measured in a vacuum of 10°6 mm Hg, and in a magnetic field of 7.806 gauss parallel to one of the binary axes; heat flow along the trigonal axis.
Name and	Specimen Designation												-
Reported	Error. %	9 ~	9~				÷ .50	05.÷	05.4	4.50	4.50		
Tomb	Range, K	626-945	100-300	273,373	1.46		300.2	300.2	300.2	300.2	300.2	453-770	110~209
	Year	1959 1962	1962	1881	1964		1929	1929	1929	1929	1929	1967	1934
	Method Used	د د	.1	ה	ij		h	'n	Ħ	J	ډ.	U	
	Ref.	592	7.55	7.06	331		333	333	333	333	333	838	120, 323
	Curve	116	118	119	071		121	122	123	124	125	126	127

SPECIFICATION TABLE NO. 5 (continued)

Composition (weight percent). Specifications and Remarks	The above specimen measured with the magnetic field perpendicular to one of the binary axes.	Single crystal, specimen length 1.3 cm. cross-section roughly triangular in shape with dimensions about 3 mm on a side; trigonal axis perpendicular to the length; measured in a vacuum of 10° mm Hg and in a magnetic field of 7800 gauss perpendicular to the trigonal axis; best flow perpendicular to the trigonal axis.	The above specimen measured with the magnetic field parallel to the trigonal axis.	The above specimen measured with the magnetic field at 45° to the trigonal axis.	99,9999 pure; single civatal; specimen 1.57 x 3.1 mm in cross-section; specimen axis along the bisectrix; electrical resistivity ratio p(00)/p(4.2) - 140; thermal conductivity values calculated from heat capacity, velocity and effective mean free path.	99.9999 pure; single crystal; specimen 3.8 x 3.85 mm in cross-section; specimen axis along the trigonal; electrical resistivity ratio p(300)/p(4.2) - 104; thermal conductivity values calculated from heat capacity, velocity and effect mean free path.	Single crystal; 0.4 x 0.2 x 0.2 in; electrical resistivity reported as 0.0349, 0.0472, 0.0680, 0.0854, 0.113, and 0.134 milliohm cm at 80, 112, 160, 198, 253, and 299 K, respectively; heat flow along the trigonal axis.	Single cryst.; 1,4 x 0.2 x 0.2 in.; electrical resistivity reported as 0.0324, 0.0445, 0.0602, 0.0727, 0.0950 and 0.116 milliohm.cm at 77, 115, 156, 193, 249 and 298 K. respectively, hert flow along one of the binary axis.
Name and Specimen Designation	1	8	÷1	C1	Sample 3	Sample 5		
Reported Error, %								
Temp. Range, K	117-190	114-198	108-216	122-145	1.3-1.9	1.3-2.0	80-301	81-303
Year	1934	1934	1934	1934	1967	1967	1967	1967
Method Used]	'n	1	٦	1	ı	ᆆ	نـ
Ref.	120,	323 323	120,	120,	872	872	1002	1002
Curve	128	129	130	131	132	133	134	135

DATA TABLE NO. 5 THERMAL CONDUCTIVITY OF BISMUTH (Impurity < 0.20% each; total impurities < 0.50%)

r 新聞開開の表示の表表の間隔の制度をよった。 com o

Watt cm-1 K-1]
×
Conductivity.
Thermal
¥
Ë
[Temperature,

¥	CURVE 19 (cont.)	1.58	1. 24	5.0	- c	ر. به ن	0. 22		CURVE 20		3.66	6. 47	9.60	14.60	15.9	14.0	10.0	36	. 4	2 70	0.00	0 274	0.22	0. 20	ļ ;	CURVE 21		0.0665		CURVE 22]	0.0925		CURVE 23"		0.0529		CURVE 24		0.0935				
L	CURVE	12.3	15.0		7 C	32. 6	78. 5		CUR	į	2. 17	2, 69	3, 12	3, 66	4, 22	4. 32	5 47	91 9	7 7	2	31.9	0 09	9 %	90.7		CUR		291. 2		CUR		291.2		CUR		287.2		CLE		287. 2				
¥	CURVE 17 (cont.)	0.830	0.650	200	0.40	707.0	0. 220	0. 206	0, 179		CURVE 18	!	0.83	1. 43	2, 39	4. 69	6.30	98		7 7	3, 22	7 40	1. 73	1.35	1. 10	0, 237	0. 200		CURVE 19		1.36	1. 77	2. 63	4. 10	9. 69	9, 29	8, 37	6. 92	5.36	3, 72	2.49	1.98	1. 76	
۲	CURVE	20.7	22.0 4.0.0 4.0	1 6	20.00	0.0°	69. 4	80.0	91.0		CUB		1.99	2, 41	2.91	3. 69 8	7	7	i d	6 15	25.5	: x	10, 57	12, 70	15, 99	64. 2	78. 2		CUR		2.01	2. 21	2.57	3, 05	4, 36	4.48	5.33	5, 84	6. 52	7.60	9, 14	10.4	11.36	
×	CURVE 16 (cont.)	1. 79	33	3 5	1 2	2. 9a	2. 73	2, 55	2, 2,7	1.97	1. 70	1.37	1. 12	0.918	0. 784	0.644	0.544	0.465	25.0	666 0	0.204	3.50	2	/E 17		1. 14	1.54	2. 17	2, 42	3,35	3.73	4, 37	4.94	5, 95	7, 15	5.34	4. 00	2.96	2.31	2. 18	1, 72	1, 31	966 '0	
T	CURVE	3, 58	7 c. c.		7 7	2	6, 80	7. 09	7. 95	x. 40	9, 70	11, 55	14.02	17.9	20.6	24.6	- 1	9	- -	. G	9	3	; ;	CURVE 17		2.07	2, 29	2, 59	2, 69	3. 10	3, 22	3, 40	3, 64	4. 01	4, 59	5, 18	98.9	7. 78	9. 09	9, 59	11. 17	13.8	17. 5	
×	CURVE 11 (cont.)	0.507	0. 166	61.3	77	;	0.770	0.891	0. 921	0.837	0.747	0, 259		E 13	1	0, 987	0.987	501	2.0	105	0, 206		E 14	1	0.0925	0. 0SB3	0.0300	0.0710		E 15	1	0. 55-10	0.0523	0.0431	0.0439		E 16	ł	0.385	0.718	0.924	1. 07	1.30	
H	CURVE	20.01	81.44	CI TUDIT		;	16.50	17, 53	18, 53	19, 53	20.04	81, 47		CURVE 13		16, 51	17.52	18.52	19 02	20.0%	81.48	i	CURVE 14		258. 2	323. 2	373.2	423.2		CURVE 15		298, 2	323, 2	373, 2	423, 2		CURVE 16		1.93	2.46	2.81	2, 83	3, 27	
*	(cont.)	0.0766	0.16	3 2 2	99.	0.130	0. 154		/E 9		0.1130	0. 1030	0, 0933	0.0879	0.0874	0, 0828	0.0789	0.0766	0.0749	0.0686	0.0649	5190 0	0.0577		E 10		0, 196	0, 186	0, 171	0. 154	0.144	0, 132	0. 129	0, 123	0, 116	0. 114		E 11		0.631	0, 625	0, 577	0, 572	
(-	CURVE 8 (cont.)	529. 2	553.2	2 44 5	2 6 1 2 6	7 : 0	857. 2		CURVE		112.3	123.6	133.3	141.0	142, 6	149.8	155. 9	160.4	166.5	2 881	195.8	202.5	227.5		CURVE 10		104.7	109.7	117. 1	131.8	141.5	152. 5	160.0	172.6	188.8	208.4		CURVE 11		16.54	17.63	18. 33	19, 53	
×	<u>√E 6</u>	0, 719	0.613	181	170		6.1.3	0.174	0. 168	0 164	0, 159	0. 157	0, 156	C. 154	0, 152		7.37		692 0	0 763	0, 757	0.741	0. 730	0.675	0.645	0. 186	0, 185	0, 178	0 172	0, 167	0, 166	0.165	0, 163	0. 159	0. 169	0.160		/E 8		0.0757	0. 6711	0.0741	0.0741	
Ļ	CURVE	19. 47	20.44	66.71	67 70	27.0	67.30	70. 63	73. 17	75. 21	76.87	78, 35	79. 67	80.44	83, 07		CURVE		19 38	19 70	19.91	20. 22	20, 57	21, 23	21.93	66, 35	67.02	72, 83	73.83	75, 68	77.08	77, 55	78. 70	79. 54	80, 30	81, 31		CURVE		362. 2	433.2	495.2	506. 2	ŀ
ж	<u> </u>	5.847	3, 411	15 924	17.513	11.010	1. 299	1. 064	0.877	0.840	0.251	0.240		0, 225		E 2		0.0810	0.0674		ت		0.081	0.079	0.078	0.077	0.075		E 4	ļ	0, 113	0.118	0. 123	0. 128		0. 139		Εō		0. 261	0. 10%	0. 102	0.0967	
H	CURVE	2,30	2. 5. 5. 5.			2	14.35	16.68	19. 57	30. 16	66. ±0	69.00	74. 00	75, 50		CURVE			373.2		CURVE		293. 2	313.2		353. 2			CURVE		573.0	623.0	673.0	723.0	773.0	823.0		CURVE			196. 2	273.2	373. 2	

DATA TABLE NO. 5 (continued)

, 'A	CURVE 66? (T = 80, 1K)	0. 155	0, 155 0, 156	118 VF 67	= 89, 4-90, 5 K)	0. 143	0, 143	<u> </u>	¥	CURVE 68	0.0976	0. 063.5	CURVE 69		0.266		CURVE 70°	0.0778		CURVE /1		0.123			6 0. 121 6 120		5 0.118	0.118	် ခ	3 0.114	0. 111		
e (deg)	IJE	25	35 170	ر	(T = 80	33,	95 170		1	บ	9 5	517	ับ	ļ	3 6	3	히	298. 2	į	티	372.3	382, 6	388. 6	402. 4	421.8 440.3	4.44.4	451. 5	462. 1 472. 5		490.3	501. 1		
×	CURVE 63 (cont.)	0. 1590 0. 1569	0, 1570 0, 1566	0, 1597	0, 1603 0, 1609	0, 1634	0, 1590	0, 1582	u. 1584	CURVE 64 91, 60-91, 79 K)		0, 1010	0, 1452	0, 1469	0, 1405	0.1424	0. 1451	0. 1474 0. 1451	0, 1435	0.1447	0.1428	0, 1430	0.1440	0.1495	د	¢	CURVE 65	(H)	0, 186	0, 178	0. 176	0. 110	
↓ (de-g)	CURVE	115	160	-150	-120	- 95	55	- 20	. 10	CUI	t	7.) i	3.	115	145	175	-173 -155	-125	-110	0%	- 65	- 96	- 5	t	•	5	3	30.5	84.5	89. 1	296. 5	
æ	CURVE 54	0 1184	CURVE 55	0, 1352	VE 56	0, 1152	35 an	70	9 1335	CURVE 38	0.1128	et avair		0, 1327		CORVE 60	0, 1123	CORVE 61		0. 1167	CURVE 62		0. 45.84	¥	. 63 31	= 91 19-91 45 KG		C. 1583	0, 1593	0.1584	0. 1611	0. 1635 0. 1619	
←	CUR	79, 37	COR	79, 30	CURVE	79, 36	3/10/15		75, 40	CUR	79, 41	airo		79, 30	Ċ	S COR	79, 43	COR		79, 42	CUR	 	17 10	(Rap) 🛧	, all c	16 = F		ဆဋ	25	3 4	ç	28 200	
ж	CURVE 46	0, 1143	E 47	0, 0139	¥	E 43	-92, 04 K)	0. 1143	0, 1909	0, 0938 6, 0938 6, 0950	0, 1000	0.1150	0, 1974	0.0965	0,0978	0. 100z	ᅩ	6 - 11		0.1465	05 3	}	0. 1439	CURVE 513	6011		25 3 3	6261 0	0 1630	:: :::::::::::::::::::::::::::::::::::	ļ	U. 1404	
÷	CURV	91, 77	CURVE 47	91.96	(fap) ∱	CURVE 48	(T = 91.71	10	9 9	100 130	160	ગ ા ગ	-110	98	3.	02 -	Ţ	CURVE 49		20.62	CURVE 50		. Ox.	CURV	1 3	3	CURVE 32	200	556.	CURVE 53	ļ	79, 13	
ж	CURVE 40 (cont.)	0,0992	0.1011	0.1154	0, 1036 0, 1036	0, 1013	0. 1028	0. 1351	×	CURVE 41	0, 1264	.: 0	CURVE 42	0, 1245		CUILVE 43	0, 1088	24	!	CURVE 44	-ar : ac v)	0, 1205	0 1103	0, 1008	0. 1031	0.1100	0, 1020		- 91 KG - 40 K)		0. 1193	0, 1003 0, 0983	
⊉ (deg)	CURVE	96	091 171	180	00 1-	00 -	0 + -	02 -	۲	CURI	91. 47	ě	CUR	91, 60	,	CCIK	91. 77	& (deg.)			(1 - 31.63	O.	0 t-	100	130	051	08 -	g	A LONG		10	700 100	
.	*	0. 1146	¥	33	: 50 K)	0. 1170		0, 1075 0, 1085	0.1127	0, 1217 0, 1171 0, 1085	0, 1082	0.1186	<u>بر</u>	:	.98	3811 9	, 1100 100	<u>اع</u>	0, 1045	i	ş	0.1147	51.	;	0. 1002	د	4	40.	17. 60 L)	0. 1138	0.1071	0. 1011	
ħ	CURVE	91, 59	(£3p) ∱	CURVE 35	(T = 91, 35-9)	20 02	09	120	150	189 -160 -120		- 1 0	۴	•	CURVE 36	7.5	7.	CURVE 37	91, 65		CURVE. 38	91 60	CITR VF 19		91.68	A. Colone	9 (416.6)	CURVE 40	(1 : 31. 45-	a	20		
×	'E 25°	0, 0533	CURVE 26	0.0950	CURVE 27	0.0794		282	0.0808	CURVE 29"	0, 0795	: :	E 36	0. 0460	0.0460	0.0444	0.0439	0.0427	6.0427	0.0418	E 33	<u> </u>	0, 233 0, 105	0, 0803	6	32	0. 1264	í	37	0. 12:я8			
1	CURVE	287. 2	CURV	287.2	CURV	287.2		CURVE 28	287.2	CURV	328.2	í	CURVE	313.2	321.2	335. 2	375.2	383.2	421.2	453.2	CIRVE		87.2	291.2	í	CURVE 32	91. 47		CURVESS	91. 49			

	*	CURVE 116 (cont.)	0. 169	0.172	0.174	0.171	0, 170	0, 177	0, 180		CURVE 117	0, 1274	0. 1126	8960 D	0, 0672	0, 9607	CURVE 118		0.1531	0.1480	0, 1265		0.0985	CURVE 1182		0.0686	s) K	VE 120	(T - 1.46 K)		0.06843		0.0681*
	T	CURVE	823. 2	824. 7	853.2	879.2	896, 2	905, 2	945, 2		3	100	119	G * 1	249	300	CUL	:	100	1 12	200	0.50	905	CUR	6 6 6	373.2	H(gauss)	417		1.02	1.98	3.54	4.52 5.31
	¥	CURVE 112	0.0879	CURVE 113	6	0. 0308	CURVE 114	0 208	0.0812	0, 0506	CURVE 115		0.0711	0. US68	0,0628	0.0669	0. 142	0. 138	0. 142	<u>:</u> ;	CURVE 116		0.151 0.144	0. 160	0.158	0.156	0. 169	0.163	0, 164		0, 165° 0, 160°	0. 160	0, 169° 0, 164°
	٢	CURV	2HT. 2	CURV	6	2.182	CURV	2.3	273.2	373.2	CURV		313.3	397. X 460. 4	481.2	537, 8	556. X	573, 3	598. 6 629. 7		CURV	:	626. 2	647.2	675.2	693.2	713, 2	7.4.7	743.2	749.7	761. 2	772.2	782. 0 796. 7
	¥	CURVE 104 (cont.)	0, 1398 0, 1398	0, 1443	0, 1380	¥.	:	105	0.0904	0.0004	0.0891	0, 0858	0, 0849	0.0834	0, 0828	0, 0854	106		0.0833	107	}	0, 0527	801.		0, 0556	109	0, 0594	011.		0.0741	III	0.0849	
(continued)	(9.qr.)	CURVE :	-124	 \$ 59 .	- 34	[-	ı	CURVE 105	319.9	342. 3	407. x	421.9	425.3	442.2	477.0	500. 2	CURVE 106	i i	373.2	CURVE 107		287. 2	CIRVE 108		287.2	CURVE 109	287.2	CITRVE 110		287.2	CURVE 111	287.2	
ശ	¥	99° 91.36K)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.1541	0.1501	0. 1492 0. 1499	0, 1530	0. 1625 0. 1562	0. 1536	0, 1539	0. 1540		ᅩ	100		0. 1537	101	40.4	O. 1-6-4	102		0. 1403	1035		0. 1416	¥	104	-ar. 5.50	0. 1371	0. 1323 0. 1312	0, 1337 0, 1371	0. 1:394	0, 1383 0, 1352
DATA TABLE NO.	θ(deg)	$\frac{\text{CURVE 99}^{\circ}}{(T = 91, 23, 91, 36.K)}$		7 원	25	36 116	146	-178	-124	- 94	5. 5.4.		<u>:</u>	CIRVE 100		91.24	CURVE 101		91.29	CURVE 102		91.55	CIRVE 1000		91.56	θ(deg)	CURVE 104	(T = 21, 20-21, 3:10)	81 (35 26 37	86 116	146	-178 -148
	×	CURVE 89	0. 1535	×	(100	(T * 78.7 K)		0. 1281 0. 1236		×	CURVE 91	1	0. 1227	CITRVE 925		0.2031		CURVE 93	0 1542		CURVE 94		0.1457	CURVE 95	1000	3 0, 1,23		0.1733	CURVE 97	0, 1691	CURVE 98		0. 1608
	H	CUR	78.5	8(deg)	Š			4 %		(-	CUR	! ,	78.1	CITR		79.1		CUB	91.1	1	S)		91. 4	CUR	i d	7.67		31.53	CUR	91, 30	CLIR		91, 26
	¥	CURVE 79	0.1268	CURVE 80		e. 0394	CURVE 813	0 1443		CURVE 82	0, 1232	•	CURVE 83	0 1164		CURVE 84	0 1150	\$ 100 A	CORVE 85	0.1135		CURVE 86*	0 1361			CURVE 87	(W 7:10.	0.1080			CURVE 88*	0.1220	0, 1042
	H		91. S	กว	á	7. 2. 7.	S	7.9 6		5	79. 8			79.9		CO	79.9	· ·	3	79.9			91.0	•	9(deg)	SIL SIL	: :	* 35	3	H	SI SI	78.7	91. 2
	¥	VE 72	m o	15.0	14. 5	CURVE 735	1	0, 2008	0.1969	0. 1963	0, 1394	0. 1894	o c	COHVE 14	96 1 .0	0. 198	0, 1932	0. 1903	c. 1869 0. 186		CURVE 75*	;	0, 147	,	CURVE, 76*	0.154		COBVE	0.204	0. 185	CURVE 78	0.175	
	μ	CURVE	2.05	n 65	4. 13	CUR		81.95 80.5	85.2	85, 75	88. 65	89, 75	6	3	82. 5	82.7	86, 2	87.6	88.9	;	5		77, 76		띩	78.31			78.37	88, 00		90,05	

Trigology Tri		U(m) III	د	F	د	DAT/	DATA TABLE NO.	ا ده	(continued)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J	H(gauss)	~	H	¥	=	£	-	¥
## 1975	ij.	CURVE (T - 300	123 *	CURV	<u>E 127</u>	CURV	E 131	CURVE	135
6657* 0000 0.0542 119,4 0.0799 133.3 0.111 252 666** 2009 0.0538 126,1 0.0799 136.3 0.109 303 666** 2009 0.0538 126,2 0.0640 141.4 0.109 303 666** 2009 0.0539 145,2 0.0640 142.1 0.108 303 665** 2009 0.0539 149,6 0.0645 147.2 0.108 303 6659* 4010 0.0539 149,6 0.0653 CURVE 132 CURVE 132 6659 10.0431 171.9 0.0653 1.28 0.103 0.103 6649 6934 0.0445 171.0 0.0457 1.13 0.120 0.045 6649 6934 1.0445 1.0475 1.047 1.147 0.182 1.147 0.182 6649 6934 0.0447 1.0475 1.047 0.182 1.147 0.183 1040	.0675	1		110.2	0.0887	122.1	0.117	197	0.115
665° 2029 0.0538 126.1 0.0770 0.109 303 6658 2029 0.0539 126.1 0.0770 0.109 303 6659 2029 0.05519 142.5 0.0666 140.1 0.108 6659 4010 0.0590 142.6 0.0618 141.4 0.105 6652 4010 0.0590 142.6 0.0618 141.4 0.105 6652 5543 0.0493 171.3 0.0538 CURVE 132 6648 5566 0.0493 171.3 0.0538 1.28 0.620 6649 5566 0.0493 171.3 0.0477 1.33 0.053 6640 0.0447 171 0.0782 1.49 0.934 9 450 0.0447 141.4 0.0628 1.54 1.07 9 450 0.0456 117.1 0.0782 1.49 0.934 9 555 0.0457 141.4 0.0639 1.58 1.38 9 11 0.0437 141.4 0.0637 1.68 1.38 9 11 0.0437 141.4 0.0639 1.56 1 1161 0.0437 141.4 0.0639 1.56 1 1023 0.0437 141.4 0.0639 1.56 1 1021 0.0430 1.059 9 100 0.0468 113.6 0.0594 1.72 1.68 1 1021 0.0430 1.059 1 1021 0.059 1 10	0675¢	0000	0.0542	119.4	0.0799	133.3	0.111	252	0. 100
666* 2029 0.0530 137.5 0.0686 140.1 666* 2592 0.0520 142.1 0.0661 141.4 6655* 4010 0.0539 149.6 0.0640 141.4 6655* 4010 0.0509 149.6 0.0640 142.1 6655* 4010 0.0509 149.6 0.0640 141.4 6655* 4966 0.0493 171.9 0.0639 1.28 6646* 6878 0.0493 209.1 0.0447 1.40 7016 0.0443 209.1 0.0447 1.40 7016 0.0443 209.1 0.0447 1.40 7016 0.0447 1.71 0.0482 1.41 9480 0.0457 141.4 0.0683 1.44 911 0.0457 148.9 0.0577 1.49 911 0.0457 148.9 0.0577 1.49 911 0.0457 148.9 0.0574 1.41 <tr< td=""><td>0671</td><td>1040</td><td>0.0538</td><td>126.1</td><td>0.0770</td><td>136.3</td><td>0.109</td><td>303</td><td>0.0925</td></tr<>	0671	1040	0.0538	126.1	0.0770	136.3	0.109	303	0.0925
Ke66** 2592 0.0520 142.1 0.0661 141.4 6653** 3038 0.0519 146.3 0.0640 145.2 6653** 3038 0.0509 149.6 0.0649 145.2 6652** 4986 0.0509 152.6 0.0536 1.28 6652** 5543 0.0493 171.9 0.0536 1.28 6649 6981 0.0483 20.0485 1.28 6640 0.0484 0.0485 1.49 6981 0.0484 20.0485 1.49 6981 0.0447 CURVE 128 1.44 7816 0.0477 CURVE 128 1.44 9925 0.0465 129.4 0.0487 1.49 9925 0.0450 148.9 0.0577 1.49 9925 0.0450 148.9 0.0577 1.49 991 0.0450 172.7 0.0519 1.58 991 0.0450 0.0487 CURVE 129* 1.48	€6990	2039	0.0530	137.5	0.0686	140.1	0.108		
6653 3038 0.0519 146.3 0.0640 145.2 6652° 4010 0.0509 149.6 0.0615 6652° 5543 0.0493 171.9 0.0536 6652° 5543 0.0493 171.9 0.0536 6678 0.0491 186.5 0.0495 1.28 6681 0.0471 1.35 6681 0.0471 1.35 6681 0.0471 1.40 7815 0.0471 1.71 0.0782 1.49 9555 0.0457 141.4 0.0623 1.61 9022° 11023 0.0457 141.4 0.0623 1.54 9011 1161 0.0456 129.4 0.0577 1.68 9012 0.0457 141.4 0.0623 1.51 9023° 10040 0.0457 141.4 0.0623 1.51 9012 0.0457 141.4 0.0623 1.51 9013 0.0450 113.6 0.0544 1.71 9014 0.0456 156.1 0.0519 1.36 9015 0.0450 113.6 0.0544 1.71 9016 0.0450 113.6 0.0544 1.71 9017 0.0459 113.6 0.0544 1.71 9018 0.0450 113.6 0.0544 1.71 9019 0.0450 113.6 0.0544 1.71 9024 0.0450 113.6 0.0510 1.35 903 0.0450 113.6 0.0481 1.71 903 0.0474 1.77 0.0481 1.71 904 0.0474 1.77 0.0481 1.71 907 0.0469 113.6 0.0967 1.51 908 0.0474 1.77 0.0941 1.72 909 0.0474 1.77 0.0941 1.72 901 0.0475 1.26 901 0.0475 1.26 901 0.0476 1.97.7 0.0941 1.80 901 0.0476 1.97.7 0.0941 1.80 901 0.0477 1.72 0.0950 301 902 0.0753 1.48.9 0.110 198 902 0.0753 1.74.2 0.0950 301 903 0.0465 1.56 0.0950 301 903 0.0465 1.56 0.0950 301 904 0.0465 1.56 0.0950 301 905 0.0465 1.56 0.0950 301 905 0.0465 1.56 0.0950 301 907 0.0465 1.56 0.0950 301 908 0.0950 1.10 1.95 901 0.0474 0.1465 1.80	*9990	2592	0.0520	142.1	0.0661	141.4	0.105		
6559** 4010 0.0509 149.6 0.0615 6555** 4986 0.0509 152.6 0.0538 CURVE 6554 5984 0.0493 171.9 0.0495 1.28 6459 5986 0.0491 186.5 0.0495 1.28 6464 6878 0.0493 209.1 0.0477 1.28 6464 6878 0.04945 171.9 0.0477 1.40 7865 0.0447 177.1 0.0477 1.40 9480 0.0464 117.1 0.0474 1.41 955 0.0465 129.4 0.0686 1.44 9927 0.0457 141.9 0.0577 1.49 9927 0.0456 148.9 0.0577 1.54 993 0.0457 141.9 0.0519 1.71 994 0.0456 142.0 0.0519 1.74 993 0.047 17.7 0.0481 1.74 994 0.0469	.0663	3038	0.0519	146.3	0.0640	145.2	0.103		
K656* 4986 0.0500 152.6 0.0598 CURVE K652* 5543 0.0493 171.9 0.0536 1.28 K652* 5543 0.0491 186.5 0.0485 1.28 K646* 6878 0.0491 186.5 0.0485 1.28 K646* 6878 0.0447 CURVE 128 1.49 7816 0.0477 CURVE 128 1.44 9922 0.0465 129.4 0.0686 1.54 9922 0.0465 129.4 0.0686 1.54 9925 0.0465 129.4 0.0686 1.54 9927 0.0450 144.9 0.0577 1.64 9927 0.0450 148.9 0.0577 1.69 991 0.0469 172.7 0.0519 1.51 994 0.0469 113.6 0.0481 1.71 899 5071 0.0469 177.7 0.0481 1.78 899 5071 0.0469 </td <td>.0659*</td> <td>4010</td> <td>0.0509</td> <td>149.6</td> <td>0.0615</td> <td></td> <td></td> <td></td> <td></td>	.0659*	4010	0.0509	149.6	0.0615				
K6524 5543 0.0493 171.9 0.0536 649 5836 0.0491 186.5 0.0485 1.28 6649 5836 0.0491 186.5 0.0485 1.28 6981 0.0483 209.1 0.0477 1.40 6981 0.0477 $CURVE 128$ 1.47 9486 0.0464 117.1 0.0782 1.44 9925 10640 0.0457 141.4 0.0686 1.54 9927 10640 0.0457 141.4 0.0687 1.61 9927 10640 0.0457 141.4 0.0687 1.51 9917 11161 0.0456 172.7 0.0514 1.71 9917 0.0456 172.7 0.0491 1.28 893 5071 0.0459 177.7 0.0481 1.28 894 0.0469 172.7 0.0481 1.28 893 0.0474 177.7 0.0481 1.28 9940	.0655*	4986	0.0500	152.6	0.0598	CURV	E 132		
6489 5936 0.0491 186.5 0.0485 1.28 6464 6 6878 0.0483 209.1 0.0477 1.35 69878 0.0483 209.1 0.0477 1.40 7816 0.0487 $CURVE.128$ 1.47 9480 0.0457 117.1 0.0782 1.44 9525 0.0450 0.0457 141.4 0.0686 1.54 9927 10640 0.0457 141.4 0.0623 1.51 9917 11161 0.0456 129.4 0.0537 1.61 9918 CURVE.124 172.7 0.0519 1.73 991 CURVE.125 172.7 0.0481 CURVE 893 0.0459 113.6 0.0481 0.0481 893 0.0459 17.7 0.0481 1.48 893 0.0474 17.7 0.0481 1.28 893 0.0474 17.7 0.0941 1.78 993 0.0475 1	.06524	5543	0.0493	171.9	0.6536	;			
KA66* 6878 0.0483 209.1 0.0477 1.35 781 0.0447 $CURVE 128$ 1.40 7865 0.0471 $CURVE 128$ 1.41 9480 0.0471 $CURVE 128$ 1.40 9255 0.0464 17.1 0.0782 1.49 9227 11023 0.0450 148.9 0.0686 1.51 9927 11023 0.0450 148.9 0.0577 1.68 9917 11161 0.0456 156.3 0.0577 1.54 9917 0.0456 156.3 0.0577 1.79 9917 0.0457 172.7 0.0519 1.79 9918 0.0459 172.7 0.0519 1.31 890 5071 0.0469 177.7 0.0481 1.71 891 $CURVE 125$ 170.7 0.0481 1.74 892 $CORVE 126$ 177.7 0.0941 1.72 9910 $CORVE 126$ 177.7 <td>.0649</td> <td>5936</td> <td>0.0491</td> <td>186.5</td> <td>0.0485</td> <td>1.28</td> <td>0.620</td> <td></td> <td></td>	.0649	5936	0.0491	186.5	0.0485	1.28	0.620		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0646*	6878	0.0483	209.1	0.0477	1,35	0.725		
7816		1869	0.0485			1.40	3.821		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	٠.	7816	0.0477	CURV	'E 128	1.42	0.843		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¥	8565	0.0471			1.47	0.934		
922 9552 0.0468 129.4 0.0686 1.54 9227 10640 0.0457 141.4 0.0683 1.61 9227 11023 0.0450 148.9 0.0577 1.68 9327 11023 0.0450 148.9 0.0577 1.61 931 CURVE 124 172.7 0.0519 1.79 9903 (T = 300.2 K) 190.4 0.0481 CURVE 899 5071 0.0469 173.7 0.0481 1.26 899 5071 0.0469 130.4 1.41 1.41 899 5071 0.0469 130.4 0.0481 1.41 899 5071 0.0469 130.4 1.41 1.41 899 5072 0.0469 177.7 0.0481 1.48 899 5074 0.0474 177.7 0.0967 1.48 8910 0.0502 169.8 0.0967 1.78 9910 0.0474 177.7		9480	0.0464	117.1	0.0782	1.49	0.973		
9927 10040 0.0457 141.4 0.0623 1.61 191023 0.0450 148.9 0.0577 1.68 1911 11013 0.0456 156.3 0.0544 1.79 1911 1101 0.0456 156.3 0.0544 1.79 1911 1101 0.0456 156.3 0.0544 1.79 1911 1101 0.0456 156.3 0.0544 1.79 1911 1101 0.0456 156.3 0.0510 1.91 1.91 1903 1.91 1903 1.91 1904 0.0469 113.6 0.0481 $(T = 300.2 \text{ K})$ 190.4 0.0481 $(T = 300.2 \text{ K})$ 113.6 0.129 1.36 1.31 1903 113.6 0.105 1.31 1903 113.6 0.0967 1.61 1903 1903 1903 1903 1903 1903 1903 190	0929	9552	0.00	129.4	0.0686	1.54	1.07		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.560 1.500	10640	0.0457	141	0.0623	1.61	1.22		
Section Sec	\$1.000	11033	0430	14%	0.0577	20	1.38		
CURVE 124 172.7 0.0519 1.91	2700	11053	0.030	110.0	0.0544	1 79	1 68		
CURYE 124 172.7 0.0319 1.51 BOOK $(T = 360.2 \text{ K})$ 190.4 0.0481 CURYE BOOK $(T = 360.2 \text{ K})$ 190.4 0.0481 CURYE BOOK SO71 0.0469 113.6 0.129 1.36 BOK SO71 0.0469 113.6 0.129 1.36 CURYE 125 130.7 0.114 1.41 T = 300.2 K	100	11101	0.040	7.00.	0.00	: -			
10.00 $(T = 300.2 \text{ K})$ 17.2.1 0.0481 $(T = 300.2 \text{ K})$ 190.4 0.0481 $(T = 300.2 \text{ K})$ 113.6 0.129 1.26 1.36 $(T = 300.2 \text{ K})$ 113.6 0.139 1.31 $(T = 300.2 \text{ K})$ 144.0 0.105 1.48 1.41 $(T = 300.2 \text{ K})$ 144.0 0.105 1.52 1.52 1.82 1.84 0.0504 177.7 0.0997 1.52 1.52 1.95 1.30 0.0474 197.7 0.0997 1.73 1.82 1.95 1.30 0.0474 197.7 0.0997 1.73 1.82 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	0.00	1	70	102.1	0.0019	1.31	70.7		
The state of th	1160	S KY	2	1.2.	0.0510	Marie	66.		
No.	6060	005 = .T.)	Ž	130.4	0.0401	COPA	3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0404	Jano	1004	1 26	295 0		
CURVE 125 * 130.7 0.114 1.41 (T = 300.2 K) 144.0 0.105 1.48 4997 0.0502 169.8 0.0967 1.52 9913 5034 0.0504 177.7 0.0947 1.72 9910 9973 0.0474 197.7 0.0941 1.72 9919 CURVE 126 114.3 0.134 9917 453.2 0.0753 137.4 0.114 1.56 9918 553.2 0.0753 137.4 0.114 1.56 9919 CURVE 126 128.3 0.103 198 9910 146.9 0.110 198 9911 140.2 0.0711 146.9 0.110 198 9912 0.0502 158.3 0.103 252 9913 174.2 0.0952 301 9914 177.2 0.1465 158.3 0.103 9915 170.2 0.1465 158.3 0.103 9917 170.2 0.1465 158.3 0.103 9918 170.2 0.1465 158.3 0.103 9919 174.2 0.0950 301 9919 174.2 0.1961 158.3 0.103 9919 174.2 0.0950 301 9919 174.2 0.1961 158.3 0.103 9919 174.2 0.1965 158.3 0.103 9919 174.2 0.1965 158.3 0.103 9919 174.2 0.1965 158.3 0.103 9919 174.2 0.1965 158.3 0.103 9919 174.2 0.1965 158.3 0.103 9919 174.2 0.1965 158.3 0.103 9919 170.2 0.1465 158.3 0.103 9919 170.2 0.1465 158.3 0.103 9919 170.2 0.1465 158.3 0.103 9919 170.2 0.1465 158.3 0.103 9919 170.2 0.1465 158.3 0.103 9919 170.2 0.1465 158.3 0.103	0802	0647	0.0459		7	2.5	0.643		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000	Ę	0.040	3 611	199	36.1	0.725		
CONTACT CONT		211211	* 20.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-	0 813		
1 = 300.2 K 144.0 0.105 1.45 4997	,	CORVE		130.7	0.114	# *	0.013		
Heat	t	(T. = 300	(N)	144.0	0.105	0 C	0.340		
5034 0.0504 170.7 0.0001 1.72 9940 0.0474 197.7 0.0912 1.82 9973 0.0475 CURVE 130 1.95 1.95 9973 0.0475 CURVE 130 2.01 T	7	4007	0000	1.001	0.030	1.32	28		
OUGH 0.0004 117.7 0.0041 1.1.82 9973 0.0474 197.7 0.0912 1.82 9973 0.0475 0.0475 2.01 1.95 1.95 1.95 1.04 CURVE 130 2.01 1.4.3 0.132 1.4.3 0.132 1.2.4 0.121 80 490.2 0.0771 146.9 0.114 156 490.2 0.0771 146.9 0.110 198 555.2 0.1057 177.2 0.0992 301 619.2 0.1381 215.6 0.0950 CURVE 770.2 0.1465 215.6 0.0950 CURVE 770.2 0.1465 255 1.00000000000000000000000000000000000	6.6.00	1664	0.0502	0 0 0 0	60.0	1.01	7		
T K 108.0 0.144 CURVE 130 2.01 T K 108.0 0.144 CURVE 130 2.01 CURVE 126 114.3 0.132 80 453.2 0.0753 137.4 0.114 156 490.2 0.0711 146.9 0.110 198 537.2 0.0628 158.3 0.103 252 555.2 0.1387 174.2 0.0592 301 712.2 0.1465 215.6 0.0550 CURVE 770.2 0.1465 215.6 0.0550 81		4000	40c0 o		100.0	2 6	90.1		
T K 108.0 0.144 CURVE CURVE.i26 114.3 0.132 453.2 0.0753 137.4 0.114 156 490.2 0.0711 146.9 0.110 198 537.2 0.0628 158.3 0.103 252 555.2 0.1297 174.2 0.0992 301 619.2 0.1381 215.6 0.0950 712.2 0.1465 770.2 0.1465 81	91.00	200	# / # (· · ·	7.76	0.0316	10.1	00.4		
T k 108.0 0.144 CURVE CURVE.i26 114.3 0.132 453.2 0.0753 137.4 0.114 156 490.2 0.0711 146.9 0.110 198 537.2 0.0528 158.3 0.103 252 555.2 0.1297 174.2 0.0992 301 6193 216.6 0.0950 712.2 0.1465 770.2 0.1465 81 105	07.00	2166	0.0475	Idilo	001 4	1.93	2.30		
CURVE 126 CURVE 126 114.3 0.134 CURVE 126 114.3 0.132 453.2 0.0753 137.4 0.114 156 490.2 0.0711 146.3 0.1103 252 252 0.103 252 0.103 137.2 0.092 101.3 101.2 101.4 101.8 10	9000	£	د		201	;	·		
CURVE 126 114.3 0.132 CURVE 126 114.3 0.132 CURVE 126 114.3 0.132 CURVE 126.4 0.121 80 CURVE 126.2 0.0753 137.4 0.114 156 CURVE 126.2 0.0711 146.9 0.110 198 S37.2 0.0528 158.3 0.103 252 S552 S552 0.1267 174.2 0.0992 301 CURVE 172.2 0.1465 CURVE 170.2 0.1465 CURVE 125.6 0.0950 CURVE 125.6 0.1465 CURVE 125.6 0.0950 CURVE 125.6 0.0950 CURVE 125.6 0.1465 CURVE 125.6 C	9100	-	٠				Q		
CURVE.126 114.3 0.132 453.2 0.0753 128.4 0.132 80 490.2 0.0711 146.9 0.110 198 537.2 0.0628 158.3 0.103 252 555.2 0.1297 174.2 0.0992 301 619.2 0.1381 215.6 0.0950 712.2 0.1465 770.2 0.1465 81 105	6160			108.0	‡ :		134		
453.2 0 0753 128.4 0 1121 80 490.2 0 0713 137.4 0 1114 156 490.2 0 0711 146.9 0 1110 198 537.2 0 0.628 158.3 0 103 252 555.2 0 1297 174.2 0 0.092 301 6193 215.6 0 0.0950 712.2 0 1465 770.2 0 1465 81 105	6160	CORVE	92	114.3	0.132	;	,		
453.2 0.0753 137.4 0.114 135 490.2 0.0628 158.3 0.103 252 555.2 0.1297 174.2 0.0992 301 619.2 0.1381 215.6 0.0950 CURVE 770.2 0.1465 81	3100		2	120.4	0.121	D 5	0.134		
490.2 0.0711 146.9 0.110 198 527.2 0.0628 158.3 0.103 252 555.2 0.1297 174.2 0.0950 301 619.2 0.1381 215.6 0.0950 712.2 0.1465 CURVE 770.2 0.1465 81	0.00	403.6	0.00		0.114	907	0.0100		
537.2 0.0628 158.3 0.103 252 555.2 0.1297 174.2 0.0992 301 619.2 0.1381 215.6 0.0950 CURVE 770.2 0.1465 81	5080	480.2	0.0711	146.9	0.110	198	0.0672		
555.2 0.1297 174.2 0.0992 301 619.2 0.1381 215.6 0.0950 712.2 0.1465 CURVE 770.2 0.1465 81	2060.	537.2	0.0628	158.3	0.103	252	0.0572		
619.2 0.1381 215.6 0.0950 712.2 0.1465 770.2 0.1465 81 105	£684.	555.2	0.1297	174.2	0.0992	301	0, 0530		
712.2 0.1465 CURVE 770.2 0.1465 81 105	1338	619.2	0.1381	215.6	0.0350				
770.2 0.1465 81 81 105 105 155	0882	712.2	0.1465			CURV	E 135*		
81 205 155	6986	770.2	0.1465						
105 155	69×0))				81	0.194		
155	2740.					105	0.158		
	USA)					155	0.134		

FIGURE AND TABLE NO. SR RECOMMENDED THERMAL CONDUCTIVITY OF BISMUTH

Ti hi	2 m	F			REC	OMMEND	recommended values*	*ა	
10 0 0 0 0 0 0 0 0 0			- o o; T)	Single (axis)	Crystal (# to e	-axís)	Polycrys	taliine	
10	8	; -	ĸ,	ж 2	ž,	χ.	k 1	k ₂	\mathbf{T}_2
1, 19 19 19 19 19 19 19	<u> </u>	。 丁	5		0	•	0	0	459.7
2		- : 	(0.452)*						457.9
1		., .,		089 077					7.7
2		· 4	17. 1	988					452.5
1		·c	11.9	889					450.7
1	# # W # W # W # W # W # W # W # W # W #	· · · ·	7.98	451					448.9
8 4.50 254 8 14.0 254 10 2.88 146 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.88 166 10 2.89 167 10 2.88 168 10 2.89 167 10 2.88 168 10 2.89 167 10 2.89 167 10 2.88 168 10 2.89 167 10 2.89 167 10 2.89 167 10 2.80 1166 10 2.89 167 10 2.8		7	5. 77	333					447.]
8		ж Т.	4.40	254					4.5.
8 10 2 8 110 1		Г	3.50	202					4.5
2	+ +		30 61	166					441.7
1		7	2.45	142					439. 9
2 1.65 95.3 1.87 1.07 1.29 1.07 1.29 1.05 1.07 1.05 1.07 1.05 1.07 1.05 1.07 1.05 1.07 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05		77	2. 11	122					438.1
10 1.15 1.	, , ,	<u>≅</u> □	1.85	107					436,3
15 1.48 K.5.5 16 1.15 66.4 17 66.4 18 1.15 66.4 19 67.8 67.00 40.4 6.900 52.0 20 1.00 67.8 6.1 0.538 31.1 20 6.35 31.1 0.538 31.2 30 6.45 36.8 10.5 31 6.45 36.8 10.5 32 6.45 6.45 36.8 10.5 40 6.45 6.27 13.7 50 6.45 6.27 13.7 50 6.45 6.27 13.7 50 6.45 6.27 13.7 50 6.45 6.27 13.7 50 6.45 6.27 13.7 50 6.45 6.27 13.7 50 6.45 6.27 13.7 50 6.45 6.45 13.7 50 6.45 6.45 13.7 50 6.45 6.45 13.7 50 6.45 6.45 13.7 50 6.45 6.45 13.7 50		14	1,65	95.3					434
10-1 1-1		<u>'2</u>	57	5.5					432.7
10 1 1 1 1 1 1 1 1 1		7	38	78.6					430.5
10-1 10-1	3	2 2	1.15						427.3
## Second control of the recommended values that are conductivity of and a to right of waterland as a torchard to which are are for a values are values values are values are values v	10-1	; s;	1.00	57.8	0, 700	40.4	0, 900	52.0	423.7
30	***************************************	52	0.780	45.1	0, 538	31.1	0.695	40.2	414.7
35		3	0.635	36. 7	0, 434	25. 1	0,568	32.8	405.7
40 0.465 26.9 0.311 18.0 0.414 23.9 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		: £	0, 536	31.0	0.364	19.6	0.478	27.6	-396. 7
45 0.410 23.7 0.272 15.7 0.365 21.1 50 0.367 21.2 0.365 21.1 50 0.367 21.2 0.243 14.0 0.376 18.8 50 0.367 21.2 0.243 14.0 0.376 18.8 50 0.367 21.2 0.243 14.0 0.376 18.8 50 0.320 12.3 0.168 9.71 0.231 13.3 50 0.203 11.7 50 0.168 9.71 0.231 13.3 50 0.200 11.8 0.131 7.57 0.18 13.3 50 0.206 11.9 0.131 7.57 0.18 13.3 50 0.136 7.86 0.0856 4.77 0.118 6.82 50 0.095 5.60 5.200 0.112 6.47 0.0667 3.85 0.0969 5.60 5.200 0.0953 5.51 0.0554 3.20 0.09857 4.95 5.20 0.0953 5.29 0.0528 3.20 0.09857 4.54 3.20 0.0980 4.57 0.0491 2.84 0.0737 4.26	7	\$	0, 465	26.9	0, 311	18.0	0.414	23.9	-387, 7
60 0.367 21.2 0.243 14.0 0.326 18.3 60 0.303 17.5 0.199 11.5 0.268 15.5 80 0.230 13.3 0.148 8.55 0.203 11.7 90 0.206 11.9 0.131 7.57 0.142 10.5 10.5 11.0 10.0 11.8 10.9 0.113 7.57 0.142 8.55 0.203 11.7 150 0.186 10.9 0.131 7.57 0.142 10.5 150 0.136 7.86 0.0826 4.77 0.118 6.82 250 0.0995 5.75 0.0581 3.36 0.0969 5.60 273.2 0.0953 5.51 0.0584 3.20 0.0887 4.95 330 0.0960 4.97 0.0491 2.84 0.0737 4.26		45	0.410	23. 7	0.272	15.7	0.365	21. 1	-378.7
60 0, 303 17,5 0, 199 11,5 0, 268 15,5 5 70 0, 260 15,0 0, 168 9, 71 0, 231 13,3 80 0, 230 13,3 0, 148 8,55 0, 203 11,7 90 0, 206 11,9 0, 131 7,57 0, 182 10,5 150 0, 186 7,86 0, 0826 4, 77 0, 118 6,82 200 0, 112 6, 47 0, 0667 3,85 0, 0969 5,60 250 0, 0995 5,75 0, 0581 3,36 0, 0857 4,95 273,2 0, 0953 5,51 0, 054 3,20 0, 0822 4,75 300 0, 0916 5,29 0, 0522 3,05 0, 0786 4,54 350 0, 0860 4,97 0, 0491 2,84 0, 0737 4,26	-	95	0, 367	21.2	0.243	14.0	0.326	18.8	-369.7
5 70 0,260 15,0 0,168 9,71 0,231 13,3 13,9 13,0 13	2 List of the latest and the second s		0, 303	17.5	0.139	11.5	0.268	15.5	-351.7
80 0, 230 13, 3 0, 148 8, 55 0, 203 11, 7 - 90 0, 206 11, 9 0, 131 7, 57 0, 182 10, 5 - 182 10, 9 0, 131 7, 57 0, 182 10, 9 0, 131 7, 57 0, 182 10, 9 0, 131 7, 57 0, 183 6, 85 150 0, 136 7, 86 0, 0.056 4, 77 0, 118 6, 82 - 200 0, 136 5, 75 0, 0.581 3, 36 0, 0.0857 4, 95 273, 2 0, 0.953 5, 51 0, 0.54 3, 20 0, 0.0857 4, 95 30 0, 0.915 5, 29 0, 0.522 3, 05 0, 0.086 4, 54 3, 50 0, 0.086 4, 97 0, 0.491 2, 84 0, 0.737 4, 26	3456810 234568102 234568103 2	S	0.260	15.0	0.168	9.71	0.231	13,3	-333.7
90 0, 206 11.9 0, 131 7, 57 0, 142 10.5 100 0, 188 10, 9 0, 119 6, 28 0, 165 9, 63 150 0, 138 7, 8 0, 119 6, 28 0, 165 9, 63 150 0, 138 7, 8 0, 0425 4, 77 0, 118 6, 82 200 0, 112 6, 47 0, 0667 3, 85 0, 0959 5, 60 273, 2 0, 0953 5, 75 0, 0554 3, 20 0, 0482 4, 75 300 0, 0915 5, 29 0, 0552 3, 05 0, 0786 4, 54 35 0, 0860 4, 97 0, 0491 2, 84 0, 0737 4, 26		90	0.230	13.3	0, 148	8, 55	0, 203	11.7	-315.
100 0.188 10.9 0.119 6.88 0.165 9.53 150 0.136 7.86 0.0826 4.77 0.118 6.82 200 0.112 6.47 0.0667 3.85 0.0969 5.60 250 0.0995 5.75 0.0581 3.36 0.0857 4.95 273.2 0.0953 5.51 0.0554 3.20 0.0822 4.75 300 0.0915 5.29 0.0528 3.05 0.0786 4.54 350 0.0860 4.97 0.0491 2.84 0.0737 4.26	TEMPERATURE, K	90	0.206	11.9	0.131	7.57	0, 142	30.5	-297.
150 0.136 7.86 0.0426 4.77 0.118 6.82 - 200 0.112 6.47 0.0667 3.85 0.0969 5.60 - 250 0.0995 5.75 0.0581 3.36 0.0857 4.95 - 273.2 0.0953 5.51 0.0554 3.20 0.0822 4.75 300 0.0915 5.29 0.0522 3.05 0.0786 4.54 350 0.0860 4.97 0.0491 2.84 0.0737 4.26		100	0.188	10.9	0.119	£. 9	0, 165	9, 53	-279.
200 0.112 6.47 0.0667 3.85 0.0969 5.60 250 0.0995 5.75 0.0581 3.36 0.0857 4.95 273.2 0.0953 5.51 0.0554 3.20 0.0882 4.75 300 0.0915 5.29 0.0528 3.05 0.0786 4.54 350 0.0860 4.97 0.0491 2.84 0.0737 4.26		35	0.136	7.86	0.0H26	4.77	0.118	6. 82	-189.7
250 0.0995 5.75 0.0581 3.36 0.0857 4.95 273.2 0.0953 5.51 0.0554 3.20 0.0882 4.75 300 0.0915 5.29 0.0528 3.05 0.0786 4.54 350 0.0860 4.97 0.0491 2.84 0.0737 4.26	RFMARKS	200	0.112	6.47	0.0667	3,85	0, 0969	5, 60	- 99.7
273.2 0.0953 5.51 0.0534 3.20 0.0822 4.75 300 0.0915 5.29 0.0522 3.05 0.0786 4.54 350 0.0860 4.97 0.0491 2.84 0.0737 4.26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	250	0,0995	5.75	0.0581	3, 36	0,0857	4, 95	- 9.7
300 0, 0915 5, 29 0, 0528 3, 05 0, 0786 4, 54 350 0, 0860 4, 97 0, 0491 2, 84 0, 0737 4, 26	The recommended values are for 99, 997 % pure hymnth. The recommended values that are	273.2	0, 0953	5. 51	0,0554	3. 20	0,0822	4.75	32.0
350 0.0860 4.97 0.0491 2.84 0.0737 4.26	supported by experimental mermal commentivity data are monghi to the actual of the state of the		0,0915	5, 29	0.0528	3, 05	0.0786	4. 2.	
thernal conductivity near and oecow the corresponding temperature of its maximum is nightly sensitive to small physical and chemical variations of the specimens, and the values below to the control of the control trend in the control trend.	of the true values near room temperature and \$ to 10% at oner temperatures above 10 K. 1118		0.0860	4.97	0.0491	.; \$	0.0737	4.26	170.3
Settlem to Control of the Control of	Informal Community hear and other wife Control control of the control of the values below								
	sensitive to small pulsural and continued the general freed.								

*Values in parentheses are extrapolated. T1 in K, k1 in Watt cm-1 K-1, T2 in F, and k2 in Btu lb-1 ft-1 F-1.

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW

Polyci y startair	ئ	K2 12		3, 83	3.76			, 457	ri.	۳.	£.	1160	
Š		ž	0.030	0.066	0,0650		T	520	620	800	980	1160	1340
	-axis)	ĸ,	11 6	 	2. 2 . 8	d State	ķ	7.16	7, 57	8,15	8 67	9, 19	
Single Crystal	(// to c-axis)	<u>, r</u>	0010	0.0403	0.0429	in Liquid State	Į.	124	131.0	141	100	0.159	
Singl	(T to c-axis)	k,	1	4.75			ĩ		544. 323	909	9	800	200
	91	قد ٠	•	0.0822	0.0775								
		£		400	500								

SPECIFICATION TABLE NO. 6 THERMAL CONDUCTIVITY OF BORON

(Impurity $<0,\,20\%$ each. total impurities $<0,\,50\%$

For Data Reported in Figure and Table No. 6

Composition (weight percent), Specifications and Remarks	99.9 Biby difference), 0.1 C, eyludrical specimen 0.25 cm average diameter 3.8 cm long made from single crystal of the beta-rhordbohedral phase, provided by Texaco Experiment Inc., density 2,342 ± 0.005 g cm ² ; electrical resistivity > 5 x 10° ohm cm at room temperature. Debye temperature 1219 K.	Rerun of the above specimen.	Taior impurities: 10 x 10 ¹⁹ Si. 20 x 10 ¹⁸ Al. 20 x 10 ¹⁸ Mn. 6 x 10 ¹⁹ Ti, and 4 x 10 ¹⁸ Cu atoms cm ⁻¹ , also about 0. 1% (by volume) of precipitated particles 5-50 u in diameter (probably of boron nitride, silicon netusions or small voids); polycrystalline with numerous columnar crystals of \$\vartheta\$-tombohedral phase I cm long 0.3 cm average diameter; sperimen 3, 8 cm long 0.7 cm average diameter grown by partially purified boron by General Electric Research Lab.; density 2, 33 g cm ⁻³ .	As above but composed of columns 2 cm long 0. I cm average diameter; specimen 2. 6 cm long, 0. 6 cm average diameter; provided by Eagle-Picher Research Lab. Mami. Okla. (erystal reference No. M6005CP); grown from the melt by floating zone process.	No details reported. 99'B and 0.02 total of Ca. Cu. Fe. Mg. and Si. polyerystalline specimen 1 mm in diameter and several em long with a 0.025 mm; tungsten filament at the center amounting to about 0.7% by weight; prepared by the reduction of boron tribromide by hydrogen near the tungsten filament at about 1250 C; data reperfed as the average for the range 20 to %C.				
Name and Specimen Designation							7	R 46	
Reported Error, %									
Temp. Range, K	5-10	7 22	10, 100	67-16	162-290	100-140	2, 6-291	3, 1-305	300-6 30 323
Year	1963	1963	1963	1963	7961	1961	3961	1965	1965 1959
Method Used	נ	-1	L.		<u>ا</u>	ı	ıı	ı	α
No.	290	36	36.	961-	190	35	911	776	335 1009
Curve	-	C1	ဗ	4	S	ų.	~	2 0	10

DATA TABLE NO. 6 THERMAL CONDUCTIVITY OF BORON

(Impurity < 0.20% each, total impurities < 0.50%)

[Temperature, T, K, Thermai Conductivity, k, Watt cm $^{-1}K^{-1}$]

¥	CURVE 8 (cont.)	00000	CURVE 3 0.25 0.29 0.29 0.21 0.21	
1	리	84. 135. 220. 305.	300 370 410 630	, g
×	CURVE 5 (cont.)	0, 745* 0, 763 0, 648 0, 636 0, 608 0, 616	CURVE 6 1. 595 2 1. 304 9 1. 095 9 0. 840 CURVE 7	
۲	CURV	196.6 197.1 242.0 285.4 290.0 290.1	100.6 116.2 140.9	28 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ਖ	CURVE 1	0.148 0.1793 0.320 0.501	CURVE 2 11 0.357 58 0.570 21 0.773 CURVE 3	
۲	Ö	5. 00 5. 97 7. 50 7. 50 8. 80 10. 09	10.58 10.58 12.21 12.21 10.61	4 6 5 0 4 4 0 6 5 0 11 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

RECOMMENDED THERMAL CONDUCTIVITY OF BORON FIGURE AND TABLE NO. 6R

CARLO CALLED TO THE SECTION OF THE PARTY OF

			Rec (F	R¿COMMENDED VALUES* (For Polycrystalline)	VALUES (talline)	***		
\$	T,	x,	፠	ŗ	T,	ጁ	ķ	T,
	9	3	ဘ	-459.7	200	0.141	8.15	440.3
		0, 0150,	(0.867)	-457.9	009	0, 113	6, 53	620.3
· · · · · · · · · · · · · · · · · · ·	7	0, 0781)	(4.51)		2 2	(0.0941)	(5,44)	800.3
	· •	0.375	21.7	452.5	8 8	(0.0708)	(4, 09)	1160
	ເລ	0.583	9.4.0	450,7	1000	(0, 0629)	(3, 63)	1340
		9, 826	47.7	448.9	1100	(0.0569)	(3, 29)	1520
	t- x	1. 67	61.8 75.7	447.1	1200	(0.0518)	(2, 99)	1700
		. 75	9.68	-443.5	1400	(0.0437)	(2, 52)	2060
	91	1.77	102	-441.7				
m 13		1.98	134	-439.9				
	7 ?	2. 19 2. 24	124	1.00.4				
		2.53	149	134.5				
	5	2, 76	1.59	-432.7				
-		2, 93	169	430.9				
WE		3, 22	186	427.3				
	2, %	ა. გ. გ. ტ.	200	423.7 4 423.7				
	2 %	 	243 248	-405, 7				
		. 2. 2.	247	-387, 7				
N. P. 2553.K.		4.19	242	-378.7				
LA 17-15 1473 K.J.	3	4.04	233	-369, 7				
للبائل في البيدايات كياب المزيدين بيايد البايات إياب الإينان المراجعة ورو	9,8	3,63	210	-351.7				
		2, 63	152	-315,7				
		2, 24	129	-297, 7				
TEMPERATURE, K	5.03.	1. 50 0. 310	110 52.6	-279. 7 -188. 7			-	
REMARKS	200	0,525	30.3	- 99. 7				
		0, 363	21.0	- 9,7				
The recommended values are for high-purity boron. The values that are supported by experimental	61	0.317	18,3	32.0				
thermal conductivity data are thought to be accurate to within 5% of the true vilues near room tem-		0.276	ច : វិក្	80.0				
		0, 224	12.9	170.3				
the corresponding temperature of its maximum is highly sensitive to small physical and chemical	004	0.187	10.8	260.3				=

The recommended values are for high-purity boron. The values that are supported by experimental thermal conductivity date are thought to be accurate to within 5% of the true values near room temperature and 5 to 10% at other temperatures above 80 K. The thermal conductivity near and below the corresponding temperature of its maximum is highly sensitive to small physical and chemical variations of the specimens, and the values below 80 K are intended as typical values for indicating the general trend.

T in K. k in Wau om - | K - !, T2 in F, and k2 in Bu hr - ! ft - ! .

THE PERSON NAMED IN

* Values in parentheses are extrapolated.

SPECIFICATION TABLE NO. 7 THERMAL CONDUCTIVITY OF CADMIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 7]

Composition (weight percent). Specifications and Remarks	Specimen 2-3 cm in dia; electrical conductivity 5.05, 1.835. and 1.289 x 10 ⁵ obm ⁻¹ cm ⁻¹ at -190., -79, and 0_C, respectively.	< 0.05 collectrical conductivity 13.13 collectrical conductivity 13.13 and 9.89 x 10° ohm "cm" at 18 and 100 C, respectively.	Similar to the above specimen but drawn into a wire; electrical conductivity 13.25 and 19.18 x 104 ohm tem 1 at 18 and 100 C, respectively.	Specimen prepared from "pure redistilled Cadmium"; density 8.64 g cm ⁻³ at 21 C; same specimen as used by Lees (Curves 22 and 23).	99. 9999 pure; polycrystalline; cast in glass.	Specimen 1.5 cm in dia and 12 cm long; melting point 320 C.	Density 8.62 g cm ⁻³ ; electrical conductivity 14.41 and 10.16 x 10 ⁴ ohm 'cm 'st 0 and 10.00 C, respectively. (The paper reported 14.41 and 10.18 x 10 ⁵ ohm cm ⁻¹ ; obviously.	a typographical creat	Sizela amental alematical resistivity 10.08, 10.33, 10.90, 12.23, 13.20, and 14.10	Jugie ciyeur, ciective. 165.9. 162.4. 202.0, 228.6, and 252.4 C. respectively.	Polycrystal; electrical resistivity 11, 84, 13,22, 14,34, 15,22, 16,65, 17,59, and 18,30 nohm cm at 119,6, 152,8, 177,2, 196,9, 228,2, 248,8, and 262,6 C. respectively.	Pure; electrical conductivity at 12, 89, 11.11, 9.51, 8.38, 7.60, and 7.32 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 32.5, 72.2, 122.2, 174.3, 207.5, and 232.6 C. respectively.	Single crystal, specimen 0.1475 cm² in cross-sections) area and 6.70 cm long; angle between rod axis and hexagonal axis $\phi = 14^{\circ}$, electrical resistivity at 0.185, 2.001, 7.65, and 8.27 uohm cm at -252, -190, 0, and 20 C, respectively.	Single crystal; specimen 0.1009 cm² in cross-sectional area and 4.48 cm long; θ = 84°. electrical resistivity 0.1352, 1.63, 6.38, and 6.89 µohm cm at -252190. 0, and 20 C, respectively.	Similar to the above specimen except 0.0914 cm² in cross-sectional area and 6.65 cm long.	Single crystal; heat flow along the hexagonal axis; includes superconducting state.	Single crystal; heat flow perpendicular to the hexagonal axis; includes superconducting state.	Impurities < 0.03; specimen in rod form 0.3 cm² in cross-sectional area and 5 to 6 cm long;	Similar to the above specimen except 1.9 cm in dia and 10 cm long.	Specimen 1.1 cm in dia; supplied by Erba; measured in atmospheric pressure.
Name and Specimen Designation					Cd 1			Š	3				Cd 53	Cd 47a	Cd 47b	Cd 1	Cq 3			
Reported Error, %					2-3			ć	n											
Temp. Range, K	83-273	291.373	291,373	327-540	2.3-21	318-708	273,373	:	1.7-37	414-526	393-536	306-596	21-297	22-295	21-297	0.10-0.60	0.10-0.75	336.2	326.2	296.9
Year	1912	1900	1900	1931	1952	1923	1881		1955	1944	1944	1956	1932	1933	1933	1360	96.	1925	1925	1918
Method	٦	Ħ	E	1	-	a -	1 1		_1	æ	ш	μ	٦	H	-	a .	ı _	ר נ	ن	ı
Ref.	35	77	77	g	8		961		123	431	431	383	294	<u>\$</u>	7	, ,	171	230	930	511
Curve	-	69	٣	•	u	n (-، ه		∞	6	10	11	12	E1	:		c	9 5	<u>~</u>	19

A CONTRACTOR

SPECIFICATION TABLE NO. 7 (continued)

Description of the second	Composition (weight percent), specifications and accurate	Puritied; specimen ~ 0.5 cm in dia and 5 cm long; electrical conductivity 622.0, 52.5, and 14.5 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 20.4, 87.0, and 273 K, respectively.	Chemically pure (Kahlbaum); specimen ~0.5 cm in dia and 5 cm long; electrical conductivity	CVE from a cast stick of "Pure Redistilled Cadmium" as used in Cadmium—Cell; Turned from a cast stick of "Pure Redistilled Cadmium" as used in Cadmium—Cell; specimen 0. 585 cm in dia and 7-8 cm long; density 8.64 g cm ⁻³ at 21 C; electrical resistivity 2.22, 2.56, 4.18, 5.05, 5.46, 6.38, 6.96, and 7.78 μοhm cm at -178.1, resistivity 2.22, 2.56, 4.18, 5.05, 5.46, 6.38, 6.96, and 22.8 C; respectively; first experiment.	The above specimen, accond experiment. Single crystal; heat flow perpendicular to the hexagonal axis; at the transition point. 99.95 pure; specimen 0.1877 in. dia x 2.255 in. long turned from cast stick obtained from A.D. Mackay; data corrected for rise in temperature during measurement.
	Name and Specimen Designation				C 9 3
	Reported Error, %				10
	Temp. Range, K	20-273	20-273	96-297	105-295 0.53 82-276
	Year	1916	1916	1908	1908 1960 1960
	Method Used		J	.1	224
	Ref.	619	619	88	88 727 851
	Curve	្ត	21	23	23 25

DATA TABLE NO. 7 THEIWAL CONDUCTIVITY OF CADMIUM

(Impurity = 0,20% each; total impurities < 0,50%) $[Temperature, T, K; Thermal Conductivity, k, Watt. cm^{-1} K^{-1}],$

אַ	CURVE 23 (cont.)	0,946	0,933	0.908	0.916	0,925	0.904	0,895	0.891	;	CURVE 24		28.2		CURVE 25	{	0.940	0.326	0.914	0.918	0.930	0.943	996	0.985	1.03	1.05	1.05																
1	CURVE	205.2	225.2	252.2	263, 2	275, 2	283,2	292, 2	295, 2		5		0, 53		CUB	}	81.51	92.83	113.92	133.64	159.26	177.79	198.18	217.36	241.08	256.73	275.62																
. ×	CURVE 20 (cont.)	1.67	1.04	. 6		CURVE 21		1.87	1.75	1.83	1.03	0.975		CURVE 22		0.983	966 0	1,000	966 0	0.979¢	0.975	0.979	0.958	0.958	0.950	0.929	0.937	0.929	0.920	0.908	904		CURVE 23		1.02	2966 0	0.983	0 975	0.00	0.975	6,00	0.302	0. 306
۲	CURVE	22, 4	en En t	27.3	:	5	3	20, 4	21.1	22.3	8 6.7	273		EG.		96.2	120.2	133, 2	144.2	155, 2	164.2	174.2	187.2	213.2	232, 2	249.2	264.2	276.2	286.2	294. 2	297. 2		CO	-	105.2	120.2	139.9	142.2	1 6 3 5 1	7 '007	7.601	7.701	7 .461
×	CURVE 16	9. 030	0.00	0.00	540 0	0, 150	0.300	0.600	0.900	1, 150	1, 500	2, 400	3, 000	3.	. 50	5, 00	6, 00	7.00	80°×	10, 00	11, 00	12, 00	12, 00	12, 50		CURVE 17		0, 971		7E 18		0.941		/E 19)	0, 907		/E 20	}	2,35	200	: -	:
÷	CUR	0, 10	0. 10e	0.115	6.13	9.13	0, 15	U. 17	0. 19	0, 22	0. 2:35	0.24	0.30	0.34	0,36	0.40	0.43	0, 46	0, 52	0, 55	0.60	0.63	0.40	0, 75		CUR	ĺ	336.2		CURVE 18		326.2		CURVE 19		296, 9		CURVE 20	1	20 4	21.2	91.6	; ;
×	CURVE 13	1, 8k5	1, 300	1.115	1, 113	1,0 17	1, 0.29	1, 048	1, 0.45		14 Te		2.05	2. 05	1, 95	1, 754	1, 132	1, 12:1	1, 118	1, 040	1, 031		CURVE 15	}	0.015	0, 024	0.038	9, 070	0.170	0.500	0.900	1, 500	2.000	2. 800	3. 000	4.000	5, 500	6.000	6, 509	7,000			
←	CUR	22.3	0.6.90	. F.	92.5	294.0	295, 2	295.4	295,4		CURVE 14		30° ×	21.2	21.7	26.3	82,4	82.8	91.4	296. 5	₹.962		CUR		0, 10	0, 11	0, 12	0, 1:3	0.15	0.20	0.24	0.26	0.30	0,33	0,35	0, 40	0, 45	0.48	0.55	0,60			
· 2	CURVE 9	1. 11	2 :	2 8	×0	1.0x	•	CURVE 10		958	050,0	0, 941	0, 933	0.350	0,912	0.904		CURVE 11		1, 226	1, 172	1, 100	1, 063	0, 979	0, 962	0,920	0.916	O. 883	0, 891	CURVE 19		35	£ : ~	3 : -	:	. 915	+16.0	0.310	0.85	0.80			
٠	히	413.7	0.004	2 m	201.7	025.0		CO		:192.7	425.9	450,3	470.0	501.3	521.9	535, 7		CO		305, 7	318.5	345, 4	361.5	395.4	407.4	447.5	452.5	7.087	505, 8	::	3	8 06	2 6	2.1.2	; ;	5.3	· ;	91. 91.	296.3	296. B			
אר	(cont.)		3, 421		9 14					0.925			0. 4:		0, 4:39	767 O		/E 7	0, 920	e. 856		æ .∺		60, 40	88.00	68. 10	36, 60	20.60	10.00	6.90	4.20	3, 10	2, 334	2, 200	2, 028	1, 840	1.748	1, 672	1,600	1.600			
←	CURVE 5 (cont.)	11,57	* 5 S S	10.02	CIRVE		318.2	372.2	398, 2	438.2	494.2	513.2	62×.2	631.2	653,2	708.2		CUR	273.2 0.9	373.2		CURVE 8		1.70	4,85	5.26	6.40	8,52	9, 85	11, 34	14, 12	17.01	20.72	22.01	23, 82	27, 3	29.3	÷.		17.01	•		
. 4	IVE 1	1.231	1.017	1.022	CITRUE "		0.927	0,899		IVE 3		0.936	0.925		VE 4							9+6	916.0	0.900	0.920	0.900	0.820	0.89 ₅	0, 883		IVE 5	Ì	7, 105	080 'R	9. 160	10, 420	11, 315	11,620	12 97.3	11 475	10 210	6.584	
۴	CURVE	83.2	194.2	213.6	ניי		291.2	373,2		CURVE		291.2	373.2		CURVE		327.2	336,2	349.2	367.2	399, 2	420.2	447.2	463.2	491.2	501.2	522.2	526.2	540.2		CURVE	}	2.30	2.76	2.96	3,48	80 *	4	4 93	8 8		. 0	í

FIGURE AND TABLE NO. TR RECOMMENDED THERMAL CONDUCTIVITY OF CADMIUM

The recommended values are for well-amesied 99,995% pure cadmium with residual electrical restitivity $\rho_{\rm s}=0.000463$, 0.000606, and 0.000602 $\mu\Omega$ cm, respectively, for single crystial along directions perpendicular and parallel to the c-satis and for polycrystalline cadmium (characterization by $\rho_{\rm s}$ becomes important at temperatures below about 100 K). The values below 1.5 Tm are calculated to fit the experimental data by using n=2.50, $\alpha'=1.77$ x 10^{-4} , and $\beta=0.0188$ for the direction perpendicular to the c-axis, using n=2.50, $\alpha'=1.77$ x 10^{-4} , and $\beta=0.0188$ for the direction parallel to the c-axis, and using n=2.50, $\alpha'=1.80$ x 10^{-4} , and $\beta=0.0204$ for polycrystalline calmium. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 4% of the true values near room temperature and 4 to 10% at other temperatures.

609. 83 620. 3 800. 3 980. 3

24.25 28.3 32.3 32.3

T₁ 594. 18 600 700 800

Tink, k, in Watt cm - K-, Tin F, and k, in Bu hr - ft - F -. + Values in parentheses

*Values in parentheses are extrapolated or estimated.

SPECIFICATION TABLE NO. 8 THERMAL CONDUCTIVITY OF CERIUM

(Impurity < 0.20% each; total impurities < 0.50%)

(For Data Reported in Figure and Table No. 8]

Composition (weight percent), Specifications and Remarks	99,6 pure; Mg and Ca as major impurities; specimen 1.085 cm long and 0.38 cm square cross section; electrical resistivity ratio $\rho_{\rm PBM_s}/\rho_{\rm RbM_s} \approx 1.93$.	High purity rod of certum, about 0.25 in. dia and 0.25 in. long obtained from Johnson Matthey and Co., Ltd., electrical resistivity 74 μ ohm cm at ~ 18 C, monel metalused as comparative material; measurements made using 2 different comparators.	No details reported.
Reported Name and Error, % Specimen Designation	Ce - 1		
Reported Error, % S	3.0	m +	01
Temp. Range, K	2.7-22	291.2	301.2
Year	1955	1965	1954
Method Used	٦	၁	
Ref.	122	777	811
Curve	-	N	ო

THERMAL CONDUCTIVITY OF CERUM DATA TABLE NO. 8

(Impurity < 0.20% each; total impurities < 0.50%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1

CURVE 2

CURVE 3

301.2 0.109

RECOMMENDED THERMAL CONDUCTIVITY OF CERTUM 8B FIGURE AND TABLE NO.

T, in K, k, in Watt cm 1 K 1, T, in F, and k, in Btu hr 1 ft 1 F 1

THE PARTY OF THE P

*Values in parentheses are extrapolated or estimated.

SPECIFICATION TABLE NO. 9 THERMAL CONDUCTIVITY OF CESIUM

For Data Reported in Figure and Table No. 9]

Composition (weight percent), Specifications and Remarks	High purity; 1.6 mm in dia; melted in vacuo and run into soft-glass tube; run No. 1 vielded the following information: electrical resistivity ratto $\rho(295~K)/\rho(0~K)$ · 498 (using Hackspill's value ρ = 20, 8 μ ohm cm at 295 K); $\rho(0~K)$ ÷ 0.0418 μ ohm cm; Lorenz function 2.51 × 10 ⁻⁸ V^2K^2 at 0 K .	The above specimen second run; electrical resistivity ratio $\rho(295 \text{ K})/\rho(0 \text{ K}) = 465$ (using Hackspill's value ρ . 20.5μ ohm cm at 295 K); $\rho(0 \text{ K}) = 0.0447 \mu$ ohm cm: Lorenz function $2.47 \times 10^{7} \text{ V}^2 \text{K}^2$ at 0 K .	99. 99 pure liquid specimen; thermal conductivity values calculated from electrical resistivity measurements using the theoretical Lorenz number; electrical resistivity reported as 20, 29, 37, 39, 42, 57, 52, 63, 63, 59, 70, 72, 83, 92, 94, 45, 112, 48, 127, 78, 153, 48, 173, 79, 211, 94, and 241, 12 µ ohm cm at 18, 3, 28, 3, 76, 174, 267, 326, 427, 503, 614, 696, 811, 887, 993, and 1063 C, respectively.	Impurities (pretest): < 0.0010 O, <0.0010 N, <0.0045 C, <0.0042 Rb, and traces of Si, Mg. Al. Cu. Na. Ca. and Fe: impurities (posttest): 0.0017 O, 0.0020 N, <0.0020 C, <0.0100 Rb, and traces of Si, Mg. Al. Cu. Na. Ca. and Fe: liquid specimen: supplied by MSA Research Corp.: thermal conductivity values calculated from electrical resistivity data using the theoretical Jorenz number 2.45 x 10 ³ VeC. electrical resistivity reported as 37.42, 38.32, 45.77, 65.74, 77.28, 87.35, 123, 63, 139.29, 161.26, and 178.63 u olum cm at 28.3, 33.8, 101.4, 276.9, 370.6, 444.2, 650.0, 725.8, 815.3, and 876.7 C. respectively.	99.99 pure; vapor specimen filled in a test cell which is an 8-in. long (2.25 in.) schedule 40 pipe constructed from Hasteloy-C and is connected with a holler; measured at a boiler pressure of 20 mm Hg, thermal conductivity measured by using the dynamic hot-wire method.	Same as the above specimen except boller pressure 40 mm Hg.	Same as the above specimen except boiler pressure 62 mm Hg (saturated).	Same as the above specimen except boiler pressure 65 mm Hg.	~ 99.97 Cs, 0.0154 O ₂ , 0.0145 Rb, 0.004 Ns, 0.0023 Cs, 0.0018 Fe, 0.0016 B, 0.0013 Si, 0.0006 K, 0.0003 each of Mg, Ar and Ni; saturated liquid specimen filled in a test capsule (2 in, long, 1 in, OD and 1/16 in, in wall thickness with 1/4 in, thick discs welded to the ends of the tube made from Ta-10W alloy, specimen supplied by Dow Chemical Co.; thermal conductivity values calculated from electrical resistivity data using Lorenz number of 2.3 x 10 ⁸ V/K ² , electrical resistivity reported as 69.42, 77.54, 86.23, 95.54, 116.2, 127.4, 119.7, 157.6, 187.7, 197.6, 216.9, 235.4, 257.0, 280.8, 306.7, 336.7, 370.1, 403.8, 451.0, 500.5, 557.8, 618.2, and 702.4 µ ohr. cm at 3.16, 371.4, 742.5, 514.8, 716.1, 402.8, 416.9, 188.1, 1927, 982, 1038, 1093, 1149, 1204, 1200, 5, 1371, 1427, 1482, 1538, 1593, and 1549 C. respectively; critical temperature of Cs v. as estimated to be 2027 K.
Name and Specimen Designation	Cs 3	Cs :3							Run 1
Reported Error, %				10					1.3
Temp. Range, K	2.0-16	2.2-11	349-1 336	309-1050	672.2	739.2	738.2	839.2	589-1913
Year	1956	1956	1961	1962	1966	1566	1966	1966	1965
Method Used	ר	H	i	•	1	1	1	,	1
Ref. No.	86	26	655, 860	756	£	863	863	863	873, 874
Curve	-	8	æ	च	w	9	۲-	oc	on

SPECIFICATION TABLE NO. 9 (Continued)

Composition (weight percent), Specifications and Kemarks	the test capsule.	Similar to the above, second and the	Similar to the above: third loading of the test capsure.	Vapor specimen. 99, 994 oure (estimated from freezing point curve and emission specimen in	impurities): free-ing point 28, 22 c. specimes mostly solid; electrical resistivity limit state except at 295, 2 K where it was mostly solid; electrical resistivity of line is seen in 246 µohm cm at 100.	reported as 44, 55, 67, 80, 96, 114, 124, 25, 27, 100 C. respectively; Nb-12, 200, 300, 400, 500, 600, 700, 800, 900, 1000, and 1100 C. respectively; Nb-12, 200, 300, 400, 500, 400, 500, 400, 400, 400, 4	alloy used as comparative marchine. Industrial specimen contained in a hollow cylinder of 1. D.	0. 05 Na. 0. 033 Rb. and 0. clost in the state of the calcium and subsequent of mm; prepared from cestum chloride by reduction with calcium and subsequent of 14 mm; prepared from cestum of 10-1.0-3 mm Hg; Armco from used as comparative material.	Similar to the above specimen.	constitute to the above specimen.		Simular to the above specimen.		7.0
Name and	apper in the same	Run 2	Run 3											
Reported	Error, 'c	1.3	1.5		ς.			+114	1.	F17-18	±7-±14			
Temp	Range, K	539-1910	589-1914	M5-1157	-95-1556			350-950		328-969	428-904	!	4 60-904	
	Year	1965	1965	1962	1964			1961		1967	1967		1961	
Method	Used	,	· •		ပ			ပ		ပ	Ċ		ပ	
- 1	. S		17 F	87.4	287			997.	5 5 6	997.	ה ה ה	996	967	95.8
	Culve No.		e :	: :	: =			41		15	:	9	11	

57

DATA TABLE NO. 9 THERMAL CONDUCTIVITY OF CESIUM (Impurity < 0, 20% each; total impurities < 0, 50°;)

CURVE 1.02 1.03 2.22 1.03 2.24 1.15 2.24 1.17 2.24 1.17 2.24 1.18 2.24 1.17 2.24 1.17 2.24 1.18 2.24 1.17 2.24 1.18 2.24 1.17 2.24 1.18 2.24 1.17 2.24 1.18 2.24 1.17 2.24 1.18	RVE 1	CURVE 2 (cont	2 (cont.)										
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				CURVE 3 (cont.)	(cont.)	CURVE	<i>5</i> ∙1	CURVE 12	, E 13,	CURVE 13 (cont.)	3 (cont.)	CURVE	CURVE 15 (Jont.)*
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		32.58	0.164	1007.2	0, 182	588.7	0.190	3	0.0000115	9.07.2	0.148	398. 2	0.205
803 - 503 -		27.5	0.16	1041.2	0.178	138, 7	0.131	1002	0.0000149	1067.2	0.156	398.2	0.23
200		7.02	0.2	1123.2	0.168	885.4	0.13	1123	0.0000200	1157.2	0.164*	423.2	0. 195
25.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	×		× 96.0	1160.2	0, 163	1099	0.150	115	0.0000220	1180.2	0.137	440.2	0, 214
5		739 2	0.472	1195.2	0, 157	1110	0.145	, 1		1196.2	0.158	462, 2	0,242
2 2 2 2 2	¥. 109	741.6	9/203	1229.2	0,152	1317	0, 123	CURVE 13	E 13	1217.2	0.130	494.2	0, 210
1.00	VI. 102	819.	14.141	1266.2	0.146	1488	0.108		1	1258.2	0.154	531.2	0. 23(
1.08 20.7	A1. 010	878.2	/A. 158	1301.2	0.142	1495	0.112	295.2	0 371	1275.2	0.121	554.2	0.209
PO-1 501 31.00	426.	932.2	1/0.157	1336.2	0, 136	1593	9880 '0	337.2	0.219	1354.2	0.116	581.2	0. 236
	828	995.2	0.150			1694	0.0869	341.2	0.209	1414.2	0.1034	587. 2	0.23
8. 6	0.7701	997.2 /	0.148c	CURVE 4	Ā. 4	1702	0.0877	375.2	0.211	1556.2	0.0948	590, 2	0.21
_ `	0.666	1067.2	0.156	0 000	86.0	1815	0.0720	391.2	0.244			511.2	0. 20
12	0.63	1075.2/	10.127	2 77	0 201	1913	÷.0611	398.2	0.206	CURVE 14	E 14	613. 2	0. 22
7.59 0.782 1.40	0.62	:157.2	0.164	2005	20%	1913	0.0623	423.2	0.233			662. 2	0. 24
0 74 C 70 20 56.20	0.624	1180	. 137	6.43	202		•	425.2	0.212	350, 2	0.156	665.2	0. 203
	-	1196/2	Q 158•	4.1.	200	CURVE 10	: -≅I	425.2	0.210	416.2	0. 171	953.2	ខ
	CURVE 2	1217 2	07730		107.0			447.2	0.196	416.2	0. 181	691.2	ુ !}
12.2 0.6421		125	0.151	7.79	201.0	548.7	0.193	451.2	ษ. 190	459. 2	0. 182	695. 2	0.20
.5 a 624	0.30	1275.2	0.121	3.886	0.1.0	740.9	0.143	456.2	9, 133	529. 2	0.186	701.2	0. 20
	7 .	1364.2	0.116	1000.5	0.163	740.9	0, 188	464.2	0.207	536.2	0. 191	706.2	0. 21
7.100	7 0	2414.2	0. 1084	6.6411		836.5	0.179	482.2	0.204	537. 2	0, 202	777, 2	0, 201
ZEIS CHAMIN	0.	556. 2	0.000	3.101.7	į.	1099	0.145	488.2	0.2040	617.2	0. 195	795. 2	۰ د
۱	0.0	_	_	200	31	1100	0.143	493.2	0.211	6:37. 2	0. 207	802. 2	0. 20
2.21 1.04 336.F	202	CURVE	VE 3	6 623	0 000061	1324	0, 125	543.2	0.136	723. 2	0, 221	815.2	0. 19
100	3:5		۶	1		1491	0, 112	549.2	0.19 4	758. 2	0. 214	817, 2	0. 22
	217		107.0	CHRVE 67	£ 6,0	1001	6.000.0	556.2	0.199	760.2	0, 210	619.2	0.21
Z.45 (-10 425.2	0.219	7.124	0.700		31	1705	0.0366	601.2	0.173	197. 2	0. 203	912. 2	0. !!
2.76 1.12 47.2	0.136	478.2	202.0	0 00.4	2200000	1821	0.0736	630.2	0.197	502.2	0. 208	969. 2	0, 186
2.83 1.15 451.2	0.130	7.05	0.700	4.6	0.00000	1910	0.0641	637.2	0.192	987. 2	0. 200	969. 2	0. 221
7.92	0. 103	2.660	200.	OT TIME TO	07.4			639 2	0.210	887, 2	0. 218		
-	20.00	7.00	900		<u>.</u> (CURVE 11	ا≒ً	685.2	0.162	300. 2	0.186	CURVE	97 3
1.29 1.10 482.2		100.	203	438 9	350000			691.2	0.185	94.2	0. 191		
F. 501 107 973		3 7 F	200	1		548.7	ਫ਼. ਫ਼	701.2	0.200	950.2	0. 199	428.2	0.185
	. 21 Z	7.67	0.501		, 6	740.9	0.136	702.2	0.176		•	443.2	0. 19
	981	2.928	0.198	CORVE		740.9	J. 15	732.2	0.198*	CURVE 15	E 15	443, 2	0. 22
•	3 2	7. S	o. 196	400	00000	983.7	0.150	739.2	0.172			458.2	0.19
4-0	99	887.2	0.193	839.2	c. (m)00%()	1101	0.145	741.2	0.209	358, 2	0.188	468.2	0.228
Ö	0.43	931.2	0,189			1493	0.111	819.2	0.141	360.2	0.130	473.2	0.20
8.04 a 778 50.2	0.0	966.2	0.156			1709	0.0875	878.2	0.168	374.2	0.175	513, 2	0. 19
,		707.	v. 150*			1817	0.0740	932.2	0.157	379.2	0.210	521.2	0.20
	0. 21					1914	0.0635	995.2	0.150	393, 2	0.246	560.2	0. 19
24 0.045													

¥	
۲	

16 (cont.)		0. : I.i	0, 206	0. 198		
CURVE	,	705. 2	775, 2		357, 2	904, 2

CURVE 17*

0, 185 0, 184 0, 185 0, 196 0, 193 0, 193 0, 199 0, 199	
460.2 469.2 477.2 477.2 551.2 556.2 659.2 705.2	

FIGURE AND TABLE NO. 9R RECOMMENDED THERMAL CONDUCTIVITY OF CESTUM

	10-1 10-1	7 ₁ k ₄ k ₂ In Liquid State 301.9 0.137 11.4 350 0.205 11.6 600 0.205 11.8 600 0.205 11.8 600 0.105 11.6 500 0.105 11.6 500 0.105 11.6 500 0.105 11.6 500 0.105 8.67 300 0.108 6.24 600 0.094 5.43 700 0.094 5.43 900 0.096 3.81 900 0.006 3.81 900 0.006 3.81 900 0.009 (7.05)	83.5 170.3 260.3 260.3 800.3 800.3 1160 1134 1134 1134 1134 1134 1134 1134 113
--	--	--	--

Tin K, ki in Wattem 1K-1, Trin F, and ki in Bun hr 1kt-1F-1, tVa

SPECIFICATION TABLE NO. 10 THERMAL CONDUCTIVITY OF CHROMIUM

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Tuble No. 10]

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error. %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
7	136	1	1940	196-334		CrI	Electrolytic; specimen 0.7 x 0.23 x 0.21 cm; annealed at 1000 C (or 30 min.
64	112	L,C	1957	323, 373			0.43 O; electrodeposited chromium tube. 1.28 cm O.D., 0.63 cm 1.D., and 18.05 cm long; us deposited; density 6.975 g cm ⁻³ , electrical resistivity 40.4, 41.7, 44.0, 45.4, 47.2, 48.9, and 50.3 johm cm at -144, -112, -31, -44, -8, 32, 73 C, respectively.
က	112	ت ت ت	1957	323-423			The above specimen heat treated at 486 K; electrical resistivity 30.3, 39.7, 42, 2, 44.6, and 48.2 µohm cm at -172, 26, 95, 148, and 223 C, respectively.
•	112	L.C	1957	323-623			The above specimen heat treated at 478 K, density increased to 7.08 g cm ⁻³ ; electrical resistivity 6.2, 25, 5, 26, 9, 33.2, 35, 8, 39, 9, and 47.2 jubin cm at -173, 21, 92, 174, 215, 265, 313, and 398 C, respectively.
ĸ	112	L,C	1957	323-573			The above specimen heat treated at 818 K; electrical resistivity 4. 4, 6, 9, 10. 5, 13. 9, 18. 1, 19, 9, 25, 5, 30, 1, 37, 2, 44, 3, 48. 8, and 52. 2 pohm cm at -176, -140, -103, -58, -1, 31, 161, 220, 331, 434, 503, and 551 C, respectively.
9	112	L.C	1957	323-623			The above specimen heat treated at 1133 K; electrical resistivity 16.1, 21.7, 32.2. 46.0. and 65.7 pohm cm at 22, 162, 355, 570, and 669 C, respectively.
(~	112	L.C	1957	323-673			The above specimen heat treated at 1327 K; electrical resistivity 14. 3, 16, 2, 19, 9, 27, 0, 30, 4, 34, 9, 40, 5, 46, 8, 53, 3, 59, 5, 71, 8, and 77, 4 uohm cm at 0, 62, 147, 293, 350, 435, 528, 636, 730, 816, 994, and 1067 C, respectively.
ω	112	L.C	1957	323-1273			The above specimen heat treated at 1683 K; density increased to 7,15 g cm ⁻² ; electrical resistivity 1.9, 10.5, 13.8, 17.2, 23.7, 30.2, 35.3, 44.7, 55.2, 65.4, 76.6, 81.6, and 95.2 µohm cm at -179, -46, 26, 120, 282, 406, 505, 669, 841, 999, 1167, 1236, and 1427 C, respectively.
თ	ဆ္	႕	1957	4.5-123			99.998 pure; specimen 3 mm in dia and 8 cm long; supplied by the Aeronautical Res. Labs. of the Commonwealth Dept. of Supply; cold worked; residual resistivity 0.255 µohm cm.
10	68	.1	1957	5.1-91		2	The above specimen annealed at 1010 C for 4 hrs; residual resistivity 0.181 µohm cm.
=	89	. .3	1957	4.6-151		က	99, 998 pure; partially recrystallized; specimen 3 mm in dia and 8 cm long; supplied by the Aeronautical Res. Labs of the Commonwealth Dept. of Supply; residual resistivity 0, 125 pohm cm.
12	89	ı	1957	2.9-142		4	The above specimen annealed at 1050 C for 4 hrs; residual resistivity 0.090 tohm cm.
13	89	u	1957	2.4-123		ഹ	99. 998 pure; fully recrystallized; specimen 3 mm in dia and 8 cm long; supplied by the Aeronautical Res. Labs of the Commonwealth Dept. of Supply; residual resistivity 0.055 μ obra cm $\rho(273 \text{ K})/\rho(0 \text{ K}) = 217$.
14	6	ပ	9961	470-1201			Chemically pure; ductile; supplied by the Bureau of Mines, Oregon; density 7.16 g cm ⁻³ at 24 C.

DATA TABLE NO. 10 THERMAL CONDUCTIVITY OF CHROMIUM

(Impurity $<0,\,20\%$ each, total impurities $<0,\,50\%$

CM TK
Watt
ż
Conductivity.
Thermal
ż
٦ ۲
emperature.

¥	CURVE 13	0.992	1.1:	2 : :	9 :	2 :	9.5	2 E			i i	94	5, 17	3, 91	2.90	2,3%	1. 9x	1, 76	1. 66	70 F	1. 4 2	. .		CURVE 14	•	0. 303	6. 439	0 . ¥0×	0.786	0.787	0 . 1 £	C 43	0,756	0.722	0.722	0.711	0.697	0.659	0,665	0.632	0.6:17				
⊢	Sign	24.5	2. X	점 (ei :		7 .	หัง อัง	9 . 12. c		- ^ ^ ^	1 7 %	37.5	32, 7	× :+	53,0	6.19	23.53	- -	90.9	105.6	117.5	123.4		200	!	4.0.4	524, x	0.080 0.080	6.14, 3	628, 7	717. 1	721. 5	750. 4	× 66. 0	2. I. S	8/2. C	990, 3	1024.3	10:31.0	1193, 2	1201.0				
i£	CURVE II	0, 537	27.72	21 : 51 :	<u> </u>	15.5		7.7		5 6 6 6	: c	2.01	£.	1.32	1, 75	1, 54	91.1	1.40	۲.	;	CURVE 12		0.685	D. 3406	0.927	1.07	z	2. 10	2.26	2. 0x		: ::	£ :	,		1 O 1	2.59	2.38	2.14	1,99	1, 69	1, 59	1.47	1.42	1, 32
٠	Con	4, 64	11.	;- Z	7. S	26 0 01 0 01 0	26.2	٠. : :	- :	∾ હ • હ	5 U.S	67.5	72, 9	78,6	81.0	103, 2	121.0	131.0	150, 8		CUR		2. 54	3. 23	3 	7	₹ -	7, 26	x, 27	E.:3	e ::	 9	30° x	ж . Э. Э.		5. 2.	30. To	5H, 9	65.1	69.0	82.3	90.7	108.9	117.5	142.1
z	VE &	0.860	0. NSO	0.825	0.770	0.750	0. 795	0,665		0.615			/E 9	1	0, 403	e. 8±7	1.1:	1.31	1, 59	1. 8±	5. 5	71 71	2.24	2. 2.	- . 75	1.59	1. 4×	1.36	1,35		CURVE 10		0,669	5.90.5	1. 19	1.91	2,38	2, 50	2.40	£	1, 40				
į-	T CURVE 8	323, 2	423, 2	523. 2	623.2	673.2	773.2	813.12 0.13.12 0.13.13	2 6 4 6	107.3.2	7 7 7 7 1	2 71	CURVE		4, 54	1. 00 x	11.8	14, 5	13, 3	13. x	(2 x 6	35.5	∺. ¥¥.	45. ::	65. 1	76, 6	90°.	114, 3	122, 6		SUR	,	<u>.</u>	3 3	±.	16. 7	24.4	29.6	39. 6	61.9	90.7				
¥	VE 1	0.344	0, 292	0, 266	0.262	0.279		CURVE 2		0.235	697.0	F BURE 4		0.265	0.285	0,305	1 3/1 Q.1 O	* 1	0.480	0,505	0,525	0, 550		IVE.		0.660	0,655	0.650	0.650		CURVE 6		0.765	0.130	0.725	0,683		CURVE 7		0, %20	0.810	0, 795	0, 755	0.7:30	
TCURVE		195, 6	273. h	299.5	316.7	334,2	;	CUR	1	323.2	3.5.6	dita		323.2	37.37.2	10.112	0.10		323. 2	57.57	523, 2	623.2		CURVE		323.2	423.2	523.2	57.3, 2		inc		323, 2	423.2	523.2	623.2		CUF	1	323.2	423, 2	523.2	623.2	673.2	

The recommended values are for well-anneated 99.99x*% pure thromium with residual electrical resistivity $\rho_0=0.0609~\mu\Omega$ cm (characterization by ρ_0 becomes important below from temperature). The values below 1.5 Tm are calculated to fit the experimental data by using n=2.00, $\phi^{-1}=1.04$ x 10-4, and $\theta=2.49$. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 3% of the true values near room temperature, and 3 to 10% at other temperatures.

Charles of the last

*Values in parentheses are extrapolated.

T, in K, k, in Watt cm 1K-1, T, in F, and b, in Btu hr 1ft 1F 1,

SPECIFICATION TABLE NO. 11 THERMAL CONDUCTIVITY OF COBALT

(Impurity < 0, 20% each; total impurities $\leq 0,50\%)$

[For Data Reported in Figure and Table No. 11.]

Composition (weight percent). Specifications and Remarks	Impurities (by spectrographic analysis) approx. 0.0002 Si, < 0.0005 Fe, approx. 0.0001 Al, Mg and Cu. 0.0001 cach, specimen 2 mm that, supplied by Johnson, Matthey and Co., Ltd. (JM9444xx); anneated in vacuum for 2 hrs at 700 C; ρ_0 = 0.09075 μ ohm cm; o(295 K)/ ρ_0 = 64.5, L2.55 x 11r ³ W ohm K ² .	Polycrystalline rod; 3, 03 cm long, 0, 204 cm in dia; supplied by Johnson. Matthey and Co. , Ltd.; annealed in vacuo for aeveral hrs; electrical resistivity ratio $\rho(293~K)/\rho(20~K)$ = 29, 4	Less than 0.03 impurities; supplied by Eimer and Amend; annealed at 900 C for 2 to 3 hrs before machining to size.	106 (Nominal) pure; measured at room temp. (assumed to be 25 C)	99.50 physical Laboratory, Armeto iron used as reference; electrical registivity reported as by site of 5, 6.7, 7.4, 7.7, 8.7, 8.9, 10.3, 11.4, and 11.6 μοhm cm at 20, 22, 51, 55, 82, 87, 126, 151, and 155 C. respectively.
Name and Specimen Designation	Co 1b	Co 1			
Reported Error, %		3.0			
Temp, Reporte Range, K Error,	2:6-147	2, 3-43	332.2	298.3	313-430
Year	1957	1955	1925	1959	1964
Ref. Method No. Used	ے	ي.	٦		ပ
Ref.	150	122	230	25 25 25 25 25 25 25 25 25 25 25 25 25 2	869
CLTVe No.	-	ec	ဗ	7	r5

DATA TABLE NO. 11 THERMAL CONDUCTIVITY OF COBALT

(Impurity $<0,\,20\%$ cach; total impurities $<0,\,50\%$

[Temperature, T, K, Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

CURVE 3	0.490		CURVE 4	91.5 0		CHRVES	,	0.902	o. 933	906.0		0.930	0.970	0.930	0.872	0.881	0.825	0.837	0.775	0.793																	
흸	332.2		CO	6 806			51	313.2	٠,	320.2	323.2	324.2	324.2	327.2	356.2	360.2	٠,	397.2		430.2																	
VE 1	0.657	0.47	1.187	1.692	2.096	3.005	3, 434	3,990	4.672	4.722	4.646	4.495	3, 737	2.652	2.172	1,742	1.490	1,439		VE 2	0.300		0.560	0.675	0.840	1.035	1.270	0	2.335	2, 500	2.660	2.690		2.840	œ	-	2.600
CURVE	2, 39	1 .	4.66	7 ()	7, 76	10.86	12.93	16.03	22, 24	25. 34	28.45	32, 07	40.34	55.34	70. 3F	91, 03		47		CURVE		2.95	4.30	5. 10	٠.		10.05	 4.	20.92	23.53	25.82	۲-	çi	٠.	4.	ຕ.	42.60

Not shown on plot

RECOMMENDED THERMAL CONDUCTIVITY OF COBALT FIGURE AND TABLE NO. 11R

REMARKS

The recommended values are for well-anneated 99.096% pure cohalt with residual electrical resistivity $\rho_0 = 0.0995$ µG cm (characterization by ρ_0 becomes important below room temperature). The values below 1.5 Tm are calculated to fit the experimental data by using n = 2.10.0° · 0.747 x 10⁻¹, and β = 3.71. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 4% of the true values near room temperature and 4 to 10% at other temperatures.

52.9 49.0 43.1)

0. 526 0. 848 (0. 746)

*Values in parentheses are extrapolated or interpolated. T_1 in K_1 k_1 in Watt cm $^{-1}\,K^{-1},~T_2$ in F_1 and k_2 in Btu lb $^{-1}\,ft^{-1}\,F^{-1},$

SPECIFICATION TABLE NO. 12 THERMAL CONDUCTIVITY OF COPPER

A STATE THE PROPERTY OF THE PR

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 12]

114 1. 1. 1. 1. 1. 1. 1.	Curve	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
154 L 1956 2.9-70 5 1 0.5 154 L 1956 2.4-108 5 2 2 135 L 1935 293,473 1 Ell 124 P 1930 302-744 2 Ell 124 P 1937 1456,1550 2-5 Coaleaced High 169 L 1957 5.1-142 2-5 Coaleaced High 168 E 1958 315-1058 3 Cu II 108 E 1958 315-1058 3 Cu II 108 E 1915 21-374 Cu II 108 E 1915 22-375 Cu II 109 291,373 Cu II 170 E 1900 291,373 Cu III 130 P 1951 309-834 Spe 141 C 1956 1362-1761 # 2 150 P 1951 309-834 Spe 150 P 1951 Spe	1	114	Т	1950	23-245	0.6-1.8	OFHC Cu	Free from oxygen; high conductivity: specimen 0.5 in. in dia and 20 in. long; obtained from American Brass Co.
154 L 1956 2.4-108 5 2 811 913 91473 1 1154 L 1935 293,473 1 1 Ell Ell Ell 1930 302-744 2 Ell Ell Ell 1957 1456,1550 2 Coalesced Hij Ell 1958 21-142 2 Coalesced Hij Ell 1958 21-142 2 Coalesced Hij Ell 1958 21-142 2 Coalesced Hij Ell 1958 21-174 2 Coalesced Hij Ell 1958 21-374 2 Coalesced Hij Ell 1958 21-374 2 Coalesced Hij Ell 1958 21-375 2 Coalesced Hij Ell 1958 21-375 2 Coalesced Hij 2 21-375 2 2 2 2 2 2 2 2 2	~	22	Г	1956	2.9-70	ഗ	-	0.20 Ni, 0.10 O; 0.05 each of As, Sb, Fe, Pb, and Sn, 0.01 S, 0.003 Bi (composition according to All-Union standard); annealed to 800 C.
124 P 1930 369-766 1 EII EII 124 P 1930 302-744 2 EII EII 90 L 1957 1456,1550 Coalesced High Hig	က	72	1	1956	2.4-108	S	2	Similar to the above specimen except unannealed.
124 P 1930 369-766 1 EB 124 P 1930 302-744 2 EB 90 L 1957 1456,1550 Coalesced Hig 109 L 1957 5.1-142 2-5 Coalesced Hig 152 L 1958 315-1054 3 Copper 168 E 1958 315-1054 3 Copper 169 E 1915 21-374 Cu II EB 52 L 1960 291,373 Cu II Cu II Copper 77 E 1900 291,373 Cu II Cu II Copper 130 P 1951 309-834 Spe	4	135	.	1935	293,473			99.986 pure; 0.022 O, 0.0016 Fc, 0.0015 S; annealed at 550 C for 1 hr.
124 P 1930 302-744 2 EB 90 L 1957 1456,1550 0.0 109 L 1957 5.1-142 2-5 Coalesced Hij 152 L 1949 10-20 Copper EB 108 E 1958 315-1058 3 Co 84 P 1918 349-636 Cu EB 95 E 1915 21-374 Cu EB 95 E 1915 22-375 Cu Cu EB 17 E 1960 291,373 Cu Cu Cu Cu 170 E 1900 291,373 Cu Cu Cu Cu 130 P 1956 1362-1761 # 2 EB EB EB	ဟ	124	a,	1930	368-766		-	Electrolytically pure; specimen ~ 0.25 cm in dia; annealed for about 10 min at a bright red heat; electrical conductivity 4.47, 3.14, 2.07 and 1.99 x 10 ⁵ ohm ⁻¹ cm ⁻¹ at 95, 235, 466 and 497 C, respectively; density 8.87 g cm ⁻¹ .
90 L 1957 1456,1550 0.0 109 L 1957 5.1-142 2-5 Coalesced Hij 152 L 1949 10-20 S Coalesced Hij 108 E 1958 315-1058 3 C C 94 P 1918 349-636 Cu I Cu I E 95 E 1915 22-375 Cu II E Spe 52 L 1962 291,373 5 A Ox Ox 77 E 1900 291,373 Cu II Cu II 0.0 130 P 1951 309-634 Cu II 0.0 131 C 1956 1362-1761 ± 2 E	9	124	<u>α</u>	1930	302-744		7	Electrolytically pure; specimen ~ 0.25 cm in dis; annealed for about 10 min at a bright red heat; electrical conductivity 5.55, 4.0, 2.64 and 2.06 x 10^5 ohm $^{-1}$ cm $^{-1}$ at 29, 136, 286 and 471 C, respectively, density 8.87 g cm $^{-3}$.
109 L 1957 5.1-142 2-5 Coalesced High-purity commercial each of Fe, As Copper C	-	8	- 1	1957	1456,1550			0.036 O, 0.02 Ag, 0.002 Al, 0.002 Fe, 0.001 Ni, 0.001 Mg, 0.001 Si, 0.0005 Ca, traces of H and N; electrolytic tough-pitch copper; in multon state.
152 L 1949 10-20 Electrical copper, 10-8 10-8 315-1058 3 Commercial electrons 10-8 1915 21-374 Cu II Electrolytically property 22-375 Cu II Electrolytically property 23-373 Cu II Cu I	0 0	60	J	1957	5.1-142	2 - 5	Contended Copper	High-purity commercial coalesced copper; 0.0013 O, 0.0008 Pb, C.0007 Ni, < 0.0005 each of Fe, As, and Sb, 0.0002 Sn, < 0.0001 Te, and Ag, < 0.0005 Bl; specimen 0.367 cm in dia and 23.2 cm long; annealed in helium 4 hrs at 400 C, cooled slowly to 200 C, and then kept in helium at 200 C for 8 hrs; density 8.90 g cm ⁻³ .
108 E 1958 315-1058 3 Commercial elect 94 P 1918 349-636 Specimen drawn w 95 E 1915 21-374 Cu II Eiectrolytically proposed by Eiectrolytic Eie	6	152	1	1949	10-20			Electrical copper; specimen 0.47 mm in dia and 900 mm long; annealed.
84 P 1918 349-636 Specimen drawn w 95 E 1915 21-374 Cu II Eiectrolytically properly and prop	10	108	ш	1958	315-1058	ဗ		Commercial electrolytic copper.
95 E 1915 21-374 Cu II Eiectrolytically property 95 E 1915 22-375 Cu II Electrolytically property 77 E 1900 291,373 Cu IIW < 0.05 electrolytically property	11	2	Δ,	1918	349-636			Specimen drawn wire 2.5 mm in dia.
95 E 1915 22-375 Cu II Electrolytically program-free (*:0.4 cm or section) 52 L 1952 339-533 5 A 0xygen-free (*:0.4 cm or section) 77 E 1900 291,373 Cu II <.0.05 cm or section	12	95	வ	1915	21-374		Cu 1	Ejectrolytically pure; specimen 1 mm in dia; supplied by Siemens and Halake Co.
52 L 1952 339-533 5 A Oxygen-free (: 0.1) 77 E 1900 291,373 Cu II <	13	95	æ	1915	22-375		Cr II	Electrolytically pure but purity lower than the above specimen.
77 E 1900 291,373 Cu II < 3.05 (F1.2) 77 E 1900 291,373 Cu IIW < 0.05 (F1.2) 77 E 1900 291,373 Cu IIW 0.05 (F0.1) (Taces of B. 88 g cm ³ at 130 P 1951 309-834 Specimen 0.125 in Ca, Mg, Ni, Sign (matrities reduced of matrices)	14	25	. ı	1952	339-533	r.	4	Oxygen-free (: 0.01 0) high-conductivity copper.
77 E 1900 291,373 Cu ITW <0.05 e. (First First F	15	77	M	1900	291,373		Cu II	< 3.05 confidence (c) specimen 1.108 cm in dia and 27 cm long; density 8.65 g cm ⁻³ at 18 C.
77 E 1900 29°,373 Cu III 130 P 1951 309-834 41 C 1956 1362-1761 ± 2	16	11	æ	1 900	291,373		Cu IIW	< 0.05 confidence specimen 1.107 cm in dia and 27 cm long.
130 P 1951 309-834 41 C 1956 1362-1761 ± 2	17	3	ω	1300	29.,373		Cu III	0.05 Pb. traces of Ni and Fe; specimen 1.107 cm in dia and 27 cm long; drawn; density 8.88 g cm ⁻³ at 18 C.
41 C 1956 1362-1761 ± 2	18	130	ፈ	1981	309-834			Specimen 0.125 in. in dia and at least 50 cm long.
	19	1	ပ	1956	1362-1761			Electrolytic tough pitch copper; before measurement: 0.012 O ₂ , 0.0048 N ₂ , and trace Al, Ca, Mg, Ni, Si and Ti; after measurement: 0.0059 O ₂ , 0.0055 N ₂ and all the metallic impurities reduced about ten fold; density 8.83 g cm ⁻¹ ; in molten state.

SPECIFICATION TABLE NO. 12 (continued)

Composition (weight percent). Specifications and Remarks	socimen 0.6 cm in dia and 12 cm long: supplied by General Electric Co.	Single crystal; specimen 3 min to Very high purity; barmered from 3 min to Very high purity; porous natural crystal from Lake Superior, hammered from 3 min to 1.3 mm and then annealed 3 hrs at 280 C; electrical resistivity 1.562, 0.235 and 2.1 K, respectively.	"purest" electrolytic copper; fine grains; electrical control of the state of the s	resistivity 1.56, 0.240, 0.0000 points. Not very pure; single crystal; annealed 7, 5 hrs at 380 C; electrical resistivity 1.58, not very pure; single crystal; annealed 7, 5 hrs at 380 C; electrical resistivity 1.58, 0.01356 pohm cm at 273, 83 and 21 K, respectively.	Specimen 0.2 mm in dia. Very high purity; probably somewhat deforined. Very high purity; probably somewhat deforined. Very high purity; probably somewhat deforined.	99. 9 pare; Supplied 20. 1.69, 2.60, 3.73, 4.88, and 5.03 point the state of the st	99, 999 pure; polycrystalline; JM *23* from vacto at 800 C; p(293 K)/p(20 K) = 53. 3. 2. 99 cm long; annealed for several hrs in vacto at 800 C; p(293 K)/p(20 K) = 53. 3. Electrolytic copper; specimen a prismatic bar with 5 cm x 2 cm cross section.	Polycrystalline; commercial grade high purity indecember 20.	Turned from both drawn high-conductivity cupper conductor; specimen 0.383 cm in the Conductivity 0.375, 0.543, 0.637, 0.399, 0.989, 1.365.	and 7-8 cm long; electrical research. 1. 506. and 1. 750 µohm cm at -176. 8, -151. 2, -136. 9, -102. 0, -91. 1, -50. 0, 1. 506. and 1. 750 µohm cm at -176. 8, 94 g cm ⁻³ at 23 C. and 16. 9 C, respectively; density 8, 94 g cm ⁻³ at 24 C.	99. 9° pure; electrolytic tough pircu copper; JM 4234 from Johnson, Matthey 99. 999 pure; about 0. 0005 Ag. <0. 0003 Ni. <0. 0004 Pb; JM 4234 from Johnson, Matthey 99. 999 pure; about 0. 0005 Ag. <0. 0003 Ni. <0. 0004 Pb; JM 420 C for 6 htts; electrical 99. 999 pure; about 0. 0005 Ag. 10-10 Tb (Lobm cm).	and Co.; drawn and Transe 12-15 K given as p = 5.27 x 10 + 2.2. resistivity for the range 12-15 K given as p = 5.27 x 10 + 2.2	003 Ag. 0.003 NI, 0.000 1562; annested in air; 6 = 0.055 Auth Cm. Mathey and Co.; ahout 0.0005 Ag, 0.0004 Pb, and a quy cure; JM 4272 from Johnson, Matthey and Co.; ahout 0.0005 Ag, 0.0004 Pb, and a quy cure; JM 4272 from Johnson, Mathey and Co.; ahout 6.0005 Ag, 0.0004 Pb, and a quy cure; JM 4272 from Johnson, Mathey and Co.; ahout 6.0005 Ag, 0.0004 Pb, and physical from Johnson from the control of the cont	6.0 0003 Ni, and barely visible spectral mice. 6.0 0003 Ni, and barely visible spectral mice. 8.5 4 given as $\rho = 0.0576 \times 10^{-1}$ 3. 7 x 10 ⁻¹⁶ T ⁵ (obm cm.
puo di na	ignation	Sing Cu 25 Very 1		Cu 6a Not	Spe Cu 2b	ri S	Cu 1 99	ď.	Ţ		о , о			o Cu 1
	Reported Error. % Spe						2-3						61	1, but up to 4 between 5 and 15 K
	Temp. Range, K	95-293	21, 83	21, 83	15-20	369-838	2.5-41	347-440	6. 29 4 . 2	107-299	367-1144	2. 6-91	1.84.1	2.0-160
	Year	1928	1927	1927	1936	1925	1952	1894	1953	1908	1956	1952	1948	1953
	Method Used*	111	ı	1			H	Œ	H	ı	v	H	ı	ı
	결호	80 57	57	57	57 13	58	97,	ន	103	88	68	11	8	145
	Curve	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22	23	24 25	26	28	59	98	31	33	33	34	35

SPECIFICATION TABLE NO. 12 (continued)

Curve No.	Ref.	Method Used	Yeur	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarka
36	57.	1	1953	2.5-155	7	Cu2	The above specimen unnealed in vacuo at 550 C for 3 hrs.
<u> </u>	116	Ĺ	1895	219-260			Electrolytic copper.
ä	981	<u>α</u>	1928	305.2			Electrolytically pure; specimen 2.5 mm in dia and 4.69 cm long; electrical conductivity 5.58 x 11 ⁵ mho cm ⁻¹ at 32 C; density 8.93 g cm ⁻³ at 32 C.
6 .	42	,,	1923	423.2			99.94 pure; annealed.
07	22.4		192.3	428.2			98.94 pure; cast,
7	33	<u>.</u>	1923	423.2			99.97 pure; hard-drawn.
갈	224	_	1923	430.2			99,76 purc; cast.
£	270	Ω.	1915	308,333			specimen 0,25 cm in the and 30 cm long; density 8,93 g cm ⁻³ at room temperature (from Tabellen of Landolt and Bornstein).
44	123	u	19.18	273-403	0.11		. u.u79 O.
15	271	1	19:18	273-403	0.13		ge,079 Q, 0,106 Ni.
4	271	1	1938	273-403	0.11		. 0.022 0.
4	;;	_1	1938	273-403	0.11		. 0.022 O. 0.106 Ni.
8	S	-1	1952	339-533	ហ	æ	0.015 Fe, 0.011 P; cast.
49	83	_1	1952	339-533	ស	Ü	0.061 Fe, 0.016 P. cast,
33	ន	٦	1952	339-533	Ŋ	Δ	0.039 Fc. 0.013 P. cast.
ເວ	341	1	1954	1.9-130			0, 056 Fe; nominal composition; homografzed and annealed; residual electrical resistivity (at hetium temp) = 0,56 μολισ cm.
Sł	341	J	1954	1.9-143			0.0043 Fe; nominal composition; hemogenized and annealed; residual electrical resistivity (at helium temp) 0.041μ ohm cm.
ß	225	٦	1928	373.2			Electrolytic.
¥	145	ı	1953	5.0-58	or V	Cu 3	99,999 pure; JM 4272 from Johnson, Matthey and Co.; about 0.0005 Ag, 0.0004 Pb, o.0.0003 Ni, and barely visible spectral lines of Ga and Fe; specimen 1 mm in dia rod; as drawn.
55	427	-1	1960	303.2	1-3	ETP	Electrolytic tough pitel copper; specimen 0,75 in, in dia and 9 in, long.
95	4	J	1950	2.5-4.6	**		99, 9934 pure; polyerestal; supplied by Johnson, Matthey and Co.
57	428	æ	1957	1673-2500	+ 10		In liquid state,
88	246	H	1919	273,373			Rolled, drawn, and then heated 0.5 hr at temp close to melting point.
59	429	æ	1937	285.7	± 0.7		Pure.

SPECIFICATION TABLE NO. 12 (continued)

Curve No.	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
09	430	7	1924	273.2			Pure, rolled and drawn to wire of 1 mm² cross section and 3 cm long, and heated at temp close to melting point.
19	431	ш	1944	597-1245			Polycrystal.
;	433	u	1957	5.0-40		Coalesced Cu	99.9% pure: 0.0013 O ₂ , 0.0007 NI, 0.0008 Pb, 0.0002 Sn, each of Fe, As, Sb < 0.0005, 0.0001 Te, and BI < 0.00005; cold rolled, annealed for 1 hr at 650 C, redrawn and reannealed for 17 min at 760 C, followed by grinding to sample size of 0.144 in. in dia; density 8.899 g cm ⁻³ ; porosity 0.5%.
3	432	1	1957	4.0-40		Electrolytic tough pitch	0.01 Fe, 0.001 each Ag and Zn, each of Al, Cr, Pb, Mg, Mn, and Sn < 0.0001; electrolytic tough pitch; density 8.914 g cm ⁻¹ ; ground.
2	432	'n	1957	5.0-100		Phosphorus deoxidized Cu	0.027 P, 0.01 each of Fe. Ag, and Zn, 0.001 each Ni and Si, <0.0001 each of Al, Cr, Pb, Mg, and Mn; density 8.917 g cin ⁻³ ; ground.
65	33	1	1940	78.2		Electrolytic Cu	0.015 Sb. 0.010 Fe, 0.007 S, trace Pb.
99	434	h	1959	4.0-105			99.999 pure; swaged from about 0.375 in, down to about 0.072 in., cleaned with a 1:1 solution of HCL and a 1:10 solution of HNO; annealed in vacuum for 2 hrs at 400 C, drawn through tungsten carbide dies to 9.070 in., cleaned with acids, and finally annealed again in vacuum for 2 hrs at 400 C; alight unavoidable work hardening of the sample during installation in the apparatus.
67	434	ı	1959	4.0-105			99.999 pure; swaged from about 0.375 in. down to about 0.0816 in., cleaned with acids, annealed in vacuum for 2 hrs at 400 C, and then drawn through tungsten carbide dies to 0.070 in. in which the cross-section area reduced by 26.4%; not annealed again after drawing.
32	435	1	1900	291.2			Pure.
69	435	-1	1900	291.2			Trace As.
20	410	æ	1935	273.2	1		Pure; electrical conductivity 62.8 x 10° mho cm ' at 273.2 K.
11	436	ı	1938	21.17		Cu 13	Natural single crystal: tempered for 3 hrs at 380 C; measured at H (the transverse magnetic field etrength) - 0 and 8 (the angle between magnetic field direction and a line perpendicular to rod axis) - 0° at which the electrical resistivity is nearly minimum and H nearly parallel to (100) direction.
72	436	٦	1939	21.17		Cu 12	The above spectmen measured at H = 2280 correteds and $9 = 0$.
73	436	ם	1938	21.18		Cu 12	The above specimen measured at H = 4490 cerateds and $\theta = 0$.
74	436	ы	1938	21.21		Cu 12	The above specimen measured at H = 8750 oersteds and $\theta = 0$.
75	436	'n	1938	21.23		Cu 12	The above specimen measured at H = 10880 ocrateds and 9 = 0.
76	436	a	1938	21.25		Cu 12	The above specimen measured at $H\simeq 12200$ coretods and $7\approx 0$.

SPECIFICATION TABLE NO. 12 (continued)

Composition (weight percent). Specifications and Remarks	The above specimen measured at $H\approx 0$ cersieds and $\theta\approx -40^\circ$ at which the electrical resistivity is nearly maximum and H nearly parallel to [110] direction.	The above specimen measured at H = 2280 cerateds and θ = -40°.	The above specimen measured at H \approx 4490 cersteds and $\theta \approx$ -40°.	The above specimen measured at $H\approx 8750$ oersteds and $\theta=-40^\circ$.	The above specimen measured at $H = 10800$ oersteds and $9 \approx -40^{\circ}$.	The above specimen measured at H = 12200 oersteds and 9 = -40°.	Pure,	Pure.	Electrolytic copper wire; not amealed and not bent, but heated considerably during soldering.	99.80 Cu. 0.19 Si, and 0.02 Fe; specimen 0.75 in, in dia and 8 in. long; electrical conductivity 29.58 and 21.30 x 104 mho cm ⁻¹ at 20 and 200 C, respectively; annealed at 700 C for 2 hrs.	99.9 pure.	99.99 pure; 0.02 Ge; specimen $1\sim 2$ mm in dia and 6 cm long; drawn; and annealed; electrical resistivity 1.92 u ohm cm at 295 K.	High purity single crystal natural copper.	Commercially pure; fine crystalline.	Impurities: 0.015 Sb, 0.010 Fe, 0.007 S, 0.0003 Ac; annealed in nitrogen stream for 20 hrs at 380-490 C; electrical conductivity 6.22 and 43.1 x 10 ⁴ mho cm ⁻¹ at 273 and 78 K, respectively.	99.94 pure; 0.042 P, 0.04 Fe; annealed at 650 C for 1 hr and cooled in air.	99.97 pure; 0.075 P. 0.04 Fe; annealed at 650 C for 1 br and cooled in air.	99.74 pure; 0.18 P; annealed at 650 C for 1 hr and cooled in air.	99.917 pure; 0.083 P; specimen 0.5 lb. in dia and 6.5 in. long; annealed.	99.865 pure; 0.135 P: specimen 0.5 in. in dia and 6.5 in. long; annealed.	99.93 pure; 0.07 As; specimen 0.5 in. in dia and 6.5 in. long; annealed.	99.856 pure; 0.144 As; specimen 0.5 in. in dia and 6.5 in. long; annealed.	Inpurity < 0.03 ; electrical conductivity 50.8×10^4 mho cm ⁻¹ at 296.2 K.
Name and Specimen Designation	Cu 12	Cu 12	Cu 12	Cu 12	Cs 12	Cu 12				Bar 104					Electrolytic Cu	93	85	95					
Reported Error, %											2	-				8	es >	< 2					
Temp. Range, K	21.17	21.18	21.19	21.24	21.24	21.30	291.2	354.2	21-373	293,473	323-848	1.5-142	20-273	22-273	78,273	337-477	337-494	325-496	438	438	438	438	332.2
Year	1938	1938	1938	1938	1938	1938	1902	1956	1914	1935	1935	1955	1916	9161	1940	1831	1831	1931	1932	1 932	1832	1932	1925
Method Used	د ا	J	J	ı	-1	ı	ы	Δ,	គា	J	,,	٦	٦	٦	નુ લ	ı	u	ب	د	1	ר	1	-1
No.	436	43¢	436	436	436	436	437	390	438	135	439	355	619	619	440	<u>\$</u>	134	134	63	2.9	67	6	230
Oury No.	71	28	9.	80	81	82	8	84	82	98	87	88	88	8	16	85	93	\$	95	96	94	š	8

SPECIFICATION TABLE NO. 12 (continued)

Curve	Ref.	Mrthod Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
001	135		1935	293, 473		Bar 114	0.07 Mr. 0.01 Fe, 0.02 Mg. specimen 0.75 in. in dia and 8 in. long, electrical conductivity 52.55 and 32.18 x 104 mho cm ⁻¹ at 20 and 200 C, respectively; annealed at 700 C for 2 hrs.
101	135	د	1935	293, 473		Bar 115	0.14 Mn, 0.01 Fc, 0.01 Mg; specimen 0.75 in, in dia and 8 in. long; electrical conductivity 45.79 and 29.4 x 104 mho cm ⁻¹ at 20 and 200 C, respectively; annealed at 700 C for 2 hrs.
102	40	-a	1956	764-1287	ស	Electrolytic tough pitch	Electrolytic tough pitch copper meeting Federal Specification QQC 576 (minimum 99.9 Cu); density 8, 83 g cm ⁻³ ; specimen 7 in. in dia and 1.5 in. thick.
103	562	1	1949	23-245		OFHC	Oxygen-free high conducting (OFHC) copper.
101	96	၁	1940	80.273	7		Pure.
105	504	Д	1961	295.2	ia +i	OFIIC	specimen 1.9 ${ m cm}^2$ in ${ m cross-sectional}$ area and 0.312 ${ m cm}$ thick.
106	622	a	1960	363.2			Commercial grade; 99.82 pure: density 8.3 g cm ⁻³ .
107	622	۵	1960	363.2			The above specimen, second run.
108	623	۵	1960	363.2			The above specimen, third run.
109	622	۵	1960	363.2			The above specimen, fourth run.
110	579	-1	1936	15-20			"Very pure",
111	135	a	1935	293, 473		Bar No. 99	0.07 A1 and 0.01 Fe; annealed at 750 C for 2 hrs; electrical conductivity 52.58 and 31.69 x 104 mho cm ⁻¹ at 20 and 200 C, respectively.
112	620		1956	320-773	6 0 V		99.99 pure: polycrystalline; electrical resistivity 1.92, 2.50, 3.17, 3.81, 4.43 and 5.03 u.ohm em at 46.9, 134.5, 232.2, 323.3, 411.1 and 499.3 C, respectively.
113	8	_	1927	21,83		Cu 4	"Purest" electrolyte; with fine grains.
11 12	સ	. <u></u>	1927	21,83		Cu 4b	The above specimen hammered, then annealed for 4.5 hrs at 380 C, and recrystallized at 950 C for 5 min.
31.	5	Ļ	1927	21,83		Çn 6	Not very pure; single crystal; sawed from larger block and lathed into rod.
116	સ	ı 4	1927	21,83		Cu 6h	From the same block as the above specimen Cu6; hammered from 6 mm to 2.5 mm dta and annealed for 3 hrs at 380 C.
117	57	1	1921	21,83		39 n 3	Similar to the above specimen Cusb except further annealed in vacuum for 5 min at 950 C; about 25 grain cross-sections per 1 mm 2 .
118	57	د،	1927	21,83		Cu 7	Lathed from the same block as specimen 6; 3 to 4 crystal grains on the measuring length; unannealed.
119	23	1	1927	21.83		Cu 7a	Similar to the above specimen Cu? except annealed for 4 hrs at 380 C.

SPECIFICATION TABLE NO. 12 (continued)

				6	10000	bue smeN	
Curve	y Sef	Method	Year	lemp. Range, K	Error, %	Specimen Designation	Composition (weight percent), Specifications and Refrarks
120	623	in the second se	1960	2.0-55			99.999 pure copper from the Cen'ral Research Lab. of the American Smelting and Refining Co.; less than 0.0001 each of Fe, Sb, Se, and less than 0.0002 each of Te and As; 0.030 in. dia wire, rolled and drawn from a 0.75 in. dia rod then annealed at 530 C in vacuo for some hrs; residual electrical resistivity $0.865\pm0.01\times10^4$ ohm cm.
161	E	÷	1927	21,83		Cu 2a	Very high parity; porous natural crystal hammered from 3 mm to 1.3 mm dla.
122	: 13	ב ו	1927	21,83		Cu 9	Not very pure; single crystal solidified from melt; completely undeformed and inworked.
123	; ") <u>o</u> ,	1968	298.2		No. 1	Disk specimen 1.25 cm in diameter and 0.042 cm thick; obtained from DuPont Detaclad stock; thermal conductivity value calculated from the measurement of thermal diffusivity with density value taken from Lyman, T. (editor, "Metals Handbook", 8th ed., Vol. 1, 1961) and specific heat capacity value taken from Kelley, K. K. (U.S. Bureau of Mines Bulletin 584, 1960).
124	283		1963	0.50-0.88		ر د 1	Commercial, polycrystalline wire.
125	683		1963	0.42 - 0.93		Cu 2	99.999 pure, polycrystalline wire.
126	683		1963	0.42-0.94		Cu 3	99.999 pure, polycrystalline wire; annesled at 898.2 K for 3 hrs.
127	706	-2	1881	273,373			Density 8,82 g cm ⁻³ ; electrical conductivity 45,74 and 33,82 x 10 ⁴ ohm ⁻⁷ cm ⁻¹ (the author reported 45,74 and 33.82 x 10 ⁵ , probably a typographical error) at 0 and 100 C, respectively.
128	880	u	1965	0.4-1.5	#		Specimen a foil of 0.05 mm thickness, supplied by Chase Brass and Copper Co.; amealed at 530 C for three hrs; residual resistance raito 270.
129	821	ŋ	1250	80~217	10		Commercial copper; specimen 0.375 in. in dia and 2.975 in. long; cylinder with a part of 1.1 in. long at one end turned down to a dia of 0.125 in.; data corrected for drift rate.
130	851	1	1960	199-275	01		Similar to the above specimen.
131	843	1 1	1966	298.2			Nearly spherical grains supplied by Belmont Smelting and Refining Co.; mesh size -30 + 35; specimen contained in a 0.75 in. dia and 2 in. long cylindrical cell; thermal conductivity measured by suiting the transient line source method, the heat source was a 36-gauge constantan wire contained in a 0.625 in. O.D. hypodermic tube soldered along the axis of the cylindrical cell, data calculated from measured line temperatures at two certain times; measured in Freon-12 under a pressure of ~100 psig.
132	843	1	1966	298.2			Similar to the above specimen, measured in argon under a pressure of $\sim \! 100 \; \mathrm{psig}$.
22	843	1	1966	238.2			Similar to the above specimen; measured in nitrogen under a pressure of $\sim 100~\mathrm{pslg}$.
7	843	1	9961	238.2			Similar to the above specimen; measured in methane under a pressure of $\sim 100~\mathrm{psig}$.
135	£	1	1966	298.2			Similar to the above specimen; measured in helium under a pressure of ~ 100 psig.
				1			

^{*}Larson, K. S. and Koyama, K. J. Appl. Phys., 39 (9), 4408-16, 1968.

SPECIFICATION TABLE NO. 12 (continued)

matien	cincipal to the shove specimen; measured in hydrogen under a pressure of ~100 page.	Similar to the many of the commercial wire to on in length electrical resistivity 1.73 μ	obm cm at 0 C.	The above specimen measured in a longitudinal magnetic field of 10000 gausses.	
Name and Specimen Design					
Reported Error, %					
Temp. Range, K		298.2	273.2	,	273.2
Year		1966	1927		1927
Method		1	ш		ω
Ref.		843	1005		1005
Se de		136	23	į	138

DATA TABLE NO. 12 THERMAL CONDUCTIVITY OF COPPER

The state of the s

(Impurity < 0.20% each; total impurities < 0.50%)

	-	CURVE 32(cont.)	811.0 3.41				CURVE 33	:		4.54 14.4	4.70 20.5				10.7 42.6	· w	٥	16.3 49.5		27.8 37.2			38.0 20.4	44.5 14.9 56.8 14.9				90.5 5.31	7	CORVE						3. 53 2. 11					
	¥	CURVE 29(cont.)	4.06	• 4	0 4.28		CURVE 30		28 U. 530		0.44 0.910			0.67 1.090						3. 60 6. 22			CURVE 31	4 62	÷	•				3,80				,	CURVE 32				3.49		
	+	CO	407.		440.0				j (Ö	Ö	o (.	; 4	63	ci (Ni c	ગં ભં	4		U ,	107	113	123.	148.	173.	188	223.2	273.	291.							700.0		
	. *	CURVE 26*	82.0	ó	CURVE 27*		3.77	3. 73	3.71	3 G	5	CURVE 28		6.1	2.0	12.7	14.8	21.9	25.1	27.4 28.0	8.62			₹ - 8 8						17.6	CURVE 29*								2. 5. 2. 5.	3,95	
cm-1K-1)	H	CO	21.50	90.01	CU		369. 2	449. 1	0.626	745.0		CO		27	N :-		5.2	¥.'.	10.0	12.2	13.3	15.7	16.2	18.2	25.5	27.0	30.7	31.5	36. 5	40.7	10	{ }	347.2	350.4	355.0	361.4	370.5	376.1	390.1	398.1	
k, Wati	×	E 19	1. 12	1. 19 1. 1.	1 1	1. 14	1, 10	1. 16	;	CURVE 20	4, 73	4. 73	4.41	4. 13	CHRVE 2!		98.0	5.57	• 66	CURVE 22	£.3	5.49		, , , , , , , , , , , , , , , , , , ,	Ç	د		CURVE 24		25.3 5.28) 	CURVE 25	1	59.5	59. 1	60.2	28.	. 56. 			
[Temperature, T. K: Thermal Conductivity, k, Watt cm 'K']	- -	CURVE 19	1362	1373	1431	1548	1639	1761		COR	95. 4	98.4	199. 5	292. 6	AIIO		21.2	83.2		CON	21.2	83. 2		G .		83.2	ı	CUR	;	21.2	j	CUR		14. 5	14. 8	16.2	17. 1	18.0	20. 1		
Thermal	×	13	16.9	4.62	3.83	3.83	3.83	•	E 14	o o	3 6	3.66		E 15	3,6	3. 60	; •	CURVE 16	i	3.73	;	CURVE 17*]	6. c	9	E 18		3.98	3.86	3. 77	3.67	3.58	3.51								
ature, T. K:	Ŀ	CURVE 13	21. 5	91.4	291.2	298.3	374.6		CURV	600	429	533. 2		CURVE 15	9419	373.2	! ;	CURV		373.2	i i	CURV	İ	291.2	4.5.6	CURVE 18		309. 2	409. 2	519. 2	687. 2	749. 2	834. 2								
(Temper	¥	(cont.)	14.5	- : 0 •	4.00	24.9	24. 2	21.9	19. 1	7. 50	. 4 . 5 . 5	4.43	4.31	i	63	7.95	0.01	12. 1		01 01 01	3.87	3.66		3, 35	VE 11*	3	3. 82	3.83	3. 75	9 9	CHRVE 12		17.6	4. 93	3. 92	3.90	3.90	3.90			
	۲	CURVE	9.08	0.5	20.0	21.0	25.0	30.0	33. 2	62.0	0.00	120.0	142.0		CURVE	10.0	15.0	2C. 0	(COR	314.7	623.7	813.5	1058.4	911.0		349.2	357.2	635. 2	636. 2	CIIR		20. 7	50.7	273. 1	291.2	293. 7	374. 7			
	**	CURVE 3(cont.)	0.510	0.773	1.25	1.63	2. 00	2.38	2. 78	3.01	י י י י	4. 39	4. 43	3.91	***		3, 93	3.90	1	CURVE 5	3.93	4. 10	3.93	3.89	S TUBLE		4. 14	4. 18	3. 97	3.83	CHRVE 7		1, 31	1.38		VE 8	;	9. 50	12.8) i	
	۳	CURVE	4.32	5.90	10.4	13.2	16.4	21.0	24. 5	27.2	0 ti 0	53.6	60.0	108.0	37610		293.2	473.2		CCR	368.2	508.2	739.2	766. 2	allo		302. 2	409.2	559.2	744.2	RILD		1456	1550		CURVE		5.05	9 00	; ;	
	.	VE 1	10.2	10.3	11.2	11.4	11.2	11.3	11. 1			4.90	4.49	4.30	4.20	. 4	4. 03	4.05	4.05	4 3	VE 2			0. 774	77.7	2 5	2, 59	2, 78	2. 93	3. 13	20.2	. 8.	5.02	4.85	4.39		VE 3	6	0.460	;	
	۲	CURVE	22.9	23.7	27. 1	29.4	31. 1	34.0	34. 6	47.50 5	23.7	85.6	99.8	115.1	130. 1	159.6	175.5	211.8	226.6	245.2	CURVE		2.90	3.72	3.30	10.8	13.2	14.8	16. 5	18.0 22.0	į	35.0	41.0	49.5	70.0		CURVE		3.20	í ;	

Not shown on plot

1.18

÷,	CURVE 106*	363.2 3.78	CURVE 107		363.2 3.74	CURVE 108*		363.2 3.18	CURVE 109*		303.6 3.66	CURVE 110	7. O			17.1 58.1		_	6.4.9	CURVE 111		293 3,52	473 3.66	CIIBVE 449						505.4 3.94	684.3 3.88	722.6 3.87	772. 5 3.86		
¥	CURVE 102	3.59	3.31	3,17	CHRVE 403		10.3	4.0.4	10.9	£1.3		* * \frac{1}{2} \cdot	2.11.2	4.80	6.62	5.59	4.92	4.53	4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	4.18	4.14	4.12	.08			CURVE 104*	ļ	5.52	4.00	£ 100	CURVE, 103	4 18	•		
(+	3	763.7	1146	1278	11.0		23.0	3.2	24. 5 26. 0	27.3	31.3	34.	77.6	57.5	59.7	711.7	85.6	99. K	115.2	145.2	159.6	175.5	211.7	226.0	13.0	CUR		80.2	273.2	9	5	0 500			
¥	CURVE 94 (cont.)	1.56			1.64			1.82	CURVE 95*		2.30	CURVE 96		01.7	CHRVE 97		0 2.90		CURVE 98	0 0		CURVE 99*		3.84	CHRVE 100			3.61	,	CURVE 101		07.6			
Ė		357.2	358.2	396.2	397.2	443.6	495.2	496.2	J	' <u>;</u>	438.0	OI	9	43K. U		' I	438.0		01	0 627		U	1	332, 2		71	293.	473.2		O,	con	233.2	2		
*	CURVE 90 (cont.)	4.64	4,01	6.5	CURVE 91*		3, 50 3, 97		CURVE 92			3.18				3.33		CURVE 93*				2,47	2.54	2.56		2,65			2,0		CURVE 94			1.53	
۲	CURV	90.2	196.0	0.613	CUB	,	78.2 273.2		CGR	337.2	337.2	337.2	386.2	429.2	430.2	476.2	411.	כמ		337.2	337.2	337.2	390.	393.	436.2	439.2	7.7.4	400.	404.9	*	리		325.2	341.2	341.2
ᅶ	CURVE 88	1.15	1.25	1,50	2,10	2,55	5.15 5.70	6.70	8.05	10.0	10.8	11.6 12.1	12.3	12.8	12.1	11.8	90.4	* 6	6.4	4.40	4.35	4.35	CURVE 89		127.1	124.6	177.7	120.5	91.0	5. 35 95. 95	4, 10		CURVE 90*	13.1	4.72
H	CUE	1.5	2.0	4 (2	3.0	4.0	7.0 8.0	9.0	11.0	15.0	16.0	18.0 21.0	26.0	29.0	34.0	3.0	20.0	78.0	91.0	112.0	129.0	142.0	CUE		20.4	20. 6	20.0	73.0		83.0	273.0		8	22.0	85.0
æ	CURVE 79	21.19 64.0	*	CURVE 80	21.24 49.1		CURVE 81	42.3	4110	UVE 02	39.0	CURVE 83*		3,92		CURVE 84*	20.0	10.0	CURVE 85*		16,1	91.0 5.23	18	4.18		CURVE 86	ç	2.13		CURVE 87		3,83	3.76		
€-	CUR	21.19		8	21.24		5	21.24 42	į	3	21.30	CO		291.2		히	0. 430	3.7.6	CO	ļ	21.0	91.0	290.5	373.0	ļ	8)	ć	2.35	-	CO		323.2	848.2		
×	CURVE 68*	3,90		RVE 69	1.42	,	RVE 70	3,91		WE 7	86,1	CURVE 72		74.7		RVE 73	į	• •	CURVE 74		53.8 8	***************************************	AVE 13	49.4	•	RVE 76	;	47.0	2017	CORVE	86.1		CURVE 76	21.18 75.7	
۲	S	291.2		티	291.2		밍	273.2		3	21.17	110		21.17		팅	3	21.18	CU		21.21		3	21, 23		<u></u>		21.25	1110	3	21.17		히	21.18	

Not shown on plot

DATA TABLE NO. 12 (continued)

' 4	CURVE 129	90	95, 34 3, 85	, e	3 4		198, 35 3, 50	30 3.		CORVE 130				275, 40 3, 65		CURVE 131*	CD100 0 C NOC		CURVE 132*		298, 2 0, 00328	# C C C C C C C C C C C C C C C C C C C	CURVE 133	296. 2 0. 00439		CURVE 134*	0.800		CURVE 135		298. 2 0. 0165	1	CURVE 136	1020 0 6866		CURVE 137		273.2 4.176	4	CURVE 138	273.2 4.166
×	CURVE 126	0.82	0.93	9 5	1. 22	1.45	1.47	1.49	. S	1. 68 1. 68	1.78	1.90	4000	CURVE 127	3.011	3. 023	Set BARIE		1.268	1.334	1.438	1.534	1. 707	1, 837	1. 335	2.023	111	2.328	2, 473	2. 702	2.784	2.876	2.959	500 E	3, 875	4. 002	4.130	4, 354	4.445		
T	CUR	0.42	0.46	20.0	0.00	0.68	0. 70	0.72		2 % 	0.89	3 5.	Č	COR	273. 2	373.2	200		0.427		0.477	0.509		0.604	0.640	0.671	9. 109	0. 772	0.820			0. 953	0, 981	177	1, 280	1, 322	1, 365	1.437	1.467		
¥	CURVE 121	24.1	5.21	661 3/10310	777	1.4	5.02		VE 123	æ eri		CURVE 124		0. 740	c. 870	0. 500	0.360	1.02		1.08	1.07	1.085	1.125	1.25		CURVE 125	9	0.130		0.241	0.300	0.340	0.350	0.380	0.395	0.405					
(-	CUR	21.2	83.2	ė	100	21.2	83.2		CURVE	298.2		CUR		9 % oi o	36 0	0.612	o o	0,694	0.718	0. 73	0.74	0. 76	9 8 0)))	;	S	•	24.0	0. 51	0.595	0.65	0. 70	0.74		6.88	0.93					
. ¥	/E 113	4.64	5. 39	700 000000	211	46.3	30.	:	(E 115	19.0	5, 14*	**	CURVE 116	25.7	5.35	;	CURVE 117	20.4	5.25		CURVE 118"	6	0.61	F 7	CURVE 119		27.4	9. 96	CURVE 120		58.8	71. 3	8 00 00 00 00 00 00 00 00 00 00 00 00 00	120.0	159.3	190.0	173.5	138.2	92. 0	عن من من من	
↔	CURVE	21.2	33.2	2	רטא	6 16	2 6		CURVE	21.2	83.2		SUS	616	2 22	3	COR	21.2	83.2		CUR		21. 2	83.2	CURI		21.2	3.7	CUR		2.0			4; 4 D 10	0 9		13.0	17.0	22.0	27.5	2.5

Not shown on plot

T1 in K, k1 is Watt cm 1K1, T2 in F, and b2 in Btu hr 1ft-1F1.

*Values in parentheses are estimated.

SPECIFICATION TABLE NO. 13 THERMAL CONDUCTIVITY OF DYSPROSIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 13]

No	Ref.	Method Used	Year	Temp. Range, K	Reported Error. %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
	807	ا ا	1964	6.5-306	2		0.2 Ta, 0.1 Tb, 0.05 Ca, 0.05 Ho, 0.02 Er, 0.02 Si, 0.02 Y, 0.01 Fc, 0.01 Mg and traces of Cu and La, polycrystalline; 0.476 cm dia, 5 cm long; supplied by St. Eloi Corp.; electrical resistivity 9.55 μ ohm cm at 4.2 K; measured in a vacuum of \sim 6 x 10 $^{-4}$ mm Hg; T. P. (forromagnetic - antiferromagnetic) 85 K; Néel temperature 180 K.
8	777	U	1965	291.2	က		High purity; polycrystalline; 0.25 in. lorg, 0.25 in. dia; supplied by Johnson Matthey and Co. Ltd.; electrical resistivity 105 µohm cm at 18 C; measurements made using two different thermu, comparators; Monel metal used as comparative material.
က	811		1954	301.2	10		No information given.
	261		1967	1.0-4.2	-		Pure polycrystalline specimen 1.5 mm in dia supplied by Johnson Matthey and Co.
w	**	u	89 86	4.7-300	φ		0.0500 Er. 0.0500 Tb, 0.0400 Ta, < 0.0200 Gd, 0.0157 O, 0.0100 Fe, < 0.0100 Ho, < 0.0100 Si, < 0.0050 Al, < 0.0050 Cr. 0.0029 H, 0.0020 Ca, 0.0010 Mg, 0.0010 N, and < 0.0010 V; single crystal; 9.48 x 2.30 x 2.12 mm; grown from arc-melted buttons using the strain anneal nethod; < 1120: direction (a-axis) along the specimen axis; electrical resistivity reported as 4.60, 4.60, 4.62, 4.74, 5.47, 6.32, 8.20, 13.4, 20.7, 31.2, 35.1, 36.5, 38.1, 42.3, 52.7, 71.8, 83.2, 88.4, 33.4, 94.5, 99.4, and 111.5 puolm cm at 4.2.6.9, 9.0, 12.0, 18.0, 22.1, 28.2, 40.1, 55.3, 75.0, 83.5, 86.0, 88.9, 94.4, 114.0, 143.8, 160.2, 167.6, 178.3, 188.6, 213.1, and 299.4 K, respectively; electrical resistivity 4.59 µohm cm; Lorenz function reported as 5.80, 4.99, 4.54, 4.76, 4.83, 5.14, 5.32, 5.16, 4.99, 4.97, 5.01, 4.86, 4.84, 4.64, 4.26, 3.96, and 3.93 x 10°40/R²-2 at 6.9, 11.6, 17.8, 25.7, 33.8, 45.5, 61.1, 78.8, 87.5, 94.2, 115.9, 116, 17.8, 25.7, 33.8, 45.5, 61.1, 78.8, 87.5, 94.2, 115.9, 116, 17.8, 25.7, 33.8, 45.5, 61.1, 78.8, 87.5, 94.2, 115.9, 10.8, 227.8, and 300.0 K, respectively; heat flow along the a-axes.
ဖ	*	J	1968	5.8-300	φ		Single crystal; 12.79 x 2.21 x 2.19 mm; grown from arc-melted buttons using the strain anneal method; <0001: direction (c-axis) along the specimen axis; electrical resistivity reported as 5.79, 5.79, 5.88, 6.32, 7.01, 8.83, 11.7, 17.3, 26.7, 31.8, 33.8, 35.0, 36.1, 41.4, 42.0, 47.2, 63.1, 80.1, 83.1, 83.2, 83.0, 77.0, 70.6, 70.3, 70.3, 70.3, 73.7, and 77.2 µohm cm at 4.2.8.0, 11.1, 16.0, 20.2, 26.6, 35.2, 49.6, 71.0, 81.1, 84.9, 87.0, 88.1, 88.9, 99.9, 98.1, 124.0, 150.1, 160.2, 163.2, 165.9, 174.3, 186.6, 194.6, 199.9, 219.1, 259.8, and 299.4 K, respectively; electrical resistivity radio p 600 Kl/p(4.2 K) = 13.4; residual electrical resistivity radio croported as 5.26, 4.53, 4.24, 4.28, 4.15, 4.46, 4.58, 4.56, 4.79, 4.64, 4.75, 4.72, 4.42, 3.91, 3.80, 3.59, 3.61, 3.77, 3.16, and 3.03 x 10.87k, 2 at 8.0, 13.7, 19.5, 23.9, 33.9, 58.7, 78.7, 86.1, 38.5, 91.4, 125.4, 141.5, 159.5, 174.9, 184.5, 192.9, 198.1, 228.3, 262.9, and 300.0 K, respectively; heat flow along the c-axis.

DATA TABLE NO. 13 THERMAL CONDUCTIVITY OF DYSPROSIUM

(impurity < 0, 20% each; total impurities < 0.50%)

[Temperature, T, K; Thermal Conductivity, k, War cm-1 K-1]

×	CURVE 6 (cont.)	0.114	0.110	201.0	0.107	0.039	ر09,	860.0	£ 0.0	0.097	0.094	0.092	0.000	0.0	0.088	980.0	0.084	0.085	0.086	0.088	0.088*	0.031	960 0	*960 0	0.049	600	9 9	0000	66.0	.0.	0.107	0.112	0.114	0.116											
Н	CURVE	85.2		er (6 6	50.3	92°	1.06	7.001	105.2	110.0	120.2	130.0	140.2	149.9	155.0	160.2	165.0	170.0	172,5	175.0	177.5	180.1	182.5	2 2 2	, (·	0.00	103.9	190.0	200.0	225.1	249.8	275.2	299.8											
×	(cont.)	0.033	0.095	66.0	0.101	0.103	•	ا و		0.053	0.052	0.060	0.071	0.078	0.084	0.091	960.0	0.100	0.106	0.110	0.114	0.118	0.122	0.125	621.0	0.123	77.0	0.130	0.128	0.128	0.124	0.125	0.123	0.123	0.124	0.124	0.124	0.122	0.121	0.119	0.118	977	0 113	5.7.0	711.
۴	CURVE 5 (cont.)	200.0	225.0	243.0	273.1	299. 5		COHVE		8.°.	0.,	e:	e.	9.0	10.0	11.1	12.0	13.0	14.3	16.0	17.6	6.	30.0	2 - 2		6.46	- ·	7.		0.0	33.2	36.0	39.0	42.5	45.0	20.0	55.0	59.7	65.1	70.2	76.3	6.	. 08 . 08		96.
×	5 (cont.)	0.148	0.151	0.153	0.159	0.163	0.161	0.165	0.164	0.159	0.157	0.154	0.150	0.147	0.146	0.142	0 138	92.70	134	101.0	136	126	0.120	0.120	27.0	0.121	0.119	0.119	0.i15	0.111	0.111	6.110	0.110	0,104	0.09	0.09	0.092	0.092	0.088	0.089	060	950.0	0000	80.0	0.092
۲	CURVE 5 (cont.	17.9	18.9	19.9	20.9	21.7	22.6	24.0	25.9	28.0	29.9	33.0	36.2	8	45.2	30.0	55.0	0.00		200) (1 0	0 0	0,00	62.3	82.5	85.0	86.5	90.0	92.8	95.0	100.1	110.2	125.4	145.2	160.4	165.3	170.5	175.0	27.0	180		1 26 1	1.007	190.1
.¥.	CURVE 4 (cont.)	0.01440	0.01462	0.01499	0.01569	0.01641	0.01673	0.01726	0.01762	0.01793*	0.01×10.0	0.01927	0.02042	0 02004*	0.02029	0.02077*	0 02162	0.0000	0 600004	0.0220	0.02485	00000	0.02020	0.02501	0.02361	0.02641*	0.02737	0.02791		Έs		0.062	0.059	0.089	960.0	0.105	0.114	0.120	0.128	0.132	135	001.0	0.139	2.1.0	0.144
L	CURVE	2.638	2.684	2.742	2.781	2.869	2.970	3.045	3.161	3,165	3.165	3.299	3.411	3.463	S 10 10 10 10 10 10 10 10 10 10 10 10 10	3.577	2 659	200.6	3.035	201.6	96.6	100.0	3.930	200.	100.4	4.125	4.136	4.218		CURVE 5		t	4.9	1.1	6.1	9.0	10.1	11.0	12.9	13.0	20.00		15.1	5.67	16.8
.*	(cont.)	0.117	0.123	0.130	0.137	0.148	0.157	0.166	27.7	981.0	0.193	261 0			اد	6	301.0	0.100		2	Ġ.	0.100		<u>.</u>		0.00799	0.00959	0.01031	0.01007	0.00979	0.01084	0.01005	0.00991	0.01092	0.01139	0.01158	76	01210	0.01265	0.010.0	0.01233	0.01343	0.01388	0.01438	0.01448*
۲	CURVE 1 (cont.	215.5	225.0	235.0	244.5	257.0	267.5	278.0	289.0	200.5	302.5	306.0		C TUBUE		6 106	2,162	231.2		CORVE		301.2		CURVE		1.017	1.146	1,216	1.277	1,308	1.317	1.406	1.432	1.476	1.576	1.673	1 705	1 014	1.327	2.00	2.03	2.2.0	2.297	2.437	2.466
×	<u>[</u> 2]	990.0	0.085	0.094	0.101	0.113	0.126	0.139	0.144	0.146	0 145	0.135	0.1.0	911.0	0.113	0.115	70.00	8 3	1 3	50.7	50.103	201.0	0.101	0.039	0.039*	0.099	0.095	0.095	0.095*	0.094	0.093	0.033	0.033	0.093	0.093	0.092	950	200	200	300.0	960.0	0.033	9.103	0.1.0	0.117*
H	CURVE 1	9	8.8	10.6	11.0	12.5	15.5	18.5	21.0	24.5	30.5	35.5			3.5	0.00	20.00	0.89	72.0	20.0	0.00	30.5	93.5 5.5	35.5	86.5	37.5	89.5	96.3	90.5	95.0	103.0	110.5	117.5	124.5	133.5	143.5	150 0	163.0	179.0	2 (0)	101.0	192.5	191.0	203.0	214.5

*Not shown on plot

FIGURE AND TABLE NO. 13R RECOMMENDED THERMAL CONDUCTIVITY OF DYSPROSIUM

THE RESERVE OF THE PERSON OF T

SPECIFICATION TABLE NO. 14 THERMAL CONDUCTIVITY OF ERBIUM

(impurity <0.20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 14]

Composition (weight percent), Specifications and Remarks	of a constant annealed at 550 C for 2 hr in vacuum of	99. 9 pure; polycrystalline; 3 x 0.2 x 0.505 cm, annual 10.4 mm Hg; electrical resistivity 8.4 4 pohm cm; electrical resistivity 8.4 4 pohm cm; electrical resistivity ratio p.0298 K)/p(4.2 K) = 10.2; T. P. (ferromagnetic - antiferromagnetic) 20 K; Neel temperable 80 K; data taken from smoothod curve.	High purity; polycrystalline; 0.25 in. dia. 0.25 in. thick; supplied by Johnson Matthey and Co. Ltd.; electrical resistivity 79 pohm cm at 18 C; measurements made using and Co. Ltd.; electrical resistivity 79 pohm cm at 18 C; measurements made using glifferent thermal comparators; Monel used as comparative material.	0.01 Ca, 0.02 Ho, 0.005 Mg, 0.07 O, 0.01 St, and trace Tm; polycrystalline; 0.416 cm dia, 6 cm long; supplied by Research Chemicals; arc-meited, machined, swaged, and annealed in vacuum ←10 ⁻⁵ torr) at 800 K for 50 hrs; T. P. (ferromagnetic – and annealed in vacuum ←10 ⁻⁵ torr) et 86 K; data above 75 K extracted from antiferromagnetic) 19 K; Neel temperature 86 K; data above 75 K extracted from	smooth curve; electrical resistantly 3.79 point. Cir. 2.77 point. The second run of the above specimen; measured during cooling.	No information given.	A 0500 T. 0 0235 O 0.0263 Mg, < 0.0200 Ca, 0.0150 Cr, 0.0150 Fe, < 0.0100 Dy.	<0.0100 Ho. < 0.0050 St. < 0.0050 Y. 0.0017 H. 0.0011 N. < 0.0010 Lm. < 2.0100 Ho. < 0.0050 St. < 0.0050 Y. 0.0017 H. 0.011 N. < 0.0010 Ho. < 0.0050 St. < 0.0050 Y. 0.0050 Y. 0.0050 Y. 0.0050 Y. 0.0011 N. < 0.0011 N. < 0.0011 N. < 0.0050 Y. 0.0050 Y.	and traces of Cu and W; single crystat; 3. 14. 17. 4. Lorenz time the netted buttons using the strain anneal method; <1010> direction (0-axis) along the nucled buttons using the strain anneal method; <1010> direction (0-axis) alorenz timetion specimen axis; electrical resistavity ratio p(300 K)/p(4. 2 K) = 17. 4; Lorenz timetion specimen axis; electrical resistavity ratio p(300 K)/p(4. 2 K) = 17. 4; Lorenz timetion specimen axis; electrical resistavity ratio p(300 K)/p(4. 2 K) = 17. 4; Lorenz timetion 3. 94, and 3. 75 x 10 aV/K; at 6. 4, 10. 3. 15. 9, 22. 0, 31. 3, 43. 45, 65.1, 80.0. 3. 94, and 3. 75 x 10 aV/K; at 6. 4, 10. 3. 15. 9, 72. 0, 31. 3, 43. 45, 65.1, 80.0. 5. 90.00 Fe. <0.0500 Ta. 0.0200 Co. 0.0200 Cr. 0.0200 Mg, 0.0130 Y, 5. 0.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0014 H, <0.0010 Tm. <0.0010 Ym. <0.000 N. 5. 0.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0014 H, <0.0010 Tm. <0.0010 Ym. 50.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0014 H, <0.0010 Tm. <0.0010 N. 5. 0.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0010 Jm. <0.010 N. 5. 0.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0010 Jm. <0.010 Hr. 5. 0.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0010 Jm. <0.010 Hr. 5. 0.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0010 Jm. <0.010 Hr. 5. 0.0100 Dy. <0.0100 Ho. <0.0050 G. 0.0010 Jm. <0.010 Hr. 5. 0.0100 Dy. <0.0100 Hr. 5. 0.0100 Dy. <0.0100 Hr. 5. 0.0100 Dy. <0.0100 Hr. 5. 0.0100
Name and									
Reported	- 1		ဇ				10	9	φ
Temp	Range, K	2-99	291.2	6.5-310	;	6.5-33	301.2	6.9-300	4.9-300
Year		1965	1965	1965		1960	1954	8961	3 96 8
Method	Used	٦	υ	ے		ب		نـ	٦
Ref.	og S	322, 808	777	808		603	811	41	**
Surge Surge	Q.	-	2	м		4	S	ø	c

DATA TABLE NO. 14 THERMAL CONDUCTIVITY OF ERIDUM

(Impurity < 0.20% each; total impurities < 0.30%)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-! K-1]

¥	CURVE 7 (cont.)	0.074	0.064	0.067	0.067	0.069	0.072	0.073	0.073	0.075	0.080	0.082	0.085	0.088	0.084	0.085	0.038	0.088	0.087	0.088	0.089	0.037	0.108	0.123	0.123	0.130	0.131	0.136	0.143	0.143	0.146	0.151	0.163	0.176	0.179	0.189	0.188	0.186	0.185	0.184				
⊭	CURVE	19.5	20.1	21.1	21.5	22.0	23.6	25.6	27.2	29.4	32.1	34.8	38.0	41.3	41.5	43.3	46.5	49.5	51.4	S. 4	55.7	60.7	70.4	80.7	81.9	8 4 .0	35.9	87.9	90.4	93.7	56.5	100.4	125.0	150.0	175.0	199. ຣ	225.0	250.2	274.8	299. 7				
×	CURVE 6 (cont.)	0.097	0.095	9.097	0.095	0.095	0.098	0.098	0.101	0.102	0.102	0.102	0.102	0.102	0.101	0.104	0.101	0.106	0.106	0.113	0.117	0.123	0.125	0.128	0.128	0.128	0.126		CURVE 7		0.046	090.0	990.0	0.069	0.072	0.075	0.0773	0.078	0.080	0.081	0.082	0.084	0.085	0.083
€	CURVE	35.5	10.4	45,5	50.3	52.5	55.7	9 '69	39.65	73.1	80.4	82.5	83.5	84.5	85.3	86.5	87.4	90.9	100.3	125.6	150.4	175.7	200.8	226.0	250.9	275.8	300.2		CUB		4.9	6.9	7.9	8.9	10.1	10.9	12.1	13.6	15.0	16.0	17.0	18.0	15.5	18.9
ᅶ	CURVE 4 (cont.)	0.131	0.132	0.133	0.131	0.125	0.121	0.119	0.118	0.117	0.115	0.112	0.109		E 5	Ì	0.0962		Æ 6	ļ	0.029	0.058	0.059	0.062	990.0	0.072	0.077	0.080	0.082	980.0	0.087	0.089	0.090	0.087	0.088	0.090	0.00	0.092	\$0.0	0.033	0.093	0.034	0.0 \$60.0	0.0%
ŧ→	CURVE	16.3	17.0	17.8	18.6	19.5	20.8	22.0	23.0	25.5	27.5	30.0	33.9		CURVES		301.2		CURVE 6		6.9	7.2	7.6	8.1	9.2	10.4	12.1	13.5	15.0	16.6	17.5	18.4	18.9	19.6	20.0	21.5	22.5	23.6	24.5	25.5	27.5	29.2	30.2	33.1
¥	CURVE 3 (cort.)	0.109	0.112	0.116	0.128	0.129	0.124	0.118	0.116	0.115	0.114	0.111	90.108	9.104	0.037	6.092	0.090	0.088	0.088	0.086	0.086	0.0g	0.105	0.114	0.132	0.154	0.173	0.176		CURVE 4	!	0.030	0.099	0.110	0.112	0.114	0.118	0.122	0.125	0.126	0.128	0.128	0.129	0.130
۲	CURVE	10.0	11.0	12.0	15.7	16.7	18.5	19.7	21.8	23, 5	25.7	28.2	32.0	38.0	43.0	49.0	52.0	55.0	61.0	65.0	75.0	100	125	150	200	250	300	310		CUR		6.50	7.90	9. 20	9.80	10.5	11.0	12.0	12.9	13.5	14.0	14.5	15.0	15.8
×	<u>/E 1</u>	0.00	0.043	0.081	0.176	0.179	0.177	0.175	0.164	0.152	0.149	0.144	0.142	0.128	0.118	0.105	0.093	080	0.072	990.0	0.062	090.0	0.058	0.058	0.058	0.062		VE 2	1	0.136	0.140		VE 3	1	0.0820	0.0825	0.0830*	0.0835	0.0950	0.0995	0.102	0.105	0.109	1
H	CURVE 1	ć) O	0.	15.0	16.0	17.0	17.5	18.5	19.5	20.0	21.0	21.0	21.0	21.5	22.0	23.5	28.0	32.5	80	4 0 2	56.0	65.0	70.0	75.0	99.0		CURVE 2		291.2	291.2		CURVE 3		6,60	9	9	6.70	7, 70	8.20	S	9.00	8))

FIGURE AND TABLE NO. 14R RECOMMENDED THERMAL CONDUCTIVITY OF ERBIUM

- 99.7 - 9.7 32.0 80.3 170.3

6.01 6.36 6.64 6.88 7.74 7.74 8.26 8.33 8.33 8.32 (8.09)

351.7

-387. -378. -369.

5.84 5.48 5.36 5.40 5.59

-333. 7 -315. 7 -297. 3 -279. 7 260.3 4440.3 620.3 800.3

(8. 03) (8. 26) (8. 24) (8. 44) (8. 44) (8. 50) (9. 13) (9. 72) (10. 2)

1160 1340 1520 1700 1700 2060 2240

(10.6)

TEMPERATURE, K

REMARKS

The recommended values are for well-annealed 99, 69. % pure croium with residual electrical resistivity $\rho_0 = 3.79$ john cm (characterization by ρ_0 becomes important at temperatures below about 200 K). The values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures.

Tin K, ki in Watt cm-1 K-1, Tin F, and ki in Bu hr-1 ft-1 F-1.

*Values in parentheses are extrapolated or estimated.

SPECIFICATION TABLE NO. 15 THERMAL CONDUCTIVITY OF EUROPIUM

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 15]

d Composition (weight percent), Specifications and Remarks	Predicted value calculated from electrical resistivity value averaged from data of Speciding, F. H., et al. (Trans. ADME, 212, 379, 1958) and Colvin, R. V., et al. (Phys. Rev. 120, 744, 1960), and the Lorenz number 4, 29 x 10 4 V ² K ⁻² based on the smoothed curve of Lorenz number vs. atomic number given by the authors.
Reported Name and Error, % Specimen Designation	
Reported Error, %	
Temp. Range, K	300
Year	1966
Method	1
Ref.	528
Curve	-

DATA TABLE NO. 15 THERMAL CONDUCTIVITY OF EUROPIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1

300

建筑地位

SPECIFICATION TABLE NO. 16 THERMAL CONDUCTIVITY OF GADOLINIUM

(Impurity < 0, 20% each; total impurities < 0, 50%)

(For Data Reported in Figure and Table No. 16.)

Composition (weight percent). Specifications and Remarks		High purity; polycrystalline; specimen 0,25 in, in diameter and 0,25 in, long, supplied by Johnson Mathey Co.; electrical resistivity reported at about 16 C as 134 μ ohm cm; Monel metal used as comparative material; measurements made using 2 different thermal	comparators.	99.9 pure, strip specimen 0.25 mm thick; baked for 1.1/2 hours at 650 C; measured in helium atmosphere, electrical resistivity reported at 4.2 K as 3.00 μ ohm cm; electrical resistivity ratio ρ / 293 K) / ν / 4.2 K) = 47.4.	Polycrystalline gadolinium, measured in vacuum at about 6 x 10 ⁻⁶ mm Hg; electrical resistivity reported at 4, 18 K as 2, 41 μ ohm cm; antiferromagnetic-peramagnetic transition occurred at ~ 270 K.	No information given.
Name and Specimen Designation						
Reported Error, %		± 3.0				10
Temp.	3	291.2		2. 0-99	6.5-300	301.2
Year		1965		1966	1964	1954
Curve Ref. Method		ပ		1	1	
Ref.		777		814	815	811
Curve				8	m	4

THE PROPERTY OF THE PROPERTY O

DATA TABLE NO. 16 THERMAL CONDUCTIVITY OF GADOLDHUM (Impurity < 0.20% each: total impurities < 0.50%)

[Temperature, T, K, Thermal Conductivity, k, Watt cm $^{-1}K^{-1}$]

¥	3 (cont.)		0. 122		9, 121		-	0. 122					0. 129			0.136		0.141	9, 143		VE 4		0.0878																			
(-	CURVE 3	191.3	198,6	206. 1	213.0	220.4	228.4	235.7	242.9	250.3	258.3	265.2	270.1		279.8		289.1	294.6	299.5		CURVE		301 2																			
,¥£	(cont.)	0.315	0.309	0, 295	0.274	0.244	0.220		0.193		0. 182		0.180				0. 165	9, 163	0. 160	0.157		0.155	0, 153	0.151), 148	0.148								0.1%		0. 131				٠.	0. 124
٢	CURVE 3 (cont.	21.3	22.7	25.6	29.0	35.4	41.8	48.2	51.7	54.5	57.1	57.6	58.6	8. 8.	6.3, 9	67.2	70.3	73.2	76, 1	79, 1	8.18			96		94.5	95.3	97.8	9 8. 4	101.7	104.3	1.22.1	116.2	121.9	128,4	135,3	142, 6	149.7	157.0	164.3	171.6	181.4
×	E 1	0,089	0,093	9	7]	c.037	080	0.120	0,190	0.225	J. 258	0, 273	0.276	0.275	c. 253									0.085	0 079			VE 3				0.249	0.262	0.277		0, 315		0.330	0, 331		0,329	0.324
۲	CURVE	291.2	291.2	10110	CORVE	2.0	4	100		12.0	14.5	17.0			21.5	25.0		3 2		5	3.00	· ·			6.19			CURVE		6.53	7.55	8, 17	8,86	9.68	11.1	12.3		14.3	15,3	16.2	18.1	19.6

Not shown or plot

FIGURE AND TABLE NO. 16R - RECOMMENDED THERMAL CONDUCTIVITY OF GADOUNEM

Tem K. kyn Watt em 4 K. J. Tem F. and kein Bu 16-4 it -f F-f. Addues in parentheses are extrapolated.

SPECIFICATION TABLE NO. 17 THERMAL CONDUCTIVITY OF CALLIUM

(2mpurity $\leq 0, 20\%$ each) total impurities $\leq 9, 50\%$

[For Data Reported in Figure and Table No. 17]

1 342 L 1555 1.4.4. 1.5.2. 1.4.4. 1.	Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
342 L 1953 7.6 Ga 42-1 342 L 1953 2.3-4 Ga 42-1 343 L 1953 2.3-4 Ga 42-1 344 L 1953 2.3-4 Ga 42		246	-1	1953	# # # 1		(Ja 42 · J	Single crystal; 2, 92 cm long, 0, 223 cm dia; supplied by National Physical Lab; rod axis parallel to the high electrical resistance direction of the crystal; measured in a longitudinal field of 0, 36 Kee (kilonersted).
342 1 1953 2,3-4 ft Ga 42-1 342 1 1953 4,6 Ga 42-1 342 1 1953 2,3-4,6 Ga 42-1 343 1 1953 2,3-4,6 Ga 42-1 344 1 1953 <th< td=""><td>ę,</td><td>24 24 25</td><td>د</td><td>1953</td><td>9 ;</td><td></td><td>Ga 42-1</td><td>The above specimen measured in a longitudinal field of 0, 73 KOc.</td></th<>	ę,	24 24 25	د	1953	9 ;		Ga 42-1	The above specimen measured in a longitudinal field of 0, 73 KOc.
342 L 1953 4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 343 L 1953 4.6 Ga 42-1 344 L 1953 4.6 Ga 42-1 345 L 1953 4.6	:=	343		1953	3.3-4.6		Ca 42-1	The above apecimen measured in a longitudinal field of 1, 08 KOc.
342 L 1953 2,3-4,8 (3 42.1 342 L 1953 2,3-4,6 0a 42-1 342 L 1953 2,5-4,6 0a 42-1 342 L 1953 2,3-4,6 0a 42-1 343 L 1953 2,3-4,6 0a 42-1 344 L 1953	7	342	-1	1953	9. 4		Ga 42-1	The above specimen measured in a longitudinal field of 1, 47 KOe.
342 L 1953 (G3 42-1 342 L 1953 2.5-4.6 Ga 42-1 342 L 1953 2.5-4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 2.3-4.6 G	1.)	342	۔.	1953	2,3-4,8		Ga 42:1	The above specimen measured in a longitudinal field of 1,81 KUe.
342 L 1953 2.54.6 6a 42-1 342 L 1953 4.6 6a 42-1 342 L 1953 2.34.6 6a 42-1 342 L 1953 2.34.6 6a 42-1 342 L 1953 2.34.6 6a 42-1 342 L 1953 4.6 6a 42-1 342 L 1953 2.3-4.6 6a 42-1 342 L 1953 2.3-4.6 6a 42-1 342 L 1953 2.3-4.6 6a 42-1 <td>٦</td> <td>345</td> <td>_</td> <td>1981</td> <td>-</td> <td></td> <td>Gs 42-1</td> <td>The above specimen measured in a longitudinal field of 2, 15 KOe.</td>	٦	345	_	1981	-		Gs 42-1	The above specimen measured in a longitudinal field of 2, 15 KOe.
142 L 1953 4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953	1-	246	-1	1983	5 to 6		Ga 42-1	The above specimen measured in a longitudinal field of 2, 51 KOe.
342 1 1953 2, 3-4, 6 Ga 42-1 342 L 1953 2, 3, 4, 6 Ga 42-1 342 L 1953 2, 3, 4, 6 Ga 42-1 342 L 1953 2, 3, 4, 6 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 2, 3 + 6 Ga 42-1 342 L 1953 2, 3 + 6 Ga 42-1 342 L 1953 2, 3 + 6 Ga 42-1 342 L 1953 2, 3 + 6 Ga 42-1 342 L 1953 3, 4 Ga 42-1 342 L 1953 3, 4 Ga 42-1 342 L 1953 3,	,	21 11	<u>۔</u>	1953	9.4		Ga 42-1	The above specimen measured in a longitudinal field of 2, 98 KOe.
342 L 1943 3.4 Gra 42-1 342 L 1953 2.3.4.6 Gra 42-1 342 L 1953 2.3.4.6 Gra 42-1 342 L 1953 2.3.4.6 Gra 42-1 342 L 1953 4.6 Gra 42-1	Ð	340	_	1953	2, 3-4, 6		Ga 42-1	The above specimen measured in a longitudinal field of 3, 24 KOe.
342 L 1953 2.3.4.6 Ga 42-1 342 L 1953 2.3.4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 5.4 Ga 42-1 342 L 1953 2.5 Ga 42-1	2	23.00	نہ	19.0	•		G: 42-1	The above specimen measured in a langitudinal field of 3, 62 KOe.
342 L 1953 2.34.6 Ga 42-1 342 L 1951 4.6 Ga 42-1 342 L 1953 2.34.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 2.5.4.4 Ga 42-1	11	9	a	1953	2 3, 5, 6		Ga 42-1	The above specimen measured in a longitudinal field of 3, 65 KOe.
342 L 1951 4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 2.5,4,4 Ga 42-1	H	346	٦	1953	2, 3-4, 6		Ga 42-1	The above spreamen measured in a transverse field of 0, 36 KOe.
342 L 1953 2, 3-4, 6 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 2, 3-4, 6 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 2, 5, 4, 4 Ga 42-1	E 1	345	-1	1953	9 7		Ga 42-1	The above specimen neasured in a transverse field of 0, 73 KOe.
342 L 1953 4.6 Ga 42-1 342 L 1953 2.0-4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 2.0-4.6 Ga 42-1 342 L 1953 2.0 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 2.5,4,4 Ga 42-1	11	342	نہ	195.	2, 3-4, 6		Ga 42-1	The above spreamen measured in a transverse field of 1, 10 KOe.
342 L 1953 2, 0,4,6 Ga 42-1 342 L 1953 4,6 Ga 42-1 342 L 1953 2,3,4 Ga 42-1 342 L 1953 2,0 Ga 42-1 342 L 1953 2,0 Ga 42-1 342 L 1953 4,6 Ga 42-1 342 L 1953 4,6 Ga 42-1 342 L 1953 3,4 Ga 42-1 342 L 1953 2,5,4,4 Ga 42-1 342 L 1953 2,5,4,4 Ga 42-1	1.5	246	ند	195.4	9.4		Ga 42-1	The above specimen mensured in a transverse field of 1, 42 KOe.
34.2 L 1953 4.6 Ga 42-1 34.2 L 1953 2.3-4 6 Ga 42-1 34.2 L 1953 2.0-4.6 Ga 42-1 34.2 L 1953 2.0 Ga 42-1 34.2 L 1953 4.6 Ga 42-1 34.2 L 1953 3.4 Ga 42-1 34.2 L 1953 3.4 Ga 42-1 34.2 L 1953 2.5.4.4 Ga 42-1	3	343	٦	1953	2, 3-4, 6		Ga 42-1	The above specimen measured in a transverse field of 1, 78 KOc.
342 L 1953 2, 34 6 Ga 42-1 342 L 1953 2, 34 6 Ga 42-1 342 L 1953 2, 3 Ga 42-1 342 L 1953 4, 6 Ga 42-1 342 L 1953 5 4 Ga 42-1 342 L 1953 5 4 Ga 42-1 342 L 1953 2 5 4.4 Ga 42-1	11	345	-J	1953	ч 1		Ga 42-1	The above specimen measured in a transverse field of 2, 17 KOe.
342 L 1953 4.6 Ga 42-1 342 L 1953 2.3-4.6 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 2.5.4.4 Ga 42-1	2	345	-1	1953	# 7 %		Ga 42-1	The above specimen measured in a transverse field of 2, 53 KOe.
342 L 1958 2.0-4.6 Gn 42-1 342 1 1953 2.0 Gn 42-1 342 L 1953 4.6 Gn 42-1 342 L 1953 5.4 Gn 42-1 342 L 1953 2.5,4.4 Gn 42-1	19	7	نہ	1953	¥.		Ga 42-1	The above specimen measured in a transverse field of 2, 90 KOe.
342 I 1953 2.3 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 5.4 Ga 42-1 342 L 1953 2.5,4.4 Ga 42-1 342 L 1953 2.5,4.4 Ga 42-2	50	240	د	1920	2, 3-4, 6		Gr 42-1	The above specimen measured in a transverse field of 3, 26 KDe.
342 L 1953 4.6 Ga 42-1 342 L 1953 3.4 Ga 42-1 342 L 1953 4.6 Ga 42-1 342 L 1953 2.5,4.4 Ga 42-2	77	24.8		195:1	.: ::		Ga 42-1	" above specimen measured in a transverse field of 3, 54 KOe.
342 L 1953 5.4 Ga 42-1 342 L 1953 2.5.4.4 Ga 42-2	?}	7 7	٦	1953	₽. ñ		Ga 42-1	T - alkive specimen measured in a transverse field of 3, 62 KDc.
342 L 1953 4.6 Ga 42-1 342 L 1953 2.5.4.4 Ga 42-2	Ñ	5 1 70	-1	1953	17		Ca 42-1	The above specimen measured in a transverse field of 3, 66 KOc.
342 L 1953 2.5.4.4 Ga 42-2	24	343	-1	1993	9.4		Ga 42-1	The above specimen measured in a transverse field of 3,88 KOe.
	52	245	۵	1933	2, 5, 4, 4		Ga 42-2	Single crystal, 2-45 cm long, 0.218 cm dia; supplied by National Physical Lab; rod axis parallel to the low electrical resistance direction; measured in a transverse field of 0.35 KOe.

SPECIFICATION TABLE NO. 17 (continued)

, %						
	2	1	1953	2, 5, 4, 4	Ca 42-2	The above specimen measured in a longitudinal field of 0, 35 KOe.
ļ.;	3	4	1953	2, 5, 4, 4	Ga 42-2	The above specimen measured in a transverse field of 1, 05 KOe.
Š.	342	ı	1953	2, 5, 4, 4	Ga 42-2	The above specimen measured in a longitudinal field of 1, 05 KOe.
7)	342	Ţ	1953	2, 5, 4, 4	Ga 42-3	The above specimen measured in a transverse field of 1,80 KCe.
2	3	ı	1953	2, 5, 4, 4	Ga 42-2	The above specimen measured in a longitudinal field of 1,80 KOe.
11	ä	-1	1953	* : *	Ga 42-2	The above specimen measured in a transverse field of 2, 55 KOc.
Ħ	54 51	1	1953	2. 5, 4, 4	Ga 42-2	The above specimen measured in a longitudinal field of 2, 55 KOc.
E	3	1	1953	+ :	Ga 42-2	The above specimen measured in a transverse field of 3, 24 KOe.
#	343	-1	195.3	2, 5, 4, 4	Gn 42-2	The above specimen measured in a longitudinal field of 3, 24 KOe.
.; ;	345	نـ	1953	us ci	Ga 42-2	The above specimen measured in a longitudinal field of 3, 76 KOe.
ä	343	1	1953	¥ ;	Ga 42-2	The above specimen measured in a longitudinal field of 3, 91 KOe.
37	340	-1	1953	4	Ga 42-2	The above specimen measured in a transverse field of 3.98 KOc.
ń	21 2	٦.	1953	*	Ga 42-3	Single crystal: supplied by National Physical Lab; red axis parallel to the intermediate electrical resistance direction; measured in a transverse field of 0.2 KOe.
33	3	٦	1953	2. 3. 4. 4	Ga 42-3	The above specimen measured in a transverse field of 0, 38 KOc.
2	347	ن	1553	2, 3-4, 4	Ga 42-3	The above specimen measured in a longitudina! field of 0, 38 KOe.
=	345	د	1953	¥ ;	Ga 42-3	The above specimen measured in a transverse field of 0,75 KOe.
1	3	-1	1953	2, 3, 3, 3	Ca 42-3	The alway's specimen measured in a transverse field of 1, 17 KOe.
÷	2	7	1953	E. 3.4. E.	Ga 42-3	The above specimen incasured in a longitudinal field of 1, 17 KGe.
7	2	ب	1953	+ +	Ga 42-3	The above specimen measured in a transverse field of 1, 43 KOe.
េ្	24 25 25	1	1953	2, 3, 3, 3	Gs 42-3	The above specimen measured in a transverse field of 1, 80 KOe.
÷	2	-1	1953	2, 3 4, 4	Gu 42-3	The above specimen measured in a longitudinal field of 1, 80 KOe.
1.	7		:38:1	+	Gr 42-3	The above specimen measured in a transverse field of 2. 16 KOe.
'	2	1	1853	2, 2, 3, 1	Ga 12-3	The above specimen measured in a transverse field of 2, 53 KOe.
S.T	2	-4	1953	2.3-4.4	Ga 42: 3	The above specimen measured in a longitudinal field of 2, 53 KOe.
3	2	1	1953	Ŧ Ŧ	Ga 42-3	The above specimen measured in a transverse field of 2, 90 KCe.
53	27	1	1933	2, 3, 3, 3	Ga 42-3	The above specimen measured in a transverse field of 3, 22 KOe.
:;	3	٠.	1950	4.4.4.2	Ga 42-3	The above succimen measured in a longitudinal field of 3, 22 KOe.

SPECIFICATION TABLE NO. 17 [continued]

Curve	Ref.	Method	Year	Temp. Range, K	Reported Error, T	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
j j	ĝ	-	1353	→		GA 42-3	The above specimen measured in a transverse field of 3, 60 KOc.
3 3	1 3		1953	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Ga 42-3	The above specimen measured in a transverse field of 3, 72 KO-
5 3	1 2	i -	1953	ei		6.4.24.3	The above specimen measured in a longitudinal field of 3.
3 3	1 6	: -	136	+ ; +		Ca 42+3	The above specimen measured in a longitudinal field of 3.54 KOe.
8 0	1 2	1	1951	· ::		Ga 42-3	The above specimen measured in a longitudinal field of 3, 86 KOc.
5 3	;		1.451	7		Ga 44-3	The above specimen measured in a transverse field of 4, 09 KOc.
, 93 5 (5)	;	٦ ،	1955	1. 8-35		Ga 42-1	Single crystal; 2.92 cm long, 0.223 cm in dia; supplied by National Physical Lab; rod axis parallel to the ligh electrical resistance direction of the crystal; electrical resistants attacks, 92.11.
09	123	٦.	1955	2.7-40		Gx 43-3	Single crystal; 2.45 cm long, 9.213 cm in dia; supplied by National Physical Lab; rod axis parallel to the low electrical resistance direction of the crystal; electrical resistantly ratio 07338, / 2008, 111.
61	7.21	٦	1955	50-0-6		Oa 42-0	Single crystal supplied by National Physical Lab; rod axis parallel to the intermediate electrical resistance direction of the crystal; electrical resistanty ratio E133K, \(\begin{array}{c} \text{P(PK)} \) \(\ext{106.5}.\)
62	60.5	, 	1960	0, 16-1, 3	01	e D S	 impurities (mainly St. P. K. Ca. Al. Th. and V); single crystalline rod; 3 mm dia; rod axis parallel to the crystallographic a-direction (a = 4, 5258 k); electrical resistivity ratio ρ₂₃₃K, 'ρ₀K₁, '1.2× K 10²; in superconducting state.
63	809	-1	Fieto	0, 12-1, 3	10	<u>2</u> ~	 impurities (mainly S). P. K. Ca. Al. Ti. and Vi. single crystalline rod. rod axis parallel to the crystallographic b-direction (b = 4, 5198-3); electrical resistivity ratio μερα, (ροκ, - 1.18 x 10²; in sujecreonducting state.
Z	603	-	1960	0, 12-1, 4	10	Ğ T	 1 impurities (mainly S) P. K. Ca. Al. Ti. and V), single crystalline rod; rod axis parallel to the crystallographic e-direction (c. ε. 7, 6602 π); electrical resistivity ratio μπαθική (φ. κ) = 0.67 x 10²; in superconducting state.
6 5	609	ų	1960	0, 134, 6	10	<u>~</u> 21	 0.001 equivatives fraunty Si. P. Cu. Al. Ti, and Vi. single crystalline red: red axis parallel to the crystallographic a struction (a = 4, 525s si); electrical resistanty ratio ρ(235K)/σ(σ(K) = 2,0×x 10⁴; in normal and superconducting state.
99	809		1960	0, 12 4, 0	10	2.1%	 0.001 impurities finainly St. F. Ca. Al. Tr. and Vr; single crystalline rod; rod axis parallel to the crystallographic b≠lirection Φ = 4, 5198 Å; electrical resistivity ratio ρ(233Κ) 'Φρ Κτ. 2, 33 x 114'; in normal and superconducting state.
و ا	60 8	.1	1960	0. 13-4, 2	10	2 Pc	0,001 impurities (maint) St. P. Ca. Al. Ti, and V); single crystalline rod; rod axis parallel to the crystallographic e-direction (e = 7,6692 Å); electrical resistivity ratio ρ(233K) (ρ(ο K) = 1.35 x 10 ⁴ ; in normal and superconducting state.
1 2	909 908	ų	1960	0, 16-9, 75	10	b-3P	 0.001 impurities (mannly St. P. Ca. Al. Tr. and V); single crystalline rod, rod axis parallel to the crystallegraphic b-direction (b = 4, 519× 3); specimen 1.7 mm in dia; electrical resistivity ratio ρ(23)K / βρ Κ) = 2.44 x 10³; in superconducting state.

SPECIFICATION TABLE NO. 17 (continued)

				- Amar	Reported	Name and	Composition (weight percent). Specifications and Remarks
Curve No.	Z g	Method Used	Year	Range, K	Error. %	Specimen Designation	or or or all Ti and V): single crystalline rod; rod axis
3	809	1	1960	0. 15-0. 85	10	c-4P	0. 601 impurities (mainly 5), I^{*} , C_{4} , C_{1} , I^{*} and C_{2} , I^{*} (6602 I^{*}); dia 0.7 mm; parallel to the crystallographic c-direction ($C = 7.6602 I^{*}$); dia 0.7 mm; electrical resistivity ratio $\rho(293 K)/\rho_{6} = 10^{4}$, in superconducting state.
t	695	نــ	1961	283-621	ເລ		99, 999 pure; measured in solid state and liquid state; 3 mm dia, b4 mm long, melting point 30 C.
2	3	1 (150:	3.63			99. 95 pure liquid gallum; supplied by Aluminum Company of America; mercury of 0,0001 impurity used as comparative material.
72	757 682	،، ر	1960	0. 2-0. 7		9- 3	6, 0077 impurity; single crystalline; specimen 0, 12 cm dia, approx 50 cm long; beated above the critical temperature after each measuring cycle and brought beat into the superconducting state in a magnetic field compensated to approx back into the superconducting state in a compensated to approx or a content of the superconducting ratio $\rho(293 \text{ K})/\rho_0 = 1.85 \times 10^3$.
73	6.82	1	1960	0, 5-1, 0		C-7	Similar to the above specimen except 0.0023 impurity; 0.083 cm dia; $\rho(293 \text{ K})/\rho_0 = 6.25 \times 10^3$.
2 2	583	a	1960	0. 1-C. 8		s8	Similar to the above specimen except 0,0017 impurity; 0, to cin day, processing 8,33 x 103.
15	682		1960	0, 1-0.9		6-o	Similar to the above specimen except 0.00086 impairity; 0.113 cm and 1.15 × 104.
2. 92	682	د	1960	0.1-0.7		c-10	Similar to the above specimen except 0,0005 impurity; 0.11 cm don, percent 2,78 x 104.
: ::	759	-1	1963	83-293		Ga 14·2	Single crystalline rod; approx 4 mm in dia; supplied by 1820. 32, 3nd 54.3 µohm cm electrical resistivity reported as 12.0, 20.3, 40.6, 50.3, and 54.3 µohm cm at 83, 123, 173, 223, 273, and 293 K, respectively; electrical resistivity ratio at 83, 123, 173, 123, 73, and 293 K, respectively; electrical resistivity ratio
78	758	ii	1963	83-293		Ga 14·5	Similar to the above specimen except electrical resistivity reported as 3.52, 6.18, 9.42, 12.7, 16.05, and 17.40 uphn cm at 83, 123, 173, 223, 273, and 293 K, 9.42, 12.7, 16.05, and sessitivity ratio p(293 K)/p(20.4 K) = 159, heat flow respectively; electrical resistivity ratio p(293 K)/p(20.4 K) = 159, heat flow
95	758	. .	1963	83-293		Ga 14-4	parallel to the a-axis. Similar to the above specimen except electrical resistivity reported as 1.72, 2.92, 4.44, 5.96, 7.48, and 8.10 pohm cm at 83, 123, 173, 223, 273, 293 K, respectivel, 5.96, 7.48, and 8.10 pohm cm at 83, 123, 178, 283, 273, 293 K, respectively.
98	759	a L	1954	1.7-20		ส์	to the 0-axis. Impurities: 0. 01 Hg, 0. 001 Ca, 0. 001 Fe, 0. 001 Si, 0. 0001-0. 001 Pb, 0. 0001 Mg, and 0. 00001 Cu; single crystal; Ga supplied by Aluminum Company of America; and 0. 00001 Cu; single crystal; 16 1 µohm cm; electrical resistivity ratio electrical resistivity ratio
8	759	9 L	1954	4 2.2-20		ō	Impurities: 0.01 Hg. 0.001 Ca, 0.001 Fe, 0.0001-0.001 Cu, 0.0001 Mg. and trace of Pb; p(273 K) = 52.0 µohm cm; p(273 K)/p(14 K) = 455; beat flow parallel to c-axis.

SPECIFICATION TABLE NO. 17 (continued)

Curve	Zi č	Ref. Method Year No. Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
82	85	-1	1954	1.8-16		£	Impurities: 0.01 Hg, 0.001 Ca, 0.001 Fe, 0.0001-0.001 Cu. 0.0001 Mg, and trace of Pb; single crystal; Ga supplied by Aluminum Company of America; $\rho(273 \text{ K}) - 7.6 \mu\text{olm cm}$; $\rho(273 \text{ K})/\rho(14 \text{ K}) - 625$; heat flow parallel to b-axis.
2	759	ı	1954	1.9-20		ਰੰ'	Impurities: 0.05-0.5 Hg. 0.001 Ca. 0.001 Fe. 0.001 Si. 0.0009-0.003 Pb. 0.0001-0.001 Cu. and 0.0001 Mg. single crystal; Ga supplied by Aluminum Company of America; £273 K) : 19.8 µohm cm; £(273 K)/£(14 K) = 455; heat flow parallel to b-axis.
2	£:	ı	1954	2.0-20		£	Impurities; 0.01-0.1 Hz, 0.001 Ca, 0.001 Fe, 0.0001-0.001 Cu, 0.0001-0.001 Pb and 0.0001 Mg; pl 273 K) 7.5 uohm cm; pl273 K)/pl14 K) - 476; heat flow parallel to 9-axis.
30	159	-	1954	1.8-20		s.	Impurities: 0.02-0.2 Hg. 0.001 Ca, 0.001 Fe, 0.0001-0.001 Cu, 0.0001 Mg. and trace of Pb, $\rho(273~K) = 32.5$ gohm cm; $\rho(273~K) = 370$ heat flow parallel to v -axis.
98	838	ပ	1966	278-473			The molten metal placed in a hole 21 mm in dia drilled in an asbestos cement cylinder of 30 mm height; steel 1Kh18N9T used as comparative material.

DATA TABLE NO. 17 THERMAL CONDUCTIVITY OF CALLIUM (Imparity < 0.20% each; total impurities < 0.50%)

	*	CURVE 61	1,03	1.46	2.0	2. c.	2.90	2.94	2.83	2.08	1. 73	 200	1. 31	1.21	1. 08 0. 983	0.967		CURVE 62	0.090380		0.000700		0	0.00350	•	0.0200			0.0700				<u>.</u>	0.730	
	-		2.3	3.36	4.43	2 . 08	8. 29	69 .6	7.1.4	17.0	20.9	32.0	26.5	31. 1	88.6 85.6	36.5		CUR	0.155	0.170	0.185	0,240	0.260	0.230	0.350	0.400	0.50	0.560	0.620	200	0.8	0.930	1.05	 2	
	¥	CURVE 58	1. 28	CURVE 59		0.500	0. 703	0.927	1.18	1. 18	1.11	0.993	0.643	0.600	0.557		0.433	CHOVE 60	ON THE CO		21. 1	27. 1	28. 1	28. 1	22. 2	20.6	18.4	15.7	11.4	9 6	5. 59 5. 59	4. 52	3.78	2. 66	2.39
	H	히	4.4	ਠ	۱ .	2 75	3		6. 47	10.0	11.3	14.2	21.2	22. 1	24.0 26.0	32.0	37.8	5	51	2. 66	3. 62	6.21	6.55	7. 37	3	10.0	11. 4	12. 4	14.5	ž	21.1	24. 3	27.4	32.4	35. 7
	×	CURVE 48	0.806		CURVE 49	0.917		1.63	CHRVE 50		1.44	te dinamo	COVE 3	0.763		CURVE 52		606.0		CURVE 53	36 1		CURVE 54		1.05	S STATE		0.885	35 3KG110	COUNTY SO	1.54		CURVE 57	1. 26	
1 cm 1K-1	-	•	2, 6	7	•	6		4.4			4.4	•	•	2.3	m	Ŭ	•	2.3			•	r r	•					2.3			4			9.3	
Conductivity, k. Wal	Η *	CURVE 39	2, 3	- +	CURVE 40		3.3 1.45		CHONE 41	CONST 41	4.4 1.80	the state of	CONVE 42	2, 3 0, 943	n	CURVE 43		2.3	1	•	CURVE 44	1 4		CURVE 45	c	3, 3 1, 62	CURVE 46		2.3 0.961	1.00		CURVE 47		¥.4	
Temperature, T, K; Thermal Conductivity, k, Watt. cm-1K-1	.	CURVE 29	2. 5 2. 39	₹	CURVE 30		4.4 7.69		CURVE 31	4.4 2.83		CURVE 32	87.7	4.4 6.99	56 376110	CCHVE 33	4.4 2.23		CUHVE 34		1.4 6.45	CHRVE 15		2.5 4.0	CHRVE 36		07.0	CURVE 37		79 · T	CURVE 38		4.4 1.85		
Temper	←	CURVE 19	4.6 0.535	CHRUE 20		2.3 0.261	4. 6 0. 508		CURVE 21	0 2 3		CURVE 22	24.6 0 4.85		CURVE 23	3.4 0.364		CURVE 24	314 0		CURVE 25		4.4	40 414410	CORVE 28	2.5 7.04		CUHVE 27		2.5	+	CURVE 28		2.5 6.02	\$
	¥	CURVE 10	0.400	CHRVE 11		0.270	0.520	CURVE 12	;	0.450	0.855	;	CURVE 13	0.800		CURVE 14	0.382	0.568	0. 135	CURVE 15		0. 680	CURVE 16		6.490	0.641	CURVE 17		0.599		CURVE 18	0, 289	0. 427	0. 562	
	٠	CU	4 6	Ē		e (œ ÷	CU		m d			링	4.6		ਰ	, 2 3		o T	CO		9 -	CO		.i ∟	4.6	Cn	1	4.6	· ·	3	6		4.6	
	يد	CURVE 1	0.662	0.862	CURVE 2		0.802	CURVE 3		0.391	0.741		CCRVE 4	0. 690		CURVE 5	0.340	0.490	0.643	CURVE 6		909 0	CURVE 7		0.305	0.591	CURVE 8		6. 559		CURVE 9	0.282	0. AUT	0. 541	
	۰	50	7	9.	C	١,	ø ÷	CUF					5	4.6		in:	ei ei		g ÷	CUE	ĺ	9 ÷	CUE			· •	CUF	il	¥		51	2.3	: -	9	

DATA TABLE NO. 17 (continued)

*	E 77	0. 186	0, 174	0.160	0, 160	0. 1602		E 78		0.490	0.462	0.437	0.420	0.410	٥, 408		E 79		0.967	0, 932	o. 904	0.830	988.0	0,834		CURVE 80			28.8	30, 4	34. H	38. 4	39. 2	38, 0	31.0	4.4	16. ×	10.0	7.8	4.4	3.5	2, 3	7.7	2.0	æ .			
Ļ	CURVE 77	83	123	223	273	293		CURVE 78		83	12.3	173	223	273	293		CURVE		83	123	173	223	273	:93	:	S CER				2.2		3.6		4.	ວ : ດີ .	6. S	8.5	10.0	11.3	13.8	15. 3	16.3	18. 2	19. 2	20. %			
×	E 73	0.58	0.64	4.1	1.90	2, 11	2. 60		E 74		0.0032	0.0048	0.027	0. 112	0, 115	0.37	0.43	0.83	1. 15	1. 71	1. 90	2.50		E 75	,	0, 0082	0. 0166	0. 102	0.215	0. 74	1.93	2. 32			ດ່	7.3		92 3		0.0115	0.0356	0.100	0.420	0. 744	2.05	4. 35	7. 50	
(+	CURVE	0.45	0.49	6.67	0.76	0.85	6. 0		CURVE 74		0. 125	0.130	0. 189	0.242	0.34	0.35	0.385	0.485	0.52	09.0	0. 62	08.0		CURVE 75		0. 12	0. 142	0. 22	0. 27	0.375	0.475	e. 54	0.62	0. 70	0.87	06.0		CURVE 76		0. 12	0. 155	0.20	0, 255	0, 310	0.42	0. 52	0, 63	
×	97.E	0, 326	0.331	0.331	923.0	0, 331	0.351	O. 628	0, 305	0, 305	0.343	0 368	0, 389		o 五0	0, 531	0, 561	G. 55.13	9, 577		0, 757	0, 782	0, M12		E : 1		0.336		E 72	ļ	0, 00355	0.00940	0.0120	0, 0135	0.0380	0, 0342	0.036	0, 095	0, 134	0.311	0.455							
۲	CURVE 70	2H3. 0	285.9	292.5	296.9	299, 4	301. 2	302. 9	307.8	314.9	328, 2	347.7	361, 4	387, 9	411.4	457, 6	513, 1	521. 2	545.5	559, 9	571. 5	607, 2	621 ::		CURVE 71	,	333, 2		CURVE 72		0, 145	0.174	0. 20	0, 205	0.26	0, 27	0, 32	98: 0	0, 42	0, 55	0. 73							
¥	CURVE 68 (cont.)	0. 0250	0.0300	0.030	0.0100	0, 100	0, 160	0, 260	0, 41)0			00.00	1. Se	2. 00	13 13 13 13 13 13 13 13 13 13 13 13 13	2, 80	4, 30	÷. 10	7. 00		CURVE 69		0. 00400	0, 00850	0.0100	0, 0140	0. 0130	0.0300	0.0410	0.0550	0.0800	9, 110	0.2.0			0.700	0. 900	1.15	1, 50	1.70	2, 50							
۲	CURVE		9, 220		100 C	0, 270	0, 280	0, 330	0.350	0, 370	0. 420	0, 440			c. Ƴc	0.600	0,650		0, 750		CUR		0, 145	0, 155	0.170	U. 175	U. INU	U. 2010	0, 205	0, 225	0, 240	0, 260	0.300		0.390	0.440	0.460	0, 500	o. 250	0.590	0.630	0.850						
¥	CURVE 66 (cont.)	150, 0	160.0	170.0	160.0	160.0		CURVE 67		0. 00270	0. 00430	0, 90300	0.0140	0.0170	0. 0:150	0,0800	0 150	0.200	0.300	0, 500	0.750	00% 0	1. 10	1. 50	2. 00	2, 50	1 . 50	10.0	10.5	10.0	11.0	12. 0	15.0	15.0	9.9	16.0	17.0	17. 0	16.0		CURVE 68		0.00490	9, 60700	0.0100	0.0130	0, 0175	
T	CURVE		06 5 24 5	2.30	9 kg	00		CUR			0, 134	c. 13‡		0.170			0.255	0, 280	0.305	0.350	0, 395	0, 405	0, 435	0, 500	0, 550	0.600		1.55	1, 70	1, 75					2.90	3, 10	3, 50	3.80	4, 20		CC		0. 160	9, 165	6, 175		0.200	
×	VE 65	0. 00250	0.00550	0.0103	0.350	0.0450	0. 0500	0. 0700	0. 115	0.150	0.450	6.850	1. 25	1.55	2. 50	45.0	50.0	5 . c	59.0	0 .09	0.09	0.09	59, 5		59. 0	58. 0		99 3 .	1	0.00180	0.00330	0.0105	0.0250	0.0450	0, 0750	0.0300	0, 100	0.150	0.170	0.300	0.500		1 00	i. 18	2.50	4. 00	140.0	
H	CURVE	0, 125	0.140	001.0	173	0.130	0.135	o. 200	0.220	0.225	0.270	0. 230	0.370	0.340	0.370	1. 70	1. 90		2, 50					3.90	4.40	4.60		CIJRVE		0 115	0.120	0, 1:35	0, 155	0. 165	6. 17S	0.185	0. 190	0, 195	0.200	0. 225	0, 240		0, 275	0, 300	0.315	0, 340	J. 30	
J.	VE 63	0.090220	0.006.	0.000	0000000	0.00110		0 00350	0.0000	0. 0115	0.0200	0. 0260	0.0390	0. 0570	0.0840	0. 105	0.150	0.210	0, 250	0, 300	0.400	9, 550		CURVE 64	1	0. 00025J	0.000360	0.000230	0.000650	0. 000kgn	0.00105	0.00150	0.00200	0. 00260			0.00740	0. 00850	0.0130	0.0170	0.0240	0. 0260	0.0300	0. v350	0.0370	0.0406	0.0200	
(-	CURVE	0. 1231		0 100				0, 250	0.55	0.330	0.370	0.400	0.440	0.440	0, 320	0.560	0.650	0. 730	0.800	0.96.0	1.05	1.30		CURY		0. 120	0. 140	0. 160	0, 185		0, 225	0.250	0.270	0, 300	0.350	0.400	0.450	0. 500	0.600	0. 700	0.800	0.880	7.00	1.05	1. 15	1. 20	1. 40	

Not shown on plot

THE WAS TO SEE

يعند	85 (cont.)	9°6		2.5		1.7	1. 3	1.0	0.7	9.0		86			0.163*	0.151			0.327																									
(-	CURVE	0.9	7. 2	æ œ	0.01	11.4	13.8	16.7	18.0	20.3	1	CURVE					-		382. 2	473.2																								
.	VE 83	3.2	すず	ร	6.1	ф. О	7. 1	7, 4	7.3	٠. س					2.6	2. 1	2.0		VE 84		7.2			10.1	12.7	14.9	16.3	17.0	15.4	12. 7	10.1	Ξ.	_	S		. 1	VF 95	,	1.8	4.5	c ::	9.6	£.5	9. S
۲	CURVE	1. 5	i-		9. E	4.3	4. e.	6 (3)	90 90	9 8			11.3	13.8	16.3	18.3	20.1		CURVE		i 5	₹ ?i	2.3	3, 1	ဆ က်	4.5	5.2	6.3	30 30	Τ.			12.0	16.4		20.3	aver,	5		2.7	(3) (3)	. ₩	IJ.	S. 3
¥	VE 81	9.0	9	9.0	8 ·6	10.0	10. 2	10.8	9.6	æ. 9	4 . 6	3.0	2.4	1.6	1. 0	8.9	0.5	7 0	4	O. 4-0	, ; O		VE 82		22. 6	24. 6	28.0	32. 4	36.8	39.8	æ .;	45.2	47.0	43, 2	42.0	38. 2	33. 2	27. 4	22. 4	17.0	14. 4	12. 2	10 10	9 8
Ļ	CURVE	51 53		2. 1	1 8	3.5	5.7	4.	4.6	6.2	89 39	٠.	11.0	12. 6	13.8	15.6	17. 0			50.0	20.2		CURVE		82 T	2.1	2.5	3 0	3.6	4. 51	₩	4. D	ν. O	6.4	7.2	8.1	æ æ	9.6	10.7	12. 1	13.0	13.8	14.9	16.4

RECOMMENDED THERMAL CONDUCTIVITY OF GALLIUM FIGURE AND TABLE NO. 17R

0.00140 The recommended values are for 99.9999% pure gallium with residual electrical resistivity ρ_0 - 0.000100. 0.0000341, and 0.000424 $\mu\Omega$ cm along directions parallel to a-, b-, and c-axis, respectively (characterization by ρ_0 becomes important at temperatures below about 150 K). The values below 1.5 T_m are calculated to fit the experimental data by using n = 2.00, $\sigma' = 31.29 \pm 10^4$, and $\beta = 0.00409$ for the direction parallel to a-axis; using n = 2.00, $\sigma' = 126 \times 10^4$, and $\beta = 0.0014$ for the direction parallel to b-axis; and using n = 2.00, $\sigma' = 11.2 \times 10^4$, and $\beta = 0.0174$ for the direction parallel to c-axis. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 4% of the true values near mom temperatures.

55, 60 260.3 440.3 620.3

21. 8 27. 8 33. 9

0. 281 0. 378 0. 482 0. 586

302, 93 400 500 600

*Values in parentheses are interpolated. "Tin K, ki in Watt em IK-1, Te in F, and ke in Btu lb-1 ft IF 1.

••The values recommended for gallum single crystal in the direction parallel to the a-axis are also approximately good for polycrystalline gallum.

SPECIFICATION TABLE NO. 18 THEAMAL CONDUCTIVITY OF GERMANIUM

(Impurity < 0.20% each; total impurities < 0.50%)

2	3
•	4
	-5
	٠,
	÷
	7
	ŀ
	3
	ċ
	5
	:
	-
	Description of Principles over Total No.
	7
	\$
	į
	4
	ò
	2
	Ć
	4
	3

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	264	၁	1952	298,373	10		High-purity; n-type single crystal; 0.313 x 0.313 x 0.75 in.; heat flow parallel to [100] crystalline axis; Ni and Zn used as comparative materials.
60	267	၁	1955	278-365			High-purity; n-type single crystal; supplied by Westinghouse Research Laboratories; hear flow parallel to the [100] crystal direction; cast 2n and cast Ni used as comparative materials.
m	3 C 4	ને	1981	2.7-79	20		High-purity, single crystal; 0.25 in. in d.a and ~1.5 in. long; prepared by melting in a graphite crucible, solidified slowly by lowering the crucible through the furnace at a rate of 3 in. hr 1; electrical resistivity 0.30 ohm cm at room temperature.
4	156	L	1951	2.7-86	7.20		0.0022 Al; single crystal; 0.125 in. in dis and ~ 1.5 in. long; same preparation method as above; electrical resistivity 0.0021 ohm cm at room temperature.
ĸ	274	i	1954	2.2-95		Ge 1	High-purity; $\sin(de\ crystal; 1\ cm\ long\ and\ 1.2\ x\ 0.6\ mm\ cross\ section;$ electrical resistivity at room temperature f^{0} ohm cm.
9	343	1	1956	2.8-137		Ge 3a	High-parity; p-type; polycrystalline.
7	343	I.	1956	1.9-111		Ge 3b	The above specimen cleaned, annealed at 550 C for 3 hrs in helium, then cooled slowly.
œ	34	7	1959	330-962		1	n-type single crystal; 0.4 cm² in cross sectional area and 0.3 cm long; electrinal resistavity 3 ohm cm at 290 K.
6	34	I	1959	319-962		2	Similar to the above specimen except electrical resistivity 0.05 ohm cm at 293 K.
10	344	I.	1959	331-1094		es.	Similar to the above specimen except 0.8 cm long and electrical resistivity 0.03 ohm cm at 293 K.
11	£	1	1959	324-1040		•	Similar to the above specimen except 0.3 cm long and electrical resistivity 0.301 ohn cm at 293 K.
12	345	1	1957	87-293	3-8 8-8	1	Sb-doped; n-type single crystal; 2.035 \times 0.231 \times 0.417 cm; electrical resistivity 2.84 ohn cm at room temperature.
13	345	٦	1957	91-307	9-8 8-8	7	Sh-doped; n-type single crystal; 1.800 x 0.228 x 0.294 cm; electrical resistivity 6×10^{13} ohn om at room temperature.
24	345	٦	1957	88-300	8-6	&	Sb-doped; p-type single crystal; the rmally converted from the above specimen 2; 1.675 x 0.212 x 0.250 cm; electrical resistivity 1.6 ohm cm at room temperature.
15	345	1	1957	89-311	3-8	ю	Sb-doped; n-type single crystal; dimensions 1.875 x 0.262 x 0.329 cm; electrical resistivity 49 ohm cm at room temperature.
16	345	H	1957	94-311	ë. E	v	Ga-doped; p-type single crystal; dimensions 2.000 \times 0.336 \times 0.285 cm; electrical resistivity 68 ohm cm at room temperature.

SPECIFICATION TABLE NO. 18 (continued)

Curve No.	Ref.	Method	Year	Temp. Range. K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1.1	345	1	1967	96-305	8-5	13	Ga-doped p-type single crystal; dimensions 1.450 x 0.215 x 0.330 cm; electrical resistivity 51 ohn cm at room temperature.
18	345	ندو	1957	208-260	8-8 8-8	Q	Ga-doped p-type, single crystal; dimensions 2, 205 \times 0, 295 \times 0, 503 cm; electrical resistivity 5 ohm cm at room temperature.
19	345	ï	1957	90-306	3-6	t~	Ga-doped p-type single crystal; 2.13 cm long, 0.062 cm² cross sectional area; electrical resistivity 3 x 10 ⁻³ ohm cm at room temperature.
ć	,		1050	388-471			Single crystal; intrinsic; 18 mm dia x 20 mm long.
2 70	346	ן ב	1959	405-971			p-type; single crystal; 1k mm in dia x 20 mm long; impurity concentration 1.1 x 10^{18} cm 3 .
22	247		1958	76-370			p-type,single crystal; crystallographic orientation [111]; heat treated at 500 C for 32 hrs.
23	348	ن	1959	36 8-758			n-type; single crystal; oriented in the [100] direction; 30 mils dig x 100 mils long; incasured in He atmosphere; Ni used as comparative material(data from Honda, Simidy, 1917).
40	6. 4.	ပ	1959	354-1900			Similar to the above specimen but oriented in the [110] direction.
	8 60 8 40 8 40 8 40	Ú	1959	370-775			Similar to the above specimen.
92	349		1954	293	4		Single crystal; inipurity concentration 1.4 x 10 ¹³ cm ⁻³ ; approx 15 mm long and 16 mm in dia.
63 (-	349	1	1958	293	4		Ga-doped p-type single crystal; impurity concentration 7.4 x 10 ¹⁵ atom cm ⁻³ ; approx 15 mm long and 16 mm in dia.
х 8	349	ы	1958	293	4		Fe-doped n-type single crystal; impurity concentration 4.1 x 10 ¹⁷ atom cm ⁻³ ; approx 15 nm long and 16 mm in dia.
29	349	-	1958	293	4		Ga-doped p-type single crystal; impurity concentration 4.1 x 10^{16} atom cm 4 ; approx 15 mm long and 16 mm in dia.
99	349	-:	1958	293	*		Fe-doped n-type single crystal; impurity concentration 2.2 x 10 ¹⁶ atom cm ⁻³ ; approx 15 mm long and 16 mm in dia.
31	349	7	1358	293	4		Ga-doped p-type single crystal; impurity concentration 9.8 x 10 ¹⁶ atom cm ⁻³ ; approx 15 mm long and 16 mm in dia.
81	349	1	1958	293	4		Fe-doped n-type single crystal; impurity concentration 7.5 x 10 ¹⁶ atom cm ⁻³ ; approx 15 mm long and 16 mm in dia.
Ħ	350	L	1953	56-31		A18-4-1	Al-duped p-type single crystal; cut transverse to the axis of crystal growth; electrical resistivity 0.2 ohm cm at room temperature.

SPECIFICATION TABLE NO. 14 (continued)

是一个是一个人,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们也会会会会会会会会会会会会会会会会会会会会会会会会

adjanuary bearing the second	Composition (weight percent). Specifications and remarks	Sb-doped n-type single crystal; specimen parallel to the [114] direction; cut transverse to the axis of crystal growth; electrical resistivity 0.013 ohm cm at room temperature.	Pure crystal.	Ga-doped p-type single crystal; 3.2 x 3.6 x 25 mm; cut transverse to the crystal growth axis; electrical resistivity 5.9 and 7.84 milliohm cm at 10 K and room temperature; respectively.	The above specimen trradiated in Argonne CP-5 mactor with fast neutrons (rotal flux 5 x 10) neutrons on ? then kept at room temperature for about 5 months; electrical resistivity 6.4 and 7.657 milliohin on at room temperature, respectively.	Ga-Sh-doped p-type single crystal; data derived from the measurement of three specimens.	n-type single crystal; carrier concentration 10^{14} cm ⁻³ ; specimen cross section 2, 33 x 2.6s mm; zone grown; electrical resistivity at room temperature approx 29 ohn cm; heat flow parallel to the $[100]$ direction.	In doped p-type single crystal; carrier concentration 10 ¹¹ cm ⁻³ , specimen crass section 2,56 x 2,65 ma; grown by zone melting; electrical resistivity 37 ohn cm at room temperature; heat flow parallel to [111] direction.	In-doped p-type single crystal; carrier concentration 1.9 x 10 ¹⁴ cm ² ; specimen cross section 2.65 x 2.66 mm; grown by zone melting; electrical resistivity -21 ohn cm at room temperature; heat flow parallel to [111] direction.	n-type single crystal; carrier concentration 10th cm. "specimen cross section 2.19 x 2.10 mm; pulled from melt, cut parallel to crystal growth direction; electrical resistivity approx 41 ohm cm at room temperature; heat flow parallel to 1000 direction.	In-doped p-type single cryatal, carrier concentration 2.3 x 10% cm ⁻³ cross section 2.70 x 2.69 mm; grown by zone incling; electrical resistivity approx 0.19 ohm cm at room temperature; heat flow parallel to the [111] direction.	In-doped p-type single crystal; carrier concentration 10% cm ⁻² ; specimen cross section 2, 56 x 2, 69 mrt.grown by zone melting; electrical resistivity approx 2,75 ohm cm at room temperature; heat flow parallel to the [111] direction.	Ga-doped p-15pc single crystal; carrier concentration 2 x 10% cm ⁻¹ ; specimen cross section 2.13 x 1.86 mm; pulbed from melt, cut parallel to crystal growth direction; electrical resistivity approx 0.009 ohm cm at room temperature; beat flow parallel to the [100] direction.
	Name and Spreimen Designation			Ga- 2	Ga-2	PN-3E	Ge 2	Gr 3	Ge +	ge g		Ge 1.9	Ge 13
1	Reported Error,	 	,;	:									
1	Temp. Range: K	7-09		9, 0-100	2.6-100	1.5-120	2,2-2-0	2.1-31	2, 0, 2	61	2.0.97	2.2-30	2.0-140
	Year	1958		1991	1957	1958	1957	1957	1957	1957	1957	1457	1551
	Method Used	į.		ن	ü	 i	نــ	≓	- i	ı.	 i	÷	
	를 X ''	150	•	372	9.9 9.9	3,5	Ę	33	33	334	3. m	8. 22.	T .
	Curre No.	=======================================		i i	ñ	ę,	35	\$	4	27	ij.	1	က္

SPECIFICATION TABLE NO. 14 (continued)

Composition (weight percent). Specifications and Remarks	G3-d-gxd p-type single crystal; carrier concentration 10 ¹³ cm ⁻³ ; specimen cross section 2.06 x 1, 95 mm; palled from melt, rut parallel to crystal growth direction; electrical resistant; approx 0.002; ohm om at room temperature; best flow parallel to the [100] direction.	p-type single crystal; specimen 2 x 4 mm cross section, 5 mm long; electrical resistants 31 ohn cm at 22 C.	n-type single cristal.	Specimen composed of the following isotopes; 95.74 Ge ¹⁴ , 0.728 Ge ¹³ , 1.10 Ge ¹³ , 1.34 Ge ¹³ and 0.440 Ge ¹⁵ ; supplied by Union Carthide Nuclear Co.; 1.2 x 10 ¹³ eversas donor atoms cm. ³¹ , 2.54 cm long, 0.134 x 0.157 cm cross section; zone retuced, grown using a modified Teal Little crystal puller, heat flow parallel to the 1.00; direction.	n-type; electrical resistivity approx 5 ohm cm (inhomogeneous, electrical resistavity, especially high at center); F. H. stainless steel used us the reference (data on F.H. stainless steel from R.W. Powell 1936).	Sh-doped n-type; polycrystalline; specimen dimensions 5 x 5 x 15 mm; electrical resistivity 10,0 ohm em at 300 K; measured in a vacuum of approx 10.5 mm Hg.	Cu-doped p-type single crystal; (approx 10^{14} atoms cm ⁻³); dimensions 0.94 x 0.95 x 0.2 cm; dislocation density 3 x 10 ² cm ⁻³ .	Very pure: n-type polycrystalline; crystal size approx 0.2 cm; apecimen 1.27 cm in dia 6.1 cm long; zone refined, ground and cut to desired size; electrical resistivity 3.1 ohm cm at 300 K; average crystallite size 0.2 cm.	Intrinsic Ge: carrier concentration 2 x 10 st cm ⁻³ ; doped by copper during mensurement to give > x 10 st acceptors cm ⁻³ ; cylindrical specimen approx 2.6 cm dia x 13 cm long made from single crystal grown by Czochralskii's method from zone refused germannium of the G. E. Co.; specimen aligned in the [100] crystalline direction; electrical resistivity before thermal conductivity measurement 46.6 ohm cm at room temperature changed to 4.6 ohm cm after the measurement.	As-doped n-type single crystal; 2 in. long. cross section 0.3 x 0.3 in., heat flow and rich axis parallel to 1.11 i direction; electrical resistivity at mon temp. 0.3 ohm em; thermal conductivity values calculated from measured thermal diffusivity data and the specific heat value of 1.83 J cm ⁻³ K ⁻¹ (derived from Dulong-Petit' law).	Very pure: single crystal; 14, 80 mm² cross section; polished.	p-type; crystal obtained by C+r-hralskii method; cross sectional area, 0.53 x 0.32 cm²; sand blasted; et.c' rical resistivity p at room temperature 60 olum cm; data corrected for radiation.
Name and Specimen Designation	Ge 12	ر د	Normal Ge	Barnehad Ge ¹⁶		T-1007						Sample 1
Reported Error, ".		5:					ن د	10 +	ហ	¢1		
Temp. Range. K	\$-2-3 \$-3-3	3.3-155	3.0-25	2.1-2-8	311-683	300	3.2-300	300-1020	768-1160 1008-1160	30s-1073	16	112-429
Year	1557	1955	1958	\$ 561	1 360	1958	1960	1960	1863	1960	1957	1960
Method	1	د	-1	نہ ا	υ	u	-1	æ	oc.	Δ.		1
A S	3,0	355	6	E	828	263	8 X	9,	684.	93	7.	i. B
<u></u>	ŧ	ţ	4	. •	8	51	\$3	23	ı	SS	38	હિ

and de de de la company de de la company de de la company de la company de la company de la company de la comp

SPECIFICATION TABLE NO, 18 (continued)

2. Ministration ...

Reported Name and Composition (weight percent), Specifications and Remarks Error, % Specimen Designation	Sample 1A Similar to the above specimen except cross sectional area 0.45 x 0.25 cm², produced from specimen 1 by grinding away a side.	Sample 2 Similar to the above specinien except cross sectional area 0.74 x 0.55 cm², ρ = 21 ohn cm at room temperature.	Sample 3 n-type; crystal obtained by Czochralskii method; cross sectional area 0.39 x 0.63 cm²; and blasted ρ = 2 ohm cm at room temperature.	Sample 4 Ga-doped p-type; obtained from zone melting; cross sectional area 0.72 x 0.87 cm ² . ρ = 0.049 ohm cm at room temperature.	Sample 5 Sb-dojed n-type; obtained from zone molting; cross sectional area 0.82 x 0.53 cm ² , ρ · 0.043 ohm cm at room temperature.	Sb 30 Sb-doped single crystal; 12.217 x 3.211 x 1.5055 mm; from ingot grown by the Czochralskii technique with the growth axis in [110] direction: cut.transversely to the ingot axis, ground to size with specimen axi. april 10.] direction; carrier concentration in 2.5 x 10 ⁸ cm ⁻³ ; electrical r vreported as 2.631, 2.70, 2.67, 2.65, 2.866, 2.865, 2.87; vr. 2.304, 2.919, 3.319, 3.386, 3.413, 3.443, and 3.524 mill 1. 2.324, 1.664, 2.004, 2.658, 4.128, 14, 00, 14.78, 16.11, 17.98, Levil 20.22, 55.60, 68.44,	Sb 172 Sb-doped single crystal; 15.918 x 3.8221 x 3.7129 mm; same fabrication method as above; specimen axis approx in [111] direction; n = 6.1 x 10 ⁴ cm ⁻³ ; electrical resistivity reported as 2.15 x 10 ⁴ ; 3.22 x 10 ⁴ ; 5.66 x 10 ⁴ ; 63.22, 21.46, 4.311, 2.277, 2.058, 1.165, 0.9610, 0.6570, 0.5448, 0.4587, 0.3685, 0.3099, 0.2369, 1.115, 0.9610, 0.06570, 0.0940, 0.09343, 0.09512, 0.09512, 0.09521, 0.1052, 0.1252, 0.1812, 0.244, and 0.3988 ohm cm at 4.214, 5.139, 5.947, 6.763, 8.422, 9.690, 12.54, 14.22, 14.64, 15.45, 17.22, 13.32, 32.33, 26.02, 28.65, 34.06, 39.98, 47.13, 52.74, respectively.	Sb 187 Sb-doped single crystal; 16, 422 x 3.8906 x 4.0601 mm; same fabrication method as above; specumen axis approx m [100] direction; n = 1.2 x 10 ³¹ cm ⁻³ ; electrical registivity reported as 182.4, 178.3, 172.8, 168.7, 163.6, 158.8, 155.8, 134.2, 152.8, 154.1, 155.2, 151.0, 141.8, 132.4, 113.5, 98.69, 87.6, 79.16, 68.39, 55.54, 43.96, 73.13, 31.25, 24.55, 23.36, 22.51, 20.32, 18.81, 18.51, and 24.4 milliohm cm at 1.314, 1.436, 1.639, 1.635, 2.157, 20.33, 22.83, 3.042, 3.45, 1.639, 1.635, 1.639, 1.635, 2.157, 20.33, 2
Temp. Range, K	83-455	108-460	109-461	106-451	107-460	1.2-98	1.3-87	1.3-145
Year	1960	1960	1960	1960	1960	1962	1962	1962
Mcthod Used	ı	1	-1	ب	,	ı	٦	ii.
Ref. No.	7.83	86	8	783	82	78	2	784

SPECIFICATION TABLE NO. 14 (continued)

Composition (wright percent), Specifications and Remarks	Sb-dujed single crystal; 14-73 x 3, 995 x 3, 9968 mm; same fabrication method and specimen axis orientation as above; n - 2.4 x 10 ⁴ cm ⁻³ ; electrical resistivity reported as -1.72 x 10 ³ -1.63 x 10 ³ , 5.40 x 10 ³ , 9.072 x 10 ⁴ , 1.31 x 10 ⁴ , 3.40 x 10 ³ , 9.072 x 10 ⁴ , 1.31 x 10 ⁴ , 3.40 x 10 ³ , 9.072 x 10 ⁴ , 1.31 x 10 ⁴ , 1.331, 0.7734, 0.4441, 0.3191, 0.2570 6.2143, 0.1702, 0.1460, 0.1049, 0.0472, 0.04526, 0.0626, 0.06369, 0.04743, 0.04457, 0.04691, 0.04690, 0.0472, 0.0472, 0.04692, and 0.09460 ohm cm at 2.140, 2.594, 3.016, 3.467, 4.214, 5.222, 5.936, 6.609, 8.184, 9.532, 1.221, 1.321, 1.40, 1.5.44, 17.91, 20.21, 21.75, 23.28, 25.48, 27.72, 22.01, 38, 06, 44, 2.032, 21.73, 36, 44.40, 99.09, 115.1, 128.9,	Sh-shoped single crisital: 18,128 x 4,0551 x 4,0667 mm; same fabrication method and specimen axis circulation as shove; n : 1,1 x 10 ¹⁸ cm ² ; electrical resistavity reported as 4,054, 4,372, 4,385, 4,404, 4,448, 4,430, 4,447, 4,466, 2,486,4,523, 4,582, 4,786, 4,849,4,891,4,806,5,020,5,141,5,586,5,523,4,583,5,537,5,439,5,436,5,315,5,326,5,315,4,900,5,44,15,18,254,6,311,8,254,10,47,10,4	As -depard single critistal; 14, 682 x 4, 0439 x 4, 0445 mm; same fabrication method and specimen axis orientation as abore; n = 2,1 x 10 ⁸ cm ⁻¹ , electrical resistantly reported as 7,8 x 10 ¹ , 2,1 x 10 ⁸ cm ⁻¹ , electrical resistantly reported as 7,8 x 10 ¹ , 2,1 x 10 ¹ , 190 x 10 ¹ , 130,1, 25, 33, 6, 263, 3, 467, 1, 351, 0, 0432, 0, 0.0433, 0, 0.146, 0, 0.0433, 0, 0.0433, 0, 0.0433, and 0, 0944, okm cm at 4,208, 5,059, 7,378, 8, 443, 10, 77, 12,95, 13,96, 15,11, 15,04, 20,20, 21,59, 25,25, 25,33, 23,34, 32,32, 36,30, 43,40, 21,59, 25,25, 25,33, 142,0, and 293,9 K, respectively.	As -duped single crystal; 15, 90% x 3, 8400 x 4, 0645 mm; same fabrication method and specimen aus orientation as above; n - 5,3 x 10 ¹⁶ cm ⁻³ ; electrical resistavity 0,04178 observan at recommencements.	As chaped single crystal, 17, 452 x 4, 0012 x 3, 8648 mm; same fabrication method and specumen axis correstation as above; n = 9, 8 x 10° cm ⁻³ ; electrical resistivity reported as 8, 579, 8, 571, 8, 554, 8, 582, 8, 461, 8, 671, 8, 681, 8, 800, 8, 730, 8, 734, 8, 734, 8, 740, 9, 252, 8, 901, 9, 130, 9, 130, 9, 130, 9, 130, 9, 130, 9, 130, 9, 130, 9, 130, 9, 130, 9, 130, 9, 130, 13, 130, 130, 130, 130, 130, 130,
Name and Specimen Designation		₹ ₩	As 223 l	As 225 (I	4. 13.
Reported Error, %	LC.	æ	w	u	w
Temp. Range. N	1.2-98	3.5-135	1. +137	1.5-125	¥1.4.1
Year	8 8 6	<u>8</u>	85 85 81	<u> </u>	<u>z</u> .
Method Used	۵.	-	H	ı.	-
F 5	\$. 1-	7 .	7	7	7
Curve	99	ب	å.	ę.	ŗ.

on hand demonstrate the man of the second of

erend. "Addithe the m. Ohrechdos Alexandes Addition of Additional Addition of the Addition of the Additional A

TO THE REPORT OF THE PERSON AND PARTY.

Charles Section

THE PROPERTY OF THE PARTY OF TH

| The state of t

SPECIFICATION TABLE NO. 15 (codimed)

	(emposition (weight percent). Specifications and Aemaans	As-decord single cristal; 19,812 x 3, 479, 4,034 mm; same fabrication method and specimen axis orientation as above; n 3.1 x 10 ⁴ cm ² ₁ electrical readstants reported as 0,8394, 0,774, 0,7216, 0,667, 0,6141, 0,5307, 0,4573, 0,3341, 0,2739, 0,02043, and 0,01467 ohm cm at 1,389, 1,533, 1,635, 1,764, 1,831, 2,205, 2,326, 3,414, 4,188, 77,2, and 296,5 K, respectively.	As-dayed single crystal; IT.30° x 4, 0731 x 3,9978 mm; same fabricative method and specimen axis orientation as above; n=1.1 x 10 ¹¹ cm ⁻¹ ; electrical resistivity reported at 1.25 x 10 ¹¹ cm ⁻¹ ; electrical resistivity reported at 1.25 x 10 ¹¹ cm ⁻¹ ; along 1.0 x 10 ¹¹ cm ⁻¹ ; electrical resistivity or yourse 10.2 x 10 ¹¹ cm ⁻¹ ; along 1.0 x 10 ¹¹ cm ⁻¹ ; along 1	As cleared single er, stal; 17,052 v. 3,9504 x. 4,095; inm; same fabrication method and speciation axis orientation as alonve; n. 1,7 x. 10 ¹ cm ⁻³ ; electrical resistivity in reported as 2, six 10 ⁴ ; 1,86 x. 10 ⁴ ; 542, 1045, 373, 1,34.4, 16,190, 14,15, 5 siy; 1,966, 1,188; 0,840, 6,5392, 0,3085, 0,5690, 0,2149, 0,757, 0,1483, 0,1247, 0,1040, 0,00275, 0,00937, 0,05547, 0,04247, 0,00077, 0,00077, 0,02112, 0,02172, 0,0225, 0,01838, 0,05547, 0,04247, 0,01769, 0,01618, and 0,01977, ohm em at 1,445, 1,578, 1,285, 2,171, 2,526, 2,536, 3,537, 1,538, 2,171, 2,526, 4,534, 1,548, 1,5	Poyed with antimony and gallium; single crystal; 19, 413 x 4, 2273 x 3, 7717 mm; same fabrication method and specimen axis orientation as above; n = 24 x 10 ⁴ cm 3 electrical resistivity reported as 2,13 x 10 ² , 1 6.5 x 10 ² , 1 .52 x 10 ² , 1 .53 x 10 ² , 2 .62 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 1 .63 x 10 ² , 2
July 25.	Specimen Designation	As 232	A. 33: I	As 233 II	StGn 130
i i	Error, "	· ·	u.		
	Range. K	1	5.1. 5.1.	£	1,3-76
	Year	**	91 26 27	#1 #6 ~	<u> </u>
	Zerd Used	-	ri	~	٦
	날 숏	7.	7.	7.	3.
	ا ا	T	**	P.	7

SPECIFICATION TABLE NO. 18 (continued)

Reported Name and Composition (weight percent). Specifications and Remarks	SbGa 183 Do	0.7876, 0.7180, 0.6489, 0.6039, 0.5136, 0.4304, 0.3877, 0.3183, 0.7895, 0.7895, 0.7180, 0.1685, 0.4004, 0.3877, 0.3183, 0.7895	State 204 Doped with antiniony and gallium, single crystal; 16, 822 x 3, 913 x 3, 924 mm; same factoring an expectation as above; n = 2.6 x 104 cm ⁻³ ; fabrication method and specimen axis orientation as above; n = 2.6 x 104 cm ⁻³ ; cleetrical resistivity reported as 1, 19 x 10 ³ , 10.4 x 10 ⁴ , cm ² x 10 ⁴ , 2.66 x 10 ⁴ , 10.27 x 10 ⁴ , 10.3 x 10 ⁴	5.771, 5.344, 2.342, 2.349, 3.662, 3.569, 4.201, 4.254, 4.939, 5.355, 6.03 at 1.934, 1.996, 2.141, 2.349, 3.662, 20.24, 21.74, 23.32, 25.60, 28.94, 32.41, 7.404, 8.655, 11.5.67, 16.67, 16.27, 20.24, 21.74, 23.32, 25.60, 28.94, 32.41, 3.52, 45.75, 50.76, 50.76, 50.74, 77.08, 86, 84.13, 90.66, 99.63, 108.7, 122.7, 13.5, 1.52.1, and 293.8 K, respectively.	Z. 	N. 21	N #	Z T	N	1 P	10-30 Pu	Germanium crystal; before neutron hombardment.
1	1										10-30	
Temp, B			1.4-151		1.3-4.2	1,7-3.9	1.7-4.1	2.0-4.0	2.1-4.0	2.1-3.9	2.1-87	90-300
V. sar			1963		8961	69.KG #	1962	5964	1952	1942	1958	1963
N:ethod	Used 1.		÷		ı.	نـ	ı,			1	<u>-</u>	
	Q 7.		3 .		19 19 19	1- S:	, ; ;	385	7.85	58. 58.	ž In	(- (-
Curve	75 25		ن (-		t - t -	ý (*) [-	9.	ž	25	£	3

SPECIFICATION TABLE NO. 18 (continued)

Composition (weight percent). Specifications and Remarks	The above specimen after a bombardment of $6 imes 10^{2}$ neutron cm 2 .	The above specimen after a bomba-dment of 1.2 x 10^{18} neutron cm $^{-2}$.	As-doped netype single crystal; carrier concentration 5 x 10 ¹⁵ atoms cm ⁻³ .	Similar to the above specimen except carrier concentration 3 x 1019 atoms cm ⁻³ .	Ga-daped p-type single crystal; carrier concentration $2.4 imes 10^{19}$ atoms cm $^{-3}$.	n-type single crystal; specumen dimensions 1.5 x 1.8 x 15 mm; electron concentration approx 10 ¹⁴ cm ⁻² ; heat flow parallel to (100) direction.	Sb-doped single crystal; supplied by Bell Telephone Laboratories; cut into an "1." shape; dimensions of legs approx 6 mm long, 1.2 x 1.2 mm cross section; one leg connected to heat sink (S leg), another leg connected to heater (H leg); S leg perpendicular to H leg; S leg axis aligned in the (1 1 2 direction; measurements made on S leg.	Data from measurements made on H leg of the above specimen.	Similar to the above specimen but with the H leg bent to a circular curvature of radius 3, 35 em; measurements made on the S leg.	nts made on the H leg.	one for curve 39.	one for curve 40.	one for curve 41.	one for curve 42.	one for curve 43.	one for curve 44.	one for curve 45.	one for curve 45.	Sb-doped n-type single crystal, 2 x 4 x 15 mm; long dimension in the <1115 direction; obtained by Czochralskii technique; electrical resistivity 0.10 ohm cm.
Composition (weight	The above specimen af	The above specimen af	As-doped n-type single	Similar to the above st	Ca-doped p-type single	n-type single crystal; s centration approx 1	Sh-doped single crystal; supplied an "1." shape; dimensions of le section; one leg connected to P (H leg); S leg perpendicular to measurements made on S leg.	Data from measureme	Similar to the above stradius 3.35 cm; mo	Data from measurements made on the H leg	Same specimen as the one for curve 39.	Same specimen as the one for curve 40.	Same specimen as the one for curve 41.	Same specimen as the one for curve 42.	Same specimen as the one for curve 43.	Same specimen as the one for curve 44.	Same specimen as the one for curve 45.	Same specimen as the one for curve 45.	Sb-doped n-type single direction; obtained
Specimen Designation			Gc 1810	Ge-1796	Ge-5		S	E	<u> 8</u>	ia	Ge 2	Ge 3	Ge 4	Ge 5	C - 7	Ge 10	Ge 11	Ge 12	
Reported Error, %						CI	30	30	30	30	ဟ	ı:	IJ	L7	10	10	ıa	က	7 10 in 4"- 20 K and 100'-300 K 15 in 20 - 100 K.
Temp. Range, K	90-300	86-270	300-10-5	317.1075	362-1136	18-94	1.3-82	1.3-85	1.4-84	1.4-38	0.2-3.6	0.2-3.2	0.3-2.9	0.2-0.7	0.3-3.1	0.3-0.8	0.2-3.8	0.3-4.0	5.1-241
Year	19.33	1963	0.00	1961	1 26:23	1957	1963	1963	136	1963	1962	1962	1961	1962	1961	1361	1962	1963	1985
Method Used			2	. 2	. a.	i	1	_		نہ	-1	نـ	1	"i	1	1	, , ,	د.	
Ref. No.	· 5. 6		<u> </u>	90.	1.55	1010	20 7: (*	37 (-	σ. 7	36 71	7.89	7.89	7.89	189	7.89	68.5	- 20 - 1-	68.2	339. 883
Curve No.	15 25	Š	5	ē 3	e s	6 06	16	ço	. E	44	. v	98	, t-6	86	66	901	201	:01	103

SPECIFICATION TABLE NO. 14 (continued)

Curve	Ref.	Method Used	Year	Temp. Range, K	Reported Name and Error, 7, Specimen Designation	Composition (weight percent), Specifications and Remarks
101	339. 883. 988	<u>-</u>	1965	4.9-268	- 10 m 4'- 20 Yk and 100 - 300'K, - 15 m 20'- 100 K.	Similar to the above specimen; irradiated at 30 C with a fast-neutron integrated flux of 1.1 x 10^{17} n cm ⁻² .
105	339. 883	٦	1965	5.0-275	<pre><10 in 4 \- 20 K and 100 \- 300 K, <15 in 20 \- 100 K.</pre>	Similar to the above specimen; irradiated at 30 C with a fast-neutron integrated flux of 2.5 x 10^{17} n cm ⁻² .
106	& &	1	19.37	5.1-287	<10 in 4" – 20 K and 100 – 300 K. <15 in 20" – 100 K.	Similar to the above specimen; irradiated at 30 C with a fast neutron integrabed flux of 1.7 x 10^{18} n cm 2 .
107	8	ħ	1957	5.4-500	10 in 4' - 100'K and 100' - 300'K, ○15 in 100'- 390'K.	Similar to the above specimen; irradiated at 30 C with a fast-neutron integrated flux of 3.4 x 10^{20} n cm ⁻² .
10%	29.8	٦	1965	47-136	Ge 11	High parity n-type single crystal; obtained from Eagle-Picher Company; bar shaped, 0.153 cm wide, 0.048 cm thick; long dimension in the <110° direction; irradiated (base temperature near 47 K, to temperature ~70 K) for a length of 1 cm in <111° direction with a total electron flux of 1.01 x f0 2-Mev e cm ⁻² ; annealed for 15 min at 128 K; electrical resistivity 50 obtain cm, carrier concentration apprex 10 ⁶ cm ⁻³ ; measured on warming in the dark from 47 K after the electron traps were filled by a white-light illumination at 47 K.
601	æ 4	- :	1965	18-310	Ge I	High purity n-type single crystal; obtained from Eagle-Picher Company, bar shaped, 0.159 cm wide, 0.043 cm, thick; long dimension was the 110° direction; electrical resistivity 50 chm cm; carrier concentration approx 10 ⁴ cm ⁻³ .
110	<u>\$</u>	7	1965	20-31	l aD	Same specimen as above; irradiated (base temperature near 20 K. tip temperature 50 K) for a length of 1 cm in <111: direction with a total electron flux of 3.4 x 10 ¹⁸ 2-Mev e cm ⁻² ; at 30 K for 15 min.
111	* *	•4	1965	20-61	Ge I	The above specimen annealed for the second time at 70 K. for 15 min.
112	ĭ,	I.	1965	19-150	Ge 1	The above specimen annealed for the third time at 175 K for 15 min.
:11	7		1965	18-65	Ge I	The above specimen annealed for the fourth time at 325 K for 15 min.

SPECIFICATION TABLE NO. 18 (continued)

15 584 1 1865 20-230 GG I The above specimen annealed for the fifth time at 405 K for 13 min. High party a paper scale state concentration appers to the concentration and the concentrati	Curve No.	Ref.	Method	Year	Temp. Range, K	Reported Error, "	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
854 L 1965 11-298 Ge II 854 L 1965 11-74 Ge II 854 L 1965 11-118 Ge II 854 L 1965 11-131 Ge II 854 L 1965 11-120 Ge II 854 L 1965 11-120 Ge II 854 L 1965 11-202 Ge II 854 L 1964 92-300 A 885 I 1964 300 B 886 I 1964 300 B 887 I 1964 300 B<	131	3.50 4.00		1965	20-2:90		Ge 1	The above specimen unnealed for the fifth time at 405 K for 15 min.
884 L 1965 11-74 Ge II 884 L 1965 11-113 Ge II 884 L 1965 11-131 Ge II 884 L 1965 11-130 Ge II 884 L 1965 11-202 Ge II 885 L 1964 92-300 A 885 1964 300 A 886 1964 300 A 887 1964 300 A 886 1964 300 A 887 1964 300 887 1964 300	115	<u>\$</u>	1	1965	11-298		Ge 11	High purity n-type single crystal; obtained from Eagle-Picher Company; har shaped, 0.153 cm wide, 0.048 cm thick; long dimension in the <110> direction; electrical registivity 50 ohm cm; carrier concentration approx 10 ¹⁴ cm ⁻³ .
584 L. 1965 11-118 Ge II 834 L. 1965 11-131 Ge II 844 L. 1965 11-173 Ge II 844 L. 1965 11-202 Ge II 844 L. 1965 10-303 Ge II 845 L. 1964 92-300 A 845 1964 90-271 C 867 1964 300 A 886 1964 300 A 887 1964 300 A 887 1964 300 A	116	ž	-i	1965	11-54		Ge II	Same specimen as above; irradiated (base temperature near 47 K, tip temperature 170 K) for a tength of 1 cm in 1315 direction with a total electron flux of 1.01 x 16 ¹⁸ 2 Mey e em ⁻² ; annealed at 77 K for 15 min.
884 I. 1965 11-131 Ge II 884 I. 1965 11-173 Ge II 844 I. 1965 11-150 Ge II 884 I. 1965 11-202 Ge II 885 I. 1964 90-270 A 886 I. 1964 300-271 C 887 I. 1964 300 A 886 I. 1964 300 A 887 I. 1964 300 A 886 I. 1964 300 A 887 I. 1964 300 A 886 I. I. 300 A 887 I. I. 300 A 886 I. I. 300 A 887 I. I. 300 A 888 I. I. 300 A 888 I. I. <td>117</td> <td>3. 28.</td> <td>μi</td> <td>1965</td> <td>11-118</td> <td></td> <td>Ge 11</td> <td>The above specimen annealed for the second time at 125 K for 15 min</td>	117	3. 28.	μi	1965	11-118		Ge 11	The above specimen annealed for the second time at 125 K for 15 min
884 I. 1965 11-173 .Gc II 844 I. 1965 11-130 Ge II 844 I. 1965 11-202 Ge II 844 I. 1965 11-202 Ge II 845 I. 1964 92-300 A 845 I. 1964 300-271 C 846 I. 300 B B 847 I. 1964 300 B B 846 I. 300 B<	£1.7	*	ı	5961	11-131		Ge 1)	The above specimen concaled for the third time at 140 K for 15 min.
844 I. 1965 11-150 Ge II 844 I. 1965 11-202 Gr II 844 I. 1965 11-202 Gr II 845 I. 1964 92-300 A 845 I. 1964 90-271 C 846 I. 300 A 846 I. 300 A 847 I. I. 300 846 I. 300 A 847 I. I. 300 846 I. I. I. 847 I. I. I. 846 I. I. I. <	119	#£8	⊶	5963	11-173		.Gc 11	The above specimen annealed for the fourth time at 175 K for 15 min.
884 L 1965 11-202 Gr II 884 L 1964 10-303 Gc II 885 1964 92-300 A 885 1964 90-271 C 886 1964 300 C 887 1964 300 C 887 1964 300 C 887 1964 300 C 886 300 C C 887 1964 300 C	130	2	-1	1.9670	11-150		Ge 11	The above spromannealed for the fifth time at 200 K for 15 min.
884 L 1965 10-303 Ge II 885 1964 92-300 A 885 1964 90-271 C 886 1964 300 C 887 1964 300 C 887 1964 300 C 886 300 C C 887 1964 300 C 886 387 1964 300 887 1964 300 C 886 1964 300 C 887 1964 300 C 887 1964 300 C 887 1964 300 C	121	20 20 20	7	5,961	11-202		G- 11	The alvace account unrealed for the sixth time at 230 K for 15 min.
885 1964 92-300 A 885 1964 90-271 B 887 1964 300 C 886 300 C 887 1964 300 887 1964 300 887 1964 300 887 1964 300 886 300 887 1964 300 887 1964 300 887 1964 300 887 1964 300	122	884	1	1965	10-303		Ge 11	The Vince perimen amenaled for the goverth time at 405 K for 15 min.
885 1964 89-201 B 885 1964 30-271 C 886 300 C 886 300 C 887 1964 300 C 887 1964 300 C 887 1964 300 C 886 300 C C 887 1964 300 C 886 1964 300 C 887 1964 300 C 887 1964 300 C 887 1964 300 C 887 1964 300 C	123	885		1964	92-300		ĸ	Sea My office all.
885 1964 90-271 C 886 300 C 886 300 C 887 1964 300 887 1964 300 887 1964 300 887 1964 300 887 1964 300 887 1964 300 887 1964 300 887 1964 300	124	888		1964	89-301		E	Single organal, trendiated at 70 C for a fast moutron flux of 6 x 10ft n cm ⁻² ,
886. 1964 300 886. 1964 300 887. 1964 300 887. 1964 300 887. 1964 300 886. 1964 300 887. 1964 300	125	888		1964	90-271		U	Simpler at the above opecimen except irradiated at 70 C by a fact neutron flux $\sim 1.2 \times 10^{16}$ n cm $^{\circ}$.
987. 1964 300 886. 1964 300 887. 1964 300 886. 300 887. 1964 300 887. 1964 300 886. 1964 300 887. 1964 300 886. 1964 300 887. 1964 300	126	387. 886		1964	300			Goden polype single crystal; carrier concentration 1.29 x 10 ¹⁴ cm ⁻³ .
887. 1964 300 887. 1964 300 886. 1964 300 887. 1964 300 887. 1964 300 887. 1964 300	127	387. 886		1964	300			Cardoped p-type single crystal; carrier concentration 1.70 $ imes$ 10 19 cm 14 .
887, 1964 300 886 303 887, 1964 300 888 1964 300 887, 1964 300 888 886 1964 300	128	387. 886		1964	300			Ga-doped p-type single crystal; eatrier concentration 7.76 \times 1019 cm ⁻³ .
887, 1964 300 887, 1964 300 885 1964 300 887, 1964 300	129	887. 886		1964	300			Ca-doped p-type single crystal; carrier concentration 1.12 x $10^{20}\mathrm{cm^{-3}}$.
887, 1964 300 886 887, 1964 300 885	130	887.		1964	300			As-doped n-type single crystal; earrier concentration 4.07 x 1015 cm ⁻² .
8 H7, 1964 300 8 H5	131	887.		1964	300			A3-doped n-type single crystal; carrier concentration 4,37 x 10% cm ⁻³ .
	132	887. 886		1964	300			As-doped n-type single crystal; carrier concentration 9.77 x 10% cm 2.

SPECIFICATION TABLE NO. 18 (continued)

						E							5	300 P.		t 300 K.				
stices and Remarks		ncentration 3.24 x 10^{17} cm ⁻³ .	oncentration 1.02 x 1019 cm ⁻³ .	oncentration 1.51 x 1019 cm ⁻³ .	oncentration 6.03 x 10 ¹⁹ cm ⁻³ .	resistivity 0.0205 - 0.0227 ohm ci				I resistivity 0,154-0,155 ohm cm				l resistivity 13.9-!5.1 ohm cm at		al resistivity 25.4-26.0 ohm cm at				
	Composition (weight percent), Specifications and	As-doped n-type single crystal; carrier concentration 3.24 x 104cm 3.	As-doped n-type single crystal; carrier concentration 1.02 x $10^{19}~{ m cm}^{-3}$	A_{8} -doped n-type single crystal; carrier concentration 1.51 x 10^{19} cm $^{-3}$.	As-doped n-type single crystal; carrier concentration 6.03 x 10 ¹⁹ cm ⁻³ .	Sh-doped n-type single crystal; electrical resistivity 0.0205 - 0.0227 ohm cm	at 300 K.	Similar to the above specimen.	Similar to the above specimen.	Ga-doped p-type single crystal; electrical resistivity 0.154-0.155 ohm cm	Similar to the above specimen.		Similar to the above specimen.	Sh-doped n-type single crystal; electrical resistivity 13.9-15.1 ohm cm at 300 N.	Similar to the above specimen.	Co. Acced native single crystal; electrical resistivity 25, 4-26.0 ohm cm at 300 K.	מייייייייייייייייייייייייייייייייייייי	Similar to the above specimen.	Similar to the above specimen.	
	Name and Specimen Designation					:	11	<u> </u>	13	14	,		16	i u	6	1	11.3	114	£	1
	Reported Error, %																			
	Temp.		300	300	300	300	110-317	108-304	142-308	121-306		98-316	122-312	200	0000	118-302	114-304	131-310		128-306
	Year		1964	1964	1964	1964	1962	1962	s y	7061	7061	1961	1962		785	1962	1962	1969		1962
	Method	Osed					.1	H			.	- :	-		ıì		1			, a
	Ref.	Š	887. 886	88. 88.	887.	887. 886.	888.	888 888	88	9888. 9859	888 888 888 888	888	98 3	888 889	888 889	888	888,		, 88 88	988 989
	Curve	Š	133	18	135	136	137	867	3	139	140	141		142	143	4	145		2	147

DATA TABLE NO. 18 THERMAL CONDUCTIVITY OF GERMANIUM

(Impurity < 0.20% each: total impurities < 0.50%)
[Temperature, T. K. Thermal Conductivity, k, Watt cm⁻¹ K⁻¹]

	*	138	0.820	0,711	0.690		CORVE 19	,		1.41	1.23	1.15	1.03	0.803	0.787	0.770	0.757	0.669	,	E 20	;	0.494	0.481	0.473	44	0.398	0.371	0.348	0.324	\$ 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	90.0	385	0.354	0,359	0.375	0.363	0.381					
	ī	CURVE 18	208 226	239	56 0		COR	8	3 5	56 1	116	130	146	199	206	213	224	366		CURVE 20	1	387.6	404.9	409. 8	427. 4	510.2	520.8	574.7	675.7	757.0	7.00	613.3	840.3	862.1	862.1	917.4	970.9					
	¥	CURVE 15 (cont.)	1, 18	0. 728	0. 711	0,685	0.003	0.623	0, 394	0, 565	CURVE 16	Ì	1.97	8	1.65	1.53	1.42	1.36	1.28	0.837	0, 799	0.787	0 736	0.715	0.720	0.707	0.686	0.674	0.669	6.04	3	CHRVE 17		1.77	1,61	1, 58	28	1,45	1, 40	0. 920	0.690	0, 636
	۲	CURVE	120	<u> </u>	203	211	77.7	9 50	200	311	CUR		\$	101	108	69	122	127	133	194	213	223	243	243	250	256	27.5	292	298	202	110	CITE		96	98	104	901	112	122	203	275	305
	¥	CURVE 13 (cont.)	1, 26	1, 13	0.741	0, 711	0. 690	0,686	0.632	0, 602	0,615		Æ 14		2, 18	2.01	1, 59	1, 72	1,55	1,38	0.824	0, 799	0.766	0.757	0.720	0.669	0, 653	;	/E 15		* 23	5.5	1.45	1, 47	1,46	1, 42	1, 37	1.38	1, 29	1, 30	1,27	
;	+	CURVE	21	122	196	203	602	221	247	2 2 2 2 2 2 2 2	307		CURVE 14		88	92	100	105	113	116	201	204	217	226	240	900	35		CURVE 15	8	8 8	, 20 20 20 20 20 20 20 20 20 20 20 20 20	1 7	96	97.5	100	100	104	106	109	113	
	×	CURVE 10 (cont.)	0, 184	0, 189	0.216	0,238	;	E 11		0.464 0.37#	0.323	0, 178	0, 163	0, 171	0.178		E 12		1.82	1,73	7,48	1, 43	1, 33	1, 21	l. 13	1.02	0.682	0.636	0,636	0.615	0.005		1	1.55	1.46	. 46	1, 46	1,38	1.38	1, 30	1, 30	
•	۲	CURVE	900.9	1016.3	1050.4	1094.1		CURVE 11	!	323.6	515.5	854.7	309.1	1000.0	1039.5		CURVE 12		28	90	56	103	111	119	121	140	215	234	1.5	8228	6.6.7	CI STREET		91	92	94	35	36	101	ā	109	
	¥	(cont.)	11.4	9.05	7.96	7.76	3,41	2.79	2.30	L. 73	90		0.464	0.455	0.403	0,384	0,351	0.277	0.195	0.204	0.207	0.204		9		0.489	0.474	0.375	0.276	0.244	0. 226	0.18	0.200		F 10	:}	0.436	0.410	0, 390	0, 35в	0, 231	
	L	CURVE 7 (cont.)	16.1	. 5 . 8 . 8	32.9	33.3	6.79	78.7	90.9	110.7	CURVE 8		328.9	347.2	354.6	396.8	507.6	8 .609	781.3	806.5	9.698	961.5		CURVE 9		318.5	354.6	398, 4	588.2	617.3	599.3	900.0	961.3		CHRVE 10		331.1	336.7	380.1	448.4	671.1	
	.	9	1, 17	2.39	3, 19	6.50	6.97	6.48	7. 29	20 0 21 5	20.01	10.7	11.3	12.2	12.5	12.4	12.4	12. 1	6.01	10.3	9.71	8.74	7.30	4, 43	3.97	3, 42	2.93	2, 43	2. 10	1, 72	1.49	,	-	0 400	0.654	1.09	1 76	2.79	2.56	8,48	10.4	
	1	CURVE 6	2.80	3.78	4, 42	5, 89	6, 65	6.75	6.90	7.81	97.6				.	'n	_			25. 1	27, 6	32, 1	39.9	57.4	63, 4	71.4	79.3	91.8	102.6	118.8	137	T. C.	CONVE	8	2 26	2.80	3 39	4 28	200	. 83 83	12, 03	
	*	out.)	0.0688	1.330	300	. 44	1.65	. 90	. 82	.90	2.0	. 62	.70				0.314	0.433	0.610	0.942	.620	.375	3.02	. 91	4, 34	. 70	.39	. 85	. 29	85	.21	11.	200	7 12		20.00	20					
	T	CURVE 4 (cont.)	4.21					_	67.2	68.0	93.0	20.02	0.98		CURVE 5					3.60														33.4								
	*	*_1	0.586	1 69	•	.1	605	0,586	, 3995	0, 838°	515	OC.			154	0,290	487	200	16	3,66	95	85	20				•							2.21				0 0265	0.0487	0581	0.0553	
	۲	CURVE 1		37.3 0.	CURVE 2	1		294.4 0.			346.5 U.		CURVE 3				3,70 0			14.0 3.														70.07		CURVE 4					00.4	
			14	. ,			• •	.~	• •	., ;	, :	•																														•

Not shown on plot

	¥	11 (cont.)	0,550	0, 702	1,00	1, 13	1.60	1.72	, ,	2.50	06.5	0.5	9, 20	10,20	11,00	11.80	11,00	9.98	8.00	7.00,	4.00	2,85		CURVE 42	9	- C	1.12	2.	0.00	1.05	3.55	4, 55	00.9	7.26	7.70	€	9.10	10.70	98.11	12.00	12.60	12.40	11.90	10.50	£ .
	۲	CURVE 41 (cont.	2.03	2.28	2, 55	2.74	3, 12	30	3 .	0.00	6.60	 	00.6	11,00	12,30	18,00	22.00	27.00	35.00	40,00	68.00	₹ 8		E CER	,	2, 20	6.43	2.74	3.02	2.5	4 02	4, 65	5,40	6.30	6.60	7, 30	60	9. 20	10, 70	12.00	13. 15	17, 80	22.00	9. 69. 9. 69. 9. 69.	30.00
	×	(cont.)	12, 30	12, 50	12.90	13 00	13, 20	13,20	1.5.00	15, 90	 	3. 3.	00.9	98.0	5, 10*	4, 25	3,55	2.98	1, 50	1, 18	0.30	0.80	0.70	0.58	.	£ 40	•	0.498	0.570	6.33	4.50	6, 40	н, 00	9.60	10, 30	10, 80	11.20	11.60	9 .9 8	9.20	я, 50	;	E 41	7	0.473
	+	CURVE 39 (cont.	9.80	11, 20	12, 30	13, 86	14, 30	16.00	15.40	2 5	30.30	30.00	47.00	48.00	54.0	63.0	75.0	81.0	130, 0	157.0	204.0	225.0	265.0	230.0		COKA	ć	2, 05	2, 10	200	5. co	6, 70	8, 00	9, 10	11, 50	12. 70	14.00	16, 20	25.00	28.00	31,00		CURVE 41	6	7. 2.
	.: :	CURVE 38 (cont.)	1,30	1, 85	3, 00	3, 50	9. 10	3 (۾ ڊ ج	e ;	2 2	e e	e e	9, 70	3, 20	66	æ. 40	7, 90	6. 40	5, 25	4.30	3.20	2, 52	2,30	1.70	į	3		5 G	3.50	1.3	2. 90	2, 30	2.76	3, 24	3, 75	4, 10	ر. 3. 80	5, 15	7.00	8, 35	10, 00	10, 50	11.60	
	T	CURVE ?	4, 50	5, 40	6, 70	7, 50	9. 32.	10, 5	:: ::	: : :	- · · · ·	0.0	20.02	5 . 2	22.0	 	26,0	31,0	40, 0	90,09	55.0	77.0	н Э. 0	100.0	120,0		CURVE. 39		5. 15	250	00.4 00.4	9 €	3, 15	3, 20	3, 50	3, 75	4.00	4, 50	÷. 55	5, 50	6, 40	7, 30	7, 90	8, 85	
(continued)	*	CURVE 36 (cont.)	4. 10	4, 30	3, 75	2, 30	1, 90	1.70	1. 52	ţ		2000	0.003	0 165	0.330	0,530	0,750	1,000	1,20	1,50	3, 00	¥.	4.10	3,70	2.60	: ::	2.30	2.05	1, 50	L. 65.	00.1	E 38		0.120	0.160	0, 175	0.215	0,275	0.350	0.470	0,555	0.700	0, 855	0.990	
ž	1	CURVE	25.0	30.0	40.0	70.0	90.0	30.0	0.00		CLIKA		i n	4	÷	9	0.	0.1	0.6	10.0	15.0	20.0	25.0	30.0	40.0	50°	60.0	70.0	0.9	90.0	100.0	CURVE 38		1, 50	1, 63	1, 70	1, 10	2, 05	2, 25	5 5 7	5 C2	3, 10	3, 25	3.5	
DATA TABLE NO.	ж	34 (cont.)	2,97	3, 07	3.01	2. 89	2, 83	2.73	57.	2.80	2.70	,	2.00	2 64	5 63 7 63	2 62	2.61	2, 60	2.63	2.57	2,54	2.60	2,58	2, 47	2,47		2.48	3	CURVE 35		0.5% 0.0%	CIBVE 36		0.035°	0.076	0, 130	0,355	95.0	0.82	1.09	1,35	1, 65	3° 00	3,90	
DATA	۲	CURVE	67.2	68.2	69.0	69.4	70.4	71.1	72. 1	72,6	7.27	2 6	. 4.	4.6	74 F	7.5 1	75,6	76.0	76.3	76, 6	76.9	77.3	77.7	78.6	79.0	40.	81.3		CUR	6	283.2	CIB		2.0		4.0	o .c	0.9	7.0	œ x	9.6	10, 0	15, 6	20.0	
	×	VE 27	0, 155		VE 28		0.180		VE 29	;	0, 234	36 11	200	0 963		VE 31		0, 192	;	VE 32		0.222		VE 33		5.18	4,66	4.15	4.25	بر ا		2.23	3.00	2. RG	2.68	2.65		VE 34	1	3, 39	3.20	× 1×	3, 16	3, 17	
	(-	CURV	293.2		CURV	1	293.2		SUB	;	293.2		CURV	941.2	1	Vall		293 2		CURV		293.2		CURV		56.0	57.0	60.2	60.9	67.3	69.5 20.5	71.7	7.3.7	76.4	79.5	9.08		CURV		64.6	65.2	65.6	66.4	67.2	
	×	VE 24	0.497	0.493	0.492	0,525	0,430	0.421	0,401	0.381	0,252	242	202.0	0.00	0.213	0 231	0.210	0 192	0 151	0.140	0, 130		CURVE 25		0, 433	c +01	0.371	0,351	0,327	0.304	0.291	0.263	0.248	0, 234	0,220	0, 199	0, 19R	0, 175	0, 166	0.154		CURVE 26		0,502	
	٠	CURVE	353, 6	357.1	370,4	381, 6	393, 7	408.2	416, 7	425, 5	438.6	446.4	404.0	0 00:	200. 200.		552.5	606.1	833	909, 1	1000.0		CUR		370.4	377.3	390, 6	40x. 1	416.7	425.5	X	7 (* 7 (*)	476.2	500,0	526,3	573, 4	625.0	6×0, 2	719, 4	775, 1		CUR		250, 2	
	×	CURVE 21	0.463	0.444	0,435	0.400	0.387	0, 363	6, 349	0.345	0.345	0,346	0.50	0.00	0, 361		650.0		CITRVE 29		2, 420	0.912	0.686	0.628	0, 582	0, 544	0.519	0, 473	0, 439		CURVE 25	0.461	505	0, 326	0, 298	0.276	0.252	X05.0	0, 220	0,200	0, 171	e, 162	0, 132		
	۲	CUR	404.9	411.5	421.9	495.0	497.5	561.8	S. ₹.	598.8	632.9	662.3	714.3	010	6.53.	9.54	920.02		3117		92	200	254	275	293	312	330	346	370		COR	3 231.	400.0	425.5	40.00	476.2	405.0	2.075	571.4	1 167	0.4-9		3 121		

Not shown on ploy

	¥	CURVE 532 (cont.)	0, 190	0. 190	0,170	0.120	0, 200		CURVE 54	ı	0,421	0.425	6.42.	152. 0	727	316	22.0	24.	0.287	0.278	0.252	0, 235	0,217	0.208	0, 197	0, 189	0, 163	0, 178	0, 178	0, 177	0, 174	0, 168	0.175	0, 163	0.170	0, 174		CURVE 55		0.599	0.488	0.368	0.286	0, 233	0, 198
	۲	CURVE	790	840	96.5	196	1020		CUR		368, 4	. 503. 100.	0.565	n d o d d	401.6	0.107	1 070	0.000	521.2	5.1.1	10	E E	6.46.6	763.8	768.5	814,0	853.2	879.0	903.2	9.46.6	956.4	100:3, 4	1015.4	107.5	1154.9	18. 18.		COR		308.2	373,2	473.2	57.3.2	673.2	773.2
	¥	of (cont.)	0,314	0.305	20.0	0.2.0	0,205		CURVE 51		0,617		CURVE 52	,	0	0.01	_ ; ;	0.71	0 12	0.51	0.0	0 01	0.17	্ব		- 61	<u>۔</u>	9 0		CURVE 53		0.600	0.500	0. 4±0	0,490	0,450	0,390	0.380	0.370	0,375	0,349	0.2%	0,245	0,225	0,215
	+	CURVE 56 (cont.)	471.2	521.2	2.1.0	676.9	683.2		CUR	}	300		COR		o .	o i	o i	n i Kig	12.3	0.00	0.12	0.00	45.0	0 0	20 S	100,0	150,0	300,0	•	CUR		300	350	320	370	370	370	420	430	470	540	580	630	670	710
	¥	r (cont.)	11.3	10.5 11.3	11.2		/E 49		0. 82	4.	s	÷ t	o	0 to	2		0 10	0.70	= =		37.1	×	313, 0	29.0	24.0	13, 0	t.	6, 4	5, 6	6. 6.	0.4	x i	- t	 -	- i	- : - :	, 75.	ē	. 5c	;	0,515	0, 510	999 0	0, 427	0.36н
	1	CURVE 48 (cont.)	14.5	31.5	0.12		CURVE 49		2, 1	5. 8.	. eri:	c .	7.5	0 v	- 3	c 3			2			21					09	9 <u>9</u>	- - -	9.	핥	3	91 :	2	205	220	Q 2		CURVE 50		311.2	316.2	326.2	381.2	429.2
(ponu	×	(cont.)	5, 35	6.20	00.7	14.50	15, 60	15, 20	15, 25	15, 20	14,50	97.5	11.30	07.01	3	2.60) } } !	3.00	7 7 9 9		000	3,25	2.95	2.50	2, 40	1, 86	1, 60	1.40	1.16		E 48		0 .	4,4	1. 7	o :	ء ج	4 .	4. 9.	S. S.	7.2	æ.	6.6 5	10, 5	11,3
19 (continued)	F	CURVE 47 (cost.	3,98	9 6	2 3	i a	10, 00	12, 40	14, 00	15, 50	19, 60	21.00	00.00	23.52	200	3.00	00.50	00.15	96,53	66.00	70.00	72, 00	77, 50	90.06	90,05	104, 90	125,00	140,00	155.0		CURVE 48		0,5	3.2	:0 ::	चं चं	٠. د	c.	6.0	6.5	3. E	9.0	10.5	11.5	12.5
	*	cont.)	2.24	2.30	6.50	.46		0.035	0.039	0.048	0.057	0.000	0.001	0.000	200.0	9.038	151.0	39.0	0.770	505.0	2.44.0	0.502	0,655	0.860	0,925	1,34	1,70	1,95	2.20	2.35	2.50	2.75	2.90	3,00	3 00	2.0x	2.30	2.50	2.35	2.20	1.87		47		3,30
DATA TABLE NO.	í-	CURVE 45 (cont.	88.00			CHRVF 46		2.20	2, 42	25. 73	5 Y	2 :	5. 50 5. br>5. 50 5.	26.4 26.4	; -	2 7	60.5	8 5			2.0	7.60					13, 80	15, 00	17.00	17.60	18.60	19 60	21.50	24.00	27.20	32.00	39, 50	20 .00	62.00	68.00	96.00		CURVE 47		3, 25
	¥	3 45	0.0277	0, 0215	0.0243	850.0	0, 0340	0,0350	0.0415	0.0440	0.0525	0.030	0.000.0	0.0255	0.000	0.0000	0000.0	0.033.	0.147	0 153	136	0.22×	0.252	0.485	0.685	1. 12	96.0	1, 32	2.00	2, 65	3, 08	3, 37	1.51	€.	4, 15	. 45 . 5	. 40	1, 25	1.25	1.20	80.	3, 50	2.95	2. 49	2. 27
	T	CURVE 45	1.98																																								63.00		
	×	(cont.)	. 00	7. 1 0	3 5	20.	. 8	1, 70	9 8.5	. 00	2, 72	:	7	603	660	, 150 150 150 150 150 150 150 150 150 150	0.00	200	2 1 1	5.6	; ;	3 20 3	15	30	5.05	. 90	. 90	т. 40.	9. 60), 10	1, 10	1. 90	3	2.80	1, 50	88 %	3	9. 10	. 40	. 80	50	3. 70	2, 75		
	F	CURVE 43 (cont.		32.0						38.0			CURVE															7.30																	
	×	(cont.)	ê	6.00	e :	·	. 4	·I	. 0395	0440	0.0510	6650	0.0620	0.0750	0.0300	0.1.	777	010	240	010	33.0	0.430	645	900	67	10	20	.92	.45	8	3 5	. 98	. 55	8 .	. 02	. 15	9.	06.	. 4 0	8.	01	. 20	9. 10	.98	30
	٠	CUMTE 42 (cont.)		49, 50			CURVE		1.95 0.		2.05		2, 15 0,																														20.0		

*Not shown on plot

	¥	CURVE 65	0.00474	0.007.0	0.0290	0.0363	0.0514	0.0749	0.0789	0.126	0.245	0. 39A	0. 45.5 0.000 0.000	205.0		**		36	: ::	4, 55	5, 02	5,70	5.74	5, 11	5.84	5,63	5,47	4.9×	7 7	g	, i.	 	, v	1.90	Ç	. 69	.05	1.42		وو ،]	0, 0207	0,0272	0,0498	
	۲	CUR	25.15	27.5	1,935	2,000	2, 26:1	2, 429	2,519	2,812	3, 351	181	700.	7.300	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 196	200 4	9 718	15,51	17.00	21, 33	21, 69	26, 83	29, 26	32, 53	11.72	42, 60	50.51	00. 10		50.00 50.70	1 2 3	108.01	21.17	4 :: 4	2.4	145.3		CURVE 66		1, 496	1,536	1.766	
	æ	(cont.)	¥ :	E 3	7	7.7.5	2.61	55 55 55	1, 97	1, 62		<u></u>	•	00000	0.033				0.00	2 2	1,09	1, 56	5. 3. 3. 3.4	3, 54	I.	č. 4 .	ر ج ا	S. 75	8. C.	10, 1	9.20	r. <u>-</u> - r d s		i [:	: 3	: : (-	7	£ 6	6 0.7	3, 36	- 1 (
	⊢	CURVE 63 (cont.	29, 85	7 S	61, 70	64, 03	67, 36	75, 63	N. 70	97, 76		CURVE 64		205.)	3000	. 16		473	12. 146	رج الح	3,513	4, 677	5, 353	7.9°C	1 0 K	11, 60	13, 02	14. 14.	00 :1	16, 95	9 4	1				70	11.12	55. 75	67, 91	e X	11,33			
	¥	(conf.)	0.444	7 // 7 / 9 =	997	0, 463	0, 457	0,455	0,454	0, 442	6,439	407 S	277		C 7 7 6		915		104.0	0.402	0.397	0, 1385 0, 1385		(:)	j	0,001<:	0,002:32	0,00695	0.010.	6, E385	0.0.6			1 (5		1 2	. .	<u> </u>	99	3, 59	1.0.4	3, 83	3, 70	<u>بر</u> ت	
	٠	CURVE of (cont.	0.666, 5	0.11.1	1	ig in	104	¥0::	##### ######	400	90+	51 7	े रा	¥ ;			-			1 (- - - -	924	0.01		CURVE 63		1,239	1, 330	1.681	7,062	5,865	01	()		() () () () () () () () () () () () () (9	4	F)	7	15,63	50,03	22, 46	# (1)	08,30	
(continued)	¥	(cont.)	1, 625			0, 3 10	02×30	0,735	0,588	o, 56×	0.563	D. 474	0,452	0, 451	0.74	, q.,			5 7 6	114.0	282		. 65	j	1, 604	1,561	1,390	1,350	1,362		691 -	11.		00.5	0000	100	7.0	0.715	25 C	0, 6::1	0, 552	0, 551	D, 494	0, 4 %	
100) 71	-	CURVE C	<u> 1</u>	7 12	1	<u> </u>	455	906	:1:	310	<u>.</u>	7:1 1- 21	(- X : 1	003	, - -	- :) S		0.00	: -	107	<u>.</u>	CURVE 62		101	113	120	621	120	::	::: ::::	9 :		2 7	, :	1 ?	70.0	1 21	17	797	<u></u>	322	095	198	
DATA TABLE NO.	¥	CURVE 60 (cont.)	0,798	0,750	10.0	0.744	6.7 Hy	0,707	90.0	7.000	0, 551	17:0	0,040	0,529	0 . U			1,1	7 7	357.0	121 0	0.473	457	0,454	0,452	0.451	0,447	0,443	1 :+ 0	0,450	77.7	×1+'0			1. 1	7 7 7	4	0.410	•	. 193		2, 146	1.50.1	1.647	
DATA	۲	CURVE	일 : 11 :	9 1 2 1 1 2	2 to 5	101	200	907	299	20 5	E) 11	+ 7::	7.7	0	200	0000	ā ļ	3 1	: : - : :	: 5 : ::	2	S.F.	90.4	±0.7	=	-17	3. T	77	110	잗	<u>(2</u>)	7 -	? (* *	7 7	1 :		1	Ş		CTTATE 61		300	=	021	
	¥	URVE 39	1, 805	7 000		1,634	1,585	1, 555	1, 404	1.308	1,260	1,354	0, 922	11 1 12 1 10 1	2	0.1.0	0,617	0.00 0.00 0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000	075	1000	5 C	0, 536	0,515	0, 495	0.479	0.447	0.444	0, 436	0.422	, ;	20 20 20 20			1. 20.1		22.1	F	2	2,50	1, 192	0, 792	0.781	
		8	<u> 101</u>	= =	1 7	; (- -	127	127	136	<u>,</u>	130	151	200	915	5.56	T :	101	200	965	1 2	į	12	3736	1111	349	366	17.50	†!†	÷	0 *	2			207		1 2	200	12	135	136	137	**	206	207	
	×	CURVE JT (cont.)	0.474	2.4.0	- 14k	0,445		CURVE 58		1.827	2, 827	2, 827	2, 735	9,476	2,324	2,173	2.032	2.0.5	1, 731	1. 500 60x	685	541	588	0,590	0. SHS	0.462	0.462	0, 462	0.460	0.462	0, 457	<u> </u>	7.7.	4.5		104.0	307 0	0.426	967 0	0.423	0.416	٥. ٢			
	۲	CURVE	69 E	0 fi 0 fi	. A.	429		SC CER		68	98	90	90	7 (S	97	001	102	e :	777	250	300	902	300	302	304	387, 5	393, 5	396	366	397, 5	402	:0 ;	7	\$ 100 mg	0.0	n ::	77	077	945	446	446	555			
	×	CURVE 55 (cont.)	0.179	0, 171	101.10	CIRVE 56	}	12		CURVE 57	}	1.919	1,597	1,780	1.743	70%	1,722	100	1.703	3.7.	1 754	245	1 185	0.861	0,856	0, 837	0 417	0.800	0,701	0, 647	0.667	0,656	0.65%	0.00.0	0000	0.030	900	0.543	000	0.530	0.513	0, 505	0.489	0.483	
	T	CURVE	873.2	973.2	0/3.2	CITE		16		CUR		311	114	116	777	77	72	4.0	127	136	1.10	144	154	203	210	217	217	224	256	256	274	4. (n (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, , ,	307	100	330	72	338	346	357	372	35	

Not show a on pl

A DISACTOR OF THE BELL

	"	CLRVE ST (CUEL)	6, 150	6, 196	2.1.0	155	a vi	807, a		C. HVE X		#	÷	∏ 	- #E . O	Ā	,	10.0	H.	P. C.	い芸師、金	,	H.	4 175	0,217	· 2	10	į.	15 T	j.	i.	Ė	411 ·		6 5 6 5 6 6		# T .	¥.;	•	CHEVE IS		ę R	504 ·	* 75 °	98 H &		r B
	۲	CLRVE	190	7	Ž.	9136	ž	Î,		€		4	Ē	F	***	0.0	9 169	7	12.3	3	11.11.5	511.9	2.03	3.73	# '9 'W	D.	のきに	•	***	·	** **	*	→ 35.6	₹ (Dec.)			N. I	ž				el E	11 12 15	H, T	200	r i	M. D.
	4	CURVE SUSCERE.	115.0	5000	156	1	H	£ .		CURVE ST				CURVE 52		17			4	÷	, if	5	4	6	5	15	e n	-	-	• •	,			•	3	5 - D	Ļ	\$		r O	e s	Ę	*	· 11 · 6	9.263	¥.	資料
	-	CURVE	Ç	**	11 11	ij	** **	109		5		ħ		5		h	4	ed Let	i e	i ti	1 12	1	i i	ī	•	2	2	Ē	Š			5	j	Ř	Ŝ	À	ĥ	Ē	Ē	ij	ō	Ç	Ī	E ,	â	ŧ	ï
	4	CURVE 45 (cont.)	::	5	**	• *		CURVE &		v •	-		≠ n	*	¢	2		e 2	÷	•	● .4	き	, H	H	ų	ň	6 7,	• 0	4	•	•	٠. ۲	•	# (: e		• i	2	Į.	•	X HAR		:15	* * *	*	٠	X *
	۳	CURVE	7	in Li	•	ห		5		 ri	#. F1	♣ Fi	÷ ท่	fi v	• หา	i i	e.		•	9,6	2	:2	ļ	Ħ	7,	fi	Ŋ	\$	\$	4	?	ŗ.	Ų	;	3 5	1	9 1 4 1		?				H	对文品	4,800	H 7.5	ņ
(continue)	4	Count.	H is	£,	2	Œ :	3 	書に	1	(4)	î.	X	ŧ	3.	2 2	3	3	3	8	2	ŧ	20.0	3,	5 H 193	2	3	\$	*	\$	3	<u>:</u>	-	るとして	,	• •	· .	. (B r. 1	4	14 ·	A	iń iń	**		بر ه	e, 1	<u>ر</u> ۳
14 (198	j.	CURVE 6: COM	*	ħ,	•	i ei	. ↑	2	ร	2	Ē.	t	\$	ŧ,	t ñ	\$ h	2	A A	2 ,,	3 3	*	į	۽ ج	\$!	3 -	*	Ş İ	ř ř	3 }}	\$	÷			1	÷ •	i ⊀ i	5 (•	e d	त र्ख	*	A T	9	•	R	.a .	i ii
DATA TABLE NO.	4	5 [cost.]	¥4. H	r ;;	? ,		C1 27 E	6		7	Î				7: •	- d		11	31.	¥	Ē.;4 .◆	E.S.	4	景。	2	7	ij •	3	Ť	Š.	ř.	я. П	3	17.	Ř ŧ	B (5 , 1	ĵ.	3	Ř	Ž,	L .		CORVE 4	į	Ř
DATA 1	••	CURVE 45 [com.	8	8	¥.3		<u>بر</u>		% •i	4	H - -	2	इ स	3	k H	\$	4	3,		1	5	9	A	3	3	2	2	生红	r lí	\$:1	\$	ŧ.	\$ 2	î D	3 1 1 2	k 1	n i	R H	3 9	\$	Ų	1	¥				A ri
		CURTE 45		813	e St.		Û	# # •	3	1		1		3	7	3	* ·			=	<u>ئ</u> ا -	3 ·	1	íi •	Y.	2	55. •	u d	X.	H	3	Ų.	å i	k i	, i)	2 :	3	4	¥.	អ្	Ħ	*	3	¥ **	9 1	kā ed
	-	E	4. 61. 1	3	님	t. il	*	Ř	\$ •1	% :	A i	· i	1	9	ři ď	i d	男 ri	*	น ส	!! ਜ	3. H	58 ri	7 . →	*	ÿ. +	t. A	3,	y,	7.	ž.	t L	ただ	\$	3	5 1 5 :			1	*	1	A C	a H	3 3		1	3 (B
	м	CURVE 43 (Seef.)	8	#	2	9. 9. •	? ; vi	3	P.	P (S	7! +1		# PALU		1	ð	\$ 13°	•	8	;; ;8;	¥,	¥ ei	Ti ei	¥ M	R	8	8	*		8	完	# II	8		ı i	X (B:	2	2		3	A	Ř n	ŗ		
	F	CURVE	Ti	H	\$	ij	9	ς; 'γ	4	6	v V	e,		U		II •i	高 ni	90 11	3	50.71	3	3,	U.	*	r V	3	中で	X	3	8	7	SI #	\$ 11	ri n		4 1	2 :	R H	¥	H	ij	8	Ľ	1 1	3		
		CURVE 42 (conf.)	8	9	γ. ≠	نيا ص		7	•		ž	6 . 6 5 16	3		3	Į.		H	7	11.	550	8 11.	ñ	. O	3.		i.	* -	角片	H.	ų ii	K ri	3 .	ž,	3 I	1 (¥ :	1	3 .	8	\$	R	2	×	B F	2 i	R
	į.	CURVE	.T. 36	唐即	62, 96	궁 [⁻		CLATE		ที (8	S ei	3	:1 -i	iì	竹	50.1	8	i- il	8	8	8	ž, ri	3,	2	£. 0 5	**	3	3	3 ,	2	3	8	3	3 1	B	Ĉ,	M A	u u		Y.	n H	r N	• #	a A	ស ដ	ที่

-

						DATA TABLE KO	ž Ģ	(constiment)					-
۲	4	-	æ	۲	24	-	.id	-		-	м	-	
CLRVE 66 CM.	COME.	CURVE 6.	(conf.)	CURVE 6*	,cont.)	CURVE 69 (cont.)	(cont.)	CLIRVE TO troof.	(cont.)	CURVE 72 [cont.]	(Comt.)	CURVE 73 (cont.	(cont.)
Į.	0.0613	986	4 1	: ±	97.	3	9 6 '6	2 1	fo n	6, 10s	3, 15	7, 192	1.49
T.	1,967	1.6,01	1.	16, 3⊒	9 .	\$ <u>*</u>	E. 9.	60 15	in'i	<u>.</u>	9	10,09	8년 전
<u>7</u>	¥: 0	11.11	Ы ::	李正	3	\$:	9	⊼ ∓	e Z	Đ,	නි (ස් (و ا ا	<u>.</u>
7	0.21	15, 15	;; ;;			2 11	0.80	۶. ۱	2		*	1.1. 77	
J,	0.38	17, 33	₽ T	<i>₽</i>	91 ,	<u>ا</u> د او	6.23	; ,	(5 15 16	. 106	Z	20 T	
3,370	5	21, 50	¥ -	ŝ.	T. 17	17.52	S	7. 0	<u> </u>	3	₹ •	15. 81	7
3.00	1, 11	12. 16	6) 1	09.9	or or	97.9	i: E	# #	9 61 5	6 . •	3.53	ខ្
051 °F	1,51	E 150	1) 13	# #	5 5	7 2	\$. 	¥.	8 -;	200	3	19.51	<u>.</u>
9 1	2, 20	. 9:1 9:1	7. 7	15 14	s. to	g F	Ç!	2	, e	er or	Z.	22. 33	ند -
5.574	99	55.53	/. +	9. G	?! +	£∓	# 13	5. 18.	, e,	1.64	: 6: •	.4. G	₽ .73
12.55	; ;	66 0	7	12.7	11, 92	13.13	u:: +	110.4	1+1	?! 기	ر ا ا	17. 62	• 30
<u> </u>	† 6.9	15 60	3	7.2	= ::	15,18	9.5	ij	1,25	15, 46	82 'S	20, 16	4.66
1.	5.5	65,81	¥. 1. 4	7	5 † † †	7 11	<u>7</u>	11. E	<u> </u>	16. 02	¥ 13	32, 84	ţ;
2	£.	3, 50	₹	19.98	Z.	5 7	96.1			11, 71	6, 30	36, 62	5.05
7	<u> </u>	24.60	# 5	102, 90	. e.	(5) 第	15. S.I	CURVE 71	F .:	17, 76	ć. 6.	41.30	4,70
J	1 'S	1	-6	0.901	1,64	Pal. e	9		,	£ 7	-1. -1.	41.97	5. 11
18	7	¥	2,39	10, 3	1, 52	115.1	8	1, 4:16	0.00020	26, 63	e S	46, 10	4. 29
1 55	5.51	96	٠.	113.9	10.1	1.5.1	7 -	1.36	0,0122	13 %	6.45	52, 33	3, 93
3	5	16.18		115,9	15.1			1.616	0,0152	.10, 65	6.32	63, 84	3, 34
	¥ .	10.5	£-	6 19	1,45	CURVE	- J.C.	7	0,0123	35, 73	90.9	R2. 20	2 64
	£	110.9	2				1	.00	6570.0	14, 61	5. II	98,39	2.33
76.40	3.05	1.13	95.7	CURVE 69	69	1, 427	0.06431	2.260	0, 0468	55, 65	¥; ;¥	104.8	2, 10
£	2	137.1	#		1	1.501	6, 503±3	2, 393	S. 0.533	60, 19	3, 70	115.4	1,78
95.36	: # : 6!		: :	1,4%6	0.0740	7.	0,0114	2,616	0,0736	73, 46	3, 19	129.1	1,69
7	65.6	CURVE 68	£ 65	1.718	0, 116	220	0.0101	## 100	9660.0	(a) 7.	:. 6		•
114.2	56.			7.83x	0, 156	2, 149	0.0199	977	0, 173	97, 09	2, 15	CURVE 74	74
7	1.64	1.372	0, 125	#X071	0, 23%	27.446	0, 0312	3, 455	0, 204	110. *	3. 10		1
141.2	1.56	1, 500	0, 147	4:4:5	9, 2, 9	2,717	0,0445	50% 1	67.75 °C	115.0	1, 85	1,310	0.0097
1		1, 518	0, 20%	2.701	t:::0	1: 054	0, 0661	4, 201	0,379	125, 6	1, 77	1. 460	0.0152
CHRVE 67	67.	1,919	0,346	2.501	0.417	4,354	9.60.0			F .G::1	J. 74	1, 738	0.0348
	:}	2.26.	0, 430	3, 116	0, 5, 9	5,761	0, 141	CURVE 72	61			2, 075	0.0646
1.462	0.00431	9, 59X	0, 76:3	3,419	0,618	4, 203	0.211			CURVE 73	72	2, 598	0. 160
1,575	0.0574	3, 10;	٦. ٢٢	 20	0,77.5	7.13.5	0.293	1.:106	5,550			5. 969	0.269
1,715	0,00823	3. 70E	1.74	1,569	E9.4	5 H 5	0, 429	1, 418	0,0050	<u> </u>	0.0143	187	0.34
1,922	0.0135	2 7 7	2, ¥.	5,066	1,29	90-12	#:00°E	1,515	0,0471	1, 456	0.0172	3.55 5.	0.49K
2, 141	0.0301	₹. *	3, 24	5, 674	1,65	51.55 6.153	0.791	7	900	1.669	0.0270	4.648	1. 19
2, 186	0.0304	5, 596	3, 65	6, 207	1,65	/[- '-	20. -	3 3	27.0	0 1 6.7	0.0426	3, 109	1.46
2 386	0.0274	5,654	3, 71	6.949	(*) (*)	195 %	1, 26	5,416	+ 117 'B	tr Fi	0.0646	5. 850	2.06
2.540	0.0479	5, 745	7. 21	5, 193	: ? ?!	10, 27	1, 45	5,552	GF71 0	5, 629	90, 106	6.77h	2, 48
3 011	6290 0	6.298	7.6	9, 152	81 °S	15, 30	2, 40		1. T. D	***************************************	0, 192	7, 594	£.
3.405	0 119	555.5	95 17	67	6	16, 29	100	3, 193	9,552	3, 926	0.279	F. 714	5,28
900	5	5. C	4	17.71	9	16.92	£: 53	3,713	184	677.4	0.353	11, 79	7.29
1 667	0.327	660 6	8	14, 79	05.4	18, 95	07.5	4, 426	1,349	811.5	0.501	17. 70	9. 79
5.051	339	10, 57	6.73	15, 22	7 ×	23	97.7	5, 356	60.7	5, 463	e, 508	21, 75	9.74
178	0.20	12.16	8.75	15,65	***	36, 36	S + ::	6, 759	<u></u>	6, 296	0. ×09	34, 46	7.61
	20.	2 7	(2 ×	56.51	: :-	i Si	=======================================	6.256	97.7	6, 1.42	0, 91S	42.95	6.63
	>) F	;		;	:		1					
45													

Not shown on plot

THE PARTY OF THE P

(continued)

DATA TABLE NO. 14

														•																														
CURVE 87 (cont.)	0, 197	e. 186	0. 1×2	0, 175	0, 175	0, 176	0,14		CURVE SA) 1	0, 424	0, 413	6, 397	998.0	7 11 0	0	0,321	::0:: ' 0	60% '0	c :	0.285	0, 265	z.:::	0, 20.1	<u>.</u>	091.0	0, 150	0, 147	0, 146	77	CONVERS	898.0	0, 236	0, 196	0, 165	0, 165	0, 168		CURVE 90		12. 4	12.0	,
CURVE	813	Q.X	925	540	0.26	906	107.5		CCE		=======================================	ź	-	¥60	¥ X !!	Ę	<u>.</u>	7. 7 7	469	469	7. T	905	989) ()	999	741	Z Z	808	97.1	1075	917		989	11:9	752	885	17.1	1136		CUR		7. 1.	13	
CURVE 85 (cont.)	0× °0	0, 12	: :	98.0		CURVE 86		1.4:	2.1	51	1, 30	£, -	1. 1.	1 . 16	1, 15	= :	I. 0.5	7. G	1.01	5 5	更 ()	Ç.	0.76		0.66	7 9.	0, 60	0. 3 6	•	CURVE N	12.5	275	0.387	0, 301	0.286	0,258	9, 249	0, 241	0, 236	6, 210	0, 216	0, 205	0, 211	
CURVE	210	+ + + + + + + + + + + + + + + + + + +	270	9.		5		7	2	:: 3:	95	3	707	101	110	77	2.1 -	021	3) 2)	·: Z :	3 : 2 :	3)	7. 1	(<u>7</u>	÷1	922	920	,	ĔI	914	59 7	7	× 100	57.8	625	533	676	690	147	752	452	2005	
1 (cont.)	69 E	≘ 2i :	?	. j.	9	9.	₩	전 *	- - - -	5) (3)	61 13		CURVE 4		2, 30	9 :	0+.	0 + 7	(C)	D: 1	2 i	8 i	- .	ا ئانى	 	0; -	00,0	ار در	9 9	SE STATE	2	02.1	59	5.5	+ 9 -	1, 51	1, 49	1, 43	1, 40	0: 1	1, 20	1. 10	1.00	
CURVE 83 (cont.	90.73	0, .9	17, 00	17, 70	24, 20	29, 50	£0.78	47.0	0.75	0.69	ت پ		CUR		3.	5	26	3	£.	90 ;	5	<u> </u>	130	2 21 21	0 7	160	2 10	28.0	305	.411.0		Ç,	26	. 6	3 6	105	110	115	120	136	145	155	223	
CURVE N	1.05	<u>.</u> :	0 - 1	7.7	96.7	50°5	2, 10	22 .53	2, 15	# 61	90.72	13.	2,56	2:	5. 10.	:: ::		CURVE NO		2 -	ž í	2 :	2. 17	9 :	S. S.	Ξ.	97 °	5.75		CONVERS	1 53	i d	1.98	2.50	3, 25	3, 90	5, 50	8, 30	10, 20	10.70	11.90	9. E	12.00	
D)	17.	I :	e e i	2.51	:2 :1	Ž.;	2,90	2, 95	2, 97	90 ·:	90 ::	3, 15 3, 15	8. E		2 ::	7.00		آڅ ا		2,03	2.0	2.60	2, 85	e :		3.50 10.50	3.67	3, 85	,		, 11	2.32	5.50	2.80	3, 20	3,65	4, 53	6, 35	8, 25	ř. 25	9. 10	10, 50	11, 10	
(cont.)	0,0880	1.03	66. T	027	0.620	1, 05	1, 70	'2 		CURVE 78		950.0	0, 09s	0, 150	0. 184	0 41.0 0	ر روز	0.485	2 2	1, 640	, 95	CORVE 19		0. 117	0.235	0.320	0.390	0.685	0.950	8 9	3 %	2 05		CURVE 80?			0.830	1, 175	1, 520	1. 700	2.060	2,350	2. 600	
CURVE 77 (cont.)	1.75	76 T	ei ei	7 :i	3, 05	0 ₹ :::	06 %	4, 20		CUR		1, 70	1 95	2. 13	2, 30	⊋ ;;	6 .	5 3 3	ည (၅)	3, 90	6	3	•	1. 70	5. 10	2. 23	2.38	2, 75	3.08	 42	9	01	:	CUR		1.97	2, 33	2.68	3, 00	3, 25	3, 60	3, 75	3, 95	
92.3	0.0267	0. 0.349	7. TO .O	0, 67.92	6, 149	0, 199	0,230	0.376	0.444	0, 732	0, 750	1.4	2, 43	3, 03	3, 70	4.21	₹. 33.	4, 20	R. 74	₹.	8, 7.3	ર્જું	8, 45	8.26	7, 92	7.02	7,06	\$	4, 13	4, 29	÷	, y	98.6	2.20	2, 11	. z	1,74	. e.	1, 52		'E 77		0.0180	
CURVE 76	1.401	J. 494	1.626	1, 859	2, 173	2, 360	2, 453	2, 821	2, 9:16	3, 384	3,470	4, 457	5, 482	6.068	6.744	7.642	8.788	14, 73	16, 11	21.07	21, 23	21, 56	26, 36	27.76	29, 28	:12, 97	35.09	45, 34	49.96	5 40 5 40 6 40 6 40 6 40 6 40 6 40 6 40 6 40 6	\$6. €0	00.00 07.00	2 5	99,34	£.₹01	114.6	123.4	5.96.5	151, 1		CURVE 77		1.32	
cont.)	5, 59	7	:: ::		رم. (-)	ŧ.	0,00517	0,00771	0.011:3	0.0172	0.0372	0.0610	0, 130	0, 192	0,385	161.0	1, 10	1,43	1,7k	1.91	2. 17	2.4%	2.66	3,40	3, 16	4.7	4. 1x	4.20	4.03	4.65	99.	5 4 T	7 <u>12</u>	4	3,35	2, 39		2.26	2	7 .	1.63	1,60	÷.	
CURVE 74 (cont.	49, 54	59.45	10.4		CURVE		1, 324	1, 473	1,620	1,785	2, 147	2.432	2.944	3,382	4.208	5, 593	6.430	7.068	7, 835	8,590	9,975	11,:11	E1:13	13, 30	16.04	16,74	18, 62	18, 65	20,24	24, 35	00 10	ž 1	40.04	5 5	11.	E	K: 61	1 4 1	22.55	10:1, 9	11.	11, 0	7	

Not shown on plot

CURVE 50° (cont.) CURVE 51° (cont.) CURVE 50° (cont.) CURVE 101 (cont.)	
CURVE 57 (cont.) 0.720 0.0034 0.820 0.0034 0.820 0.0034 0.0103 0.0044 0.820 0.0034 0.015 0.0044 0.015 0.0044 0.015 0.0044 0.015 0.0044 0.015 0.0044 0.015 0.0044 0.015 0.0044 0.020 0.012 0.020 0.0022 0.020 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.025 0.0024 0.015 0.0044 0.005 0.0044 0.006 0.0044	H H H
2 0.5 0.720 0.0054 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.55 0.0044 0.0	CURVE 92 (cont.) CURVE 94 (cont.) CU
The colores Colores	3,05 0,642
NAME 56 1.00 0.004 1.00 0.0020 2.50 0.041 0.0020 2.50 0.041 0.0020 2.50 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.0020 0.041 0.041 0.0020 0.0020 0.041 0.0020	50 0 54 0 55 0 55 0 55 0 55 0 55 0 55 0
NAME 56 1.10 0.115 1.55 0.041 1.50 0.045 1.70 0.00000000000000000000000000000000	
Colonest Colonest	90 1
0.00045 1.44 0.200 2.05 0.110 0.140 0.0002 0.0002 1.70 0.0110 0.0002 1.70 0.0110 0.0002 0.00014 1.20 0.020 0.00014 1.20 0.020 0.0002	200 m
COMPANY COMP	%0.°
Court Cour	67 U. S. S. S. S. S. S. S. S. S. S. S. S. S.
Current Curr	10.9 6.67
0,0015 0,002 0,0	
0.00215 0.00216 0.00229 0.00	3.7
0,0023 0,0023 0,0023 0,0023 0,0024 0,0024 0,0024 0,0025 0,245 0,00027 0,0026 0,245 0,00027 0,0026 0,0026 0,0027 0,007 0,0	To de to the to
0,0029	
Common C	
0, 6046 0, 245 0, 20074 0, 44 0, 00036 0, 41 0, 0056 0, 250 0, 20074 0, 44 0, 00036 0, 41 0, 0057 0, 250 0, 20074 0, 44 0, 00036 0, 41 0, 0175 0, 250 0, 00007 0, 12 0, 0185 0, 120 0, 00007 0, 13 0, 0185 0, 140 0, 00037 0, 17 0, 0185 0, 140 0, 00037 0, 17 0, 0200 0, 520 0, 00037 0, 21 0, 0200 0, 520 0, 00037 0, 21 0, 0200 0, 520 0, 00037 0, 22 0, 0200 0, 520 0, 00037 0, 22 0, 0200 0, 520 0, 000024 0, 17 0, 0200 0, 220 0, 000024 0, 21 0, 0200 0, 220 0, 000005 0, 26 0, 00024 0, 0200 0, 220 0, 000005 0, 26 0, 00024 0, 0200 0, 220 0, 000005 0, 27 0, 000024 0, 0200 0, 220 0, 000005 0, 27 0, 000024 0, 0200 0, 220 0, 000005 0, 27 0, 000024 0, 0200 0, 220 0, 000005 0, 27 0, 000024 0, 0200 0, 220 0, 000005 0, 27 0, 000024 0, 0200 0, 220 0, 000005 0, 27 0, 000024 0, 0200 0, 220 0, 000005 0, 27 0, 000024 0, 0200 0, 220 0, 000005 0, 44 0, 00005 0, 0200 0, 220 0, 000017 0, 44 0, 00015 0, 0200 0, 220 0, 000017 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44 0, 000010 0, 44 0, 00015 0, 0200 0, 44	5 T
C DOGS DOG	7 (1) 7 (1) 8 (1)
C OOG	
0,011% 0,0270 0,00100 0,60 0,011 0,020 0,012 0,002 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,002 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,000 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,000 0,012 0,012 0,000 0,000 0	71
CONTROL CONTRO	
0,0102 0,130 0,0027 0,710 0,015 0,0000 0,0000 0,000 0,0000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	CURVE 95
C 0 0 0 0 0 0 0 0 0	
C C C C C C C C C C	0,215 0,00165
C. 0.500 C. 512 O. 0090 CURNE 101 O. 170 1, 60	0 170 0,00100
Current Curr	0, 220 0, 00145
1,000 0,100 0,0135 0,235 0,00028 0,77 1,55	3,55
1,55	0,250
Vec Current	5.1.0 D.15
	001:0
Colored Colo	3 8,9% 9,31d
C, 00145 0,229 0,00000000000000000000000000000000000	6 23 0 100
6, 00160 0.295 0.000055 0.275 0.00046 2.65 0, 00265 0, 31 0.770447 0.29 0.00034 2.70 0, 00265 0, 31 0.00047 0.35 0.0015 4.00 0, 00265 0, 31 0.000101 0.41 0.0015 4.00 0, 00245 0, 31 0.000101 0.41 0.0017 4.00 0, 00249 0, 31 0.000105 0.44 0.0017 4.00 0, 00249 0, 31 0.000125 0.44 0.00175 4.00 0, 0034 0, 46 0.00014 0.56 0.0027 5.09 0, 0039 0, 46 0.00014 0.56 0.0027 5.26 0, 0039 0, 45 0.00025 0.62 0.0027 5.29 0, 010 0, 45 0.00025 0.63 0.0033 5.50 0, 011 0, 45 0.00025 0.67 0.0033 5.50 0, 012 0, 003 0.003 0.003	990.0
0,00000000000000000000000000000000000	5 6.80 0.330
c. occuss 0.375 0.00047 0.37 0.00105 3.70 c. occuss 0.34 0.000001 0.41 0.00012 4.00 e. occuss 0.34 0.0000101 0.41 0.00017 4.00 e. occuss 0.37 0.000101 0.41 0.00017 4.00 e. occuss 0.37 0.00012 0.44 0.00017 4.00 e. occus 0.46 0.00017 0.52 0.00017 6.00 e. occus 0.46 0.00017 0.52 0.00017 5.09 e. occus 0.46 0.00017 0.52 0.00017 5.09 e. occus 0.46 0.00017 0.52 0.00017 5.09 e. occus 0.46 0.00017 0.65 0.00017 5.26 e. occus 0.45 0.00028 0.67 0.0003 5.26 e. occus 0.46 0.00028 0.67 0.0003 5.10 e. occus 0.46 0.00028 0.0003 <td>S. E.S.</td>	S. E.S.
0,00000 0,335 0,0001 4,00 0,00045 0,41 0,41 0,0001 4,00 0,000490 0,337 0,0000105 0,44 0,00017 4,00 0,00049 0,338 0,000125 0,44 0,00017 0,45 0,00175 0,00066 0,46 0,00017 0,55 0,00026 5,09 0,00069 0,46 0,00017 0,56 0,00026 5,26 0,00099 0,46 0,00011 0,56 0,00026 5,26 0,00099 0,45 0,000215 0,65 0,00026 5,26 0,0150 0,45 0,000215 0,65 0,00017 5,39 0,0150 0,45 0,000215 0,65 0,00026 5,60 0,0150 0,47 0,00028 0,67 0,00038 5,60 0,0150 0,47 0,00028 0,67 0,00038 6,11 0,0150 0,40 0,00049 1,40 0,0038 1,06	0.00 g. c. c.
0, 90243 0, 37 0, 000101 0, 41 0, 0017 4, 0 0, 9049 0, 37 0, 000125 0, 44 0, 00173 0, 00165 0, 00173	4 3,67 0,450 0,013
0,00450 0,27 0,000105 0,44 0,001165 0,00165 0,00175 0,	6 2.97 0.495 0.0155
0.0020 0.3% 0.000125 0.4% 0.00173 0.4% 0.00173 0.4% 0.00017 0.5% 0.0023 0.4% 0.40 0.0017 0.5% 0.0023 0.4% 0.40 0.00218 0.6% 0.0026 0.4% 0.00218 0.6% 0.0021 0.4% 0.00218 0.6% 0.0031 0.4% 0.00028 0.6% 0.0031 0.4% 0.00028 0.6% 0.0031 0.4% 0.00028 0.6% 0.0031 0.4% 0.00038 0.4% 0.00038 0.4% 0.00038 0.4% 0.00038 0.4% 0.00038 0.4% 0.00040 0.51 0.00040 0.4% 0.00038 0.4% 0.00040 0.5% 0.00038 0.4% 0.00038 0.4% 0.00040 0.5% 0.00038 0.4% 0.00040 0.5% 0.4% 0.00038 0.4% 0.00038 0.4% 0.00040 0.5% 0.00038 0.4% 0.00040 0.5% 0.00038 0.4% 0.00040 0.00038 0.4% 0.00038 0.4% 0.00038 0.4% 0.00040 0.00038 0.4%	1 2, 30 Q, 520 Q, 01:0
0,0066 0,46 0,00017 0,52 0,0023 0,0094 0,00014 0,56 0,0026 5,09 0,0099 0,44 0,000215 0,62 0,0036 5,26 0,010 0,45 0,000215 0,65 0,0031 5,50 0,012 0,45 0,00026 0,67 0,0031 5,60 0,013 0,47 0,00026 0,67 0,0042 6,11 0,013 0,47 0,00031 0,74 0,0038 6,21 0,015 0,49 0,00031 0,74 0,0038 6,53 0,015 0,49 0,00040 1,40 0,0038 7,06	0.53 0 BC3 0
P. (40) 0. 40 0. 00014 0. 56 0. 0026 5. 09 P. (40) 0. 000215 0. 62 0. 00021 5. 26 P. (51) 0. 45 0. 000215 0. 65 0. 0001 5. 26 P. (51) 0. 45 0. 00026 0. 67 0. 0001 5. 56 P. (51) 0. 100 0. 47 0. 00026 0. 67 0. 00042 6. 11 P. (51) 0. 100 0. 47 0. 00027 0. 67 0. 00042 6. 11 P. (51) 0. 100 0. 47 0. 00027 0. 67 0. 00042 6. 11 P. (52) 0. 100 0. 67 0. 00042 6. 53 0. 00042 6. 53 P. (52) 0. 100 0. 67 0. 00042 6. 53 0. 00042 6. 53 P. (52) 0. 100 0. 67 0. 00042 6. 53 0. 00042 6. 53 P. (52) 0. 100 0. 67 0. 00042 0. 00042 6. 53 0. 00042 P. (50) 0. 100 0. 00042 <td>€ 826</td>	€ 826
1, 90% 0, 44 0, 00020\$ 0, 62 0, 0070 5, 26 0, 0110 0, 45 0, 00021\$ 0, 65 0, 0031 5, 59 0, 9120 0, 45 0, 00025 0, 67 0, 0031 5, 59 0, 9120 0, 45 0, 00025 0, 67 0, 0042 5, 11 0, 0125 0, 49 0, 00040 0, 14 0, 00040 0, 51 0, 00040 0, 40 0, 0155 1, 06 0, 0042 0, 51 0, 00040 0, 51 0,	250 0
(4,6110 0,45 0,000215 0,65 0,0031 5,59 (1,0110 0,45 0,000215 0,65 0,0031 5,50 (1,0110 0,45 0,000215 0,65 0,0031 5,50 (1,0110 0,45 0,000215 0,67 0,0042 6,11 (1,0110 0,0040 0,51 0,0040 0,51 0,0040 0,51 0,0040 0,51 0,00540	
0.0130 0.45 9.000215 0.65 0.0035 5.60 0.0035 0.61 0.0035 0.61 0.0035 0.63 0.63 0.0035 0.43 0.00031 0.74 0.0038 6.53 0.0036 0.51 0.0040 1.40 0.0035 7.06	
13-2129 91-65 21,000238 91-61 01,0003 31,000 10,0125 01-45 01,000235 01,65 01,00042 61,53 10,0125 01-49 01,00040 11-40 01,0003 61,53 10,01260 01,51 01,00040 11-40 01,0155 11-06	
0,0130 0,47 0,0002% 0,68 0,0042 9,44 0,0125 0,49 0,00031 0,74 0,0038 6,53 0,0040 1,40 0,0155 7,06	M 6. 173
0,0125 0,49 0,00031 0,74 0,0038 0,55 0,0360 0,51 0,00040 1,40 0,0155 7.06	サン 87 まず ま け
3, 0.360 0, 51 0, 000040 1, 40 0, 0155 1. UB	S
	8 .

Not shown on pack

DATA TABLE NO. 18 (continued)

ж	CURVE 124 (cont.)	0.813	0.719	0.637	. 20°	194	21	1, 33	1, 25	1, 21	1.25	1, 20	1. 25	1. 19	1. 16	1. 16	1. 12	1. 09	1.05	1.02	0.923	0.843	0.820	0.757	0. 736	0.586	0.548	•	£ 126		0.600	•	127	,	0. 404 0.	9	168		0.421		153		0.331	**	2 130	0	0.598	
H	CURVE	217.8	243.8	271.6	301.3	CITRUE 194	T T	90.0	35	96.2	97. 5	100, 5	100. 7	102. 6	103.8	110.4	113.5	117.8	120. 2	128.2	143.5	155. 2	162.6	180.3	182.8	248.3	271.0		CURVE 126*		300		CURVE 127	4	200		CORVE 128	Š	300		COUVE 123	000	300	1	CURVE 130		300	
×	CURVE 122 (cont.)	1.56	3.38	J. 22	7.17	1. 02 0. 925	0. 638	0, 775	0.723	0.681		: 123	į	2.74	2.61	2.66	%	2. 1	2.33	2,35	2, 21	2, 15	2. 00	1.71	1.59	1.45	1.22	0.916	0.716	0.610	•	124		1.73	1. 72	8 :	T. 63	1.60	1.52	i. 43	1.41	L. 39	F. 23	1. 18	1. 10	0.995	0.893	
۴	CURVE	120.8	136. 5	7.161	100.7	201.6	225.9	252. 3	278.0	302, 7		CURVE 123	;	97.6	91.6	93. 5	93.8	9.96	98.6	101.9	102. 1	106.4	110.4	122.7	129.4	141.3	162.6	213.3	263.0	299.9		CURVE 124	;	89.3	92.5	7. S	× .	97. 1	105.4	109.6	118.3	123.6	132.7	145.5	159.6	180.7	200. 4	
ж	1 (cont.)	1.33	1. 19	1.02	U. 885	3664	777	3, 79	3.86	3.86	3.98	3. 98	4.30	4. 70	4. 59	5. 03	5. 15	5.35	5. 23	5. 72	5.41	5.65	5, 59	5, 46	5, 45	5. 10	5.05	4.78	4.88	4, 73	4, 73	4.63	4.51	4.42	4.42	4.32	3.95	3.67	 	.S. 11		2, 59	2. 42	2. 28	2.09	1.97	1.75	
H	CURVE 121 (cont.	135.5	151.7	1.8.2	202. 3	CITEVE 1998	CONTRACT	10.1	10.3	10.6	10.6	12. 2	13.0	14. 1	15.0	16.0	17.3	18.0	19.1	19.9	22. 1	24. 2	26. 2	2H. 1	30.0	31.9	35, 3	38.7	39. 4	40.3	42.3	43.6	45.9	47.4	2.5	50.4	S	60.5	65.9	9 .	0.00	80. s	86.1	89. 5	95. 9	100.7	111.9	
w	0 (cont.)	2.17	, 03 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10	3 5	1.36	;	121		э. Ж	3.96	3.87	4. 08	4.42	3	a* 9.	9 6	5. 21	5.42	5, 41	5, 32	5. 11	4.86	5.30	5.41	5. 17	5.08	4.89	4.99	4.67	4.66	4.48	4.47	 	77.6	5 5		, 	5. 11. 5. 0.0	, O. C.	4 . C	***	, i c	, c	. 10 10 10 10 10 10 10 10 10 10 10 10 10 1	7. 9. 7. 9.	*:68	1. 31	
۲	CURVE 120 (cont.)	85, 1	91.0	130.7	- 67 - 67 - 67	2	CURVE 121		11.0	11.1	11.9	13. 1	13.9	15. U	1.91	1.7.	18.	19.0	20. 1	22.6	24. 4	25.6	26.8	27.7	28.8	29.8	31.5	33. 1	35. 2	37.5	39, 5	41.7	.	0 r	7 20	0.00	• -	90	7 . o) (00.0	7 7 00	F .06.	100.2	170.1	120. B	
×	CURVE 119 (cont.)*	2.89	25.24	r i	2.41	2.79	3.02	28.1	1. 55	1.38	1. 24	1. 02		120	;	د: 4	% %	2. 75	2, 88	2. 93	3, 35	3.40	3. 60	3.67	3, 74	3, 89	3, 85	3. 73	3.69	3, 79	3. 73	3. 78	3.74	. 8. 8. 9. 8.	3.73		3,03		80°	8 9	3.40	3.20	7.30	71.7	2.60	2.41	2. 23.	
H	CURVE 1	55.3	60.7	95. G	9 9 9	9	85.5	95. 7	110.7	120.5	135.2	170.6		CURVE 120	;	11.0	11.6	12.0	13, 3	14. 2	15.1	16.2	17.2	19. 2	20. 1	21.9	24.3	26.7	28. 2	30.1	32. 1	34.2	36.3	38.3		42. /	4 . 5	4.0.4	£6. 7		3.	 	80.8	65. 5	70.5	75. 5	81.1	
м	15 (cont.)	2.85	2.83	2.82	7 S		3 23	2.47	2, 39	2, 28	2, 15	2.07	1.95	1. 9Z	I. 79	1.67	2	រ. ន		119*	1	.: 25	1. 62	1. 56	1.56	1.71	1.82	1.91	2. 20	2.4	2.47	2, 59	S	2.65	2.73 3.03	2. 32	3 :	3.01	8 6 8	8 3	7. 3.	8. 13.	 60.00	2. 38	S	3.08	3.0 6	
۴	CURVE 115 (cont.	38. 5	41.3	, , ,	4 6. 9	· 5	55.0	8.09	65.6	70.3	75.3	80. 2	85. 5	9.0		100.5	110.9	131.2		CURVE 119*		11.0	11.1	11.2	11.3	12.1	13.0	14.0	15.6	17.1	19.1	19.6	30. I	22.0		6	7.62	30.5	32.	6.5	35.5	38.3	÷ .	42.4	‡:	4 6. 8	50.7	
u	CURVE 117 (cont.)*	2, 17	2.25	. 38 . 38	5 6	2, 5, 5,	2, 4, 8	2.52	2. 47	2.50	9 4 :	2. th	; 6	2.58	2, 31	2.33	2. 07	2.03	1. 91	1. 79	1.76	1.67	1.58	1.46	1.38		118	}	7	1.43*	1.38	1.63	1. 70	9 :	1.92	2 6	2	2.21	\$ 5	8 6	2.3	2.71	2.65	2.56	2.80	2.83	 2	
H	CURVE 1	21.9	6.ជ	1 is	27.0	7.07	4 46	37.0	40.3	43.4	46.7	47.3	50.1	55. G	60.3	5	70.5	75.2	₽0.4	85.3	%	95. 5	100.5	110.9	117.5		CURVE 118*		11.0	11.1	11.1	12.1	13.0	14.0	15.1	16.1	0.81	20. 1	2	3	26. 1	28. 1	30.3	32.1	я Т.	35.3	37.3	

Not shown on plot

FIGURE AND TABLE NO. 18B RECOMMENDED THERMAL CONDUCTIVITY OF GERMANIUM

446.7 620.7 800.7 980.7 1160

1340 1520 1700

REMARKS

The recommended values are for high-purity germanium. The values are thought to be accurate to within 4% of the true values near room temperature and 4 to 10% at other temperatures above 40 K. The thermal conductivity near and below the corresponding temperature of its maximum is highly sensitive to small physical and chemical variations of the specimens, and the values below 40 K are intended as typical values for indicating the general trend.

* Trin K. kg in Watt cm 1K-1, Tz in F. and kg in Btu hr 1ft-1F-1.

SPECIFICATION TABLE NO. 19 THERMAL CONDUCTIVITY OF GOLD

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 19]

E 1915 22-374 E 1900 291,373 Au II E 1900 291,373 Au II L 1953 2.7-141 1 Au 2 L 1953 2.3-150 1 Au 2 L 1953 2.2-90 1 Au 4 L 1953 2.2-90 1 Au 5 E 1931 273-292 1 Au 5 L 1954 273-373 Au II L 1957 21,83 Au II E 1927 297.2 1a E 1927 297.2 1a T 1919 273.373 1a T 1919 273.373 1a T 1924 273.373 1a T 1924 273.373 1a L 1925 290.373 1a L 1925 290.373 1a	Ourve No.	No.	Method	Year	Temp.	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks on non-proceed completely 88 4 and 45 1 x 10° ohm com ⁻¹ at 273.1 and 291 K.
E 1900 291,373 Au 1 E 1900 291,373 Au II L 1953 2.7-141 1 Au I L 1953 2.3-148 1 Au 2 L 1953 2.3-148 1 Au 3 L 1953 2.1-151 1 Au 4 L 1953 2.2-90 1 Au 4 L 1952 2.3-31 2-3 Au 1 L 1972 21.83 Au II L 1927 21.83 Au II E 1927 297.2 1a L 1927 297.2 1b L 1924 273.373 1b T 1924 273.2 1b T 1924 273.2 1b L 1925 290.373 1b		93	ы	1915	22-374			99.999 parc; electrical conductivity 40.4 and 45.1 A to only the action and 55.1 M; respectively.
E 1900 291,373 Au B L 1953 2.7-141 1 Au 1 L 1953 2.3-150 1 Au 2 L 1953 2.3-148 1 Au 2 L 1953 2.1-151 1 Au 4 E 1953 2.2-90 1 Au 5 E 1972 2.3-21 2-3 Au 1 L 1962 2.3-21 2-3 Au 1 L 1927 21,83 Au II E 1927 297.2 1a L 1927 297.2 1a L 1924 273.373 1a T 1934 273.373 1a L 1924 273.373 1a L 1924 273.373 1a L 1924 273.2 1a L 1925 290.373 L 1911 298.2		11	ы	1900	291,373		Au 1	99.8 pure; 0.1 Fe, 0.1 Cu.
L 1953 2.7-141 1 Au 1 L 1953 2.3-150 1 Au 2 L 1953 2.3-148 1 Au 3 L 1953 2.1-151 1 Au 4 L 1953 2.2-90 1 Au 4 L 1952 2.3-31 2-3 Au 1 L 1954 273-373 Au 11 L 1927 21,83 Au 11 E 1927 297.2 1a L 1949 273.373 1a T 1919 273.373 1b T 1924 273.373 1b T 1924 273.373 1b L 1926 290.373 1b		7.2	ω	1900	291,373		Au II	High purity.
 L 1953 2.3-150 1 Au 2 L 1953 2.3-148 1 Au 3 L 1953 2.1-151 1 Au 4 L 1953 2.1-151 1 Au 4 L 1952 2.3-90 1 Au 5 L 1972 2.3-21 2-3 L 1974 2.73-373 Au 1 L 1927 21,83 Au 1 E 1927 297.2 1ha L 1984 273.373 T 1919 273.373 T 1924 273.373 L 1936 291.2 L 1936 290.373 L 1936 290.373 		146	J	1953	2.7-141	1	Au 1	99.9 pure; major impurity Ag, trace Pt, faint traces of Fe, Cu, and Sn; specimen 2 mm in dia obtained from Garrett, Davidson and Matthey of Sydney.
 L 1953 2.3-148 1 Λu 3 L 1953 2.1-151 1 Au 4 L 1953 2.2-90 1 Λu 5 E 1931 273-292 L 1914 273-373 L 1927 21.83 E 1927 297.2 E 1927 297.2 I 1949 273.373 I 1949 273.373 I 1949 273.373 I 1949 273.373 I 1954 273.2 I 1955 290.373 I 1950 290.373 		146	J	1953	2.3-150	1	Au 2	The above specimen annealed at 700 C in vacuo and slowly cooled.
L 1953 2.1-151 1 Au 4 L 1953 2.2-90 1 Au 5 E 1971 273-292 2-3 Au 1 L 1972 2.3-21 2-3 Au 1 L 1927 21,83 Au II E 1927 21,83 Au II E 1927 297.2 1a L 1894 273.373 1b T 1918 273.373 1b T 1926 290.373 1911		146	٦	1953	2.3-148		A u 3	99,999* pure, spectral analysis showed lines of Ag, and Cu and faint lines of Cd. Fe, Mg, and Na, and very faint lines of Ca and Zn; spectmen 1.5 mm dia rod; obtained from Garrett, Davidson and Matthey of Sychey.
L 1953 2.2-90 1 Au 5 E 1951 273-292 1 Au 1 L 1962 2.3-21 2-3 Au 1 L 1927 21.83 Au 12 E 1927 21.83 Au II E 1927 297.2 1a L 1894 326.2 1b T 1919 273.373 1b T 1936 291.2 L 1925 290.373 L 1911 298.2		146	1	1953	2.1-151	1	Au 4	The above specimen annealed at 700 C in vacuo for about 3 hrs and slowly cooled to 200 C in 6 hrs.
E 1951 273-292 L 1962 2.3-21 2-3 Au 1 L 1914 273-373 Au 12 L 1927 21,83 Au II E 1927 297.2 1a E 1927 297.2 1b I 1949 273.373 1b T 1924 273.37 1b T 1926 291.2 I 1925 290.373 I 1911 298.2		146	7	1953	2.2-90	-	Au 5	The above annealed specimen cold drawn to 1.3 mm dia.
L 19f2 2.3-21 2-3 Au 1 L 1914 273-373 Au 12 L 1927 21,83 Au II E 1927 297.3 Au II E 1927 297.2 1h L 1894 273.373 1b T 1919 273.373 1b T 1936 291.2 1930 L 1925 290.373 1911 L 1911 298.2		78	Ħ	1931	273-292			99.99 pure; specimen 0.07960 cm in dia and 20.12 cm long.
L 1914 27.3-373 Au 12 L 1927 21,83 Au II E 1927 297.2 1a E 1927 297.2 1b L 1894 326.2 1b T 1919 273.373 1b T 1924 273.2 1 L 1926 290.373 1 L 1925 290.373 1 L 1911 298.2		8	ı	1952	2.3-21	2-3	A u 1	99.999 pure; polycrystalline wire; obtained from Johnson Matthey (JM 1916a).
L 1927 21,83 Au 12 L 1927 21,83 Au II E 1927 297.2 1a E 1927 297.2 1b L 1894 326.2 1b T 1919 273.373 1b T 1934 273.2 1a L 1936 291.2 L 1925 290.373 H 1911 298.2		œ	1	1914	273-373			Specimen 0.1014 cm in dia; specific gravity 19.49.
L 1927 21.83 Αυ Π E 1927 297.2 1a E 1927 297.2 1b L 1894 326.2 1b T 1919 273.373 1b T 1924 273.2 1a L 1930 291.2 L 1925 290.373 1911 298.2		23	H	1927	21,83		Au 12	High purity; single crystal; unstrained; electrical resistivity reported as 0.0142, 0.488 and 2.04 µohm cm at -252, -190, and 0 C, respectively.
E 1927 297.3 1h E 1927 297.2 1b L 1894 326.2 1b T 1919 273.373 1 T 1924 273.2 1 L 1930 291.2 2 L 1925 290.373 3 1911 298.2 3		25	ı	1927	21.83		Av II	Commercially pure; cold-worked and annealed; electrical resistivity reported as 0.1174, 0.599 and 2.16 μ ohm cm at -252, -190, and 0 C, respectively.
E 1927 297.2 1b L 1894 326.2 T 1919 273.373 T 1924 273.2 L 1930 291.2 L 1925 290.373 L 1911 298.2		172	ω	1927	297.2		JA.	Specimen 4 mm in dis and 20 cm long; made from forged material and machined to shape; electrical resistivity 2.44 μ ohm cm at 24 C.
L 1894 326.2 T 1919 273,373 T 1924 273.2 1930 291.2 L 1925 290,373 1911 298.2		172	Œ	1927	297.2		16	The above specimen measured after being annealed at 600 C for 1 hr.
T 1919 273,373 T 1924 273.2 1930 291.2 L 1925 290,373 1911 298.2		487	ᆈ	1894	326.2			Specimen 2.0 mm dia.
T 1924 273.2 1930 291.2 L 1925 290,373 1911 298.2		246	۲	1919	273,373			Rolled and drawn; heated 3.5 hr close to melting point.
1930 291.2 L 1925 290,373 1911 298.2		430	H	1924	273.2			Pure; rolled and drawn to a wire, specimen 3 cm long and 1 mm 2 cross-section, and then heated close to melting point.
L 1925 290,373 1911 298.2		451		1930	291.2			Pure; tempered at 800 C, quenched, rolled, and drawn.
1911 298.2		339	J	1925	290,373			Pure.
		241		1911	298.2			Pure.

SPECIFICATION TABLE NO. 19 (continued)

Curve	Ref.	Memod	Year	Temp.	Reported	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
ģ	N C	Used		Kinge, n	Elian, a		0000 0 0000
8	2,5	نہ	1927	21,83		Au 14	High purity, single crystal, unstrained; electrical resistivity reported as 0.0100, 0.100, and 2.04 μ ohm cm at -252, -130, and 0.0, respectively.
233	57	٦	1927	21,83		Au 13	Originally single crystal, hammered to 2 mm dia; amediad 5.5 hrs at 380 C; electrical resistivity reported as 0.0147, 0.489, and 2.04 pohm cm at -250, -190, and 0 C. enganglicity
5	ts.	ت	1927	21,83		Ar Ba	Commercially pure; remelted and hammered to 2 mm dia; annealed; tempered 3 hrs at 390 C, electrical resistivity reported as 0.0941, 0.575, and 2.14 μ ohm cm at -250, -190, and 0 C, respectively.
;	ţ		6561	196-143			96.99 pure, polycrystal.
23	-		100				99,97 pure, polycrystalline wire.
56	683	٦	36.	16.0-c1+.0			to a thick foils rolled from sixe-pure Johnson-Matthey material; annealed at 1223 K for
27	768	-1	196.1	3.8-15		Ondized	24 hrs in any electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical resistance ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical ratio $(R_{23}/R_{4,2})/(R_{4,2}) = 610$; electrical ratio
							reported 38, 235, 303, 25, 377, 25, 377, 377, 377, 377, 378, 378, 378, 378
č)	39 (*	<u></u>	1964	2.4-16		Vacuum anneaded	40 µ thick foils rolled from spec-pure Johnson-Matthey material, annealed at 1223 K for 24 hrs in vacuum (pressure 10.5 mm Hg); electrical resistance ratio (Rg3-R4.2)/ (Rf.) - 32.2; electrical resistivity reported as 467.9, 463.8, 461.2, 458.7, 456.9, 455.0, 453.8, 451.9, 451.9, 451.9, 450.8, 419.0, 484.0, and 448.2 µohm cm 2.32, 2.79, 3.50, 3.62, 4.0, 4.40, 4.90, 5.38, 5.88, 6.33, 6.80, 7.45, 8.03, and 8.68 K.
							respectively.
53	7:16	ı	1965	0,39-0,92			Very pure (higher purity than the specimen used by Davey and memorisation) polycrystalline.
30	1005	ш	1927	27:1.2			99.9 pure: specimen 0.125 in, in dia and 10 cm long; obtained from disker and Co. electrical resistivity 2.214 gohm cm at 0 C.

DATA TABLE NO. 19 THERMAL CONDUCTIVITY OF GOLD

(Impurity) 0.20% each, total impurities: 0.50%) . Temperature, T. K. Thermal Conductivity, K. Watt em $^{11}\,{\rm K}^{-1}$,

Ŧ	CURVE 26	0.415 0.144		177							0, 450		0.500 0.50	2 13	250	940		CURVE 27		01.94 8.55		9. F. C. C. C. C. C. C. C. C. C. C. C. C. C.	n :	.		n e	; ; ;	7 6 31.6		20	·s	9	0	12. 2 30. 0						
H	CLRVE 18	50 m	CURVE 19		2017 2 00		CURVE 20		986 77 P 067			CURE 21		2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CLRVF 22		21, 2 15, 4	40.00		CCRVE 23		21. 2 15. 5	19 17		CURVE 24		95 5 5 5 7		CURVE 25			2,88						488, 8 2, 58		
<i>4</i>	CURVE 10	2,31 1,965					11, 71 / 462		201 x - x0 '91			CCEVE		1000 to 1000 t	1000		CURVE 12		21.2 15,700			CURVE LE		21.2		11 3343.12	TO THE TA	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		CURVE 15		297, 2 2, 093		CURVE 16		326, 2 3, 102		CURVE 17		TH 6 7 11.7
∠	CURVE 7 (cont.)	50, 30 0 0 505 101, 00 0 0 480		77	71		CURVE		2,20 2,55		50 E E E E		200 P				000 0 20 7			11, 2 ~ 11, 524					167 / 02 17	؛ د	7 :	100 to 00	m)		CURVED		273, 20 3, 061							
÷	CURVE 6 (cont.)	077 CT 07	<u> </u>	Þ	3.	7		20	70	5		CURVE	,	2 00 0 120 cm			000 000 000								9	3		000 00 07 07 07 TH												157 % Oc. 15
K	CURVE 5	20 00 00 00 00 00 00 00 00 00 00 00 00 0	: :::::::::::::::::::::::::::::::::	0,72 1 65	4, 06 2, 060	Νi	5.5	3 3	+	ر ا	0 82	: ::	(2) (2)	9			64, 35 3 313	30 3.	70 3.	50 3.	40 3	e 2+		CURVE		2, 32 1, 654	- -	001 20 00 7 001 0 00 0	**	4, 36 3, 203	4	٠,	·Œ	۳,	(~	[-	(-	21, 80 6 930	S	7
<u>.</u>	CURVE 1	21 5 13 062	· -	211 2 3, 110	٠			CURVE :		291, 2 1, 790			CURVE 3		291. 2 2. 930		CURVE 4		2, 70 0, 872	~	-	-	_	-	전 전 전	eri •		21, 05 4, 292	4	۳	m	e,	۳;	n		27	⇔	80 3.	30 3.	200 2 000

0.505 0.530 0.550 0.550 0.605 0.648 0.648 0.648 0.928 0.928 0.928 1.03 1.03 1.03 1.03 3.01

CURVE 28

0.393 0.418 0.445 0.445 0.56 0.585 0.585 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735

And the second of the second o

and the second of the second o

FIGURE AND TABLE NO. 19R RECOMMENDED THERMAL CONDUCTIVITY OF GOLD
×
. 19
FIGURE AND TABLE NO.

Handling of the Handle of the Company of the Compan

	T,	1340	0251	500	1881	<u>, </u>		200	2000	30.7	2240	02420	27.80	2960		3140	3200	3860	4220	4580	4940	2300	2660	6020	6380	6740	7640	8540	9440	10340	12140	13940	15040	16640								
	ን	(161)	(157)	(151)	(145)	143)	In Liquid State	ć	() (c)	(01.2)	(63.0)	(64.7)	(60.0)	(61.0)		(69.3)	(70.5)	(71.6)	(72.2)	(72.2)	(72.2)	(71.6)	(1.1)	(69.9)	(68.8)	(67.6)	(64.1)	(58.9)	(53.9)	(48.5)	(35.8)	(22.2)	(10.3)	3								
UES*	Ł	(2.7H)\$	(2.71)	(2.62)	છે.ડો)	(2.47)	In Liqu	;	(J. 05)	(1.06)	(d. 09)	(J. 12)	(1.14)] i	(01:1)	(1.20)	(1.22)	(1.24)	(1.25)	(1.25)	0.050	2.29	1.23)	(1.21)	(η. 19)	121		(1.02)	(0.933)	(0.839)	(0.620)	(O.384)	(0.131)	<u>6</u>								
DED VAL	۲.	1000	1100	1200	1300	1336.2			1336.2	1460	1500	1600	1700	1800	1300	2000	2200	2400	2600	2800	200	2002	3400	3600	3800	6	864	2000	2200	0009	1000	8000	9000	9200								
RECOMMENDED VALUES*	ŗ.	-459.7	-457.9	-456.1	-454.3	-452.5	-450.7	-448.9	441.1	443.5		-441.	7.00	-436.3	-434.5		-432.7	-430.9	-427.3	-423.7	-414.7	-405.7	-396.7	-387.7	-378.7	-369.7	-351.7	-338.7	-315.7	-297.	-189.7	9	~ t	- C	, 5 6 6	2.05.	260.3		5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	2.008	980.3	1160
Œ	. 2.	c	257	511	157	988	1200	1370	0051	080	2020	1630	1001	1470	1360	200	1310	1210	1020	967 5	589	439	352	300	26 6	243	220	202	203	201	194		189	185	1	781	181	3	6-1	179	169	165
	, . , .	•	4 4			17.1	20.7	23.7	26.0	27.5	28.2	28.2	27.7	26.7	20.0	74.1	22.6	20.9	17.7	15.0	10.2	7 6		. 67		4.2	æ	3.58	3.52	3.48	ა. გ. ი						3. IS		3.03	3	2, 45 69	2.32
	ī.		> -	٠.	11 7) -r	£÷	۰.	7	30	6	10	=	21 :	<u>:</u>	-	15	16	18	20	25	ć	3 %	3 5	5	: දු	ę	3 5	9	8	021	3	200	250	273.2	90 90 90	တ္တ	<u>\$</u>	200	9	201	8 8
	**************************************	70							118				S AI											5				Z N. P. 1336, 2 k		1; 1; 1;	1 2 3 4 56 8 10 2 3 4 50 6 10 2 3	TEMPERATURE, K			!	REMARKS	and solves are for well-anneated 99, 999 % pure gold with residual electrical	The recommendate waster of the contract of the		about 10 kg, $m = 2.46$, $\alpha' = 4.60 \times 10^{-3}$ and $\beta = 0.25$. The recommendation of $\alpha = 0.46$, $m = 0.46$, $m = 0.46$.	are supported by experimental thermal conductivity data are moverables.	

القائك فحيمته فيحيف بالميافية والماسي والطبيب وميافية والواقيية بالواقية والواقية والمراقعة والماقية و

SPECIFICATION TABLE NO. 29 THERMAL CONDUCTIVITY OF HAFMUM

[For Data Reported in Figure and Table No. 20]

		; ;	tivity	Fe. V	ø	Za,	150, 10°	ineral ty
Branch Dans and Land Dans Co.	Composition (continued), Specializations and remains	Density 13, 36 g cm ⁻³ ; electrical resistivity 30 µ ohm cm at 20 C; data probably not original.	Hexagonal close packed; density 13.1 g cm $^{-3}$; ejectrical resistivity 35.1 juohm cm at ~20 C.	99 Hafnium, 1.0 max Zr. 0.1 max Ti and St each, 0.01 max Fe. V and Zn each, 0.901 max Mn. Nt and Cu each, 0.0001 max Mg.	12 mm dia x 65 mm long; density 13, 06 g cm ⁻³ ; measured in a vaccum of 5 x 10 ⁻⁵ mm Hg.	0.008 Pb, 0.007 Al, 0.006 W, 0.005 Fe, 0.004 Cu, < 0.003 Zn, 0.002 each of Sl. Ti and Mo. trace Sn. U, Co. Ni, Mg, Cr and Mn; specimen 2 cm in dia and 15 cm long; supplied by	Westinghouse Atomic Power Division; electrical resistivity 34. 40.6, 47.1, 53.6, 60.1 and 66.6 jushin cm at 0.50, 100, 150, 200 and 250 C, respectively; measured in vacuum of $\sim 1 \times 10^5$ mm Hg; Armco iron used as comparative material.	Specimen 5 x 1, 52 mm and \sim 6 cm long; supplied by Foote Mineral Co.; as received; $\rho_0=4.23~\mu$ ohm cm; electrical resistivity ratio ρ (295 Ki)/ $\rho_0=8.58$.
	Composition (weight percent) Hf Zr					2.0		0.5-1.0
	Composition (~ 97.96		99. 5-99
	Name and Specimen Designation				Iodide Hf			HF 1
	Curve Ref. Method Year Temp. Reported No. No. Used Range, K Error, ", Spec			± 5.0				
	Temp. Range, K	293.2	293.2	401-187H	1966 1301-1908	323-823		2 7-9
	Year	1959	1961	136	9961	1953		1957
	Method			œ	H	ပ		٦
	% Fe.	128	822	614	T 168.088	336		151
	Curve No.	-	÷1	,, ,	2 0	v		ø

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

T T States	2	6		CURVE 6	70 0.	96 1	7. 70 0. 0700	2 5	3 3			80	8	8	90, 80 0, 262																						
		0. 221	E 2	0. 224	E 3	0. 226	0.212		5. 195	767.0		4		0.240	0. 236	0. 250	0. 23.			0. 250					0.260		9.265		6. 283	<u>د</u> د	ង្គ					0, 208	
t	CURVE	293. 2	CURVE	293. 2	CURVE	400.9	737. 1	ė į	1190.4	1951.0	15/1.0	STATE OF		1301	1339	1352	1386	1400	1432	1442	1491	1501	1557	1565	1538	1709	1791	1907	908	CURVE	3 ta 1	1 2	16	527.2	57.5	2 129	677.2

FICURE AND TABLE NO. 23R RECOMMENDED THERMAL CONDUCTIVITY OF HAFNIUM

" Tie K. Lin Watt con'K". Trie F. and b. in Ben br'ift F".

TAREL N. S. J.

4 Values in parus thosen are extrapolated or interpolated.

SPECIFICATION TABLE NO. 21 THERMAL CONDUCTIVITY OF HOLMIUM

(Impurity < 0.20% each; total impurities < 0.50%)

For Data Reported in Figure and Table No. 21]

Composition (weight percent). Specifications and Remarks	99.9 pure; polycrystalline; dimensions 3 x 0.2 x 0.025 cm; annealed at 700 C for 3 hrs in vacuum of 10 ⁴ mm Hg; electrical resistivity 7.32 µohm cm at 4.2 K; electrical resistivity ratio (419K)/Q(4.1K) = 10.9; ferromagnetic below 20 K; antiferromagnetic between 20 and 133 K.	High purity; polycrystalline; 0, 25 in. dis, 0.25 in. long; supplied by Johnson Matthey and Co. Ltd.; electrical resistivity, 108 μ ohm cm at 18 C; incasurements made using 2 different thermal comparators; Monei metal used as comparative material.
eported Name and Stror, % Specimen Designation		
Reported Error, %		ო
Temp. Range, K	2.0-100	291
Year	1365	1965
Method Used	H	ပ
Curve Ref. I	808, 322	ŧ
No.	-	N

DATA TABLE NO. 21 THERMAL CONDUCTIVITY OF HOLMUM

(Impurity $\simeq 0.20\%$ each; total impurities < 0.50%) Temperature, T.K. Thermal Conductivity, k, Watt cm⁻¹K⁻¹

٠	ر د	0.105																																							
-	CURVE	291.2	7 .167																																						
4	(E 1	0.035	9.0		0.056		•	∹		0.132	0.147			0.185	0.202	0.210	0.215	0.217	0.213	0.211	0.207	0.200	0.195	0.186	0.132	0.177	0. 167	0.150	0.140		0.102			0.078	•	•	Ē	8	દ	0.076	5
-	CURVE	2.0	, 6 , 0	3,5	4.0	5.0	6.3	7.5	3.8 8.8	9.5	10.5	11.5	S .21		14.5	12.0	16.0	17.5	18.5	19.0	0.61	19.5	19.0	19.5	20.0	20.5	21.0	22.5	22.0	2.6	26.0	30.0	35.5	42.5	51.5	61.0	70.5	80.0	85. ი	95.0	100.0

FIGURE AND TABLE NO. 21R - RECOMMENDED THERMAL CONDUCTIVITY OF HOLMIUM

*Values in parentheses are extrapolated or estimated. T₁ in K, k₁ in Watt em ⁴ K ⁴. T₂ in F, and k₂ in Bin lb ⁴ ft ⁻¹ F ⁴.

THE RESERVE OF THE PARTY.

THE STATE OF THE S

SPECIFICATION TABLE NO. 22 THERMAL CONDUCTIVITY OF INDIUM

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 22]

Curve	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimer Designation	Composition (weight percent). Specifications and Remarks
-	132	1	1955	1.34.2	±2.5		99.95 pure; single crystal; cylindrical specimen; obtained from Stout, J. W. and Guttman. L.; residual electrical resistivity 0.0371 pohn cm; measured in a vacuum of <5 x 10 ⁻² mm Hg and in a longitudinal magnetic field of approx 1000 cereteds; in normal state; data from smoothed curve.
61	132	ı	1955	1.3-3.2	±2.5		The above specimen measured in superconducting state; data from smoothed curve.
ຕ	92	د	1952	1, 7-5			99. 9* pure; single crystal; supplied by Stout, J. W. and Guttman, L.; transition temp 3, 40 K; measured in a magnetic field of ~100 gauss; in normal state.
•	26	1	1952	1.9-3.4			The above specimen measured in superconducting state.
· w	97	ı	1952	2.1-33	2-3	JM 4398; In 1	99, 993 pure; polycrystalline; 1-2 mm dia x 5 cm long; supplied by Johnson Matthey; in normal state.
ۍ	8		1952	2,3-3,3		JM 4398; In 1	The above specimen measured in superconducting state.
2	¥. 8	1	1953	0.46-0.87		JM 4396; In 2	99.983 pure; single crystal; in superconducting state; preliminary result.
œ	342	J	1953	ભ તં		JM 4398; In 1	99, 993 pure; polycrystalline; 1-2 mm dia x 5 cm long; supplied by Johnson Matthey; annealed in vacuo; measured in transverse magnetic fields of strongth ranging from 0, 34 to 2, 87 kilooersteds kOe.
ø	342	1	1953	2, 8		JM 4398; lo 1	The above specimen measured in magnetic fields of strength ranging from 0.34 to $2,87$ kOe.
91	342	-1	1953	3, 25		JM 4398; In 1	The above specimen measured in H ranging from 1, 10 to 3.94 kOe.
# #	290. 285	ı	1952	2 13		JM 3249; in	Pure; single crystal; 2.8 mm dia; spectroscopically standardized indium supplied by Johnson Matthey; cast; somewhat strained in mounting; electrical resistivity ratio $p(273 \text{ K})/p(4, 2 \text{ K}) = 5500$; measured in transverse magnetic fields of strength ranging from 0 to 190 gauss.
21	285	H	1952	2, 13		JM 3249; In	The above specimen measured in transverse fields of decreasing strength ranging from 184 to 0 gauss.
ដ	195	H	1962	89~342	2		Total impurity < 0.03 (probably Sa and Pb); ~0.85 cm dia x 6.5 cm long; supplied by Johnson Matthey; electrical resistivity reported as 1.65, 3.08, 4.60, 6.22, 8.0, 10.0, 12.15, and 13.0 µohns cm at 73, 123, 173, 223, 273, 323, 373, and 393 K, respectively; Lorenz function reported as 2.46, 2.60, 2.62, 2.60, 2.57, 2.59, 2.61, and 2.61 x 10.4 Wohm K- ⁴ at the above temps, respectively; density 7.334 g cm ⁻⁴ .
*	795	υ	1962	303-390	2.		The above specimen measured in another apparatus; Armeo iron used as comparative material.

SPECIFICATION TABLE NO. 22 [continued]

Composition (weight percent). Specifications and Remarks	Spectroscopically pare; single crystal; 4,79 nm dia; indian supplied by Johnson Spectroscopically pare; single crystallized; mincaled in air at 120 C and electropolished; residual Matthey; cast. crystallized; mincaled in air at 120 C and electropolished; residual and electropolished; in superconducting state.	The above specimen etched with 25% H ₂ SO ₄ solution; in superconducting state. The above specimen etched with 25% H ₂ SO ₄ solution and annealed at 120 C for 9 days; The above specimen etched with 25% H ₂ SO ₄ solution and annealed at 120 C for 9 days; in superconducting state.	The above specimen electropolished (dia reduced to 1, 80 min), assumed to the above speciment in superconducting state.	The above specimen clenter with 20 mers. 99, 9 pure (by difference); single crystal; 3, 13 mm dra; supplied by Johnson Matthey; east errstallized, electropolished, and annealed in air at 120 C; in superconducting east errstallized, electropolished, and annealed in air at 120 C; in superconducting state.	The above specimen etched with 25% Itself solution; in superconductors, 99, 995 pure; single existal; ~1 nm dia x 4 cm long; made from Johnson Matthey metal; in superconducting state.	99, 993 pare; polyerystat; 1,6 mm dia x 4 cm tong; maas remained in superconducting state.	99, 997 pure. Spectroscopically pure polychystalline; ~0, 5 mm in dia; extruded; annealed at room spectroscopically pure polychystalline; ~0, 5 mm in dia; extruded; annealed at room	to be 1100m assure conducting state. to be 1200m, an experienced in a longitudinal magnetic field; in normal state (data	The grove specified from the corrected to zero field) corrected to zero field) By an angior impurity; specified ~3 mm dia; in supplied by American Smelting and By as major impurity; specified ~3 mm dia; in supplied by American Smelting and	Refining Co.; cast in vicential control of transition temp 3, 59 K, measured residual electrical resistivity 0, 122 point ent. transition temp 3, 59 K, measured a magnetic field; nanormal state.	99, 999 pare (nominal); 0, 5 mm dia 8 5 cm long; supplied by Nech-Light Landaussis, 1Ad. (Collibrook, England); measured in a longitudinal magnetic field of 350 gaussian nermal state.	99, 997 paire.
Name and Specimen Designation	JM 10281; A0	JM 10281; A1 JM 10281; A2	JM 10281; A3	JM 10281; A4 3M "cheia pare"; B0	JM "chem pare"; B1 JM 49388	8264 Mf			. <u>.</u>	1		
Reported	71	5) 21	71	÷1 ÷1	֓		(- 1 3.		:	1		(- (-
	n. 26-0, 56	0, 27-0, 58 0, 36-0, 59	0, 32-0, 65	0, 34-0, 65 0, 30-0, 74	0, 30-0, 76 0, 25-0, 93	0, 29-0, 79	711-6117	: *(`- +	1.4.0	1.64.0	0, 023-0, 70	312-415
Year		1958 1958	1958	195× 1953	1953	1955	1964	0961	1960	1965	1965	1963
Method	Used	٦ -	د :	-1 -	ب د	۱ ۱	-	۔	ب	-1	٦	<u>د</u>
Ref.	oN £	2 2	ş ş	<u> </u>	43.4 5.5	412	256	797 798	797. 798	799	7:32	892. 893
2	0 S	16	13	98 00	12	7 .	. 3	52	26	27	28	ลู

DATA TABLE NO. 22 - HIERMAL CONDUCTIVITY OF INDIUM

Imparity (0.20° cach) total imparities (0.50°)

Temperature (T. K. Thermal Conductivity, R. Wattem $^{1}\mathrm{K}^{-1},$

·2	0 (cont.)	e, 0304 0, 0119	0,0453	0.020	0,0265	0.0276	0.0012	0.0470	₹ • •	0.0500	99.0	0.400	1	17. 1	1	1 1100	600000	0.000.0	+ 15.00.0	0,0041.5	0.00-1.	00000	9:00:1	6,000	7.10°0	0.00015	0.0127	0, 0150		0,021	0, 0220	0.020	0.000	0.000	0. 11.53.11	0540.0	0, 0475	0, 0550	0, 0630	0,0505	5680.0	0, 100		
۲	CURVE 20 (cont.)	0,462	G# "0	0, 46	0, 51	2. 2. €	 C	0, 595	e.		ر ا ا	: :	÷ =	141.1.		50,5	70.7	0.000	0 •	/ : = :	0.55	0,00	0	, =	/ (i	077 °	0 7	0, 41.0	=	5 =	e, 513		1) 		л (9°0	0, 61.1	> t 9 ' O	0,655	10.0	0,745	0.760		
×	CURVE 18	0,00232	0,000345	0,0007	0,0042	0 00.003	0,0069	0,00875	7600 to	757 m '8		/ : :				1 1 1 1 1		;	1.18.1		09700 0	90.101.0	9::4		0,00435	0.100.0	. O'HII :	: <u>- 1</u>	0.10	97.50	0.000	: : : : : : : : : : : : : : : : : : :		7.01		CURVE 20		00:00	7,000	0,000,00	0,0041	::::::::::::::::::::::::::::::::::::::	6, u6,0	
۰	5) 1	9 6 25 6 25 6	0, 35.1	090.0	9,376	\$65° 0	074.0	004.1	9.40	5H5 .	0 1 2				- :	0 10 10	= =	,	ĒΙ		2	= = = = = = = = = = = = = = = = = = =	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2011	7 . `s	: /: =	o, 415	= L+ '=	: =	⊕ () ()		0 0	779.0	E 50		E		467 °C	0,005	a1:: 'u	#2000	0,000	0, 372	
- 4	(cont.)	0,0232	0,027	0.0.0	(9.0.0	0,04.3	0.0502	- 100 °	0.00		=				, to 1				0,000,0	/ 103 0	- <u>- 1</u> 1 (a) (c)	o la la la	:: = ::	=1.10°C	0, 0,722	6, n.ton	: <: <: <: <: <: <: <: <: <: <: <: <: <:	0, 1140 ,	0, 45.36	1,96537		년 일	į	5 E3 .	7.00	e, el 36	<u> </u>	0,0115	5. (a 'a	0, 01-7	6, mg>			
	CURVE 15 (cont.		0 to	0, 1'11	0,50.3	17. 1	8 4 4	:. -	0.4.		5 3 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1		= 	: :	, , :	1 1	21	: : :		-	٦ · - : = ا	:: :: =	7. °	0.1	021 0	0.150	4771	0	523.0	: :		CURVE		1977. 5	<u>.</u>	e .	_ = =	. : = :	/5t 's	477 °a	: :			
<u>-£</u>	(cont.)	; ;		- ,-	- :				ا اب		<u>'</u>		.) 2	;;. :	= : 7	; =	; =	:		= <u> </u>		e / 10		2 , '='	ε, .'s	27.0	, , '=	7, :	= , 13		7	5		<u>- </u>		. DOC 0	/ T. GEL . =	6, 017 25,	75 ao 15	1.000,0	51 500 TO	0,0076	56mi '0	
=	CURVE 12 (cont.)	· Santa J	3	;:	=		;-		CLINE		-, -,	n F	· · ·	÷.	71 : / [- :	•	<u> </u>			= <u> </u>		7 : 6:	30.5	20		7 7::	- , - - -	777	717	: i :	sic.	9				11, 26.4	 21 =	n, 300	0.00	77. 0	0	545 G	C. 25.	
	CURVE 31	· · ·		1.7	<u>''</u>	- '-	<u>'</u>	<u>.</u>	 	<u>.</u>	: 12	7. 12	; !!	5 . L-	- 	3 ·	~ €	, <u>=</u>	/ 57	- -: -:	-	- 47	:: ::	1.97	n '97		CURVE	<u>.</u>		- 	. c . z . c		, 	. ^ 	/ = 11	17,0	-	17. 7	1-12	9.27	3.7. 			
=	E -	A STREET	=	2	÷	42	ť-	;	;	!	7.	<u>'</u>	 Ž	<u>:</u>	=	-1	5	<u>.</u>	=	1.10	: <u>:</u> -	::9	2.	<u>:</u> :	9:-		Ξ)	-		7	10.6	13	7.7	9.	: : -	2	<u>::</u>	107	=	ŗ	7	13	Ē.	
- 4		0,00250	0,000270	000000	0,00015	0,00,350	05:00:0	0,000,50	0.000,13	11 110 - 111	0,000,00	0,0147	7 : = =			¥			(1 1 1 1 1 1 1 1 1 1	(Luly)		6	7 57 (5	91	197			VE 9	('		E-3	50.0	. j.	5.26		CLRVE 10	Α		6, 99	38.5	1			
÷	CURVES	0 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1	÷	0,455	0,502	: 1 - o	:45° 5	2 8 E	6,62	0.66.5	100.0	005.0	; :	- - - -		=		£1.5	1. /	(Enlooresteds)		7 7. °	0, 70	:	24 75	ÿ ~i		CURVE	_		T.: "#	1.13	\$1 51	Ç Si		2	 -		=	9.	3			
_4	CFRVF : (cont.)	57 E 5	i e	7	7	000		CURVE 4		0.670	775	976	1, 614	<u>′</u>	(2) (3)	- ; - ;	1.00	<u> </u>	1, 957	Ξ.;	7 2) 2)		CIRVE 3		5, 667	7, 0011	2,500	7,875	960		7, 250	5,043	₹ ::	2, 454	1, 667	1,375	1.167		CURVE		4, 555	:	1001	
-	CTIN	7 F	=	=	12 1	(· .+		: - :	<i>!</i> !	:: :::	60°6	<u>=</u>	51 (5)	:3 e i		3 , :i	2 .	ナ ni	7. 51	<u>:-</u>	:2 		5		5.	7 :i	일.	13 13	7.7	7	7.50	9, 37	¥ =	15, 31	21, 15	2) 8)	7		(1.)	i	6i 5i	10°	! !! ! ::	
£	7	09%	2 5	20.	0: 1	0.81	1,600	0.7.7	098-1	2,000	97, 130	5,046	27	9 10 21	5,660	161		VE :		C 22 (900 D	0, 35 ;	₹ ÷	0.650	0 7 2.0	1, 050	1,270	7.7.	1.740	2,000			211	11.1	,	7 7 7	*70.T	216	8 / G / C	2, 174		2,513		
!	CURVE	95.4	, 3	9.	8	0.7	2	9	7	00 ::	3,20	0+ 1:	09.:	9 ::	60°.	7,20		CURVE		1,30	1, 46	1,60	2.7	3, 00	2,30	9+.5	5.60	51 57	3,00	.5, 20	8.15	CT.NY.	99 (3	2	2.00	31	2.50	2.71	3. S	χ 4 (: 6 8		

ऋ	CURVE 28 (cont.)	2,65	2.70	2,90	2.80	3, 70	÷	CURVE 29	000	0.75	0.00	0 72	315																															
۲	CURVE	0, 520	0, 540	0.580	0,585	0.70			:		10.00	10.00	415.3	: :																														
¥	28 (cont.)	0.315	0. 28 0.	0,34	0.385	98: 0	0.40	t+ 0	0.405	0, 425		, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	9 9	9.0	3 :	Į (3 5	9 0	19 0	2 (2 (: 4 i	0.70	; ; ;	: -	3	0, 89	9, 91	0.95	3	X 5	1. 2.3				900	2 (,	2 3	1.35	2 :	e e	25	7.21	· ·
۲	CURVE 2	0,046	0,048	0,0555	090 0	0.061	0.070	0.072	0.07%	0.0795 0.0795	1000	0.080	160.0	60.0	660.0	0.10.5	0,103	6,11.5	0, 11.5	:: : :: :	X .	0, 128	177	0.140		0, 155	0, 160	0, 165	0×1 0	0 190 0 190	0.220	0.22.0	200	27.0	0.230	0000	025.0	0.15	0.350	0.395	0,415	0.4.55	0.450	0.495
¥	E 27	0, 320	0.341	0, 372	0.423	0.17	0, 463	9, 493	0.519	0.540	£ 0.0	F90 0	0.036	6.62	1/9 0	0.681	0.684	0. 690	0.696	0, 737	0.747	0, 746	0.764	0.765	+ : : : : : : : : : : : : : : : : : : :		CURVE 28	ł	0, 17	0.143	0. 17:3	21670		9, 135	17.0	0.219	0.23	;; :	0, 245	0, 26	χ. Θ	0, 245	0.255	2
T	CURVE 27	90 1	: G	2	2 05	11.13	2,25	2,40	2,53	2, 63	2, 67	27.73	21	S	0: ::	3,35		2	∓	3,65	3, 70	3,70	3.80	98 °	2 0		CUR		0,020	0.024	0.024	0,0255	0.029	0.0.52	0.0335	0.034	6.0.0	9:0:0	6:0.3	0.041	0,047	0.043	0.044	570 0
æ	E 25		; ;	1 12	. J	0.0	22.0	73.0	.30.0	o 24	33, 5	36.0	10 10 10 10	37.0	39.0	40.5	4 2, 0		E 26		34.0	35.0	0 /m 0 /m	ر د د	0 1) O	45.0	52.0	48, 5	53, 0	ري چيار	30.0	O !	47.0	0 0;	9	э Т	1:3.0	45.0	41.0	45.0	⊋. ?	38, 0	į.
1	CURVE 25		-	7	;;;	3.5	05	2, 15	2.30	2.40	2,45	2,45	2.50	2, 70	15. 15.	2,95	3, 25		CURVE 26		1,38	1, 40	۱. ۱ .	1, 60	16 L	99	, ei	2, 20	2.30	2, 45	2, 70	2, 73	<u>9</u>	3. 10	3, 20	(0 6) 70	3, 60	3,60	3,65	3,65	3,75	0	4.00	90.
æ	CURVE 22	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.003.13	0,1003.0	0,00453	0.00.0	0.00325	0, 106600	0,000,00	9, 90569	0, 00540	0,00940	0.600 0	0.0124	0,0125	0.0120	0,0215	0.0178	0.230	0.0320	0 0345	0,0740	0.0930	0, 142	0, 195	CARVE OF		0, 0021	0.0026	0, 0043	0, 0059	0,0109	6:0:0	6, 022	, 041		CURVE 24		0,715	0.707	0, 711	0,714	0,705	
H	CUR	} :	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000	0.2.0	0.293		0,315	0,350	0.400	0.410	0.450	0.450	0.475	064 (1	0,510	0.530	0.595	9.106	0,705	0.748	0.860	0.840	0.930	0.53			0,285	0.301	0,330	0.402	0.475	0.550	0,643	0.730		ပါ		310,2	54 TH C	372.2	378, 13	417.2	

والأفلا أفيا المقطاعة والأفراء والمقاطرة ومسالسماء خراف وميد فالميدة للمساء المشاب أمام مناصدة للمراسدة المرافقة

FIGURE AND TABLE NO. 22R RECOMMENDED THERM JOST MICTIVITY OF INDIUM

The Proposality of a region and high-purity indium with residual electrical stress of the stress of		- കടത്ത - കേടത്ത് - c	55555 5555	State Kr (20. 8) (20. 8) (20. 5) (20. 5) (20. 7) (20. 7) (20. 7) (20. 7) (30. 7) (30. 8)	T ₂ 313.90 440.3 620.3 800.3 1160 1160 11700
T. k, k, k, l, l, l, l, l, l, l, l, l, l, l, l, l,	T, K ₁ (29, 5) (39, 5) (43, 9) (43, 9) (50, 24, 4) (60, 15, 4)	- കേഷണംഗ - കേഷണംഗ tra		(2010) (2010) (2010) (3	11 313, 440, 620, 800, 800, 1160 1150 1170
2	(29. 5) # 47. 8 47. 8 48. 9 48. 9 48. 9 48. 9 48. 9 6 28. 4 6 6 28			(20) (20) (20) (20) (20) (20) (20) (20)	313, 440, 620, 800, 980, 1160 1170 1700
1	(29, 5) # 47, S 47	ക്ഷതം ക്കുഷതം ക്		(22) (23) (25) (25) (26) (26) (26) (27) (28) (28) (28) (28) (28) (28) (28) (28	440. 620. 800. 800. 980. 1160 11520 1700.
2 47.5 270 -455.1 700 (0.131) (22.2) 2 47.5 270 -455.2 700 (0.131) (22.2) 2 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	2 2 4 12 3 4 12	************		(222.5) (23.1.9) (30.1.9) (30.1.5) (30.2.2)	800 800 980 1160 1340 1700
2	48.9 E 4 27.3 S 24.4 E 5 24.4 E 5 26.4			(23.9) (22.3.9) (34.3.3) (34.2.9) (34.2.9)	800 800 980 1160 1340 1700 1700
### 10 10 10 10 10 10 10 1	17.3 2 2 24.4 1	0 - a = m 0 t - 3		(25.7) (21.6) (39.3) (39.2)	980 1160 1340 1520 1700
2 24 4 1410 - 450.7 1990 (0.234) (20.75) (20.7	2 24.4		(0. 524) (0. 524) (0. 585) (0. 673)	(27. 6) (30. 3) (33. 6) (39. 2)	1160 1340 1520 1700
2	2.5.7.	அவளை + :	(0. 524) (0. 585) (0. 673)	(39, 3) (33, 6) (39, 2)	1340 1520 1700
2			(0. 585) (0. 673)	(33. 6)	1520
6 6 6 6 6 6 6 6 7 7 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2			(0. 673)	(39.2)	1100
1					
2 3 4 5 6 4 10 2 3 4 5 5 4 10 2 3 4 5 6 4 10 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.7.9	-441.7			
10 5, 55 322					
2 8 8 8 8 8 8 8 8 8 8 8 8 8	S. C. C. C. C. C. C. C. C. C. C. C. C. C.				
2	4, 72	7.77			
2	4.00	1,55.4.			
2	13 3.60	0.000			
10	3.30	-4.54. 3			
1	2. C	-432.7			
1	2.62	430.9			
66.4) 10 1 2 3 4 5 6 4 10 2 3 4 5 5 7 10 10 10 10 10 10 10 10 10 10 10 10 10		427.3			
5	1. 07.	·			
1.28 74.0 1.28 74.0 2.3 4.5 5 4.10 2.3 4.5 5.2 7.5 5.2 10	15.1				
10-1 T. D. (S. C.) 3.40(35 K) 11. P. 420. 76 K 40 (1. 09) 40 (1.					
3 4 5 (1.09) (63.0) 3 0 (1.04) (60.1) 50 (1.04) (60.1) 60 (1.02) (57.8) 70 (1.02) (57.8) 10 (0.982) (57.8) 100 0.983 56.8 100 0.983 56.4 150 0.983 56.4 150 0.855 49.4 273 2 0.837 48.4 300 0.717 44.9 400 0.745 43.0					
3. 4 5 (1.06) (61.2)	(1.09)				
3 4 5 60 (1.04) (60.1) 60 (1.02) (58.9) 70 (1.00) (57.8) 80 (0.982) (57.3) 150 0.983 56.8 150 0.983 56.8 250 0.855 49.4 250 0.855 49.4 250 0.857 44.9 8 350 0.777 44.9 400 0.745 43.0	(1.06)				
(1.02) (58.9) (1.00) (57.8) (1.00) (57.8) (2.00) (9.98) (57.3) (2.00) (9.98) (56.8 (2.00) (9.98) (56.8 (2.00) (9.98) (56.8 (2.00) (9.98) (56.8 (2.00) (9.98) (56.8 (2.00) (9.98) (56.8 (2.00) (8.97) (49.4 (3.00) (9.87) (40.1) (40.9) (9.745) (42.1)	1. P. S.C. 3, 4035 K 11. P. 429.76 K 1				
3 4 5 80 (0.982) (57.8) 3 4 5 80 (0.982) (57.3) 100 0.983 56.8 100 0.983 56.8 150 0.939 54.3 250 0.855 49.4 273.2 0.837 48.4 273.2 0.837 48.4 274.0 0.777 44.9	600				
3 4 5 80 (0.982) (57.3) 90 0.983 56.8 100 0.976 56.4 150 0.939 54.3 250 0.835 49.4 273.2 0.837 48.4 273.2 0.837 48.4 300 0.817 47.2 8 350 0.745 44.9 429.76 (0.729) (42.1)	(F)				
90 0, 983 56.8 100 0, 983 56.4 150 0, 939 54.3 250 0, 835 49.4 273.2 0, 837 48.4 300 0, 817 47.2 350 0, 777 44.9 429.76 (0.729) (42.1)	(0.094)				
100 0.976 56.4 -; 150 0.939 54.3 -; 250 0.897 51.8 - 250 0.835 49.4 - 273.2 0.837 48.4 300 0.777 44.9 499,76 (0.729) (42.1)	1 2 3 4 5 6 × 10 2 3 4 5 5 × 10 2 3 4 5 0 5 0 983				
150 0.939 54.3 20 250 0.897 51.8 250 0.855 49.4 271.2 0.837 48.4 300 0.777 44.9 49.9 (42.1)	100 0.976				
250 0.897 51.8 - 250 0.855 49.4 - 250 0.837 48.4 300 0.837 44.2 350 0.777 44.9 49.9 49.76 (0.729) (42.1)	. N 150 0.939				
250 0.855 49.4 - 271.2 0.837 49.4 300 0.837 44.9 8 350 0.777 44.9 429.76 (0.729) (42.1)	0. 89 7	•			
273.2 0.837 48.4 300 0.817 47.2 350 0.777 44.9 400 0.745 43.0 429.76 (0.729) (42.1)	250 0,855	•			
300 0.817 47.2 350 0.777 44.9 400 0.745 43.0 429.76 (0.729) (42.1)	27.1, 2 0, 537				
s 350 0,777 44,9 400 0,745 43,0 429,76 (0,729) (42,1)	300 0.817				
400 0,745 43,0 429,76 (0,729) (42,1)	s 350 0.777				
429, 76 (0, 729) (42, 1)	400 0.745				
	429, 76 (0, 729)				

*Values in parentheses are extrapolated, interpolated, or extimated. Tin K, F in Watt cm-1 K-1, Tin F, and kin Biu lb-1 ft-1 F-1.

The second of th

SPECIFICATION TABLE NO. 23 THERMAL CONDUCTIVITY OF IRIDIUM

(Inpurity <0, 20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. -23]

Composition (weight percent), Specifications and Remarks	99, 995 pure; 1-2 mm dia v 5 cm long; supplied by Johnson Matthey; annealed.	Pure; square cross section 0.103 x 0.103 cm, 10.0 cm folls, section 8.100 clectrical resistivity reported as 8.190 x.480, 10.521, and 10.59 gohm cm at 0.12, 11, 97, 20, and 100 C. respectively.	99,98" pure; approx impurities: 0.01 . 0.02 Pt. and 0.001 Cu; 2 mm dia x 5-7 cm long; supplied by Johnson Matthey; annealed at 1300 C; residual electrical resistivity (p ₀) - 0.1014 polymen; electrical resistivity ratio \(\rho(295 \text{ K})/\rho(0 \text{ K}) = 49.5; Lorenz function 2.50 x 10 ° \text{ V} x 2 at 0 K.	Impurities estimated; 0, 02-0, 05 Rh. 0, 002-0, 005 Ru. and 0, 001. Pd; 5 cm long. 0, 3,82 cm in dia; supplied by Johnson Matthey; annealed at 1313 C; density 22, 49 g cm ⁻³ .	The above specimen; electrical resistivity reported as 0,79, 0,85, 0,95, 1,00, 1,02, 1,10, 1,20, 1,29, 1,59, 3,05, 3,17, 3,31,3,43,433,4,92, and 5,07 whm cm at 1,10,15,-187,5,-183,2,-180,8,-175,8,-171,2,-166,9,-152,7,-82,2,-77,0,-70,0,-64,1,4,3,8,9, and 16,1 C, respectively.	 02-0.05 Rh. 0. 002-0.005 Ru. and 0.001 Pd; 5.0 cm long. 0.318 cm in dia; supplied by Johnson Matthey; heated to 1310 C; density 22, 43 g cm⁻³; electrical resistivity 4.71 gohn cm at 273 K; residual electrical resistivity 0.055 gohn cm; data obtained by asing two methods of measurement for low and moderate temp ranges; Armeo iron used as comparative material for the moderate temp measurement. 	0, 02-0, 05 Rh. 0, 002-0, 005 Ru. and 0, 001 Pd; specimen 0, 318 cm in dis and 5 cm long; supplied by Julinson Matthey; annealed at 1590 K; density 22, 43 g cm ⁻³ ; electrical resistivity ratio pl 273 K)/pl 4, 2 K) - 85, 7; electrical resistivity reported as 1, 16, 3, 25, 5, 33, 7, 39, and 9, 42 µohm cm at 190, 200, 300, 400, and 500 K, respectively.	The above specimen measured in a comparative apparatus using Armeo iron as reference material.
Name and Specimen Designation	JM 3441; lr 1		JM 10371; Ir 2					
Reported Error, %	2, 0-3, 0				< 3, 1			
Temp. Range, K	2, 2~35	290, 373	3.9-90	323. 2	K3-269	83-493	83 -386	315-492
Year	1952	1914	1957	1955	1955	1962	1967	1967
Method Used	٦	íe.	-1	ပ	ï	i. C	٦	U
Ref. No.	9,	æ	149	411	411	999	249	249
Curve	-	. ea	ဗ	4	က	ဖ	!~	an.

DATA TABLE NO. 23 THERMAL CONDUCTIVITY OF IRIDIUM (Impurity <0.20% each; total impurities <0.50%)

Watt cm-1K-13
يد.
Conductivity.
K: Thermal
T. K. Th
Ĺ
Temocrature.

←	CURVE 7(cont.)	.6 1.	- -	~ 6	- -	-	.0	-	~	2.1.4	386.1 1.45		CURVE 8		315.1 1.45	9.	1.4	8.	¥.	.5	6.	٠. 	 	·: -:	414.8 1.42	9	 8.	.5		477.2 1.405	492.2 1.385										
۲- ۲	CURVE 5	82.7 2.20	85.7 2.07	90.0 1.94	4	9	97.4 1.31	102.0 1.74	106.3 1.68	120.5 1.60	191.0 1.51	196. 2 1. 50	203, 2 1, 49	7.7	5 1.4	282.0 1.47	289.3 1.46		CURVE 6		ە، 	-	- i	.2	173.2 1.54	.2		323.2 1.47	373.2 1.45	423.2 1.44	473, 2 1, 425			CURVE 7		64	85.2 1.905	90.0 1.905		93.5 1.765	98.1 1.75
. 	CURVE 1	2,15 2,710	I	4,47 5,849		57	12	79 13.	62 16	55. 17.	50 18.	27, 53 15, 613	76 13.	.83 12.	34.58 10.237		CURVE 2		290,2 0.590	373.2 0.565		CURVE 3		oʻ	නු	99		3.060	18 3.	+	•	•	ຕ່		4	74.60 1.978	161.1 06.08		CURVE 4		323.2 1.45

Not shown en Plot

PICURE AND TABLE NO. 22R RECOMMENDED THERMAL CONDUCTIVITY OF INDIUM

*Values in parenthoses are extrapolated or estimated. Tink, k, in Watt cm-1K", Tin F, and ke in Bu B" in-1F".

temperature and 4 to 10%

SPECIFICATION TABLE NO. 34 THERMAL CONDUCTIVITY OF IRON

Gmpurity < 0.20% each; total impurities < 0.50%

(For Data Reported in Figure and Table No. 24)

Curve	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
-	115	7	1981	26-292			99.99 pure; supplied by Johnston Mackay Ltd.
N	\$101 \$101	H	1968	82-37 3	1.6	18 A F3	99. 96 Fe, 0. 007 Cu, 0. 007 Ni, 0. 0033 C, 0. 004 Mn, 0. 004 Si, 0. 003 S, 0. 0023 N, 0. 002 Cr, 0. 001 Al, 0. 001 P, and 0. 0008 O; 1.247 cm dia x 10. 44 cm long; prepared by National Physical Laboratory, England; as received; density 7. 872 g cm at 24 C; electrical resistivity reported as 9. 925, 5. 26, 8. 97, and 10. 33 µohm cm at 77. 73, 194. 8, 273. 3, and 259. 8 K, respectively; Lorenz function reported as 1. 625, 1. 885, 2. 2420, 2. 744, and 2. 884 x 10. 47 Vi. 2. 100, 200, 300, and 389. 8 K, respectively; measured in a vacuum of 5 x 10 ⁻⁶ torr.
က	-	ų	1935	273-473	8		0.0045 C, 0.002 Mn, 0.0015 S, 0.001 P, 0.0006 Ni, 0.0002 Si, traces of Al and Mg; 1 cm dia x 15 cm long; density 7.871 ± 0.002 g cm ⁻¹ ; electrical resistivity reported as 11.5, 14.5, and 17.8 u ohm cm at 50, 100, and 150 C, respectively; data taken from smoothed curve.
ব	129, 161	ပ	1933	373-772	S	Basic open hearth Iron	0.042 P, 0.03 Mn, 0.02 C, and 0.005 S; hot-rolled to 1 in. bar; high purity lead used as comparative material; data taken from smoothed curve.
s	ß	7	1947	320-1016	1.95	Armeo Iron	99.808 Fe (by difference), 0.067 Cu, 0.039 S, 0.035 Mn, 0.028 C, and 0.024 Ni; 2.50 cm dia x 8.00 cm long; machined from a hot-rolled 1.5 in. rod.
9	6 6	æ	1958	371-1594	61	Armeo Iron	Specimen consisted of three annular rings each of 0.625 in. I.D., 3.0 in. O.D., and 1 in. thick.
4	ጸ	ผ	1927	80,273		Electrolyte iron; 1	Coarse-grained; electrical conductivity reported as 121 and 10.4 x 10^6 ohm ⁻¹ cm ⁻¹ at 80 and 273 C, respectively.
æ	34	1	1927	80,273		Electrolyte iron; 2	Fine-grained: electrical conductivity reported as 121 and 10.4 x 104 ohm-1cm-1 at 80 and 273 C, respectively.
o,	ጀ	ה	1927	30,273		Electrolyte iron; 3	Obtained from Firma Heraeus; electrical conductivity reported as 61.2 and 9.4 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 80 and 273 C, respectively.
10	81	J	1939	4.9-23		Electrolyte iron	Extremely pure; 2.545 mm dia x 12.32 cm lang; electrical resistivity ratio p(273 K)/ $ ho_0$ = 29.4.
11	21	æ	1951	718-1008	+ 1	Armco Iron	Annular cylindrical spectmen of 1.5 in. I.D., 6 in. O.D., and 2.25 in. thick.
12	91	O	1951	111-394		Armeo Iron	0.035 Cu, 0.026 S, 0.015 Mn, 0.014 C, and 0.004 P; 2 cm dia x 15 cm long; Armeo from used as comparative material.
13	8	u	1937	323-961	-	Armeo Iron; 1	0.032 Mn. 0.03 S. 0.015 C, 0.013 Cu, 0.01 Si, and 0.003 P; 1.4 cm dia x 10 cm long; anneated at 950 C.
14	8	ı	1937	304-943	-	Armco Iron; 2	Similar to the above specimen.
15	77	Ē	1900	291,373		e e	0.1 C; 1.3007 cm dia x 27.0 cm long; density 7.84 g cm ⁻³ at 18 C; electrical conductivity reported as 8.357 and 5.950 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 18 and 100 C, respectively.

SPECIFICATION TABLE NO. 24 (continued)

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
			190	16-93		9839	99.93 pure forged measured in a vacuum of 5 x 10 ⁻⁶ mm Hg.
	ર દ	4 -1	1927	21,83		Fe 1	Electrolytically refined; cold-worked and annealed; electrical resistivity reported as 0.1681, 0.778, and 8.71 gehmem at -252, -190, and 0 C, respectively.
	22	٦	1927	21,83		Fe 2	Tech.!co.ity pure; polycrystalline; electrolytically precipitated; electrical resistivity reported as 0.1437, 0.929, and 9.11 p.ohm cm at -252, -190, and 0 C, respectively.
	49	ស	1933	90-273		Armeo Iron	0.056 Cu, 0.026 S, 0.017 Mn, 0.011 C, 0.006 P, and 0.002 Si; 0.3924 cm dia x 14.53 cm long, electrical resistivity reported as 1.531, 5.74, 9.57, and 15.49 µohm cm at -183.00, -78.50, 0, and 100 C, respectively.
20	689	٦	1965	88~300			0.064 O, 0.0027 C, 0.002 S, 0.001 Mn, 0.001 N, 0.001 Sl, and trace Cr; electrical resistivity as 1.22, 5.60, 6.50, 7.65, 8.96, 10.0, 11.3, 12.5, and 13.6 μ ohmem at v3, 203, 223, 244, 273, 293, 313, 333, and 353 K, respectively.
	€	ပ	1956	273-1273			99,906 Fe (by difference), 0.035 Cu. 0.026 S, 0.015 Mn. 0.014 C, and 0.004 P; measured in a vacuum of $\sim 2\times 10^{15}$ nm Hg; a section of the specimen used as comparative material.
22	3	u	1956	1.5-128		JM 5092	99,99 Fe; 0.005 Ni, 0.0002 Cu, 0.0001 Ag, traces of Mn and Mg; 2 mm dia rod supplied by Johnson Matthey and Co.; annealed at 750 C for 4 hrs in vacuo; electrical resistivity reported as 0.248 and 10.0 µ ohm cm at 4.2 and 293 K, respectively.
23	131	ပ	1953	323-1073	81	Swedish Iron	0.028 St. 0.026 C. 0.021 P. 0.02 Mn. and 0.011 S; annealed in vacuum at 990 C; advance (55 Cu-45 Nt) used as comparative material.
24	71	ñ	1917	303-11 <i>m</i>		Swedish Iron	Pure; evlindrical specimen of 1 cm dia x x cm long with a cavity of 6 mm dia x 16 mm long in its middle portion; electrical resistivity reported as 15.3, 20.0, 231, 26.3, 32.0, 36.4, 43.6, 45.3, 53.1, 16.5, 76.4, 80.7, 90.2, 92.1, 98.7, 100.0, 100.7, 102.2, 105.4, 80.8, 108.6, 110.3, 111.3, 111.3, 111.5, 115.1, 115.8, and 117.0 µohm cm at 30.94, 140, 183, 254, 302, 375, 390, 462, 527, 660, 700, 709, 742, 746, 751, 760, 711, 789, 810, 817, 851, 851, 862, 888, 890, and 901 C. respectively.
25	122	ü	1955	2.0-93	es +1	JM 4975; Fe l	99.99 pure; polycrystal; 0.202 cm dia x 2.89 cm long; supplied by Johnson-Matthey; annealed in vacuo for several hours at two thirds the melting temperature; electrical resistivity ratio g293K)/g20K) · 67.8.
5 6	110, 476	٦	1934	273-1073	N	Arnco Iron	99.918 Fe. 0.025 Mn, 0.023 C, 0.020 S, 0.007 P, and 0.007 Si; 2.895 in. dia x 84 in. long; made from two similar rods of Armeo ingot fron each 3 in. dia x 42 in. long; electrical resistivity reported as 9.6, 15.0, 22.6, 31.4, 43.1, 55.3, 69.8, 87.0, and 105.5 µ ohm cm at 0, 100, 260, 300, 400, 500, 600, 700, and 800 C, respectively.
27	251. 260	ρ	1959	300-1298		Armco Iron: V	0. 1875 in. dia x 2 in. long; machined from Armoo stock supplied by Mapes and Sprowl Steel Co.; Curie point 770 C; transition point (r·y) 910 C; measured in a vacuum of ~5 x 10 ⁴ mm Hg; thermal conductivity values calculated from measured thermal diffusivity data and specific heat values taken from literature.
28	251	ď	1959	295,1255		Armco Iron; IV	Similar to above.

SPECIFICATION TABLE NO. 24 (continued)

Curve	Per P	Method	Year	Temp.	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
ğ g		2	1966	629-973		Armco Iron	No details reported.
3 02	1005	ш	1927	273.2			0.125 in. dia x 10 cm iong; electrical resistation of post 2. 1.28 cm dia x 14 cm
3 5	\$	U	1939	512-1046		Armeo Iron	199.918 Fe. 0.023 Mil. 0.020 C. 0.020 S. Comparative material. Iong; machined; lower section of the specimen used as comparative material.
ş	3	U	1939	730-1138		Armeo Iron	Similar to above except specimen of 1 in. dia.
រ ន	‡	æ	1939	369-1278		Armeo Iren	Specimen consisted of two super-imposed uses 2.54 cm thick, machined from the similar original rods as above.
, ;	į	-	1936	303-1473			0.05 Cu, 3.040 S, 0.02 Mn, 0.011 P, 0.01 C, and trace of Si.
	3 5	ם ג	1936	303-1473		00 Qd	1.08 Mn, 0.022 S, 0.02 C, 0.016 P, and 0.01 Si.
3 %	2 8	נו	1959	6.5-90		Electrolytic Iron; 1	28 x 2.5 x 2.5 mm; doubly feithed; cut out of a prosperior resistivity ratio compressed, and rearmented in vacuo at 590 C electrical resistivity ratio compressed, and rearmented in vacuo at 50 C electrical resistivity 0.09 ~ 0.10 µohm cm;
							specimen believed to be from the same material as that of Grüneisen, E. and Growns F. (see curve No. 17).
ង	253	1	1959	7.9-90		N	Similar to the above specimen except dimensions 30 x 2.4 x 1.7 mm, and electrical resistivity reported as 0.092, 0.097, 0.100, 0.106, 0.120, 0.269, 0.368, 0.531, 0.744, 1.06, and 10.3 μohm cm at 4.2, 15.2, 20.8, 26.1, 32.5, 54.4, 61.2, 74.2, 19.1, 19.2, 19.2, 20.3, 54.4, 61.2, 74.2, 19.1, 19.2, 20.3, 54.4, 61.2, 74.2, 19.1, 19.2, 20.3, 54.4, 61.2, 74.2, 19.1, 19.2, 20.3, 54.4, 61.2, 74.2, 19.1, 19.2, 20.3, 54.4, 61.2, 74.2, 19.1, 19.2, 20.3, 54.4, 61.2, 74.2, 19.1, 19.2, 20.3, 54.4, 61.2, 74.2, 19.1, 19.2, 20.3, 54.4, 61.2, 74.2, 19.2, 19.2, 20.3, 54.4, 61.2, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2, 19.2, 20.3, 74.2
2	97.6	Ų	1953	343	ო	Armeo Iron	Pure, density (25 C) = 7.9 g cm ⁻³ .
8 %	217	ပ	1959	410-1057	4	Armeo Iron	99.745 Fe. 0.16 Cu, 0.03 C. 0.03 S. 0.015 St. 0.03 min. commercial source in wrought form; Iron used as comparative material (data of u. w. Deem).
\$	3	_	6	301,331			99.93 Fe. 0.059 C; density 7.785 g cm ⁻³ .
\$ 4	2 2	ר נ	1957	300	± 1.5	Armeo Iron	Commercial Armeo iron, electrical conductivity 9.09 x 10° oniii eii ee coo iii
. 4	340		1956	355-800	s	Armco Iron	0.75 in. dia rod.
. .	8		1952	3.3-32	5-3	JM 4975; Fe 1	99.99 pure; 1-2 mm dia X ~ 3 cm long, supplied by contact the halves
7	445	u	1960	303-1273	± 2.5	Armeo Iron	0.083 Cu, 0.030 Mh. 0.023 S. 0.000 S. 0.000 Ed. or or or or or or or or or or or or or
							930.; 106.0, 112.0, and 115.3 µ ohm cm at 0, 100, 200, 300, 400, 500, 600, 700, 87.9, 106.0, 112.0, and 1000 C, respectively; measured in a vacuum of 0.2-3 x 10° mm Hg.
45	446	æ	1929	855-1198		Armeo from	Specimen consisted of three stacked hollow cylinders each of 2.5 in. 0. D. and 2.3 in. high.

SPECIFICATION TABLE NO. 21 (continued)

Curve	Ref.	Mctbod Used	Year	Range, K	Error, 4	Specimen Designation	Composition (mergin percent)
							Pier
46	356	œ	9261	372-1172	+		
1,4	439	-1	1905	373-973	¢1		0.034 Mn, 0.03 C, 0.012 S, II.003 P, and II.003 31.
8	513	æ	1957	373-1173	0.5		Pure.
9 5	3 2	4	1960	904-1108	7.	Armeo Iron	No details reported.
;	Š	۵,	1961	295	ις #	Armeo Iron	1.9 x 1.9 x 0.100 cm; thermal conductivity values calculated from measured data of thermal diffusivity and specific heat, and density 7.87 g cm ⁻³ taken from Smithsonlum Physical Tables (9th cd., 1954).
15	673	ω	1935	289.6	£ 1.3	Electrolytic	Wire specimen of 200 mm long.
없	591	ပ	1963	334.2	£		99.82 pure: 0.500 in, tha x 3 in, long, hot-rolled; measured in a vacuum of $< 5 \times 10^4$ mm Hg, nickel-plated copper used as comparative material.
3	929	Δ.	1960	995-1298	61 41	Armee Iron	9.1875 in. da x 2 in. long; machined from rod stock Armco iron obtained from Mapes and Sprow); thermal conductivity values calculated from measured thermal diffusivity data and specific heat values of Darken, L.S. and Smith, R.F. (Ind. Eng. Chem., 43, 1815, 1951).
æ	523	œ	3 82	385-1992	ਰ ਜਾਂ ਜ	Armeo Iron	0.1 Cu, 0.1 Ni, 0.086 O, 0.05 Nin, < 0.05 Al, <0.05 Cr, <0.05 No, 0.023 S, < 0.02 Si, <0.0.01 Cu, 0.1 V, 0.013 C, <0.01 Ti, 0.006 P, 0.0050 N, and <0.0001 H; grain size 20-40 p; electrical resistivity reported as J.2, 5.3, 7.6, 10.2, 12.6, 15.9, 19.4, 23.3, 27.4, 32.7, 38.2, 44.0, 50.3, 56.7, 64.1, 72.0, 50.7, 90.2, 101.2, 108.7, 112.4, 114.5, 116.2, and 117.7 pehin on at -130, -100, -30, 0, 50, 100, 150, 200, 250, and 1000 C, researchiely fun no. 1.
i,	Ş	۵	300	484-1198	4.9	Armeo Iron	The above specimen, run No. 2A.
3 5		: @	796	973-1206	4.9	Armeo fron	The above specimen; run Na. 28.
3 5	3	: e	95	1206-1273	+ 4.9	Armeo Iron	The above specimen; run Na 2C.
5 3	8	. α	1961	1025-1198	4.9	Armeo Iron	The above specimen; run Na. 2D.
8 8	ત	; ₋ 1	1927	21,83		H	Polycrystalline; made by electrolytic method; hammered; tempered for 1 hr at 500 C; electrical conductivity reported as 1.460, 1.917, and 9.95 g ohm cm at -252, -100. and 9.C, respectively.
8	3	<u>įsi</u>	1957	385-870	#	Armeo Iron	0.645 S. 0.04 C. and 0.005 P; electrical resistivity reported as 16.36, 22.87, 32.13, 41.00, 53.48, 54.10, and 67.15 uohm cm at 111.7, 203, 301, 390, 493, 499, and 597 C, respectively.
19	Ž	æ	1962	648-1263	± 10	Armeo Iroa	Specimen size 2 in. O.D., 3 in. long with a 0.5 in. center hele.
;						•	The shore energies messified by using different most star.

SPECIFICATION TABLE NO. 21 (continued)

Curve	Rrf. No.	Method Used	Year	Temp. Runge, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
2	199	œ	1964	93-1273			0.012 O, 0.008 P, 0.007 C, 0.007 Al, 0.004 S, and 0.002 N; test disks annealed for several hrs at 900 C; electrical resistivity reported as 1.1, 1.7, 2.4, 3.1, 4.0, 5.0, 5.9, 5.9, 5.9, 7.9, 8.8, 9.87, 11.6, 14.7, 18.1, 21.4, 26.0, 30.1, 35.0, 40.3, 46.8, 53.3, 60.1, 68.0, 76.0, 84.6, 94.2, 102.1, 106.3, 109.0, 111.1, and 113.1 µ ohm cm at -180, -160, -140, -120, -100, -80, -60, -60, -20, 0, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, and 1000 C, respectively.
2	099	Д	1361	273-1373		Arnico Iron	Armeo iron obtained from BMI; thermal conductivity values calculated from thermal diffusivity and specific heat using density value 7.874 g cm ⁻³ given by Cleaves and Thompson measured data of The Medial Two Medical Lines and Thompson process.
92	929	_	1954	316.2			0.01 St. traces of Nt. Cu. Al. Mt., Mo. and Tt (fin order of decreasing amounts); 0.4 cm dia x 3.5 cm long: prepared by recontrol electrolises machined. Assetter a 224 cm.
99	629	œ	1956	803-1048		Armeo Iron	Disk specimen.
23	40,43	7	1956	808-1153		Armeo Iron	6.75 in. dia x 1.5 in. thick.
89	217		1959	373-773		Arnico Iron	Measured by Robinson, H. E., NBS.
0	2	عرم	196 5	73-1273		Arnico Iron	99. 834 (by difference) Fe. 0. 083 Cu. 0.030 Mn. 0.023 S. 0.02 C. 0.006 P. and 0.004 Si; chemical and spectrographic analysis at NPL showed 0.083 Ni in addition to the above; 1 in. rod from American Rolling Mill Co. in hot-rolled condition; annealed for 30 min at 1600 F (871 C) in air, followed by furnate cooling; electrical resistivity reported as 1.5, 3.3, 7.5, 10.0, 12.5, 15.6, 19.1, 23.0, 27.0, 31.2, 36.3, 41.5, 47.4, 54.0, 61.0, 68.8, 77.2, 86.2, 96.8, 105.2, 109.8, 112.4, 114.1, and 115.8 u ohm cm at -200, -150, -100, -50, 0.50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 500, 550, 500, 550, 500, 550, and 1000 C, respectively; data then from smoothed curve.
92	6 32,	÷	1963	113-913		Armeo Iron	99.634 Fe (by difference), 9.083 Cu, 0.039 Mb, 6.023 S, 0.02 C, 0.006 P, and 0.004 Si; specimen 37 cm in length and 2.386 cm in dia; obtained from the American Rolling Mill Co. by Battelle Memorial Institute in the form of 1 in, rod; ameraled for 1/2 hr at 1123 K; dhis taken from smoothed curve.
71	624		1959	323-673		Armco Iron	Polycrystalline.
72 73	670	הי	1963 1965	373-1273 6. 5-198		Armeo iron A-1	Corrected values for the temperature variation on the data (Curve 44) of Laubitz, 1960. 99.93%* Fe, < 0.0020 O, < 0.0006 N, 0.0004 C, 0.00015 Co, 0.00011 Cu, 0.000065 Cr, 0.00002 Ti, 0.000019 Ge, and 0.000018 V; polycrystalline; spectmen 0.305 cm in dia made from commercial electrolytic iron; fabricated by swaging to 0.483 cm dia with intermediate annealing treatments in Pd-purified hydrogen, and after the final annealing at 650 C for 1/2 hr, a 0.305 cm dia gauge section was chemically polished into the specimen; final equiaxed grain size about 0.1 mm; electrical resistivity ratio \$\text{\$\

SPECIFICATION TABLE NO. 24 (continued)

Composition (weight percent), Specifications and Remarks	The second run of the above specimen.	99.925 Fe, 0.0230 C, 0.0140 O, 0.0116 S, 0.0100 Si, 0.0040 P, 0.0023 Cu, 6.0017 Ti, 0.0016 Zr, 0.0013 Ge, 0.0010 Ni, 0.0009 Cr, 0.0009 Mg, 0.0007 Mn, 0.0005 As, 0.0004 Co, and 0.0003 Ca; polycrystalline; specimer made by vacuum meliting commercial electrolytic iron in the conventional fashion; annealed; electrical resistivity ratio, p(297K)/p(4.2K) = 27.1.	"Very pure"; manufactured by Philips Research Labs, Eindhoven, Holland; wire 2.5 mm in dis; annealed at about 500 C for 10 hrs; electrical resistivity 9.8 µohm cm at 20 C.	Spectroscopically standardized from from Johnson, Matthey and Co.; rod 5.0 mm in dia; annealed at about 500 C for 10 brs; electrical resistivity 9.9 μohm cm at 20 C.	99.865 Fe (by difference), 0.07 Ma, 0.04 Si, 0.015 C, and 0.01 Cu; specimen consisted of two disks each with a length of 20 mm.	99.97 pure; polycrystalline wire.	Electrical conductivity 10.37 and 6.628 x 104 ohm-1cm-1 at 0 and 106° C (author reported 10.37 and 6.628 x 104, probably a typographical error).	0.0250 Ni, 0.0100 Cu, 0.0100 Mc, 0.0070 Cr. 0.0050 C, 0.0040 O, 0.0040 S, 0.0040 V, 0.0030 P, 0.0010 Mn, < 0.0010 Si, 0.0006 N, and 0.000048 H; 1.27 cm dia x 15 cm long; supplied by Metals Research; electrical resistivity reported as 11.7, 14.7, 17.9, 21.6, and 25.6 μ ohm cm at 50, 100, 150, 200, and 250 C, respectively.	0.0055 Ni, 0.0053 Si, 9.0038 Al, 0.0035 S, 0.0020 Co, 0.0017 P, 0.0014 C, 0.0010 Cr. < 0.0010 Mn, 0.0008 C, 0.0007 N, and 0.00016 H; short rod of 1.27 cm da; prepared by Mershlurgy Division of National Physical Laboratory, machined from disk; electrical resistivity reported as 11.9, 14.5, 18.2, 21.8, 25.8, 30.3, 41.0, 53.3, 67.9, 85.2, and 104.2 µ ohm cm at 50, 100, 150, 200, 250, 300, 400, 500, 700, and 800 C, respectively.	0.0800 Si. 0.0300 C, 0.0150 P, 0.0100 Mn, and 0.0100 S; 2.54 cm da x 20 cm long; supplied by Low Moor Best Yorkshire Iron Limited; electrical resistivity reported as 15.8, 18.7, 22.0, 25.9, 30.0, 34.6, 45.0, 57.1, 71.0, 87.5, and 107.2 µohm cm at 50, 100, 150, 200, 250, 300, 400, 503, 600, 700, and 800 C, respectively.	0.001 ~ 0.01 Ni, 0.001 ~ 0.01 Si, 0.003 C, 0.003 S, 0.0025 O, 0.0011 P, 0.0001 ~ 0.001 Al, 0.0001 ~ 0.001 Ca, 0.0001 Cu, 0.0005 N, 0.0001 H; prepared by arcmelling Armeo iron stock in pure inert atmosphere to produce pancake shaped billiers, rolled into sheets and cut to make feed stock for electron-beam meltling, then cast into 4 in. dia x 6 in. long biller, trimmed off outside edges and machined from center portion two disks of dimensions 3.25 in. dia x 1.130 in. thick and 3.25 in. dia x 1.450 in. thick, four Armeo iron disks added as end backup disks to form specimen column of 9 in. high, consisted of studies in total; electrical resistivity reported as 1.037, 5.17, 9.04, 10.35, 11.06, 14.74, 21.32, 30.67, 41.07, 53.98, 68.33, 85.85, 105.48, 109.45, 112.35, 112.47, 113.92, and 115.30 μohric cm at -200, -84, 0, 24.37, 100, 200, 300, 398, 501, 598, 700, 801, 850, 900, 925, 964, and 1000 C, respectively.
Name and Specimen Designation	A-II	m			Armeo Iron			Pure iron No. 1	Pure iron No. 2	Pure free fron	High purity from
Reported Error, %											-
Temp. Range, K	6.5-78	6.0-193	100-280	100-280	425-773	0.42-0.95	273,373	316-483	307-499	323-573	332-1173
Year	1965	1965	1961	1961	1965	1963	1881	1961	1967	1967	1964
Method Used	1	ı.	ñ	u	æ		J	ħ	i i	٦	œ
Ref.	019	670	671	671	695. 696	6 83	706	841	841	84	76
Curve No.	74	75	76	4	87	79	6	18	82	83	**************************************

SPECIFICATION TABLE NO. 24 (continued)

Composition (weight percent). Specifications and Remarks	2nd run of the above specimen. 3rd run of the above specimen; after 2nd run, temperature raised to 1065 C and left overnight to stabilize thermocouples.	1 in. dia x 0.250 in. thick; Armoo iron used as comparative material. 99.97 pure disc shaped specimen 10.45 cm in dia with an axial hole 1.27 cm in dia; measured in a vacuum of 2 x 10 ⁴ mm Hg.	Specimen supplied by Abeles, B. Thermal conductivity values calculated from the measured data of thermal diffusivity specific heat data of Darkin, L.S. and Smith, R.P., (Ind. Engr. Chem., 43, p. 1815, 1951) and the density of 7.867 g cm ⁻³ .	99.95 Fe (approx); 0.002-0.02 Si, 0.014 C, 0.00095-0.0095 Ni, 0.0088 O, < 0.0056 H, 0.0052 S, 0.00021-0.0021 Al, 0.002 P, 0.002 N, 0.00014-0.0014 Ca, and 0.00099-0.0095 Cu, obtained by electron-beam melting Armco Iron; electrical resistivity reported as 0.40, 1.01, 5.31, 9.04, 11.72, 14.70, 18.06, 21.84, 26.10, 30.72, 35.90, 41.51, 47.53, 54.12, 61.22, 68.89, 77.10, 86.22, 96.46, 105.53, 109.58, 112.56, 113.09, 112.54, 113.66, and 115.49 µ ohm cm at -269, -195.7, -79.1, 0, 50, 100, 150, 200, 259, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 910, 920, 950, and 1000 C, respectively.	Purc. 0.125 in. dia x 10 cm long; electrical resistivity 15.8 µ ohm cm at 0 C; measured in a longitudinal magnetic field of 10000 gausses. Ingitudinal magnetic field of 10000 gausses. The above specimen measured in a transverse magnetic field of 4000 gausses.
Name and Specimen Designation	High purity iron High purity iron	Armco Iron	Armeo Iron Armeo Iron	High purity from	
Reported Error. %				±1.5	
Temp. Raage, K	1193-1273	3 49~926 373-1273	397-636 336-1269	323-1273	273.2 273.2 273.2
Year	1964	1963	1962 1956	1966	636-1102 1927 1927
Method Used	« «	ပေး	n L	p£	1966 E
Ref.	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	312 895	477	916	1004
Curve No.	85 86	ac ao F- ao	68 66	16	92 93

DATA TABLE NO. 34 THERMAL CONDUCTIVITY OF IRON

(Impurity < 0, 20% each: total impurities < 0, 50%)

CUINTE 10(cut) CUTYE 13(cut) CUTYE 16(cut) CUTYE 10(cut) CUTYE 13 (cut) CUTYE 14	K K K K K K K K K K	X 0. 330 0. 330 0. 330 0. 343 0. 343 0. 130 0. 130 0. 130 0. 130 1. 460 1. 460 1. 460 2. 375 2. 375 2. 375 2. 375 2. 375 2. 375 2. 375 1. 460 1. 375 2. 375 2. 375 2. 375 2. 375 2. 375 2. 375 2. 375 3.	CURVE 1073.2 1173.2 1273.2 1273.2 1273.2 1273.2 1273.2 12.95.3 14.40 14.50 14.50 17.40 28.60 33.00 34.00 35.00 36.	K ((cont.) 1. 224 1. 305 1. 30	28. 40 22. 00 67. 10 76. 80 93. 00 CUMYP 21. 2 63. 2 63. 2 63. 2 63. 2 63. 2 63. 2 63. 2 63. 2 63. 2 63. 2 63. 2 63. 2	13(cont.) ⁶ 13(cont.) ⁶ 13 (cont.) ⁶ 14 (cont.) ⁶ 14 (cont.) ⁶ 15 (cont.) ⁶ 16 (cont.) ⁶ 16 (cont.) ⁶ 17 (cont.) ⁶ 18 (con.) ⁶ 18 (cont.) ⁶ 18	CULM 5 6 4 1 1 3 4 4 2 5 1 6 4 1 1 3 4 4 2 5 2 5 6 6 4 3 4 6 5 1 6 4 3 6 5 1 6 4 3 6 5 1 6 4 3 6 5 1 6 4 3 6 5 1 6 6 4 3 4 6 6 6 4 3 4 6 6 6 6	K K GCONL) 0.729 0.729 0.729 0.729 1.070 1.230 1.710 0.389 0.331 0.311 0.311 0.774 0.774 0.778	CURVE 1 11.33 11.33 12.81 12.81 16.54 22.50 22.50 24.5 111.0 111.0 111.0 111.0 111.0 111.0 111.0	6 (2011.) 0. 347 0. 347 0. 347 0. 348 0. 348 0. 348 0. 348 0. 348 0. 294 0. 294 0. 294 0. 294 0. 294 0. 294 0. 294 0. 294 0. 294 0. 294 0. 294	7 CURVE 973.9 1009.6 1013.9 423.9 510.0 529.0 746.0 746.0 746.0 746.0 1122.2 1160.8 1134.0 1152.0 1134.0 1153.1	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	VE 30 11 11 11 11 11 11 11 11 11 11 11 11 11	RV E
CUINTE 10(cont.) CUINTE 10(cont.) CUINTE 10(cont.) CUINTE 10(cont.) CUINTE 10(cont.) CUINTE 10(cont.) CUINTE 10(cont.) CUINTE 10 (cont.) CUINTE 12 0.389 38.40 L.244 1073.2 0.389 10.300 L.345 1173.2 0.389 10.00 L.345 1173.2 0.389 10.00 133.2 0.389 10.00 133.2 0.389 10.00 133.2 0.389 10.00 133.2 0.389 10.00 133.2 0.389 10.00 133.2 0.389 10.00 133.2 0.130 10.389 10.00 133.2 0.130 10.389 10.00 13.39 10.00 13.39 10.00 13.39 10.00 13.39 10.00 13.39 10.00 13.39 10.00 13.39 10.00	CURVE 13 (cont.) CURVE 16 (cont.)	211 ccont 0.330 0.348 0.348 0.348 0.348 0.348 0.422 0.420 0.	CURVE 1073 2 1173 2 1273 2 1273 2 1273 2 1273 2 12 95 3 14 40 14 50 14 50 14 50 17 40 22 22 22 22 22 22 23 30 33 00 33 00 33 00 56 70 56 70 56 70 65 50 175	((cont.)) 11.224 11.224 11.335 11.335 11.335 11.335 11.350 11.360 11.360 11.360 11.360 11.360 11.360 11.360	22. 00 67. 10 76. 80 93. 00 67. 10 76. 80 93. 00 CUMYP 21. 2 83. 2 83. 2 83. 2 83. 2 83. 2 83. 2 83. 2 83. 2 83. 2 83. 2	13(cont.) ⁶ 0 460 0 450 0 450 0 450 0 450 0 385 0 460 0 385 0 385 0 385 0 385 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653	CULHVE 683. 5 738. 6 738. 6 738. 6 748. 9 941. 9 960. 1 960. 1 325. 6 325. 6 326. 2 440. 2 452. 2 452. 2 452. 3 452. 6 453. 4 643. 4	01cont.) 0729 0.876 0.982 1.070 1.230 1.710 0.389 0.331 E.12 0.916 0.928 0.774 0.774	CURVE 1 9.75 11.33 12.81 12.81 14.40 16.54 22.50 22.50 24.52 1008.2 1008.2 111.0 113.7 178.2 178		5. Cont. 6. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	© 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CCERVE 54.00 1009.6 1009.6 1009.6 1009.6 1009.6 1009.6 1009.0 100	E 3(cont.) CURVE 5(cont.) U 699 U 678 U 661 U 661 U 661 U 663 U 665 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 597 371.2 U 598 U 778 U 789	CURVE 51 COR. 1857 423.2 0.699 473.2 0.678 1009.6 0.473.2 0.661 1015.5 0.510 0.541 373.2 0.667 1010.5 0.94 473.2 0.667 1010.6 0.94 473.2 0.607 473.9 0.94 473.2 0.607 423.9 0.94 473.2 0.607 423.9 0.90 100 607.6 0.541 0.540 0.90 607.6 0.340 0.340 1122.2 0.435 0.431 1122.2 0.435 0.431 0.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1, 12, 10, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 14, 13, 13, 13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	0. 330 0. 348 0. 348 0. 348 0. 130 0. 130 0. 130 0. 130 1. 190 1. 190	1073.2 1173.2 1173.2 1273.2 173.2 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	1, 224 1, 305 1, 1099 0, 931 0, 931 0, 933 1, 505 1, 505 1, 505 1, 360 0, 715 0, 715 1, 40	38, 40 52, 00 67, 10 76, 89 93, 00 CURVE 21, 2 83, 2 CURVE 21, 2 83, 2 63, 2 194, 7 213, 2	0 460 0 435 0 435 0 389 0 389 0 389 0 689 0 689	683.3 738.6 738.6 841.9 841.9 841.9 921.0 325.6 337.7 360.4 325.6 337.7 474.8 474.8 492.9 492.9 492.9	0.876 0.982 0.982 1.1070 1.1070 1.710 1.710 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331	9, 75 11, 33 12, 81 14, 40 16, 54 22, 50 22, 50 111, 0 178, 2 1008, 2 1008, 2 1008, 2 111, 0 178, 2 214, 5 214, 5 214, 6 2314,		0, 347 0, 329 0, 329 0, 637 0, 521 0, 521 0, 521 0, 521 0, 521 0, 521 0, 294 0,	665	699 973.9 0. 678 1009.6 0. 661 1015.5 0. 665 371.2 0. 667 423.9 0. 597 510.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 536 746.0 0. 540 1150.0 0. 717 1122.2 0. 718 1122.2 0. 719 1122.2 0. 719 1122.2 0. 694 1477.0 0. 694 1477.0 0.	0. 699 973.9 0. 0. 678 1009.6 0. 0. 661 1015.5 0. 0. 0. 665 271.2 0. 0. 597 510.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 540 629.0 0. 0. 694 1177.0 0. 0. 694 1577.0 0. 0. 694 1577.0 0. 0. 694 1577.0 0. 0. 694 1577.0 0. 0. 694 1577.0 0. 0. 694 1577.0 0. 0. 694 1577.0 0. 0. 696	423.2 0.699 973.9 0.448.2 0.678 1009.6 0.473.2 0.661 1015.5 0.67813.2 0.661 1015.5 0.67813.2 0.657 371.2 0.473.3 0.561 599.8 0.575.1 0.540 629.0 0.673.3 0.541 629.0 0.673.2 0.432 0
1, 12, 20, 12, 20, 24, 30, 24, 30, 24, 30, 24, 31, 31, 22, 20, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34	1, 1230	0. 348 0. 348 0. 348 0. 130 0. 130 0. 130 0. 420 0. 420 1. 190 1. 190 2. 140 2. 140 2. 145 1. 192 1. 450 1. 450 1. 450 1. 450 1. 450 1. 450 1. 450 0. 606 0. 606	1173.2 1273.2 12.95.2 11.30 11.30 11.50 11	11, 305 11, 099 11, 099 10, 935 11, 505 11, 505 11, 505 11, 360 11, 36	22. 00 76. 30 93. 00 20. 2 21. 2 83. 2 CURVE 21. 2 83. 2 63. 2 19. 7 21. 2 83. 2	0 435 0 406 0 389 0 389 0 389 0 380 0 638 0 653 0 653	738.6 738.6 738.6 41.9 882.5 960.7 960.7 325.6 325.6 326.4 429.2 429.2 431.7 474.8	0.876 0.982 1.0982 1.1230 1.230 1.710 0.389 0.331 E.12 0.916 0.828 0.774 0.774	11. 33 16. 54 16. 54 16. 54 22. 50 22. 50 1783. 2 1884. 2 1008. 2 1008. 2 111. 0 111. 0 114. 5 214. 5 214. 5 214. 5 214. 5		9, 332 9, 329 9, 521 0, 521 0, 521 0, 521 0, 331 0, 331 0, 294 0, 303	33 3 000000000000000000000000000000000	4* CCRVE 6 661 1015 5 6 665 371.2 0 667 423.9 0 597 510.0 0 598 60 745.0 0 599 823.2 0 491 836.3 0 492 826.4 0 492 1054.7 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 694 1477.0 0 694 1477.0 0 694 1593.7 0	HNE 4* CURVE 6 0. 0. 661 1015.5 0. 0. 0. 597 371.2 0. 0. 567 423.9 0. 0. 540 629.0 0. 0. 536 746.0 0. 0. 435 923.2 0. 0. 435 923.2 0. 0. 435 929.4 0. 0. 435 923.2 0. 0. 435 923.2 0. 0. 0. 729 1160.8 0. 0. 729 1160.8 0. 0. 694 1377.0 0. 0. 694 1577.0 0. 0. 696 0. 0. 686	448.2 0.678 1009.6 0. 473.2 0.661 1015.5 0. CURVE 4 373.2 0.663 371.2 0. 473.2 0.667 423.9 0. 535.3 0.561 599.8 0. 575.1 0.540 629.0 0. 673.2 0.431 599.8 0. 772.2 0.435 923.2 0. 772.2 0.435 923.2 0. 772.2 0.435 923.2 0. 319.5 0.729 1160.8 0. 340.9 0.717 1252.0 0. 383.0 0.705 1334.0 0. 385.0 0.666 1477.0 0.
1.230	1 1230 1842 5 0 349 5 14 14 14 14 14 14 14	VE 22 0. 130 0. 130 0. 420 1. 190 1. 190 1. 190 2. 140 2. 140 2. 140 2. 140 2. 140 2. 140 1. 450 1. 450	CUR 1. 50 2. 95 2. 95 1. 50 11. 90 11. 90 11. 90 11. 90 11. 90 28. 20 28. 20 28. 30 33. 00 33. 00 56. 70 56. 70 66.	1, 505 0, 935 0, 935 1, 505 1, 505 1, 360 1, 360 0, 715 0, 715 1, 40	21. 2 83. 2 CURVE 21. 2 83. 2 CURVE 21. 2 83. 2 64. 2 194. 7 213. 2	(VE) 1400 0.0380 0.0380 0.0380 0.6690 0.6690 0.6690 0.6690 0.6690 0.6900 0.6900	# 1	6. 916 6. 917 6. 917 6. 916 6. 916 6. 917 6. 917 6. 917 6. 917 6. 917 6. 917 6. 917 6. 918 6. 918	16. 581 16. 581 22. 50 22. 50 22. 50 78.3. 2 78.3. 2 1008. 2 1008. 2 111. 0 111. 0 148. 7 214. 5 214. 5 214. 5 214. 5 214. 5		VE 6 0.687° 0.687° 0.687° 0.521 0.521 0.331 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294	5	4* CCRVE (665 371.2 0 567 423.9 0 536 539.8 0 536 539.8 0 536 746.0 0 491 836.3 0 491 836.3 0 435 923.2 0 435 923.2 0 437 122.2 0 705 1334.0 0 694 1477.0 0 694 1477.0 0	HNE 4" CURVE 65 371.2 0. 0. 597 510.0 0. 597 510.0 0. 596 0. 596 0. 596 0. 596 0. 596 0. 699 0. 699 0. 699 0. 699 0. 699 0. 699 0. 699 0. 699 0. 699 0. 696 0. 6	2URVE 4 CURVE 6 1015. 3 CURVE 6 173. 2 0.663 371. 2 0.673 171. 2 0.677 172. 2 0.491 195. 3 CURVE 6 172. 2 0.491 195. 3 CURVE 6 172. 2 0.491 195. 3 CURVE 6 172. 2 0.491 195. 3 CURVE 6 172. 2 0.491 195. 3 CURVE 6 172.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.230 962.5 0.389 93.00 0.935 CURVE_22 961.2 1.1710 942.5 0.389 93.00 0.935 CURVE_22 966.2 1.1710 942.1 0.377 CURVE_14 0.420 0.420 933.2 0.444 210.1 0.699 21.2 3.610 4.40 0.420 933.2 0.444 210.1 0.699 21.2 3.610 4.40 0.420 933.2 0.444 210.1 0.699 CURVE_18 17.40 1.70 1.032.2 0.389 337.7 0.699 21.2 3.010 23.3 2.020 2.010 0.381 337.7 0.689 21.2 3.010 23.3 0.2140 CURVE_18 0.311 365.6 0.669 21.2 3.010 23.3 0.2140 CURVE_19 0.512 4.45 0.632 2.12 3.010 23.3 0.2140 CURVE_19 0.514 4.11.7 0.613 3.2 1.360 2.460 2.450 0.774 6.434 0.432 CURVE_19 3.66 2.425 3.65 0.775 6.434 0.432 CURVE_20 9.10 1.255 1.470 0.775 6.434 0.432 CURVE_20 9.10 1.255 1.470 0.776 6.434 0.431 CURVE_20 9.10 1.255 1.470 0.776 6.434 0.435 CURVE_20 9.10 1.255 1.470 0.776 6.434 0.435 CURVE_20 9.10 1.255 1.430 0.776 6.434 0.435 1.27 0.715 6.20 1.600 0.776 6.434 0.435 1.27 0.715 6.20 1.600 0.776 6.434 0.435 1.27 0.715 6.20 1.600 0.776 6.434 0.435 1.27 0.715 6.20 1.600 0.776 6.434 0.435 1.27 0.715 6.20 1.600 0.777 6.434 0.435 1.27 0.715 6.20 1.600 0.780 6.430 0.445 1.7 1.40 1.28 0.600 0.780 6.430 0.445 1.40 1.40 1.600 0.660 6.20 0.445 1.40 1.40 0.661 6.20 0.445 1.40 1.40 1.600 0.662 6.20 0.445 1.40 1.40 1.600 0.663 6.20 0.445 1.40 1.40 1.600 0.664 2.12 0.445 1.40 1.40 1.40 1.600 0.665 6.20 0.445 1.40 1.40 1.40 1.600 0.666 6.20 0.445 1.40 1.40 1.40 1.40 0.660 6.40 0.40 0.40 0.40 0.40 0.40 0.660 6.40 0.40 0.40 0.40 0.40 0.40 0.660 6.40 0.40 0.40 0.40 0.40 0.660 6.40 0.40 0.40 0.40 0.40 0.660 6.40	VE 22 0.130 0.420 0.420 1.190 1.190 1.190 2.140 2.140 2.140 2.140 2.140 2.140 2.140 1.450	CUR 1. 50 2. 95 4. 40 11. 90 11. 90 11. 50 11. 50 28. 20 28. 30 28. 30 28. 30 28. 30 33. 00 33. 00 56. 50 66. 50 66. 50 126. 5	0. 935 3. 610 1. 505 1. 305 3. 010 1. 360 0. 937 0. 715 0. 715 1. 40	21. 2 83. 2 CURVE 21. 2 83. 2 63. 2 63. 2 63. 2 194. 7 213. 2 213. 2	C 385 C 385 C 385 C 385 C 659 C 669 C 669 C 669 C 669 C 671 C 571 C 571 C 571 C 571 C 571 C 672 C 689 C 689	982.5 960.7 300.4 300.4 300.4 300.4 300.4 429.2 439.2 439.5 693.4 693.4	E 11 ** 1.230 1.710 1.710 1.710 0.456 0.444 0.331 E 12 E 12 E 12 0.916 0.916 0.918 0.774 0.774	16.54 22.50 22.50 CURV 783.2 884.2 1008.2 1008.2 111.0 111.0 114.5 214.5 214.5 214.5		VE 6 0 687 0 687 0 521 0 521 0 521 0 521 0 331 0 294 0 303 0 303	00000000000000000000000000000000000000	GGS 371.2 0 0 565 423.9 0 0 556 542.9 0 0 0 556 542.2 0 0 0 491 491 492.2 0 0 491 435 923.2 0 0 694 0 0 1122.2 0 0 694 177.0 0 0 0 694 177.0 0 0 0 694 177.0 0 0 0 694 177.0 0 0 0 694 177.0 0 0 0 0 694 177.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2URVE 4* CURVE 6 373. 2 0.663 371.2 0 474.2 0.597 510.0 0 535.3 0.561 599.8 0 575.1 0.540 629.0 0 673.2 0.491 836.3 0 772.2 0.432 960.4 0 772.2 0.435 960.4 0 772.2 0.435 960.4 0 340.9 0.717 122.2 0 319.5 0.729 1160.8 0 340.9 0.717 1252.0 0 385.0 0.705 1334.0 0 385.0 0.666
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.130 0.420 0.420 1.190 1.190 1.190 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 1.450 1.450 1.450 1.275 1.200 1.000 1.000	1. 50 2. 95 2. 95 2. 95 11. 96 11. 96 11. 96 11. 96 11. 96 28. 60 28. 60 33. 60 33. 60 34. 65 56. 70 65. 50 65. 50 110. 50 128. 0	3. 610 1. 505 1. 505 3. 010 3. 010 1. 360 0. 937 0. 715 0. 715 1. 40	21. 2 83. 2 CURVE 21. 2 83. 2 63. 2 64. 2 194. 7 273. 2 CURVE 20. 2 194. 7	0 385 0 377 0 553 0 653 0 653	951.9 960.7 301.4 325.6 337.7 365.4 429.2 439.2 431.7 454.8 459.0 459.0 643.4 643.4	E 11** E 11** E 13** E 13** E 13** E 13** E 12** E	22.50 CUIV 718.2 783.2 783.2 784.2 1008.2 110.0 111.0 178.2 214.5 231.4 231.4 231.4 231.4 231.4 231.4 231.4		0 687 0 687 0 687 0 687 0 687 0 687 0 687 0 6821 0 6821 0 6821 0 6898 0 838 0 838 0 6294 0 295 0 294 0		665 371.2 0 607 423.9 0 597 510.9 0 540 629.0 0 536 746.0 0 491 836.3 0 491 836.3 0 435 960.4 0 717 1122.2 0 717 122.2 0 717 122.2 0 717 123.0 0 694 1477.0 0 694 1593.7 0	2. 665 371.2 0 0. 607 423.9 0 0. 597 510.0 0 0. 540 629.0 0 0. 536 746.0 0 0. 435 923.2 0 0. 435 923.2 0 0. 435 923.2 0 0. 729 1160.8 0 0. 729 1160.8 0 0. 729 1160.8 0 0. 729 1160.8 0 0. 694 1477.0 0 0. 696 1593.7 0	373. 2 9.665 371.2 0 473.9 0 473.2 0 667 423.9 0 677.2 0 581 599.8 0 673.5 1 0 540 629.0 0 673.5 1 0 540 629.0 0 673.5 0 435 923.2 0 772.2 0 435 923.2 0 772.2 0 435 923.2 0 772.2 0 435 923.2 0 712.2 0 319.5 0 717 122.2 0 319.5 0 717 122.2 0 335.0 0 705 1160.8 0 335.0 0 666
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 130 0. 130 0. 280 0. 280 1. 190 1. 190 2. 375 2. 460 2. 375 2. 460 2. 375 1. 470 1. 470 1. 470 1. 120 1. 120 1. 060 0. 606	1.50 1.50 1.190 1.	2.5.610 1.505 1.505 3.010 1.360 0.937 0.715 0.715 1.40	21.2 83.2 83.2 21.2 83.2 83.2 194.7 273.2 CURVE	VE_14* 0 659 0 669 0 669 0 663 0 663 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653	960.7 201.4 303.7 303.6 337.7 365.6 386.4 429.2 431.8 434.8 432.8 434.8 643.4	E 11* 0.456 0.331 0.331 0.331 0.916 0.828 0.828 0.774 0.774	CUIV 7118.2 783.2 783.2 783.2 1008.2 1008.2 111.0 173.7 178.2 214.6 231.4 548.2		0.687 0.637 0.521 0.521 0.521 0.331 0.294 0.294 0.294 0.294 0.294 0.303	ଚର୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍	665 371.2 0 597 510.0 0 561 599.8 0 536 746.0 0 536 746.0 0 536 746.0 0 491 836.3 0 492 860.4 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.2 0 1122.0 0 694 1477.0 0 694 1593.7 0	9, 665, 371, 2 0, 667 423, 9 0, 6667 423, 9 0, 0, 561 539, 8 0, 0, 536 746, 0 0, 0, 536 746, 0 0, 0, 435 431, 2 0, 0, 729 1160, 8 0, 0, 729 1160, 8 0, 0, 0, 705 1134, 0 0, 0, 694 1477, 0 0, 0, 696	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CURVE 14	0. 280 0. 280 1. 1460 1. 170 2. 375 2. 375 2. 460 2. 475 1. 630 1. 470 1. 120× 1. 120× 1. 060 ³ 0. 690 0. 650 0. 552	2. 95. 11. 90. 11. 90. 11. 90. 11. 90. 11. 90. 23. 00. 23. 00. 23. 00. 33. 00. 33. 00. 33. 00. 34. 65. 34. 65. 35. 66. 70. 36. 70. 36. 70. 37. 00. 37.	3, 610 1, 505 1, 505 3, 010 1, 360 0, 715 0, 715 0, 715 1, 40	21.2 83.2 CURVE 21.2 83.2 CURVE 90.2 194.7 273.2 CURVE	VE 14* 0 699 0 692 0 692 0 693 0 693 0 632 0 632 0 633 0 632 0 536 0 536 0 543	CUPP 300.4 325.6 337.7 365.6 386.4 429.2 431.8 452.9 452.9 643.4	E 11* 0.369 0.444 0.381 0.389 0.311 0.916 0.916 0.928 0.770	CUIN 718.2 783.2 783.2 884.2 1008.2 1008.2 111.0 173.7 176.2 214.6 234.6 234.6		0.637 0.551 0.551 0.551 0.551 0.358 0.338 0.294 0.294 0.294 0.294 0.303	かいめい ひゃく マット	607 423.9 597 510.0 561 599.8 540 629.0 536 746.0 491 836.3 435 960.4 1122.2 772 1160.8 777 125.0 705 1334.0 694 1477.0	0. 607 423.9 0. 597 510.0 0. 561 599.0 0. 540 629.0 0. 536 716,0 0. 491 836.3 0. 433 960.4 1023.2 0. 729 1160.8 0. 717 1252.0 0. 729 1160.8 0. 717 1252.0 0. 693 1593.7	443.2 0 6607 423.9 484.2 0 597 510.0 535.3 0 561 599.8 575.1 0 540 629.0 673.2 0 491 836.3 772.2 0 435 950.4 CURVE 5 1054.7 1122.2 319.5 0 729 1160.8 340.9 0 717 1252.0 385.5 0 693 1593.7 390.0 0 686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 456 0. 456 0. 456 0. 456 0. 456 0. 456 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 457 0. 458 0. 45	1. 150 1. 170 1. 170 2. 375 2. 375 2. 375 2. 375 1. 450 1. 455 1. 455 1. 455 1. 455 1. 120 1. 120 1. 120 1. 600 1.	11.90 11.90 11.90 11.40 23.02 23.02 23.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 34.00 56.70 56.70 56.70 15.50 115.00	1. 503 1. 503 1. 360 1. 360 0. 937 0. 715 0. 715 1. 40	21.2 21.2 83.2 83.2 90.2 194.7 273.2 CUNYE	1.42.14 6.659 6.659 6.653 6.653 6.653 6.653 6.653 6.653 6.654 6.65	201.4 201.4 325.6 337.7 366.4 366.4 478.8 478.8 478.8 643.4 643.4	0, 456 0, 444 0, 389 0, 331 0, 331 0, 916 0, 916 0, 770 0, 770 0, 770	718.2 783.2 884.2 1008.2 1008.2 111.0 143.7 176.2 214.5 214.6		0.551 0.551 0.551 0.358 0.358 0.331 0.294 0.294 0.294 0.294 0.294 0.294	1 2 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	297, 2910, 0 240, 0 240, 0 236, 1 240, 0 241, 0 25, 0 1122, 2 1122, 2 1122, 2 1122, 2 1122, 2 1122, 2 1122, 2 1122, 2 1123, 1 124, 0 694, 1477, 0 694, 1593, 7	0. 557 510. U 0. 551 599. 8 0. 540 629. 8 0. 536 746. 0 0. 435 923. 2 0. 435 960. 4 1122. 2 0. 729 1160. 8 0. 717 1222. 0 0. 694 1477. 0 0. 694 1477. 0	535.7 0.551 599.0 597.5 510.0 555.1 0.540 529.0 672.1 0.540 629.0 6772.2 0.435 923.2 772.2 0.435 923.7 122.2 319.5 0.729 1160.8 340.9 0.717 1252.0 385.5 0.693 1593.7 390.0 0.696 1593.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1, 460 2, 140 2, 140 2, 140 2, 140 2, 450 1, 425 1, 630 1, 630 1, 120 1,	14. 55 17. 40 20. 20 20. 20 20. 20 20. 20 20. 20 33. 00 33. 00 33. 00 34. 65 56. 70 65. 50 75. 50 110. 00 110. 00 128. 0	1. 360 0. 937 0. 713 0. 707 1. 40	21.2 83.2 83.2 90.2 194.7 273.2 CUNYE	0 699 0 695 0 668 0 668 0 668 0 668 0 618 0 618	301, 4 325, 6 325, 6 337, 7 365, 6 366, 6 366, 2 429, 2 434, 3 434, 3 538, 5 643, 4	0.369 0.389 0.331 0.331 0.331 0.331 0.316 0.862 0.828 0.770 0.770	783.2 884.2 1008.2 1008.2 111.0 143.7 176.2 214.6 214.6		0. 352 0. 352 0. 358 0. 331 0. 294 0. 294 0. 294 0. 294 0. 294 0. 294		340 629 0 340 629 0 349 836 3 435 923 2 960 4 1054 7 1122 2 1122 2 1122 2 1122 2 1122 2 1122 2 1122 2 1123 1 125 1 125 0 1334 0 694 1477 0 694 1593 7	0. 540 0. 536 0. 435 0. 435 0. 435 18.6. 3 960. 4 1122. 2 0. 729 0. 717 0. 694 0. 694 0. 686 0. 686	575.1 0.540 629.0 607.6 0.536 746.0 677.2 0.435 950.4 772.2 0.435 960.4 <u>CURVE</u> 5 1054.7 1122.2 319.5 0.729 1160.8 340.9 0.717 1252.0 383.0 0.705 1334.0 385.5 0.694 1477.0 385.0 0.694 1593.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.770 2.1010 2.1010 2.373 2.425 1.450 1.470 1.120* 1.060* 0.606 0.552	17. 40 29. 20 29. 20 28. 60 33. 00 33. 00 33. 00 34. 65 56. 70 65. 50 75. 50 75. 50 91.00 110.00 128. 0	3, 010 1, 360 1, 360 0, 937 0, 715 0, 707 1, 40	21.2 83.2 83.2 90.2 194.7 273.2 CUNYE	0.695 0.6682 0.6683 0.6633 0.058 0.037 0.038 0.036 0.036 0.0481 0.481	325, 6 337, 7 365, 6 366, 4 429, 2 474, 8 474, 8 492, 0 538, 5 643, 4	0.389 0.331 <u>E.12</u> 0.331 0.916 0.828 0.774 0.774	884.2 1008.2 111.0 175.2 214.5 214.6 231.4		0.389 0.389 0.331 0.294 0.294 0.294 0.294 0.294 0.294 0.294	の おおすたいののひかた	536 746.0 491 836.3 435.922.2 960.4 1054.7 1122.2 1122.2 1122.2 1122.2 1122.2 1123.2 1123.2 1124.0 694 1477.0 694 1593.7	0. 536 746. 0 0. 435 823. 2 0. 435 923. 2 960. 4 1122. 2 0. 729 1160. 8 0. 717 1222. 0 0. 717 1222. 0 0. 694 1477. 0 0. 694 1593. 7 0. 686	607.6 0.536 746.0 673.2 0.491 836.3 772.2 0.495 950.4 <u>CURVE</u> 5 1054.7 319.5 0.729 1162.2 340.9 0.717 1252.0 363.0 0.705 1334.0 385.5 0.694 1477.0 390.0 0.686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HYE 12 337.7 0.682 21.2 3.010 23.02 2.040 CURVE HYE 12 365.6 6.63 21.2 3.010 28.60 2.140 CURVE 0. 916 471.7 0.613 83.2 1.360 2.86 2.425 3.05 0. 916 471.7 0.613 QURVE 9.36 5.2.425 3.05 0. 828 472.0 0.577 90.2 0.937 56.70 1.850 2.05 0. 828 472.0 0.536 194.7 0.715 56.70 1.850 4.45 0. 774 643.4 0.481 CCIRVE 10.77 75.50 1.770 5.50 1.770 5.50 1.770 5.50 1.770 5.50 1.770 5.50 1.770 6.50 1.425 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	2. 010 2. 140 2. 140 2. 460 2. 460 2. 460 1. 453 1. 453 1. 470 1. 120 1. 120 1. 060 0. 606 0. 552	20.20 23.30 23.30 33.00 33.00 35.65 56.70 65.30 75.50 110.00 110.00 110.00 110.00 110.00	3, 010 1, 360 0, 937 0, 715 0, 715 1, 20 1, 40	21. 2 53. 2 53. 2 CURVE 90. 2 194. 7 273. 2 CURVE	0.682 0.669 0.663 0.615 0.598 0.536 0.536 0.481 0.481	23.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.331 0.916 0.862 0.828 0.774 0.774	1008. 2 CURV 111. 0 178. 2 214. 5 231. 6 231. 6		0.389 0.331 0.294 0.294 0.294 0.294 0.294 0.294 0.294	コンチャンのりつしゃ	491 836.3 435 923.2 960.4 1054.7 1122.2 1122.2 1122.2 1122.2 1122.2 1122.2 1123.2 1140.8 1177.0 694 1477.0 694 1593.7	2 0 491 H36.3 2 0 435 923.2 923.2 960.4 1022.2 5 0 729 1160.8 9 0 717 1252.0 0 0 717 1252.0 0 0 694 1477.0 5 0 698 1593.7	673.2 0 491 836.3 772.2 0 435 923.2 960.4 50.4 1054.7 1122.2 319.5 0 777 1252.0 363.0 0 705 1334.0 385.5 0 694 1477.0 385.5 0 693 1593.7 390.0 0 686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NAME 2 12 13 14 14 15 15 15 14 15 15	2. 140 2. 450 2. 425 3. 425 1. 920 1. 920 1. 170 1. 170 1. 120 1.	23.30 23.00 33.00 36.65 34.03 56.70 65.30 75.50 110.5 128.0	0. 937 0. 937 0. 707 0. 707 0. 707	21. 2 63. 2 CURVE 90. 2 194. 7 273. 2 CURVE	0.000 0.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E. 12 0. 916 0. 862 0. 828 0. 774 0. 779	CURV 111. 0 178. 2 214. 5 231. 6 231. 6		0, 303 0, 331 0, 294 0, 294 0, 294 0, 294 0, 393 0, 303	74500077F	54 95.2 960.4 1054.7 1122.2 1122.2 1150.8 1177 1252.0 1505.1 1505.0 1505	2 0. 433 923.2 960.4 960.4 1054.7 1122.2 5 0. 729 1160.8 9 0. 717 1252.0 0 0. 717 1334.0 0 0. 694 1477.0 5 0. 694 1593.7	772. 2 0. 435 923. 2 960. 4 <u>CURVE</u> 5 ⁴ 1054. 7 1122. 2 319. 5 0. 729 1160. 8 363. 0 0. 717 1252. 0 363. 0 0. 717 1252. 0 385. 5 0. 694 1477. 0 385. 5 0. 693 1593. 7 390. 0 0. 686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. 450 2. 425 1. 920 1. 920 1. 920 1. 120 1. 120 1. 120 1. 160 1.	23.00 33.00 36.65 34.03 56.70 65.30 75.50 11.50 110.5 128.0	0.937 0.715 0.715 0.707 0.707 1.40	90. 2 194. 7 273. 2 CURVE	0, 632 0, 613 0, 613 0, 514 0, 519 0, 481 0, 452	6.69 (1.40 (0.916 0.916 0.828 0.774 0.776	111. 111. 111. 111. 111. 111. 111. 111		0, 294 0, 294 0, 294 0, 294 0, 294 0, 303 0, 303	* r- N & O O O O O -	54 1054.7 1129 1160.8 1729 1160.8 1717 1252.0 1705 1334.0 694 1477.0	CURVE 5 4 1054.7 1054.7 1052.2 5 0.729 1160.8 9 0.717 1252.0 0 0.694 1477.0 5 0.694 1593.7 0 0.666	CURVE 5 4 1054.7 319.5 0.729 1160.8 340.9 0.717 1252.0 363.0 0.705 1334.0 385.0 0.694 1477.0 385.5 0.693 1593.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.916	2. 425 1. 920 1. 920 1. 635 1. 275 1. 1205 1. 060 ⁴ 2. 690 0. 690 0. 552	36, 65 34, 05 34, 05 34, 05 56, 70 65, 30 75, 50 91, 00 110, 5 128, 0	0.937 0.715 0.707 0.707 1.40	CURVE 90.2 194.7 273.2 CURVE	0.000 0.000 0.000 0.000 0.000 0.400 0.400 0.400	6.92.7 6.92.7 6.92.6 6.92.7 6.92.7 7.93.4 6.93.4 6.93.4	0.916 0.862 0.828 0.774 0.779	111.0 176.2 214.5 214.5 231.4 6		0.294 0.294 0.294 0.393 0.303		1122 2 1122 2 1122 2 1160 8 11	5 0.729 1150.2 9 0.717 1252.0 10 0.654 1477.0 5 0.694 1593.7 0 0.666 1593.7	319, 5 0, 729 1160, 8 340, 9 0, 717 1252, 0 363, 0 0, 705 1334, 0 382, 0 0, 694 1477, 0 385, 5 0, 693 1593, 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 862	1. 920 1. 855 1. 630 1. 470 1. 470 1. 120 1. 060 0. 690 0. 606 0. 532	54. 05 56. 70 65. 50 75. 50 110. 5 128. 0	0. 937 0. 715 0. 707 2.0 1. 40	90. 2 194. 7 273. 2 CURVE	0. 598 0. 577 0. 556 0. 529 0. 458	474.8 492.0 538.5 642.7 693.4	0.862 0.828 0.774 0.774 0.778	176.2 176.2 214.5 231.4		0, 294 0, 294 0, 294 0, 303 0, 303	8000	1160.8 1252.0 1334.0 1477.0	5 0.729 1160.8 9 0.717 1252.0 0 0.705 1334.0 0 0.694 1477.0 0 0.686 1593.7	319.5 0.729 1160.8 340.9 0.717 1252.0 363.0 0.705 1334.0 382.0 0.694 1477.0 385.5 0.693 1593.7
0. 82k 492. 0 0.577 90.2 0.937 56.70 1.855 4.45 0. 774 53k. 5 0.536 194.7 0.715 66.50 1.470 6.90 0. 774 693.4 0.481 CCRNVE ≥0 110.5 1.120* 5.0 0. 774 693.4 0.482 CCRNVE ≥0 110.5 1.120* 7.70 0. 774 693.4 0.482 CCRNVE ≥0 110.5 1.120* 7.70 0. 690 788.0 0.406 972 1.27 1.07 128.0 1.060* 10.85 0. 661 862.6 0.385 123 1.77 1.05 133.2 0.690 21.30 0. 681 862.6 0.385 123 1.07 373.2 0.690 21.30 0. 682 6 0.385 123 1.07 373.2 0.690 21.30 0. 683 CCRNVE 15 20.3 0.30 473.2 0.494 45.03 0. 684 291.2 0.670 0.714 273.2 0.494 68.00 0. 685 15.77 0.518 473.2 0.673 1073.2 0.304 0. 685 15.77 0.518 473.2 0.673 1073.2 0.314 0. 569 15.77 0.518 473.2 0.673 1073.2 0.314 0. 589 15.77 0.518 473.2 0.673 1073.2 0.314 0. 589 15.77 0.518 473.2 0.673 1073.2 0.314 0. 589 15.77 0.518 473.2 0.673 1073.2 0.314 0. 589 15.77 0.518 473.2 0.673 1073.2 0.314 0. 589 15.77 0.518 473.2 0.673 1073.2 0.314 0. 589 15.77 0.518 473.2 0.673 1073.2 0.314 0. 580 15.77 0.518 473.2 0.673 1073.2 0.314 0. 580 15.77 0.518 473.2 0.673 1073.2 0.314 0. 580 15.77 0.518 473.2 0.673 1073.2 0.314 0. 580 15.77 0.518 673.2 0.493 471.2 0.331 0. 580 15.77 0.518 673.2 0.493 471.2 0.331 0. 580 15.77 0.518 673.2 0.493 471.2 0.331 0. 580 15.77 0.518 673.2 0.493 471.2 0.331 0. 580 15.77 0.518 673.2 0.493 471.2 0.331 0. 580 15.77 0.518 673.2 0.493 471.2 0.331 0. 580 15.77 0.518 673.2 0.493 507.2 0.498 573.2 0.498	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 855 1. 630 1. 475 1. 475 1. 1205 1. 0605 0. 690 0. 696 0. 552	56. 70 65. 50 75. 50 91. 00 110. 5 128. 0	0.937 0.715 0.707 1 40	90. 2 194. 7 273. 2 CURVE	0, 577 0, 556 0, 579 0, 481 0, 452	4.92. 0 5.88. 5 5.88. 5 6.43. 4 6.93. 4	0, 828 0, 774 0, 770 0, 778	214.5 214.5 2314.6 231.4		0, 294 0, 294 0, 303 0, 305	955	1252. 0 1334. 0 1477. 0 1593. 7	9 0.717 1252.0 0 0.705 1334.0 0 0.694 1477.0 5 0.693 1593.7	340, 9 0, 717 1252, 0 363, 0 0, 705 1334, 0 382, 0 0, 694 1477, 0 385, 5 0, 693 1593, 7 390, 0 0, 686
0.774 538, 5 0.556 194.7 0.715 65.50 1.630 5.50 0.774 693.4 0.452 273.2 0.707 75.50 1.470 6.90 0.774 693.4 0.452 273.2 0.707 715.50 1.275* 7.70 0.774 693.4 0.452 273.2 0.707 715.50 1.275* 7.70 0.774 693.4 0.452 273.2 0.444 73.2 0.365 1.275 1.060* 10.85 0.665 822.4 0.393 100. 1.47 1.07 128.0 1.060* 110.85 1.78 0.665 822.4 0.393 100. 1.47 1.07 132.2 0.650 21.30 0.661 862.6 0.386 122.1 1.07 132.2 0.650 21.30 17.85 0.661 862.6 0.386 122.1 1.07 132.2 0.650 21.30 17.85 0.661 291.2 0.372 1.07 132.2 0.650 20.22 0.661 291.2 0.670 0.90 0.713.2 0.494 45.03 0.685 0.684 1373.2 0.670 0.714 273.2 0.394 68.00 0.623 0.623 15.77 0.518 473.2 0.671 1073.2 0.394 68.00 0.623 15.77 0.518 473.2 0.611 1073.2 0.536 173.2 0.536	0. 774 538, 5 0. 556 194, 7 0. 715 65, 50 1. 630 5. 50 0. 774 693, 4 0. 451 273, 2 0. 707 75, 50 1. 275 770 6. 90 0. 774 693, 4 0. 452 273, 2 0. 774 693, 4 0. 452 273, 2 0. 774 693, 4 0. 452 273, 2 0. 774 693, 4 0. 452 273, 2 0. 774 693, 4 0. 452 273, 2 0. 774 693, 4 0. 452 273, 2 0. 406 20. 774 693, 4 0. 452 273, 2 0. 406 2	1. 630 1. 470 1. 275* 1. 120* 1. 060* 0. 690 0. 662 0. 666	65, 50 75, 50 91, 00 110, 5 128, 0	0, 715 0, 707 1, 20 1, 40	194. 7 273. 2 CURVE	0, 556 0, 519 0, 481 0, 452	538.5 582.7 643.4 693.4	0, 774 0, 770 0, 778	214.5 214.6 231.4		0, 294 0, 303 0, 303	J 5 (-	1334, 0 1477, 0 1593, 7	0 0.705 1334.0 0 0.694 1477.0 5 0.693 1593.7 0 0.686	363.0 0.705 1334.0 382.0 0.694 1477.0 385.5 0.693 1593.7 390.0 0.686
0.770	0. 770	1. 470 1. 275° 1. 120° 1. 060° 0. 690 0. 662 0. 666 0. 552	75.50 91.00 110.5 128.0	0. 767 2.20 1. 40 1. 31	273. 2 CURVE	0, 519 0, 481 0, 452 452	592. 7 643. 4 693. 4	0. 770 ° 0. 778	231.6 231.4 2 4 7 2		0.303 0.303	3 [-	1477. 0 1593. 7	0 0.694 1477.0 5 0.693 1593.7 0 0.686	837 382.0 0.694 1477.0 820 385.5 0.693 1593.7 812 390.0 0.686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.778 693.4 0.481 CURVE 20 91.00 1.1205 7.70 0.749 715.9 0.445 7.0 1.007 710.9 1.1205 7.70 0.749 715.9 0.445 7.0 1.007 710.9 0.427 9.0 1.00 1.007 710.9 0.427 9.0 1.007 710.9 0.427 9.0 1.007 710.9 0.406 9.0 1.007 710.9 0.406 9.0 1.007 710.9 0.406 9.0 1.007	1, 273 1, 1200 1, 060 ⁴ 1, 060 ⁴ 0, 690 0, 606 0, 552	91.00 110.5 128.0 CUR	07 T + 10 K	t SCIR	0.481	643, 4 693, 4	0.778	231. 4 248. 3		0.305 VE 7	7-	593 1593.7 686	5 0. 693 1593. 7 0 0. 686	820 385.5 0.693 1593.7 812 390.0 0.686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0, 749 715, 9 0, 447 5 1 ±0 128, 0 1, 669* 10, 85 0, 749 715, 9 0, 427 50 1, 27 1, 27 1, 10 128, 0 1, 669* 10, 85 0, 665 822, 4 0, 393 125 1, 15 1, 16 20, 130 17, 85 17, 85 0, 665 862, 6 0, 383 125 1, 07 373, 2 0, 662 21, 30 0, 661 904, 3 0, 384 1, 77 1, 01 373, 2 0, 662 23, 73 1, 686 904, 3 0, 384 1, 77 0, 90 573, 2 0, 662 23, 73 0, 686 0, 372 1, 67 0, 90 573, 2 0, 494 45, 03 0, 686 0, 372 1, 77 0, 74 373, 2 0, 494 45, 03 0, 686 0, 670 0, 74 373, 2 0, 494 45, 03 30, 22 0, 686 0, 671 0, 73 0, 73 0, 73 0, 73 0, 234	1.060* 0.690 0.662 0.662 0.552	128. 0 CUR	0 4 1	;	177		0 77.1			VE 7	t ::::::::::::::::::::::::::::::::::::			200
0, 707 740, 9 0, 427 90 1, 57 CURVE 23 12, 90 0, 690 782, 4 0, 406 95 1, 47 CURVE 23 14, 80 0, 661 862, 6 0, 385 122 1, 10 323, 2 0, 690 21, 30 0, 661 862, 6 0, 385 122 1, 07 323, 2 0, 690 21, 30 1, 10 373, 2 0, 372 1, 07 0, 90 573, 2 0, 662 23, 73 0, 699 CURVE 15 225 0, 50 673, 2 0, 434 45, 03 0, 686 291, 2 0, 670 0, 54 473, 2 0, 434 45, 03 0, 686 291, 2 0, 670 0, 54 473, 2 0, 434 45, 03 0, 614 373, 2 0, 670 0, 54 473, 2 0, 384 60, 20 0, 615 CURVE 16 373, 2 0, 53 1073, 2 0, 384 60, 20 0, 623 15, 77 0, 51 473, 2 0, 56<	0, 707 7,40,9 0, 427 90 1, 57 CURVE_23* 12, 90 0, 665 822, 4 0, 393 125 1, 47 1, 05 323, 2 0, 690 21, 30 0, 665 862, 6 0, 363 125 1, 07 323, 2 0, 690 21, 30 0, 661 862, 6 0, 363 125 1, 07 373, 2 0, 662 23, 73 0, 685 943, 3 0, 372 167 0, 90 573, 2 0, 662 23, 73 0, 686 CURVE_15 225 0, 50 673, 2 0, 494 45, 63 0, 686 CURVE_15 225 0, 50 673, 2 0, 494 45, 63 0, 686 CURVE_15 225 0, 50 673, 2 0, 494 45, 63 0, 686 CURVE_16 273, 2 0, 56 673, 2 0, 434 45, 63 0, 686 CURVE_16 273, 2 0, 53 0, 53 0, 234 66, 00 0, 613 CURVE_16 273, 2<	VE 23* 0. 690 0. 662 0. 662 0. 606 0. 552	CUR				715.9	0.749	265.3		ļ	CURVE	0. 676 CURVE 7	6 0.676	405. 6 0. 676
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.690 783.0 0.406 9.5 1.27 CUNVE 23 14.80 0.665 862.4 0.393 106 1.07 1.01 373.2 0.690 21.30 0.661 904.3 0.361 1.77 1.01 373.2 0.690 21.30 1.06 904.3 0.361 1.77 1.01 373.2 0.662 23.73 0.699 CURVE 15 225 0.50 573.2 0.494 45.03 0.686 291.2 0.670 0.74 773.2 0.494 45.03 0.644 373.2 0.670 0.74 773.2 0.494 45.03 0.644 373.2 0.674 273.2 0.73 473.2 0.344 46.03 0.644 373.2 0.634 CURVE 17 973.2 0.744 473.2 0.659 15.77 0.518 273.2 0.678 CURVE 24 CURVE 24 CURVE 24 0.569 15.77 0.518 473.2	0. 690 0. 662 0. 606 0. 532	X	: <u> </u>	3 :	0. 427	7.40, 3	0. 707	344.8				}	0 0.674	411.0 0.674
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 661 962.6 0. 383 123 1.07 323.2 0. 690 21.30 HWE L3 904.3 0. 345 1.27 1.01 373.2 0. 660 21.30 0. 699 943.3 0. 372 167 0. 50 473.2 0. 662 23.73 0. 686 943.3 0. 372 225 0. 50 673.2 0. 594 45.03 0. 686 291.2 0. 670 0. 56 673.2 0. 434 45.03 0. 681 291.2 0. 670 0. 56 673.2 0. 434 45.03 0. 613 291.2 0. 670 0. 74 773.2 0. 434 45.03 0. 613 201.2 0. 634 273.2 0. 733 1073.2 0. 274 93.30 0. 615 CURVE L6 273.2 0. 733 1073.2 0. 274 93.30 0. 569 15.77 0. 518 273.2 0. 678 273.2 0. 678 0. 274 93.30 0. 569 15.77 <td>0.690 0.662 0.606 0.532</td> <td></td> <td>ر ا ا</td> <td>, , ,</td> <td>0. 406</td> <td>783.0</td> <td>0.690</td> <td>360. 6</td> <td></td> <td>1. 639</td> <td>80 1.839</td> <td>98 ;</td> <td>0.660 80</td> <td>424, 3 0, 660 80</td>	0.690 0.662 0.606 0.532		ر ا ا	, , ,	0. 406	783.0	0.690	360. 6		1. 639	80 1.839	98 ;	0.660 80	424, 3 0, 660 80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NAME 13	0.662 0.606 0.532	323. 2	1.07	27.0	0.385	962.6	0.000	343.6		÷+.		517 513	5 0.616 273	5 0.616 273
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NA 13 943.3 0.372 167 0.50 473.2 0.666 30.22	0.606	373.2	1 01	1.57	0.381	904.3				. 83.	CURVE 8	590 CURVE	0. 590 CURVE	530.9 0.590 CURVE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 699	0.552	473.2	 O	16.7	0.372	943.3	E 13	CUR		j		699	4 0, 569	560.4 0,569
0,699 CURVE 15 22.1 0.7h 673.2 0.494 45.03 0,686 291.2 0.670 0.7l 773.2 0.434 57.00 0,644 373.2 0.674 0.734 66.00 6.00 0,644 373.2 0.674 973.2 0.394 60.20 0,645 0.634 CURVE 17 973.2 0.374 60.20 0,645 0.615 1073.2 0.274 93.30 0,549 15.77 0.518 473.2 0.613 CURVE 24 CURVE 0,569 15.77 0.518 473.2 0.611 20.32 0.561 273.2 0,532 16.79 0.586 573.2 0.613 410.2 0.561 273.2 0,536 19.35 0.634 673.2 0.493 410.2 0.536 373.2 0,510 23.85 0.838 673.2 0.498 573.2 0,485 26.40 0.945 973.2 0.360	0. 699 CURVE 15 22. 0. 54 673.2 0. 494 45. 63 0. 686 291.2 0. 670 0. 1 773.2 0. 394 66. 00 0. 644 373.2 0. 634 CURVE 21 873.2 0. 394 66. 00 0. 623 CURVE 16 273.2 0. 733 60. 20 0. 615 CURVE 16 373.2 0. 678 CURVE 24 93.30 0. 559 15. 77 0. 518 473.2 0. 678 CURVE 24 CURVE 24 0. 550 19. 35 0. 634 673.2 0. 493 410.2 0. 536 373.2 0. 510 0. 510 23. 55 0. 634 673.2 0. 443 427.2 0. 531 473.2 0. 510 231 20. 531 473.2 0. 510 231 20. 531 473.2 0. 510 231 20. 531 473.2 0. 510 231 20. 531 473.2 0. 510 231 20. 531 573.2 0. 549 573.2 0. 499 573.2 0. 485 573.2 0. 499 573.2		573.2	05 S	20.5	;					1.828	_	.1 08	5 0.562 80 1.	4 .71.5 0.562 80 1.
0.686 291.2 0.670 0.71 773.2 0.438 57.00 0.644 373.2 0.670 0.74 0.732 0.384 66.00 0.643 373.2 0.673 0.733 0.274 973.2 0.398 0.615 CURVE 16 273.2 0.753 0.774 93.30 0.549 15.77 0.518 473.2 0.611 0.574 93.30 0.559 15.77 0.518 473.2 0.611 0.512 0.551 20.274 93.30 0.530 15.77 0.518 473.2 0.611 0.52 0.561 273.2 0.530 16.79 0.586 573.2 0.493 410.2 0.561 273.2 0.510 23.50 0.634 673.2 0.493 477.2 0.498 577.2 0.499 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	0,686 291.2 0.670 0.71 773.2 0.438 57.00 0,644 373.2 0.670 0.71 873.2 0.384 68.00 0,644 373.2 0.634 CURVE 21° 973.2 0.330 60.20 0,623 0.615 CURVE 16 273.2 0.753 0.274 93.30 0,615 CURVE 16 373.2 0.678 CURVE 24 93.30 0,598 15.77 0.518 473.2 0.678 CURVE 24 CURVE 24 0,532 16.79 0.586 573.2 0.552 303.2 0.561 273.2 0,536 19.35 0.634 673.2 0.493 410.2 0.536 373.2 0,510 23.85 0.638 673.2 0.443 427.2 0.531 473.2 0,510 23.85 0.638 673.2 0.498 573.2 0,485 26.40 0.945 973.2 0.499 673.2 0,485 26.	0. 494	673.2	÷ .	7.7.	VE 15	ED:	0. 699	322. 6		0.399	273 0. 899	273 0.	5 0.546 273 0.	596, 5 0, 546 273 0.
0. 621 2. 0. 634 CURNE 21° 973.2 0. 339 60. 20 0. 623 CURNE 16 273.2 0. 753 1073.2 0. 274 93.30 0. 615 CURNE 16 273.2 0. 753 CURNE 24 93.30 0. 519 15.77 0. 518 473.2 0. 611 0. 524 93.30 0. 532 16.79 0. 586 573.2 0. 611 203.2 0. 561 273.2 0. 536 18. 35 0. 634 673.2 0. 493 410.2 0. 536 373.2 0. 510 23. 55 0. 838 673.2 0. 493 577.2 0. 499 577.2 0. 499 577.2 0. 499 577.2 0. 499 577.2 0. 499 577.2 0. 499 577.2 0. 499 577.2 0. 499 577.2 0. 499 573.2 0. 485 26. 40 0. 945 973.2 0. 360 559.2 0. 490 673.2	0. 623 CURVE 16 273.2 0. 634 CURVE 21° 973.2 0. 334 60.20 0. 623 CURVE 16 273.2 0. 753 1073.2 0. 274 93.30 0. 615 CURVE 16 273.2 0. 753 1073.2 0. 274 93.30 0. 536 15. 77 0. 518 473.2 0. 678 CURVE 24 CURVE 24 CURVE 24 93.30 0. 536 15. 77 0. 518 473.2 0. 678 20.851 273.2 0. 536 19. 36 0. 634 673.2 0. 493 410.2 0. 536 373.2 0. 515 21. 37 0. 738 775.2 0. 443 427.2 0. 531 473.2 0. 510 23. 85 0. 634 673.2 0. 443 427.2 0. 536 373.2 0. 510 23. 85 0. 634 673.2 0. 498 573.2 0. 485 26. 40 0. 945 973.2 0. 490 673.2	0.438	773. 2	.	905	723 0	: 100	0.686	335. 1		4	3.1111111	0.532	4 0.532	4 0.532
0. 644 373.2 0. 634 CURVE 16 273.2 0. 133 R0. 20 0. 635 CURVE 16 273.2 0. 753 1073.2 0. 274 93.30 0. 598 15. 77 0. 518 473.2 0. 678 CURVE 24	0. 644 373.2 0. 634 CURVE 16 1073.2 0. 530 60. 20 0. 615 CURVE 16 273.2 0. 753 1073.2 0. 274 93.30 0. 569 15. 77 0. 518 473.2 0. 611 203.2 0. 561 273.2 0. 536 19. 35 0. 634 673.2 0. 493 410.2 0. 551 273.2 0. 515 21. 37 0. 738 775.2 0. 443 427.2 0. 531 473.2 0. 510 23. 85 0. 838 873.2 0. 398 507.2 0. 498 573.2 0. 485 26. 40 0. 945 973.2 0. 450 559.2 0. 490 673.2	,	9 6	2			7 .1	0.001	, .		10	2002		0.353	631. 3 0. 323
0. 523 CURVE 16 273.2 0. 753 CURVE 24 20.614 20.817 0. 598 15. 77 0. 518 473.2 0. 678 CURVE 24 CURVE 24 <t< td=""><td>0. 523 CURVE 16 273.2 0. 753 CURVE 24 CU</td><td>0.330</td><td>373.2</td><td>177</td><td>CCRY</td><td>0. 634</td><td>373.2</td><td>0.644</td><td>10%</td><td></td><td>•</td><td></td><td>Š</td><td>4 0.497</td><td>4 0.497</td></t<>	0. 523 CURVE 16 273.2 0. 753 CURVE 24 CU	0.330	373.2	177	CCRY	0. 634	373.2	0.644	10%		•		Š	4 0.497	4 0.497
0. 589 15.77 0. 518 473.2 0. 678 CUNVE.24 CURVE.24 CURVE 0. 569 15.77 0. 518 473.2 0. 611 203.2 0. 561 273.2 0. 532 16.79 0. 586 573.2 0. 493 410.2 0. 536 373.2 0. 536 21. 37 0. 738 772.2 0. 443 427.2 0. 531 473.2 0. 510 23. 55 0. 838 673.2 0. 498 573.2 0. 485 26. 40 0. 945 973.2 0. 396 559.2 0. 490 673.2	0. 589 15.77 0. 518 473.2 0. 678 CURVE_24 CURVE_24 0. 569 15.77 0. 518 473.2 0. 613 273.2 0. 673 0. 552 16. 79 0. 586 573.2 0. 613 273.2 0. 561 273.2 0. 536 19. 35 0. 634 673.2 0. 493 410.2 0. 536 373.2 0. 510 23. 37 0. 738 772.2 0. 443 427.2 0. 531 473.2 0. 510 23. 85 0. 638 673.2 0. 498 573.2 0. 485 26. 40 0. 945 973.2 0. 496 673.2 0. 485 26. 40 0. 945 973.2 0. 490 673.2	r 5	1013. 4	0 753	6 8.16	71 18	810	0,623	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.173	50 I. 173	2	0.480	0.480
0.569 15.77 0.518 473.2 0.611 0.532 16.79 0.586 573.2 0.632 303.2 0.561 273.2 0.536 19.35 0.634 673.2 0.493 410.2 0.536 373.2 0.536 21.37 0.738 772.2 0.443 427.2 0.531 473.2 0.510 23.85 0.838 673.2 0.398 573.2 0.488 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	0.569 15.77 0.518 473.2 0.611 0.552 16.79 0.586 573.2 0.552 303.2 0.561 273.2 0.536 19.35 0.634 673.2 0.493 410.2 0.536 373.2 0.515 21.37 0.738 772.2 0.443 427.2 0.531 473.2 0.510 23.85 0.638 673.2 0.398 507.2 0.498 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	VE 24	CUR	0.678	373.2		; 	548 548	180.0		0.00			0.462	743 3 0 462
0. 552 16.79 0.586 573.2 0.552 303.2 0.561 273.2 0. 536 19.35 0. 634 673.2 0. 493 410.2 0. 536 373.2 0. 515 21. 37 0. 738 772.2 0. 443 427.2 0. 531 473.2 0. 510 23. 85 0. 838 873.2 0. 398 507.2 0. 498 573.2 0. 485 26. 40 0. 945 973.2 0. 360 559.2 0. 490 673.2	9, 532 16, 79 0, 586 573, 2 0, 552 303, 2 0, 561 273, 2 0, 536 19, 35 0, 634 673, 2 0, 493 410, 2 0, 536 373, 2 0, 515 21, 37 0, 738 772, 2 0, 443 427, 2 0, 531 473, 2 0, 510 23, 85 0, 638 673, 2 0, 498 573, 2 0, 485 26, 40 0, 945 973, 2 0, 360 559, 2 0, 490 673, 2	1		0.611	473.2	0.518	15.77	690.0	515.7		7E 10	CHRVE 10	C	0 0.447	176 0 0.447
0, 536 19, 35 0, 634 673.2 0, 493 410.2 0, 536 373.2 0, 515 21, 37 0, 738 772.2 0, 443 427.2 0, 531 473.2 0, 510 23, 85 0, 838 873.2 0, 398 507.2 0, 498 573.2 0, 485 26, 40 0, 945 973.2 0, 360 559.2 0, 490 673.2	0.536 19.35 0.634 673.2 0.493 410.2 0.536 373.2 0.515 21.37 0.738 775.2 0.443 427.2 0.531 473.2 0.510 23.85 0.638 673.2 0.398 507.2 0.498 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	0.561	303. 2	0, 552	573. 2	0.586	16. 79	0.552	54-7. K) į	429	8118 7 0.429
0.515 21.37 0.738 772.2 0.443 427.2 0.531 473.2 0.510 23.85 0.838 873.2 0.398 507.2 0.498 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	0.515 21.37 0.738 772.2 0.443 427.2 0.531 473.2 0.510 23.85 0.838 873.2 0.398 507.2 0.498 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	0. 536	410.2	0.493	673.2	0, 634	19.35		5.990		431	75	70	1 0 415	837 1 0 415 3 44
0.510 23.85 0.838 673.2 0.398 507.2 0.498 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	0,510 23.55 0.838 573.2 0.398 507.2 0.498 573.2 0.485 26.40 0.945 973.2 0.360 559.2 0.490 673.2	0.531	427.2	0.443	770.2	0, 738	21, 37		601. 5		1 2	9	9	4 0.395 6.65	880.4 0.395 6.65
0, 485 26, 40 0, 945 973, 2 (1, 360 559, 2 0, 490 673, 2	0.485 26.40 0.945 973.2 (1.360 559.2 0.490 673.2	0.498	507.2	398 4 398	H73.2	0.838	23.85	015.0	616.		0.671	3 2	379 4 19	6 379 4 12	90.5 5.05
		0 490	559.2	0.350	473.2	0.945	26. 40	0.485	2 2 2 2		0.720		25.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 to 25 to
) †	0 C C C	1. Jou	4.5.7	5.0.5	04.07	0. 400	7 7 70		07 170		364 9.03	2 0.364 9.53	720 939, 2 0, 364 9, 53
			0. 551 0. 531 0. 531 0. 498 0. 490		303. 2 410. 2 427. 2 507. 2 559. 2	0. 552 0. 493 0. 443 0. 494 0. 398 0. 398 0. 360 559. 2	573.2 0. 678 573.2 0. 552 573.2 0. 493 410.2 770.2 0. 443 427.2 873.2 0. 398 507.2 973.2 0. 360 559.2	0.518 473.2 0.611 0.586 573.2 0.611 0.634 673.2 0.493 410.2 0.738 770.2 0.443 427.2 0.638 873.2 0.398 507.2 0.945 973.2 0.350 559.2	536 15, 77 0, 518 473.2 0, 611 CONVERSE 5.2 16, 79 0, 586 573.2 0, 532 303.2 536 19, 35 0, 634 673.2 0, 493 410, 2 515 21, 37 0, 738 775.2 0, 443 427.2 510 23.85 0, 838 873.2 0, 398 507.2 485 26, 40 0, 945 973.2 0, 360 559.2	0. 598 15, 77 0. 518 473.2 0. 611 0. 559 15, 77 0. 518 473.2 0. 611 0. 552 16, 79 0. 586 573.2 0. 611 0. 536 19, 35 0. 634 673.2 0. 493 410. 2 0. 515 21, 37 0. 738 775.2 0. 443 427. 2 0. 510 23. 85 0. 838 873.2 0. 398 507. 2 0. 485 26, 40 0. 945 973. 2 0. 360 559. 2	180. 0 0.596 15.77 0.518 473.2 0.613 CONVEY 515.7 0.569 15.77 0.518 473.2 0.611 5547.8 0.552 16.79 0.586 573.2 0.593 410.2 42 601.5 0.515 21.37 0.738 775.2 0.443 427.2 71 616.1 0.510 23.85 0.838 873.2 0.398 507.2 20 645.3 0.485 26.40 0.945 973.2 0.360 559.2	480.0 0.596 15.77 0.518 473.2 0.613 CONVEY 515.7 0.569 15.77 0.518 473.2 0.611 547.8 0.552 303.2 5547.8 0.552 303.2 566.9 0.556 19.35 0.634 673.2 0.493 410.2 601.5 0.515 21.37 0.738 772.2 0.443 427.2 616.1 0.510 23.85 0.838 873.2 0.398 507.2 645.3 0.485 26.40 0.945 973.2 0.360 559.2	CURVE 10 515.7 0.536 15.77 0.518 473.2 0.611 1.017 0.518 473.2 0.611 1.017 0.518 473.2 0.611 1.018 15.79 0.536 15.79 0.586 573.2 0.532 303.2 4.94 0.431 566.9 0.536 19.35 0.634 673.2 0.493 410.2 6.65 0.542 601.5 0.515 21.37 0.738 775.2 0.443 427.2 9.12 0.671 616.1 0.510 23.85 0.838 873.2 0.398 507.2 9.53 0.720 645.3 0.485 26.40 0.945 973.2 0.398 507.2	3 0.462	3 0.462

(continued)
77
0
TABLE
DATA

4	E 71	0.640	0.615	0.519	0.464	ĸ	E 72		0,655	6.034	0000		0.45°	0 349	0.310	0,290	0 302		E 73		10.5	11.3	10.8	11.0	11.9	12.05	12.0	12. / 19. 9#	i e	13.6	14.05	13, 95	14, 95	15.1	15. 15	e e	15.7	15, 55	15, 75	0.01	6 0 1	1 0	10.01	10.05	9 66	. 8 . 9	
۲	CURVE	323, 2	373, 2	573.2	673.2		CURVE	į	373, 2	413, 2	2.010	7.00	7.57.0	673.2	1073, 2	1173.2	1273.2		CURVE 73		ę. 1	6,5	9	7.0	7.2	2.0	7,0	n c xia	9.5	11.5	11.6	12.5	13.0	15.5	0.71	2 6 7	20.0	20.7	21.2	22.0	24.0		0.07		36.2	* 8 6E	
ж	CURVE 69*	0.959	0. KT	्रहरू • •	0,747	0.719	0.686	0.654	0.621	0,588	0, 555	0.525	0.492	0.400	0.405	363	359	0, 339	0.316	0.294	0.282	0.282	0.287	0.293	•	CURVE 70*		0.887	0.673	0.013	0 742	0.712	0.682	0.652	0.620	0.587	0.554	0.523	0.495	0.469	0.443	0.417	0.391	0.371			
(-	50	7.3.2	123, 2	173.2	273, 2	323.2	373, 2	423.2	473.2	523.2	573. 2	623.2	673.2	7.5.5	9.208	1 6 7 7 7	40.00	973, 2	1023, 2	1673.2	1123.2	1173, 2	1223.2	1273.2		팅		113.2	12.3. 2	2.6.7	273.2	323, 2	373.2	423, 2	473.2	523.2	573, 2	623, 2	673.2	723.2	773.2	EZ.3. Z	873, 2	913.2			
.	CURVE 64*	0.755	0.723	0.6% 0.6%	0.617	0.580	0.543	0.508	0.475	0.444	0.419	0.397	0.377	52.5	0.322	0.317	283	6.293	0,285	0.289	0.299	0.310	0.322	1e	CURVE 65		0.774	, 20 200000	63	0.495	968.0	0.345	0,313		CURVE 67		0.415	0.2%	0.291		CURVE 68		0.657	0.593	0.34c	0.400	· •
۲	CUR	273, 2	323, 2	373, 2 423, 2	473.2	523, 2	573, 2	623. 2	673.2	723. 2	773.2	823.2	673.2	07.70	10.3.2	10.38	1073.2	1123.2	1173.2	1223, 2	1273.2	1323, 2	1373.2		E C		316.2	2	5	6 200	H64. 2	966, 2	1048, 2				808.2	10HG. 6	1152.6			,	173.2	473,2	27.87.0	573.2	
æ	E 62	0.415	0.37		0,405	60::0	0.40	0.37	0.33	7.5.0	67.5	82.0	0.265	Cribite 62th		1 40	2:	1,63	0,967	0, 921	0.901	0.880	0,839	0, 841	0, 822	0.81	0, 777	0, 731	2 5	0.0	0.561	0.530	0.500	0,469	0.440	0,412	0.387	0.366	0.347	0, 331	0.320	0.310	0.301	0.274	0.271	(1,2,1	
۳	CURVE 62	753,2	813.2	25.2 25.2 20.2.2	87 H, 2	903, 2	943,2	1008, 2	1073, 2	1073, 2	1128.2	1163, 2	1323. 2	rano		6 2 9	113.2	133, 2	153, 2	173, 2	193, 2	213.2	233.2	253.2	273.2	293, 2	323.5	373.2	423.2	413,4	9.000	623, 2	673, 2	723.2	773.2	823.2	87.3.2	92:1.2	973, 2	1023, 2	107:3, 2	1123.2	1173, 2	1223.	1953, 2	1273, 2	
౫	CURVE 56	0,3381	0. 2993	0.2931	0,2947	0, 2946	0.2951	0.2955	0.2838	0.2651	ų	E 57	6000	0 9095	0.2633	2001	, oc.		0.3129	0.3128	0,2960	0.2982	0.2867		E 29	į	0.49	0.907	6 03 44644	2	629 0	0,603	0,547	0.509	0.460	0.460	0.418		E 61		10.0	0.44	3.5 0.3	0.30	0.26		
۴	CURV	973.2	1049.2	1091.2	1135.2	1169.2	1169.2	1181.2	1196.2	1206. 2		CURVE 57		1949 3	1973.9	1613, 2	CHRVE		1025.2	1025, 2	1122, 2	1171, 2	1198, 2		CURVE		21.2	8:1.2	0	200	C 130	476.2	574.2	563.2	766.2	772.2	×70, 2		CURVE		648,2	748.2	873,2	10:15, 2	1265, 2		
צג	(cont.)*	0.28	0.296	0.279	0.288	0,287	0.286	*	54	į	0.6574	0. 5966	0.5314	4343	2474.0	125.0	2790	6, 329	0.3333	0,3237	0.3243	0.3122	0.3121	0.2937	0.2936	0.2914	*	5 55	0000	0.0002	0.3412	0.4296	6,3087	0.2899	0.2915	0.2895	0.2896	6, 2902	c.i	0,2855							
۲	CURVE 53	1188.2	1191.2	1223.2	1281.2	1285, 2	1298, 2		CURVE		385.2	483, 2	573.2	9.00	4:3.4	7 6	4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	973.2	971.2	990.2	930, 2	1014.2	1014, 2	1053, 2	1053, 2	1092.2		CURVE	4	7 989	2.010	7.4	1024, 2	1069.2	1091. 2	1111.2	1111.2	1169, 2	1198,2	121 + 2							
*	VE 48	0.682	0.552	0, 427	0.210	CURVE 49		0.360	0.344	3.333	0,326	0.317	0.311	0000	267.0	167.0	200	0.285		VE 50.		699.0	•	VE 51		0.661		VE 52		11:0	VF 5.1		0, 34B	0,349	0,342	0,296	0.292	0, 291	6, 291	0. 297	9-2-6	0, 296	0, 292	00000	90%, 30		
۲	CURVE	373,2	573.2	773.2	7.07.7	CUR		904.2	944.2	955, 2	973.2	1002.2	1002.2	7.001	1035.2	1076.2	10.0.2	1108.2		CURVE		295.2		CURVE	}	2.69.2		CURVE	4	3.38.2	TIBUT		995, 2	1010.7	1013, 2	1047, 2	1062.2	1065, 2	1094, 2	1114.	11.0.1	1140.2	1144, 7	1161.2	1171, 2		

DATA TABLE NO. 24 (continued)

بد	(conf.)	0.454	0.490	0.444	0.461	0.498	0. 452 0. 469	0.469	0.403	0.439	c. 423	0.375	0.390	0.386	0.349	0, 289	0.231	0.277	0. 295	0.322	0.307	298	0, 277	0.314	0.295	0. 290	0.287	0.287	0.290	0, 282	0. 274	0.272	0. 281	:	<u>.</u>		0.748	0.698	0.04	0.489	
e i e	CURVE 90 (cont.)	766.2	780.2	786.2	799. 2	806.2	824. 2 844. 2	888.2	893. 2	939. 2	968.2	985. 2	998. 2	1015. 2	1035. 2	1045.2	1655.2	1060.2	1066. 2	1066. 2	1085.2	1105.2	1120.2	1127.2	1157.2	1165.2	1186.2	125.2	1221. 2	1229. 2	1239. 2	1254. 2	1269.2	!	CURVE 91	6	223.2	373.2	46.5	673.2	
.*	(cont.)	0.343	0, 295	0.281	0. 297	,	68	0.643	0.632	0, 598	0.0 191	0.556	0, 531	0.531	494	0.490		*06		0. 700	0.656	591	0.646	0.630	0.603	0.616	0.582	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.520	0.524	0.521	0.517	0.511	0.520	0.478	0.498		0.495	477	0.479	
(~	CURVE 88 (cont.)	973.2	1173	1193	1273		CURVE 89	397.2	403.2	415.2	\$20.2 503.2	510.2	561.2	567.2	531.2	636.2		CURVE 90		336. 2	344. 2	154.2	386. 2	447.2	490.2	496. 2	539. 2	599. 2	645.2	659. 2	669.2	679.2	691. 2	695. 2	710.2	714.2	716. 2	725.2	754.9	765.2	
عد	ž.	0.7367	0.6223	0.5633	0.5072	0.4603	0.4201	0.3382	0.3121	0. 2973	0, 2964		85 \$	0000	0.2871	0.3017		86	;	0. 2966	0.2837	0.2866	0,3000		87*	į	0.678	0.649	0.502	0.490	0.439	0.335	•	88		0.718	0.640	0.570	0.470	0.392	
(+1	CURVE 84"	332. 2	470,2	563. 2	643.2	723. 2	804. 2	973.2	1027. 2	1069. 2	1173.2		CURVE 85	0 000	1231.2	1273. 2		CURVE 86		1166.2	1193.2	1232 2	1272. 2		CURVE 87		349.2	462.2	647 2	710.2	793.2	926. 2	,	CURVE		373. 2	473. 2	573. 2	10.0	873.2	
	CURVE 30	0.697	0.007	CURVE 91"			0. 766 0. 759	0.750	0.745	0.747	0.735	0, 716	0, 708	0, 706	0.003	0,678	0.666	0.651	0.638	•	CURVE, 32	0.756	0.758	0.754	0.735	0.719	0.713	0.684	0.631	0.635	0.629	0.621	1	CURVE 83	* * * * * * * * * * * * * * * * * * * *	0.610	0.039	0.588	יים ליים היים היים היים היים היים היים היים ה	6. 530	
H	CUR	273.2	313.2	CUR	<u> </u>	315, 5	318.6	332, 7	341.9	345, 2	372.0	385, 3	399.7	405.4	429.3	433, 8	443, 4	465, 7	483, 3		CUR	206.7	311.1	318, 9	345.6	366.8	378.7	416.3 451 B	471.0	475.9	487.1	498.5		5		323.4	373, 1	424. 1	4.0.4	573.2	
¥	5 (cont.)	2.39	1.52	1.32	1.25	1.14	1.0	1.05	1. 03	1. 02	: 76*	1	1. 170	0. 894 916	210.0	ز دلي	}	T. 157	0.885	6.808	13 13		0.651	0.588	0.568	0. 522	0. 447	0. 438	*62		0.00296	0.00301	0.00400	0.00450	0.00480	0.00200	0.00510	0.00530	0.0000	0.00650	
۲	CURVE 75 (cont.)	88. 8. 69	73. 6. 6	88.7	96.1	115.4	131.2	153.6	173.0	192. 5	CHRVE 76		100	202	707	CURVE 17		100	202	280	3/10110	400	425. 2	485, 2	537.2	591. 2	697. 2	7:3.2	CHRVE 29*		0.420	0.440	9. 533	0.00	0.638	0. 400	0.725	0.780	9 6	0.950	
74	(cont.)	12.55	5.5. 13.0	13.6	13, 75	14.1	1.4.	14.4	14. 5	14.4	14.35	14. 15	14.2	13.9	13.35	12.3	10.9	10.2	1.91		22	8	0, 85	0.95	0.98	1.05	2 ·	1.5	8	1.85	1.87*	1.95	1.95*	2.2	2. 27	2.32	2.37	2. 40	2. 4.5 4.5 4.5	2. 1 9	
H	CURVE 74 (cont.)	12.5	13.5	14.3	15. \$	16.2	 	20.0	21.0	21.5	23.9	24. 1	25. 9	26.3	26.3	31.2	33, 9	35.4	78.4		CURVE 75	on ur		7.5	7.8	8.1	10. 2	13.1	16.6	17.0	17.5	18.0	18.5	21.0	21.8	22. 7	9 .	24.5		29.1	
±e.	CURVE 73 (cont.)	20 u	5 4	4.07	3, 48	2.95 5.95	8 2	1.74	1.6	3 4	1.42	1.37	1.33*	1,30	1.20	1, 22*	1. 20	1.18*	1. 17	1. 15*	j. 14 	1. 12	1, 12	1.11	1. 11*	1.11	1.10	1. 10	TE 74	:	9, 55	8.6	9.85	10.65	10.7	11.5	12.1	12. 15	16.6	12.6	
	CURVE		7 (- - 25 - 7	* 3	(*)	6.5.3 1.5.3	- t-	86.5	91.5		101.3	110.9	115.7	120.5	130.0	104.0	139.6	144. 5	149.3	154.1	158.9	168.1	173.6	178.5	183,3	188.0	192, 9	197. 8	CIRVE		6,5	7. C		& . &	o ;	26.0	16.5	10. 7	11.0	11.8	

¥	
۲	

91 (cont.,*	0.436 0.338 0.313 0.297 0.296 0.296 0.297 0.297 0.297	
CURVE 9	773.2 873.2 1023.2 1073.2 1173.2 1183.2 1183.2 1193.2 1233.2	

E 92°	9.497 0.467 0.109 0.370 0.331 0.331 0.310	
CURVE	636.2 733.2 833.2 919.2 930.2 1008 1102	

/E 93*	0.765	E 94°	0.771
CURVI	273.2	CURVE	273.2

FIGURE AND TABLE NO. 24R-1 RECOMMENDED THERMAL CONDUCTIVITY OF IRON

T₁ in K, k₁ in Watt cm⁻¹ K⁻¹, T₂ in F, k₂ in Btu hr⁻¹ ft⁻¹ F⁻¹, ³ Values

*Values in parentheses are extrapolated or estimated.

FIGURE AND TABLE NO. 24R-2 RECOMMENDED THERMAL CONDUCTIVITY OF ARMCO IRON [Typical composition; 0.09 O; 0.08 Cu, Ni each; <0.05 Al, Cr, Mn, Mo each; 0.015 C, S, Sl, Tl, V each; 0.005 N, P each; 0.0001 H]

				3 4 5	3 4 5 6 8 103	6 8 102 2	2 3 4 56
					1111111	م الملما	\exists
2780	(19. 5)	(0, 338)	1800	<u></u>	Curie Temp, 1043 K	Curie	_
2600	(19, 1)	(0.330)	1700	F			H
2420	(18, 6)	(0, 322)*	1600		T. P. A. c b.c. c. 1673 K-	T. D. A.	
2240	181	0 214	1500	T-		+	t
2080	17.6	0, 305	1400				┝
1880	17. 1	0.296	1300				Н
1700	16.6	0, 287	1200		/	 	₽
1682	15.5	0. 286	1190	_	7		_
1664	17. 1	0. 296	1180	<u> </u>			_
1520	17.0	0. 294	1100				
1446	16,9	0, 293	1059	<u> </u>		_	
1340	18.7	0, 323	1000				┝
1160	21. 5	0, 372	006				_
980.3	24.4	0, 422	800	I	+	+	╁
800.3	27.3	0.473	700				1
620,3	30, 7	6, 531	900				Н
440.3	34.3	0.593	200				††
260.3	38.0	0.657	400				┢
170.3	39.9	0.691	350			-	
80.3	42.0	0.727	300				_
32.0	43.2	0. 747	273.2				
- 9.7	4.1	0.764	520	F	 	 	t
- 99. 7	46.5	90.804	200				
-189.7	49.3	9.854	150	T	 	+	1
-279. 7	52, 8	0, 913	100				t
 1	<u>.</u>	χ.	.			- - -	土
Ę	á	د	F			+	\pm
UES	RECOMMENDED VALUES*	RECOMM		'	\ + + + + +	+	士

if cm-1 K-1

THERMAL CONDUCTIVITY.

REMARKS

The recommended values are thought to be accurate to within 3% of the true values below room temperature, 2% from room temperature to about 1000 K, and 3 to 8% from 1000 to 1600 K.

T1 in K, k1 11 Watt cm 1 K-1, T2 in F, and k2 in Bbu hr 1 [t-1 F-1.

* Values in parentheses are extrapolated.

SPECIFICATION TABLE NO. 25 THERMAL CONDUCTIVITY OF LANTHANUM

(impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 25]

Composition (weight percent). Specifications and Remarks	99.94 pure: Ca and Be as major impurities; polycrystalline; superconducting below 4.7 K.	99.99 nominal purity; polycrystalline rod, of f.c.c. form; 5 cm long, 0.4 cm in dia; supplied by H. Fletshman Lid.; annealed at 600 C for 24 hrs; residual electrical resistivity p (4.2 K) 1.72 µ ohm cm; electrical resistivity ratio p (293 K)/p (4.2 K) 1.72 µ ohm cm; electrical resistivity ratio p (293 K)/p (4.2 K) 2.32 µ ohm cm; electrical resistivity post of 6.04 K and 2.4 is specimen in superconducting state below the transition point of 6.04 K and the control of a control of a control of a control of control	In the f.c. c. phase. The above specimen in normal The above specimen in normal The above specimen in normal $\sum_{i=1}^{n} \frac{1}{2}$, $\frac{1}{1}$ and $\frac{1}{2}$ $\frac{1}{2}$.	Similar to the above except annealed at 600 C for 106 hrs; residual electrical resistivity ρ (4.2 K) × 1.29 μ ohm cm; electrical resistivity ratio ρ (293 K)/ ρ (4.2 K) × 44.0; ρ (4.2 K) × 1.29 μ ohm cm; electrical resistivity ratio ρ (294 K) ρ (4.2 K) × 1.29 μ ohm cm; electrical resistivity ratio ρ (294 K) (determined	specimen in superconducture state below the function power dispersed in the f.c.c. magnetically); x-ray snalysts showed a trace of h.c.p. phase dispersed in the f.c.c. phase. The above specimen measured in a magnetic field of 6600 gauss; specimen in normal	conducting state; Lorenz number, Lo = 2,83 × 10 × V K No details given.	< 6.01 rare earth metals. ~ 0.02 mase metals, polyt. journal of a said derived by and 1.2 cm long; electrical resistivity 61 mohm cm at 291 K; data point derived by the authors from measurements by 2 different thermal comparators.	6.1 O, 0.01 Ce. 0.003 Fe. 0.005 Cu, 0.005 Nd, and 0.005 Pr; hexagonal polycrystalline; electron-beam refined; electrical resistivity reported as 28.5, 37.3, 46.6, 53.9, 60.6, 66.1, 69.4, and 73.1 μohm cm at 98, 151, 199, 251, 300, 351, 397, and 447 K, respectively; mors red in a vacuum of 10⁴ ~ 10⁵ mm Hg.
Name and Specimen Designation	1 45	1 41	<u>.</u>	II 41	E •	1 5		
Reported Error, %						10	9	+ 3 to
Temp. Range, K	2.2-36	1.8-6.6	1.7-6.7	1.8-6.6	•	301.2	291	83-450
Year	1955	1965	1965	1965		1965	9961	1966
Method	7	ı	-			ı	ပ	ı
Ref.	1	162	ě	762 762		<u> </u>	5.56	932,
Curs	敻 -		•	m 4 *		ro d	۰ م	æ

DATA TABLE NO. 25 THERMAL CONDUCTIVITY OF LANTHANUM

(Impurity <0.20% each; total impurities <0.50%)

	-	¥	۲	×	-	¥	(-	×
CURVE 1	CURVE	CURVE 2 (cont.)	CURVE	VE 4	CURV	CURVE 5 (cont.)	CURV	CURVE 8 (cont.)
0.00194	5.30	0, 0755°	8	0.0070	5. 10	0, 1090	359	0, 136
0.00306	2.40	0.0785	2,00	0.0100	5,35	0, 1110	373	0, 133
0,00583	5.55	0.0810	2, 15	C. 0130	5, 60	0, 1170	377	c. 138
0.00%0	5.70	0,6840	2,26	0.0140	5. 8	0, 1205	378	0, 134
0.0133	5, 70	0.6850	2.35	0.0170	6. 15	0, 1245	381	0, 138
0.0170	9 .00	0,0880	2, 50	0.0215	6,35	0, 1265	382	0 135
0.0200	6.20	0.0920	2.60	0.0240	6, 70	0, 1310	887	0.139
0.0254	6.55	0.0330	2,75	0.0290	6.95	0, 1310	193	0 141
0.0293			3,00	0.0320			368	141
0.0350	CUR	CURVE 3	3.10	ი. 0360	ಕ	CURVE 6	401	0.144
0.0368			3,35	0.0410			439	0.145
0, 0378	1,70	0.0310	3,60	0.0515	301.2	0.138	442	0 144
0.0435	1.90	0.0330	3.75	0.0580			443	0.147
0.0485	2.10	0. A356	4.00	0.0625	์	CURVE 7	977	77
0.0526	2,30	0.0075	4.40	0.0790			5	178
	2.40	0.0400	4.60	0.0850	291.0	0.140	}	
CURVE 2	2.60	0.0435	4.60	0.0875) • •		
	2.70	0.0465	4, 70	0.0880	ご	CURVE 8		
0.0050	3.25	0, 05+0	4.90	0.0950				
0.0065	3.40	0.0540	5, 15	9, 1040	3	760 O		
0.00%	3,35	0.0580	5, 40	0.1090	88	0.0879		
0.0100	3. <u>8</u>	0.0605	5.55	0.1110	8	0.0925		
0.0 0.0	3.90 9.	0.0640	5.70	0.1165	103	0.0900		
0.0150	÷ 30	0.0635	S. 35	0.1170	114	0.0975		
0.0200	∓ *	0.9720	9.00	0.1210	116	J. 0933		
0.0230	€.60	9, 0745	6,60	0, 1305	135	0. 100		
0.0250	₽ .	0.0760		•	145	0.0983		
c. 0260	4.90	0.0790	CUR	CURVE 5	154	0.104		
0.0310	5, 10	0.0190			195	0, 115		
0.0340	5, 30	0.0810	i. 70	0.0420	201	0.116		
0.0400	5, 30	0.0820	1.90	0.0445	207	0, 115		
0.0425	5, 50	0.0840	2.05	0.0455	218	0, 114		
0.0430	2.60	0.0845	2, 10	0.0475	ឆំ	0.117		
0.0515	ક .	0.0885	2, 40	0.0540	% 23	0. 123		
0.0565	6. 10	0.030	2.60	0.0570	303	0. 128		
0.0615	6.30	. 0920°	2, 80	0.0615	308	0.127		
9.0620	99.9	a. 0940	2.95	0,0660	308	0, 129		
9.0 64 0	6.70	0.0955	3, 10	0.0650	312	0.123		
0.0660			3.30	0.0765	320	0.131		
0.0680			3.8	0.0855	351	0, 128		
0.0705			4.60	0.0370	337	0. 139		

Not shown on Plot

The recommended values are for well-annealed 99.99% pure lanthanum with residual electrical reaistivity ρ_0 = 1.29 $\mu\Omega$ cm (characterization by ρ_0 becomes important below about 150 K). The values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures.

REMARKS

*Values in parentheses are extrapolated, interpolated, or estimated. Tin K, ki in Watt cm-1 K-1, Tin F, and ki in Btu lb-1 ft-1 F-1.

المتالعات فورزك الجريم ومسروا المتعظو فيتميح مواليس يقاراه المستريس أوالا الترميس ومستويس ومستويس والمتعلق والمتعدد والم

SPECIFICATION TABLE NO. 26 THERNAL CONDUCTIVITY OF LEAD

(Impurity <0.20% each; total impurities <0.50%

[For Data Reported in Figure and Table No. 26]

Composition (weight percent), Specifications and Remarks	Specimen of 1 in, cube, cut and machined from a bar of melting-point lead supplied by NE3 (sample No. 49 C); all surfaces carefully lapped; nickel used as comparative material.	Bureau of Sundard melting point standard lead; purity indicated by freezing point of 327, 4 C; specimen 15 cm long, 2 cm in day melted in graphite and cast in bottom feed cast iron mold; all data referred to the value 0,352 Watt cm ³ fK ³ at 0 C taken from International Critical Tables, Volume II, p. 218.	Pure, "squirted" wire, 3.1 mm in dia; thermal conductivity values calculated from measured data of thermal diffusivity and the specific heat values taken from literature.	99,998 pure; specimen 6.34 cm long, 0.3996 cm in dia; electrical resistivity reported as 19.26 and 20.68 u ohm cm at 0 and 18 C, respectively.	Single crystal, pure lead obtained from Adam Hilger Ltd. (H.S. brand); melted in high vacuum; filtered through a narrow glass opening, pressed in nitragen into a glass tube of the desired shape then cooled slowly to make a specimen of 15 cm long. 2.5 mm in dia; transition point ~7.13 K; thermal conductivity data in normal state below transition point obtained by applying a transversal magnetic field of strength 472-x10 gauss.	The above specimen in superconducting state.	99.95 Pb (by difference), **0.05 total Cu, Bi, Fe, and Ni; 1.8028 cm dia x 27.0 cm tong, density 11.32 g cm 3 at 18 C; electrical conductivity reported as 4.84 and 3.64 x 104 ohm 'tem' at 18 and 100 C, respectively.	Similar to the above specimen.	99, 995* pure; molten specimen contained in a thin-walled tune; electrical resourcy reported as 95.0, 97.2, 99.5, 102.0, 104.4, and 106.8 gohn cm at 350, 400, 450, 500, 550, and 600 C, respectively, 0.8% carbon steel used as comparative material.	Cylindrical specimen.	In superconducting state.	No details reported.	High purity; single crystal; specimen 3.8 mm in dia ohtained from Adam Hilger Lid. (H.S. brand); in superconducting state.	The above specimen in normal state; measured in a longitudinal magnetic field of 850 oersteds.	Similar to the above specimen but 4.0 mm in dia: in superconducting state.
Name and Specimen Designation		1S.							Lab No. 5872				11 +2	P\$ 11	P5 III
Reported Error, %		m													
Temp. Range, K	326-497	273-530	363-483	22-374	2, 6-23	2.0-7.1	291,273	291,273	623-873	381-874	2.6-7.1	7.9-77	1.4-3.8	1.4-3.9	1.4-2.5
Year	1954	1 933	8161 8	1815	1940	1940	1840	1900	1987	1919	1936	1936	1949	1948	1949
Method Used	ပ	ပ	ē.	u	n n	u	Ħ	٦	၁	د	-1	نہ	1	ت	<u></u>
Ref.	ž.	129. 852	*	9	ÿ	33	77	t-	E13	85	<u> </u>	ž	=======================================	1.7	117
Curve		6)	ю	4	ဟ	9	· -	æ	Ð	2	. =	- 7	1	2	15

SPECIFICATION TABLE NO. 26 (continued)

The state of the s

Nethod Year Range, K Error, & Specimen Designation (Composition (weight percent), Specifications and Remarks Used	1. 1952 1.8-6.7 ± 3 Pb.1 99.998 pure; Tadanac lead; single crystal; in superconducting state.	L 1952 1.7-38 ± 3 Pb I The above specimen in normal state.	L 1940 1:36-887 No details reported.	1. 1908 109-299 Turned from a bar of pure lead supplied by Messr. Baxendale, Manchester; density 11.29 g cm ⁻³ at 25 C; electrical resistivity reported as 6.71, 9.71, 12.9, 15.7, 18.5, and 20, 9 u ohm cm at -170, -129.4, -89.2, -51.8, -14.0, and 17.4 C, respectively.	I, 1952 317.2 Specimen cut from melting point standard lead supplied by NBS; 1.75 x 0.1875 x 0.1875 x 0.1875	F 1929 37-378 No details reported.	I. 1958 1.1-4.6 ± 2 Pb.1 99.99 pure; monocrystal; obtained from Johnson & Matthey Co. Ltd. (No. 560); specimen an in dia; annealed in vacuo for several days at a few degrees below the melting point; residual electrical resistivity 0.008 uohm cm; in superconducting state.	1, 1958 1,2-4,8 4.2 Pb 1 The above specimen in normal state; measured in a transversal magnetic field of 1000 gauss.	L 1958 1.0-4.6 4.2 Pb.2 99.99 pure; polycrystal; obtained from Joheson and Matthey Co. Ltd. (No. 560); grain size 0.5 mm; specimen-7 cm long, 3 mm in dia; annealed in vacuo for several hrs at a few degrees below the melting point; residual electrical resistivity 0.008 µ ohm cm; in superconducting state.	L 1958 1.1-3.9 : 2 Pb 2 The above specimen in normal state; measured in a transversal magnetic field of 1900 gauss.	L 1958 1.1-4.6 ± 2 Seroil Pure; bollow cylindrical specimen 3 cm in dia made from lead fuil 0.070 mm thick; annealed in vacuo for 5 days at a few degrees below the melting point; in superconducting state.	L 1959 1.6-4.6 ± 2 Seroll The above specimen in normal state; measured in a magnetic field of 1000 gauss.	L 1958 0,98-4,2 ± 2 PhBi 0,02 99.98 Pb, 0,02 Bi, polycrystal with long crystals; specimen-7 cm long. 3 mm in dia. annealed in vacuo for several hrs at a few degrees below the melting point; residual electrical resistivity 0.021 μohm cm; in superconducting state.	L. 1958 9, 98-4, 3 ± 2 PhBi 0, 02 The above specimen in normal state; measured in a magnetic field of 1000 gauss.	L 1954 1.1-4.8 ± 2 PhBi 0.1 99.899 Ph (by difference), 0.101 Bl; polycrystal; grain size 0.3 mm; specimen ~7 cm long. 3 mm in dia; amended in vacuo for several hrs at a few degrees below the melting point; resulting letertical resistivity 0.092 uohm cm; in superconducting state.	The above execution is not a the District The above execution is normal state; measured in a marmetic field of Hillis states.
1	p.		-1	ij		ĹĿ	ri.					_				
Ref. No. U	ę	7.0	*	8 8	144	16	257. 379	257. 379	257	257	257	257	257	257	257	
Curve No.	92	<u>;-</u>	18	6	50	21	22	23	22	52	36	27	28	29	30	;

SPECIFICATION TABLE NO. 26 (continued)

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
35	342	.1	1953	2.7		190	99,998 pare; single crystal; measured in transverse magnetic fields of strength ranging from 0,70 to 3,90 kilosersteds.
33	342	,,	1953	2.7		P6 1	The above specimen measured in longitudinal magnetic fields of strength ranging from 0.87 to 3.94 kilooersteds.
34	342	ں	1953	5.3		- £	The above specimen measured in transverse magnetic fields of strength ranging from 1.86 to 3.94 kilooersteds.
υ: **	342	1	1953	6.4		7 5 1	The above specimen measured in transverse magnetic fields of strength ranging from 0.52 to 3.94 kilonersteds.
98	ž	-1	1936	3.8-8.6			Measured in a magnetic field of 764 gauss.
37	18		1936	6.39			The above specimen measured in a magnetic field of 765 gauss.
æ	461	1	1951	2.5			99, 998 pure; 0.5 cm dia x 10 cm leng, measured in transverse magnetic fields of strength ranging from 0.to 921 gauss.
339	461	7	1951	2.5			The above specimen measured in transverse magnetic fields of decreasing strength ranging from 685 to 0 gauss.
0+	463	1	1952	0.40-1.2			Single crystal, in superconducting state,
4	79 1		1952	0.43			The above specimen measured in magnetic fields with increasing strength ranging from 0 to 100% of the critical magnetic field.
27	462	7	1952	0.43			The above specimen measured in magnetic fields with decreasing strength ranging from 32 to 4% of the critical magnetic field.
ç	29	ت	1952	0.59			The above specimen measured in magnetic fields with increasing strength ranging from 0 to 100% of the critical magnetic field.
7	462	-1	1952	0.59			The above specimen measured in magnetic fields with decreasing strength ranging from 72 to 37% of the critical magnetic field.
is T	462	ب	1952	1.5			The above specimen measured in magnetic fields with increasing strength ranging from 0 to 96% of the critical magnetic field.
9+	462	ı	1952	1.5			The above specimen measured in magnetic fields with decreasing strength ranging from 69 to 0% of the critical magnetic field.
12	2. X	ш	1956	298-437	m ∗I		Nominally pure; electrical conductivity reported as 4.4, 4.25, 3.6, 3.05, 2.65, and 2.45 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 37, 50, 100, 150, 200, and 230 C, respectively.
ţ	903	Û	1922	313,2	S		Pure lead specimen 3 cm long and 3 cm in dia; zine used as a comparative material.
Đ	:: :-	ж	1943	405-570			Pure: single crystal; electrical resistivity reported as 29.67, 34.01, 39.68, 42.01, and 17.16 μοhm cm at 405.1, 445.1, 499.1, 521.1, and 570.1 K, respectively.

SPECIFICATION TABLE NO., 26 (continued)

Ser e	K.	Netbor Uses	Year	Temps Range, K	Reported Error, C	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
ā	;	ía.	***				Pure polycerstal; electrical resistivity reported as 30, 1, 38, 16, 42,44, and 46,44 µ ohm om at 390,1, 461,5, 439,0, and 239,9 K, respectively.
15	134	ш	13	927-725			Pure (supposed to be Kahlbaum's): 25 cm long, cross sectional area 0,439 cm'.
ส	\$1 \$4	u	0545	0.16-1.2		~	99,999 pure, single crystal, specimen 0.13 cm in dia ~5.0 cm long; in superconducting state.
<i>i</i> 2	T3+	œ	1161	2<5-310	1		Commercially pure (major impurity probably that; specimen compassed of 2 hollow hemispheres of 3,65 cm internal radius and 7 cm external radius.
ょ	463	U	1361	RE757			Pere specimen (Kahlbaum lend) 32,85 mm in dia and 7 cm long; copper used as comparative material.
13	<u>\$</u>	1	<u>\$</u>	1.4-7.5		м	99.9° Phy thy difference), < 0.1 metallic impurities; single crystal; enriched in isotopes of lead; specimen 1.54 cm long, 0.186 cm in din; east in high vacuum (10% mm Hg); annealed in tacuum for 5 hrs at 260 C; in superconducting state.
8	ž	Ħ	1 <u>%</u>	2.9-7.3		យ	The above specimen measured in a langitudinal magnetic field at 900 gauss; in normal state.
િ	2	<u></u>	1961	1.5-7.7		Q	99, 15 Fe (hy difference), 4, 65 metallic impurities; specimen 2, 40 cm long, 0, 123 cm in day, same fabrication method as the alwaye specimen; in superconducting state,
<u>ኝ</u>	3 5	-1	<u>38</u>	2.0-7.6		Q	The above specimen measured in a longitudinal magnetic field of 900 gauss; in normal state.
59	49	٦	1961	2.4-7.6		æ	Similar to the above specimen but 3.26 cm ling and 0.123 cm in dia: in superconducting state.
ã	99		1961	2,4-7,3		n	The above specimen measured in a longitudinal magnetic field of $\Phi \omega$ gauss; in normal state,
.	95 7	-i	<u>8</u>	1-1-1-00		ပ	Similar to the above specimen but 2, 05 cm long and 0, 123 cm in diat in superconducting state.
អូ ម	99+	٦	1961	2.4-7.3		υ	The above specimen measured in a longitudinal magnetic field of 900 gauss in normal state.
3	3.6	٦	1558	1.04.4			$3.5.9$ pure; single crystal; straight wire; annealed at 270 C for 3 days; in superconducting ± 34
3	379, 676	٠.	1954	1.04.0			c above specimen bent at 4.2 K and annealed at 90 K; in superconducting state.
6.5	349,676	- i	33.61	1.14.4			The above specimen annealed at 290 K; in superconducting state.
9,9	19	၁	195.1	313-429	\$ \$	1 - IN 55	NBS melting point standard lead; inconel used as comparative material.
Ġ	-	٦	1955	0.41-1.2	₩		99, 998 pure Intense lend; single crystal; measured without magnetic Shielding; in super- conducting state.

SPECIFICATION TABLE NO. 26 (continued)

Composition (weight percent). Specifications and Remarks	The above specimen measured with magnetic shielding; in superconducting state.	99, 98 Pu (by difference), (1, 02 Bi; in superconducting state.	min in manufactured in money and in a magnetic field.		Baker's analyzed metal, total impurities < 0.03, rod 1.9 cm in and and to cm torig.	Measured in a magnetic field of 1006 gauss.	The above specimen measured in a magnetic field of 956 gauss.	NBS melt point standard lead; specimen 0.350 in. In dia and 0.510 in. long; copper used as the comparative material.	Similar to the above specimen but 0.450 in. in dia and 0.509 in. long.	Similar to the above specimen but 0.250 in. in dia and 0.265 in. long.	Cimilar to the above ananimen but 0.250 in in the and 0.528 in lang.	Similar to the above appendight and of 200 in the control of 200 in the	Similar to the above specimen but 0.300 m. in the and of the conf.	Similar to the above specimen but 0.410 in. in dia and 0.489 in. long.	Similar to the above specimen but 0.410 in. in dia and 0.487 in. long.	Similar to the above specimen but 0.500 in. in dia and 0.500 in. 10ng.	Similar to the above specimen but 0.500 in. in dia and 0.476 in. long.	99.9 Pb, 0.1 Bt; in normal state; measured in a magnetic steld.	The above specimen in superconducting state.	Accurately ground specimen 0, 500 ± 0, 001 in. in dia and 0, 500 ± 0, 005 in. long; electrolytic deposited pure copper used as a comparative material; reference data	of copper taken from International Critical Tables, Vol. 5, McGraw-Hill, p. 221, 1929.	Second run of the above specimen.	Third run of the above specimen.	Molten specimen in a tantalum crucible made from 2 coaxial tubes with dia of 23.8 and	a mm, each tube 0.12 mm thick; take calculated the mission and distributed that a part allows a distributed that see the second and the second that taken from Slavinskii, M.P.	on one and an all of the particle of the properties of the propert	99, 997 pure electrolytic react, speciment of min to	Similar to the above specimen.
Name and Specimen Designation								55 M - 1	1 d 65		7 - 700	55 K - 1	55 L - 1	55 N - 1	55 N - 2	55 Q - 1	55 Q - 2			55 B - 1		55 B - 2	55 B - 3			;	=	Ø
Reported Error, %	, co																			41		*	က +	8-9				
Temp. Range, K	78 0-05 0		2.7-7.2	2.5-11	327.2	3 47	: :	322-414	4	614-615	319-385	321-416	316-398	319-400	316-436	322-401	314-405	2,6-9,4	2 7-6.4	314-381		324-401	314-414	850-1250			373-473	328-523
Year	286	ecc :	1950	1950	1525	9201	000	1953		282	1953	1953	1953	1953	1953	1953	1953	1950	561	1954		7567	200	1965			1956	1956
Method Used	-	د	ر		٦			u o	,	ပ	ပ	ပ	Ų	ပ	U	ن د	y U			ں د		Ċ	, د	۵ ر	ı		_1	J
Ref.		4	508, 46%	508, 163	230	•	<u>c</u>	905 206		206	206	206	908	206	908	9	90%	36	6 6	\$00°		803		7.75	839		510	510
Curve	! ;	3	69	20	7	i	22	2 2		75	42	r	23	67	9	3 5	. &	: 6	3 3	8 8 8		8	8	, a	2		88	8

SPECIFICATION TABLE NO. 26 (continued)

Composition (weight percent). Specifications and Remarks	Rectangular specimen of the same purity as the above specimen; size 22 x 22 x 40 mm.	Similar to the above specimen but 20 mm in dia and 50 mm long.	Similar to the above specimen but only 40 mm long.	Specimen radius 0, 675 cm. furnished by "Erba".	Lead (technical) specimen 0.5 cm in dia and 5 cm long; electrical conductivity reported as 173.57 and 5.09 x 104 ohm-lem 4 20.4 and 273 K, respectively.	Pure Kahbaum lead specimen 0.5 cm in dia and 5 cm long.	In liquid state; melting point 327.4 C; measured in a vacuum of 5 x 10-4 mm Hg.	99, 99 pure; size 0, 184 x 2 x 6 in.; specimen cut from a prefabricated sheet.	NBS melting point standard lend; data obtained by using 28 gauge fron-constantable thermocouples with OFHC copper used as comparative material.	The above specimen measured by using 30 gauge copper-constantan thermocouples.	The above specimen measured by using 24 gauge copper-constantan thermocouples.	23.7 cm long; electrical conductivity reported as 5.141 and 3.602 x 104 ohm lcm-1 at 0 and 100 C, respectively. (The author reported as 5.141 and 3.602 x 108 ohm lcm-1, obviously a typic raph/cal error.)	99.998' pure (by difference), impurity < 0.002; cylindrical specimen prepared from Johnson Matthey H.S. lead; measured in longitudinal magnetic fields of increasing strength ranging from 0 to 1000 gauss.	The above specimen measured in magnetic fields of decreasing atrength ranging from 1000 to 0 gauss.	The above specimen measured in magnetic fields of increasing strength ranging from 0 to 1000 gauss.	The above specimen measured in magnetic fields of decreasing strength ranging from 610 to 33 gauss.	About 99,98 Pb (by difference), 0.02 Bi; cylindrical specimen prepared from Johnson Matthey H.S. lead (impurity < 0.002%); measured in longitudinal magnetic fields of increasing strength 0 to 1000 gauss.	The above specimen measured in longitudinal magnetic fields of decreasing strength ranging from 1990 to 45 gauss.	The above specimen measured in transverse magnetic fields of increasing strength ranging from 0 to 1000 gauss.
Name and Specimen Designation	ď	¥																	
Reported Error, %								1											
Temp. Range, K	328-523	380-510	373-473	298.0	20-273	21-273	700-1130	293-347	319-411	328-405	317-376	273, 373	2.7	2.2	4.6	4.6	5.29	5.29	5.40
Year	1956	1556	1956	1918	1916	1916	1959	1361	1955	5561	1955	1881	1950	1950	1950	1950	1950	1950	1950
Method Used	1	נ	_	-1	ت	د۔	ں	u	ပ	v	ပ	شو	J	1	-1	-1	ы	J	ı
Ref.	510	510	510	511	619	619	265	703	703	703	703	302	237	237	237	237	2:37	237	2:37
Cun	6	26	93	ま	56	96	97	7 6	66	100	101	102	103	107	105	106	107	108	601

SPECIFICATION TABLE NO. 26 (continued)

. A A Company.																	cted
e de la companya de l		reasing strength	easing strength	reasing strength	reasing strength	reasing strength	critical field; in	n superconducting	superconducting	o.; single crystal;	normal state; data	normal state; data	normal state; datu		-	balancing	foreign metals; in linder 3 in. In dis; othed curve, corre
	and Remarks	fields of deci	flelds of incr	fields of deci	fields of inc	: fie! of of dec	ter than the	inctic field; is	etic field; in	d Smelting Co	00 gauss; in r	80 gauss ; in r	iitigauss: in r			ent method of	orks; test cy orks; test cy on from smoo
	Specifications and Remarks	erse magnetic	erse magnetie	erse magnetic	dinal magnetic	idina! magnetic	netic field gre	plying the mag	lying the magn	ated Mining an efined.	netic field of 6	netic field of 6	netic field at 8	state.	determination	slightly differ isses.	to the stand of th
	Composition (weight percent),	neasured in transv o 0 gauss.	nessured in transv 1000 gauss.	neasured in trunsv to 0 gauss.	neasured in lengitu 1000 gauss.	measured in longitute of gauss.	measured in a mag	measured before ap	measured after app	aid specimen grade 69 of the Consolidated M 9,25 in, in dia and 3 in, long; zone refined.	measured in a mag field.	mensured in a magi field.	mensured in 8 mag field.	in superconducting	for freezing point	e above specimen remeasured with a slight thermocouples to avoid radial heat losses.	10 Fo.eign non-volatile matter, < 0.401 Ag, and <0.400 other foreign metals; in motion state; produced by Mallinckrodt Chemical Works; test cylinder 3 in. in dia; Ar med iron used as comparative material; data taken from smoothed curve, corrected dos the effect of transients.
(continued)	Composition	The above specimen measured in transverse magnetic fields of decreasing strength ranging from 996 to 0 gauss.	The above specimen measured in transverse magnetic fields of increasing strength ranging from 0 to 1000 gauss.	The above specimen measured in transverse magnetic fields of decreasing strength ranging from 1000 to 0 gauss.	The above specimen measured in lengitudinal magnetic fields of increasing strength ranging from 0 to 1000 gauss.	The above specimen measured in longitudinal magnetic fields of decressing strength ranging from 1000 to 9 gauss.	The above specimer measured in a magnetic field greater than the critical field, in normal state.	The abuve specimen measured before applying the magnetic field; in superconducting state.	The above specimen measured after applying the magnetic field; in superconducting state.	Lead specimen grade 69 of the Consolidated Mining and Smelting Co.; single crystal; 0.25 in, in dia and 3 in, long; zone refined.	The above specimen measured in a magnetic field of 600 gauss; in normal state; data corrected to zevo field.	The above specimen measured in a magnetic field of 680 gauss; in normal state; data corrected to zero field.	The above specimen measured in a magnetic field at 800 gauss; in normal state; data corrected to zero field,	The above specimen in superconducting state.	Calibration specimen for freezing point determination.	The above specimen remeasured with a slightly different method of balancing thermocouples to avoid radial heat losses.	0.10 Foreign non-volatile matter, * 0.401 Ag, and \$5,001 other foreign metals; in molten state; produced by Mallinekrodt Chemical Works; test cylinder 3 in, in diagramme of iron used as comparative material; data taken from smoothed curve, corresponded of transacuts.
. 36		Ę	Į.	Ę	Ē	÷	Ė	÷	F	ដ	Ē	F	Ã	F	Ü	Ē	
SPECIFICATION TABLE NO.	Name and Specimen Designation														NBS sample 49b	NBS sample 49b	
σ	Reported Error, "														61 A	8 7 //	
	Tensp. Range, K	5.40	2.89	2.89	2.92	2.93	2.6-21	2.8-7.2	2.7-3.9	7.2-8.3	5. 4 8. B	6.3-8.3	6.2-7.3	5.5-7.3	291-333	302-330	617-755
	Year	1950	1950	1950	1950	930	1950	1950	1950	1963	1963	1.96.1	1963	1963	1945	1945	1953
	Method Used	د ا	٦	1	ı.	1	J	1	نہ	-1	-i	H	-1	u	1	-1	ပ
	Ref.	237	237		37	3	-왕.	-13-	- 50	693. 739	ਲ ਨਾ	49 4 13 94	69. 729.	69.1-	- E	S.	-
	Cu 7.	110	===	112	113	114	115	116	117	113	119	120	121	122	25.	151	125

SPECIFICATION TABLE NO. 26 (continued)

Composition (weight percent), Specifications and nemarks	99.99% pure; provided by Johnson Mutthey & Co. 11d., London, (Batch No. 3620); specimen size 3 x 2.1 x 25 mm; warm up number 1; in superconducting state.	The above specimen, warm up number 2.	The above specimen, warm up normal in a constant the constant of Colubrock, England); as a constant of	vire 5 cm long and 0.5 mm in dia; measured in a longitudinal magnetic lield of 1000 wire 5 cm long and 0.5 mm in dia; measured in a longitudinal magnetic lield of 1000 vares; in normal state,	99. 999 pure: polycrystalline; material obtained from Central Research Laboratories. A merican Smelting and Refining Co.: ratio of specimen cross sectional area to A merican Smelting and Refining Co.: ratio of specimen cross sectional area to tength it. 42 x 10.3 cm; cut and rolled from a lead bar of the mentioned purity;	annealed at room temperature for many weeks, measured field of 900 gauss; in normal state.	The above specimen measured in a transverse magnetic field of 2000 gauss.	The many specimen measured in a transverse magnetic field of 1000 gauss.	second in the form of a long hollow cylinder.	Specialism in the space between two coaxial thin-walled tubes of tantalum of 24 and	motival day, respectively; thermal conductivity values calculated from measured using of thermal diffusivity and specific heat.	Motten specimen placed in a hole 21 mm in dia drilled in an asbestos cement cylinder 30 mm in height. JKh18N9T steel used as comparative material.	Lead specimen cut from bar of 99,999 pure or better; supplied by Dept. of Mines and Technical Surveys, Ottawa; smoothed values (experimental point deviations less than rechisted)	Lead specimen cut from the same bar as above and measured by another apparatus with read specimen cut from the thermal shielding.	99,995* Pb. 0.001 Cd. 0.0005 Ag. 0.0005 Cu. and 0.0003 Bi; 7 mm dia x 15 cm long: 99,995* bb. 0.001 Cd. 0.0005 Ag. 0.0005 Cu.; electrical resistivity reported as 19.3, 23.4.	27.5, 31.9, 36.3, 40.8, and 45.7 µ ohm at 0, 50, 100, 150, 200, 250, and 500 C.	0.03 Bi. 0.002 Ag. 0.002 Cd. 0.001 Fe. 0.001 Ni. 0.001 Si. 0.001 Te. 0.0005 Cu. 0.03 Bi. 0.002 Sn. and 0.0001 Mg. electrical resistivity reported as 0.394, 0.735, 4.84, and 0.9005 Sn. and 0.0005 Sn. and 20. 25, 77, and 298 K, respectively: M. P. 327.3 C; Armeo fron used as compurative material.
Name and Specimen Designation																	Pyrometric standard lead 49 c
Reported Error, %											æ- •-		7	7	13		
Temp. Range, K	0.13-0.29	0.18-0.36	0,19-0,38	0.015-0.33	0.11-0.41		0.20-0.33	0.43	0.14-0.41	323.2	560-1355	474-870	223-573	223-573	335-602		316-420
Year	1952	1952	1952	1965	1962		1962	1963	1963	1926	1966	1967	1966	996	1967		1961
Sethod		_ 	د.	د			ر.	د	د.	œ	C4	ິບ	د	_	ـ د)	O
Ref.	151	[3	<u> </u>	33.	133	-	7.33	733	733	734	144	838	075	0	170	<u>-</u>	842
Cun e	971	2	<u> </u>	671	1:30		131	22	133	134	135	136	137	•	971	re T	140

(continued) SPECIFICATION TABLE NO. 26

	SPECIFICATION TABLE NO. 26 (continued)		Specifications and Remarks		ric 0.001 Fe. 0.001 Ni, 0.001 Si, < 0.001 Te, 0.0005 Ag, 0.0005 Bl, 0.0005 Cu, < 0.0005 Sn, and 0.0001 Mg; electrical resistivity reported as 0.366, 0.685, 4.83, and 29π K, respectively; M.P. 327.417 C; Armco Iron used as comparative material.	No details reported.
	SPECIFICATION			led Name and	Pyrometric standard lead 49 e	
				Reported		
· •				Temp. Range, K	323-434	338-399
				Year	1967	1949
				Method Used	U	1
		· · · · · ·		Ref.	*42	870
				Curve No.	141	142

DATA TABLE NO. 36 THERMAL CONDUCTIVITY OF LEAD

(Impurity <0, 20% each; total impurities <0, 50%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

¥	IVE 16	0.937	1. 201	3. 274	3, 459	3, 498	3,485	3, 228	3. 102	2. 997	2.924	3, 102	3, 380	3,868		CURVE 17		10, 710	28, 225	25,000	22, 820	16, 285	12, 270	6. 967	4.818	4. 422	4, 196	2.865	1. 492	0.951	0.731	0. 527	0, 516	0.491	0.410	0.461		CURVE 18		0.427	0.361	0,345	0.333
H	CURVE	1.82	2.01	2 .2 20 20 20 20 20 20 20 20 20 20 20 20 20	3	3.14	3.38	3. 72	4. 4.	4.67	5. 23	5.97	÷.	6. 73		CUE		1. 69	2. 78	3. 20	3.76	4.65	5. 14	6. 28	6.71	6.96	7. 16	8. 18	10. 71	14. 10	17. 16	27. 06	22. 51	29. 28	33.06	37.50		COL		138.0	245.0	301. 4	366. 2
×	CURVE 13 (cont.)		3, 13	e e) }	/E 14		7. 50	o. 10	10.80	11. 00	12. 60	12. 20	13. 70	14. 50	15.40	15.60	16. 40	15.90	16. 70	16. 10	15. 60	14. 70	14. 70		13.50		CURVE 15		ù. 55	0.85	1. 33	1. 76	2. 43	2. 54	2. 82	3.60	3. 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3					
۲	CURVE	3.59	3, 74	0, 0 5, 2	; i	CURVE 14		1.37	1.40	1.45	1.55	1.66	1. 67	1. 79	1.93	2.06	2.21	2.35	2.39	2.56	2.58	3, 09	3.41	3, 47	3, 52	3.88		CURY		1.41	1. 52	1. 67	1.81	1. 36	2. 03	2. 12	2.27	2.46					
¥	E 12	2, 326	1.695	1. 053 0. 847	0.735	0.621	0.565	0 524	0.500	0. 442	0. 426	G. 397		E 13	}	0.300	0.340	0.350	0.350	0.370	0.427	0.446	0.485	0.581	0.641	0.746	0.826	0.990	1. 05	1.61			2. 16	2. 46		2. 92				3.27	3, 27	3.31	3.27
۲	CURVE	7.90	8. 77	11. 10	14.60	17. 30	19. 10	21. 00	25.00	34.00	43.00	77.00		CURVE 13		1. 40	1.42	1.44	1. 47	1. 49	1.54	1.58	1.60	1.68	1.70	1.79	1.80	1.89	1.90	2. 10	2. 12	2.24	2.21	2.37	2.44	2.58	2.61	2, 81	2.93	2.96	3. 22	3, 29	3, 46
×	/E 7°	0.346	0.341	CITRVEA		0, 343	0.339		/E 9		0.160	0.164	0. 167	0.159	0. 166	0. 173	0, 175	0.185	0.184	0.187		E 10	}	0.335	0.322	0.310	0.289	0. 163 %	0.159	0. 155	0.155		E 11		0.800	0.885	1. 053	1. 220	1.351	1. 408	1. 563	2, 222	
H	CURVE 7	291.2	373.2	(H)		291. 2	373. 2		CURVE		623.2	627.2	647.2	648.2	673. 2	683, 2	718.2	783.2	823.2	873.2		CURVE 10		381. 2	495. 2	571.2	599. 2	628.2	720.2	804. 2	874.2		CURVE 11		2, 59	2.83	3.84	4. 49	4.96	5.51	6. 14	7.09	
×	(cont.)	3. 57	G. 64	2 g +		3, 75	3.88	3, 72	3. 88	3, 77	6. 21	5.59	3, 72	3, 46	4. 37	3.61	3, 52	3, 42	3 6	3.3 4	3, 23	3, 19	3, 03	2. 99	2.82	2, 79	2. 82,	2.85	2.87	2.91	2. 99	2, 99	3. 05	3. 12	3. 15	3. 16"	3, 23	3.38"	3.40*	3. 47*	3. 70	4. 10	4. 26
H	CURVE 6 (cont.	2.38	2. 42	73 € ⊗i «	2 63	. S.	2.87	96.7	3.09	3, 26	3, 34	3, 35	3, 44	3. 53.	3. 60	3. 61	3, 73	3.80	3, 82	4, 03	4.05	4. 25	4.63	4.63	4. 73	4.88	5. 22	5, 25	5.28	5.68	5.80	5.92	6. 02	6. 12	6. 14	6. 14	6. 24	6. 41	6. 44	6. 51	6.76	96.9	7.06
¥	5 (cont.)	13.2	13, 3	10. x		5.35	4. 22	4, 22	4 . 13	4. 07	3, 85		3. 75	3. Se	3, 38				2.65		1. 45	1. 16	0.913	0:23	0, 746	0.714	0.658	0. 633	0.575	0.552	0. 526		/E 6		2, 25	2, 36	2. 65	2, 73	3. 19	3.60	3. 09		
H	CURVE	4.84	4.85	ភ្នា ភ្ន ភោស	61.9	6.68	7. 15	7. 17	7. 17	7.31	7.42	7, 43	7.52	7. 63	7. 76	8.01	8. 03	8.32	æ. 4 3	8.69	10, 74	11, 98	14.38	15.47	15. 57	15.85	17.63	17.92	20, 19	21.31	22. 70		CURVE		2.04	2. 10	2. 13	2. 17	2. 26	2, 29	2.36		
¥	2]	0.352	0.3412	0.3399	0.3170	0.3218	0,3060	0.3140	0, 3070	0.3037		en (4)	1	0.346	0.345	6. 337	0.340		4	1	0.480	0.378	0.350*	0.349	0.349		5		17.5	20. 0	21.7	9 :61	18.3	LT. 9	20.0	18.2	16.9	14.9	15.4	13.3			
H	CURVE	273.2		333. 36. 2	436.2		481. 2	483.2	526. 2	530.2		CURVE		2		483.2	483.2		CURVE		21.8			295. 1			CURVE		2.58	81		8		8	67		3.84		_	4.75	_		1
¥	; I	0, 342	0.347	0.351 2.45 3.45	0,342	0, 347	0.341	0.347	0, 342	0.342	0. 339	0. 339	0.342	0.338	0.336	0.335	c. 332	0.336	0.332	0. 331	0.332	0.331	0.326	0.329	0.327	6. 33c	0.323	0.322	0.326	0.323	0.322	0. 322	0.323	0.318	0.314								
н	CURVE 1	325.7	ر م	3.6.2		347.2	-		358.2	٠.	_		383.2		_		7	2		-10	<u>sa</u> .	_	•	445. 7	ىد.	~			~1	8	e,	~	496.7		497. 2								

Not shown on plot

DATA TABLE NO. 36 (continued)

. T	CURVE 40					0.73 0.0385*		0.79 0.0475		0.90 0.0690	0.94 0.0805				H(%H_) k	CIRVE 41	(T = 0.43)		0 0.00703				71 0.00737			91 0.0450	100 0.225		CURVE 420	(T = 0, 43)	0 0759	72 0. 9901				-		0 0.00803					
×	CURVE 36 (cont.)			CIRVE 37*		39 2.04		.a) k	JRVE 38	(T=2.5)	å	26 I		2.01	2.00	. * 6 		*00 %			1. 62				0 2,54		20 m	1			14.6		JRVE 39	(T = 2.5)		8.00 8	4 . %	1. 97	1. 77	1, 78	5 5	1. 79	
H		5, 74				6, 39		H(gauss)				42	71.			295.		363.0			411.		514. 0		600.	64 to		729.0			94 873.0								369		140 64	90	
<u>-</u>	CURVE 31 (cont.)	4.27 1.12 4.36 1.16		H (kilooersteds) k	CURVE 32	$(\mathbf{T} = 2.7)$		0.70 25.7			2,90 6,21		CURVE 33*	$(\mathbf{T}=2,7)$	į	0.87 25.7		2.50 17.1	3,25 15.4	3.94 13.9	;	CURVE 34	(F : 0: 3)		2, 50 8, 13			CURVE 35	(T = 6.4)		ej .	2.50 5.78		,	×	CURVE 36		3.80 1.72					
×	CURVE 29 (cont.)	3,48		CURVE 30 H (k	0.292	0.313	0, 359	0.416	0.825	0.916	1.012	8 5	1.03	1.08°	1. 10	90 .	1. 62	0.910	0.870	998.0	9.847	0.8% 0.0%	0.835	0.855	0.876	;	CURVE 31	698 0	0.272	0.287	0.288	0.336	500.0	0.64	0.716	0, 740	0.847	0.876	0.880	1. 01			
۲	CURVE	4. 12 4. 27	í	CUR	1.08	1. 13	1, 18	1.26	1. 33	1, 87		2, 13 2, 16			2. 40	5 i i i	96.7 7		3, 45	3. Sx	3.67	 5.	0 40 0 7	4	4, 76		CUR	00 (3	1. 07	01.7	1.33	580	2,38	2.65	2. 72	3. 14	3, 26	3, 28	3, 79			
×	CURVE 28 (cont.)	0, 206		0, 352		0, 775	Ö	ာ ရ	- i							٠.	2 £	•	: -: : 1	1,45	1. 46	1. 51	CIRVE 29		1. 13	1. 17	: :	5.6	2, 05									3, 37	3. 52	3, 25,			
۲		1. 03 1. 07	1.21	1.28	1.59	1.81	1.89	1.94	2, 19	2.26	2.38	2. 44	2: 2						3,86	3, 91	4.00	4. 16	Ö	il.	0.98	7 . 96	1.46		1.94	2, 33	્યું : - 40	2.61	. d	3, 13	3,42	3, 45	3.60	3, 66	3.91	3.97			
×	VE 24 (cont.)	2.46* 2.48		CURVE 25	3.47				7.00			CIRVE 26			0.078		0.0950					J	1.22	. ~			2. 28 2. 29	úα	2.22*		CURVE 27	£6. ¶				7,45		CURVE 28		0. 180			
T	L.) CURVE	2 4.47 1 4.59						2.13						1.05			 	1.41	1.48				3.07					. 4 . 4	4.59				5 .			1.61				0.98			
T K	CURVE 22 (cont.)			45 0.652							33 2.02				55 2.22			CURVE 23				5. 05		7. 08		57 7. 64		CITRVE 94	1			26.50			11 2.10			53 2, 42		46 2, 46			
		14 1.35		1.45		387 2.24	સં	ณ่ ร	vi si	က်	က်း	7j 🕶	4	*	- -	√	ť	346	2	1.18		-		2,68				X 2	14			77.7				07 il 02			421 3.9				plot
ί+ *	CURVE 15 (cont.)	523. 9 0. 314 659. 2 0. 244		PI TVENT	Tanua	÷	ສ່	152. 2 0. 369	181.2 0.3		ဘဲ :	⇒ ∈		256.2 0.353		ဘဲ ခ	=	5	•	CURVE 20°		371. 2 0. 337	CIBVE				106.2 0.448				CURVF 22	412. 0 20 1						j	1, 22 0, 4;				Not shown on plot

DATA TABLE NO. 36 (continued)

. 	CURVE 60 (cont.)	4.57	4. 46	 	٠, 4	415 614	10 2	0.84	1. 25	1.42	1. 46	1. 55	8 6	7 5	1 22	- a			, c									2, 25				2. 73 0. 00		3 6		5 e	2, 70		CURVE 62		3.90	3.98	÷ 20	4 . 60	4. 75
t	CURVE	6.57	6.61	7.05	* C.	Ę	2 4 2					3.06			 4				• •	27.	. J. J.	•	7 6				98 		6. 10			6. 6.	2 6	7.02		7 24	7.68	-	En o	İ	2.40	2.45			2.88
¥	59 (cont.)	2, 47	2.47		6. 0 5. 0 5. 0	3 3	2. 4 6	2, 41	2, 35	2.35	2.35	2.36	2. 3c	6. 30	2.42		2, 32	7.00	2, 40 10 10 10 10 10 10 10 10 10 10 10 10 10	, d	9 6	7		3.61	3.52	\$.vi	;	E 60		တာ (တ (20.5	F	12.3	: :	: :	11.6	10.5	11.1	9, 20	8.65	8.45	7. 60	ē. 75	5. 65
۲	CURVE 5	3.31	3.45	ლ. •	* * * * * * * * * * * * * * * * * * * *	90.7	4. 55 22.	4.24	4.38	4.45	→	5.37	, r	e e		9 8	5 X	9 6	9. 60 9. 60	9.00	- e	5 :	7. 14 20	. T3	7. 23	7.62		CURVE		2.41	. 4 8	2, 52	2.63	8 6 V r	2	, c	3.91	4. 16	4.38	4. 60	4.75	4.80		5.48	\$ \$
æ	57 (cont.)	3.72	. 90	4. : 0. :	0 1. 0 1. 1.		3. .	E SH		23.6	25. 5	25. 6	25.0	0 :	93.6	30.1	27.7	, 0	0.02	73.0	7 97	• c		8.1.3	0 ;;			90 6 6	8. 2°	χ. Θ. Θ.	7.2			0. 4 5.55		* os	3	E 59¢		1. 53	1.70	1.98	2.23	2.35	2. 30
۲	CURVES	6. 98	7. 09	7. 18	7. 40		00.	CURVE		2. 00	2, 35		2.80		 		95	300	יי פרים פרים	3 .	2	4. 21	4.92	3 :										, 0 , 0				CURVE		2.40	2. 49	2. 70	2.83	3.06	3, 09
×	CURVE 56 (com.)		ac i	6.75		2 5	7 .	VE 57*		0.435	0.81	1. 28			2.23				3 %															2 (Z											
Ħ	CURVE		6. 96	6.39	6 6 6 7			CURVE !		1. 51	1. 70	1.85		7.70	2. 6										3.97					4. 4X			60 G	T to		6 tr			6. 03				6. 57	6. 76	98 .9
×	55 (cont.)	4, 50	4, 45	÷.4		; ·	2 2	3.90	3. 70	3.62					9 7 7 7 7							g s				4.056	4, 235	4. 25	4.00	;	/E 56	,	29. 5	3.5.0		97.7	0 0	26.3	24. 1	21. 5	17. 1	15. 7	14. 1	12. 6	10. 4
۲	CURVE	2.35	2.43	2.59	2 5 2 6	5 :	, c	3.61	3.80	3. 83	4. 00	₹ *	4, 13	÷ .	6 5 + 3				e d o	. T.		6.37	5.65 65	· .	6.83	6. 33	7. 14	7.25	7.45		CURVE		3. 92	3 4		, c.	25	59	68°	4.02	4.32			5.21	5.57
*	10 3	0, 367	0. 3NS	0.400	(1E 59		0,0004	0. U0068°	0. 0012 °	0.00222*	0. U040 °	0.0000	8600	200	0.033	25.0	0. Its	***	7		0.373	0.361	0.346		VE S		0.448	0.456	0.452	0.385	0.346	0.342	0.342	0.345	3	တ (၁)	0.44	0 79	1. 34	2, 25	2, 55	3.06	3.48	3. 93	
۲	CURVE	273.2	299. 7	326. 3	Al Carlo		0.157	0. 184	0, 225	0, 275	0, 37	0.45	C+ 0	8 E	2 6		1. 15		CORV	4	284.0	2.582	308		CURV		2. 2. 2.	85.2	90.2	261. 2	273.2	295. 2	295.7	N		CURVE	1 4	1 59	1. 72	1. 90	1.96	2. 03	2. 14	2. 22	
×	. 9 - 3	1.35	0, 699	9.469	707.0 0	507.5	0, 123 0, 123	0, 120		¥		E 47	600	200.0	0.000 0.356	200	() () () () () () () () () ()	200	u. 303	8	12	0	96	:	E 49		0.336	0. 35 7	0.346	0.343	0.339	6. 337	0, 337	0. 536	3	100.0	50		0.341	0.331	0.322	0.314	ປ. 313້	0.307	0.303
ुम∘्रम	CURVE 46	69	Š	უ :	÷÷	1 2	5 7 5 8	9		H		CURVE	6	7.33.	255.2	3.000	7 7 7 7 7	7.00	431.2	8	COKVE 48		313. 2		CURVE 49	;	405. 1	421. 1	445. 1	467. 1	439. 1	515. 1	521. 1	555. I	1 -	200.	CIRVE 50		390. 1	423.9	461.8	497. 5	499. 0	528. 7	539.9
	CURVE 43		0.0212	0.0197	0, 0227	9000	0, 0223	0.01367	0.0139	0.0206	0. 0345°	0, 0680	9	CORNE **	0. 09K)	92.6	U. I.co	767.0	0. 102	0.0433	C. 01.1		CURVE 45	4. ok)	;	o. 156	0. 154	0. 172	0. 166	0, 161	0.156	0.154	0.0775	0.0676 0.0565	0.000	0.0536	0.0559	0 0602	U, 0730	0, 0943	0.145	0. 433			
िसक्स म	CURY (T =)	!	၁	† !	i F	, .	? 7	3	73	80	68	100	i	S CON		ć	¥ 5	20.0	† u	<u>?</u> :	÷	į	SOR	= -	;	-	(1) (9)							3 7											

Not shown on plot

DATA TABLE NO. 26 (continued)

×	E 95	0.476	0.465	0.451	0.397	0.3/2	و 90 د		0.577	0.543	0.489	0.401	0.373	200	ה ה	152	12.	0.150	0.161	0.150	0.158	0, 153	0.159	0. 161	0. 156	C. 160	0. 157	0, 152	S :	0.137	0. 155	0, 157	0.155	0.152	0. 163	0. 167	0. 161	0.156	0. 171	0 100	0.162	0.164	0. 180	0. 168	
€	CURVE 95	20.4	22.4	26.2	85.7	0.673	CITE UE 96		20.6	22. 4	25.9	96. O	273.0		CORVES	400 %	705.2	736.2	757. 2	765.2	765.7	773.0	773.0	794. 2	800.0	800.7	804. 2	804. 7	817.2	825.2	831.9	836. 0	840.0	844.2	868.2	890. 2	892. 2	897. 7		303.2	916.7	923. 7	931. 2	937. 2	
×	CURVE 90	0.356	0.351	0.345	2.00	0.000	333	0.331	0.326	0, 324	,	CURVE 91 *	250	0.000	0.345	0 344	0.339	0, 337	0, 333	0.331	0.326	0.324		CURVE 92*	;	0.343	0, 339	0.335	0.331	0.550	0.322		/E 93"		0, 333	0.324	0.317	1	CURVE 94	200	6. 55				
۲	CUR	328.2	348.2	383.2	393. 2	126.2	465.2	583.2	503.2	523. 2		E5	0 300	240.4	383.2	363.2	426. 2	436, 2	465.2	483.2	503. 2	573, 2		500		380. 2	398.2	426.2	453.2	468.2	510.2	1	CURVE		373.2	423, 2	473.2		CCIR	9	730.0				
¥	CURVE 84 (cont.)"	0. 290	0.325	0.260	0. 338	907	0.420	0.450	0.596		E 85°		0.322	350	0.314		. 98 E		0, 326	0.326	0.322	0.322	0.318	; ;	CURVE 87	;	0. 331	0.326	0.331	0.326	1	CURVE 88°	}	0.156	0.157	0. 158	c. 159	U . 160	0. 160	¢00		0.356	0.347	0.339	
۴	CURVE	3.01	3. 15	3.25	3.01	4 5 5 5 6 7	. 4	9	6.35		CURVE		314. 1	0.100	381.4		CURVE		323, 5	341.6	361. 4	361.7	401.3		CUR	;	314.3	352.6		385.0	•	CURV		850	906	1000	1100	1200	1250	\$00 3/V GT ()		373.2	423.2	473.2	
*	(cont.)	0.31R	0.318	3,00	8 	261. 10	0.327	0.325	0, 324	0, 321	Ç	≅	966 9		0.322	318	0.318		82°	1	0, 332	0.336	0, 331	0. 32k	0.318	0		000	000	0,235	0.385	0, 431	0.465	0, 503	0. 52A	0, 575	0.650	0.675	0. 650	480	5)	0, 250	0.263	0. 29.3	
T	CURVE 79" (cont.)	382.0	339, 5	3/10/15	CONVE 80	216	342.5	359.9	378.7	436, 1		CURVE	9 166	246.2	365.0	385.0	401.1		CURVE 82"		313, 7	336. 1	355. 2	380, 2	404. 7		CURVE		, c.	5. C	? =	3, 44	3.60	3, 90	4.35	4. 85	8.50	9. OG	9. 30	371010	מיוש איני	2.70	2. 70	2. 30	
*	173 1	2, 22	2. 33		!]	191	0.20	0.339	0.317	0.310	٠		12.7	200.0	0.320	0.312	c. 308		.92]	0.341	0, 335	e. 330	0.328	;	11	900	0.338	1.0.0	0.5.54	0.302		. 92 19		0.322	0.331	0.322	0.355	0.318	300	2)	0, 339	0.331	0. 322	
۳	CURVE 73	4.37	4.64	TUDUS.	CORVE	0 664	340.8	35% 0	376.3	413.5		CURVE 75	319.0	24.5	383.4	383.2	419.2		CURVE 76?		319.3	341.2	361.0	384.7		CURVE 77	300	320.9	338.1	360.8	415.9) 	CURVE		315. 5	335.2	355.4	378, 5	398. 2	111010	CON	319, 2	338.8	362. 5	
ж.	VE 68	0, 6619	J. 0032	0, 0055	0.0000	0.000	0.0215	0.0225	0.0310	0. 0315	0.0402	į	VE 69	100	6, 530 0, 570	0.570	0, 765	0. 907	1.00	1, 13	1. 16	3.70	:[0. 66	0.825	0.95	3 :	1. 22	1. 26 	1. 25 1. 15	1. 08	0.985	0.91	0.84	ě	275	i i	0, 347	6	VF. 72	1.59				
L	CURV	0, 295	0.37	0.41	0.470	3 0	0.575	0.675	0.75	0.805	0.87		COM	c	v c	. d) (i)	O. C	6.5	Ð ',	7. 15	CIRVE		2.5		က : (၁	4, r		- ; .i. (, c) ; ;	9.6	10.0	11.0		CURVE		327.2		CORS	3.47	:			
×	4 (cont.)	2, 40	2. 70 %	00 °	2. 80	6.00	3	0.180	0. 205	0, 250	9. 33	0.51	2 6	8 6	1.25	2 05	2.30	2.45	2.60	2.65	2. 60	2.50		99 3		0.322	0.320	0, 303	0.310	0.311	: 67		0.00375"	0.005	0.011	0. 024°	0.027*	0.035	0.038*	0.00	0.0578	0.065	9. 0725*	O. 095	
۲	CURVE 64 (cont.	2.80	3.05	3.80	4 -	Can arrang	NO.	1.08	1. 10	1.18	1, 30	1. 48	1.68	1. 30	2. 10	9 9	80	3, 05	3.30	3, 70	3, 95	4.40		CURVE		313.4	336, 2	362. 2	381.6	428.7	CIRVE		0.405	0.43	0.585	0.715	0. 74	0. 79	0.815	5 G	0.95	T. 00	1. 10	 	
æ	CURVE 62 (cont.)	5. 15	5. 45	6. 05	90	9 9	on or	5.60	5.45	5, 15	4. 53	3.78	9.40 9.40	3	(F 6:	3	0.27	0.355	0.43	o. 5 4	99.0	0.84	1. 15	1. 50	1.80	2.30	2.45	2.60	2.83	2.95 2.95	2.60		E 64		0.110	0. 160	0. 220	0.300	0.415	0.68	1.60	2. 10			
۲	CURVE	3, 07	3.57	3.84	. TO	9	4. 33 35	4.81	5. 15	5.4		6.59	\$ 8 • •	٠.	CIRVE		1.00	1. 10	1. 15	1.25	1.35	1. 50	1. 73	1.95	2. 15	2.55	2.70	2.85	3.23	7 7 7	. .		CURVE 64		ා	1. 18	1.28	1.45	1. 60	9 c	2.40	2.60			4

Not shown on plut

DATA TABLE NO. 26 (comingual)

H	عد	۲	. 24	H(gauss)	¥	H(gauss)	<u>يد</u>	H(gauss)	×	Higanss	×	H(gauss)	<u></u>	€-	×
CHRVE 97 (cont.)*	7 (cont.)	CURVE	E 101°	CURVE	CURVE 104 (cont.)	CURVE 167	£ 107	CURV	CURVE 1095	CURI	VE 11.1	CURVE 1	CURVE 113 (cont.)*	CURVE 1	CURVE 115 (cont.)
						(T = 5.	29K)	1	5. 40K)	(T -	(T = 2, 89K)] :
941.2	0, 169	317. 2	0.324	625	0.86	:	:	;		;		338	0.560	20.36	0,503
941.2		353, 1	0, 324	909	0, 80 0, 30 0, 30	9 5 6	0.863 6.863	146	0,835	9 2	0.540	535	0 260	21.03	0.330
955.7	0, 180	210. %	0. 550	528	0. 0 25. 0	145	. 966. 0. 866	165	0, 839	220	0. 550	613	0.568	CURVE 116	.911:
971.7	0, 183	CURV	CURVE 102	485	0, 70	183	. 869	182	0.850	260	0, 550	633	0.600		{
980.0	0, 173			410	0.68	220	0, 869	202	0.882	300	6, 549	652	0, 698	2.82	0.545
383, 2	0, 179	273, 2	0, 350	•	0.61	262	0,8692	225	0.910	340	0.551 [©]	989	0.849	3.32	9,618
996. 7	9, 186	373, 2	0.320			27.7	0.874	559	0.951	380	0.472	728	0.849	3.81	0.653
998.2	0. 182			CURVE	RVE 105	292	0, 878	265	0.983	418	0, 450	925	0,851	4, 3R	0.697
1000.2	0.178	H(gauss)	¥	ı L	4. 6K)	300	0.880	302	1. 070	454 504	0. 461	1000	0.852	4. SX	0,733
1002.7	0. 189		,			312	0. 922	345	1. 189	200	6.430	1		5.42	e, 844
1020.2	0, 188	CURV	CURVE 103	0	1.80	328	0. 944	360	1.210	653 539	0.535	CURVE 114	114	2.5 2.5 2.5 2.5 2.5 3.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4	0,305
1023. 2	0, 182	Ė	2. 7K)	315	1. 30	340	1.062	OKE	1. 220	080	0.602	(T-Z)	92K)	9 6	200
1045. 7	0.192	•		338	1.81	360	1.261	417	1. 220	19	0,675	•		5, 72	200. 1
1059. 2	0. 200	ې ز	0.62	362	1.82	382	1.275		1. 220	50 G	887 0	1000	0.852	5.72	1.030
1061.2	0, 196	225	0.63	3.76	1. 93 93	402	1. 283	0007	1. 2.30	269	0.802	793	0.303 0.00	(7.)	7.1.1
1063.2	6, 202	340	0.64	388	1.84	462	1, 285			729	0.803	889	U. N56	-	
7066.2	0.194	418	0. 63	400	1. 89	731	1, 275	CURV	CURVE 110	1000	0, 805°	099	0. x55	CI'RVE 1178	
1069.2	0, 189	498	0.65	415	2.00	1000	1, 265	(T = 5	. 40K)		,	645	0, 785		
1089.2	96. 19	538	0.65	437	2. 45					CUE	CURVE 112	009	0, 560	2, 67	0.30s
1099. 2	0, 212	555	0.65	441	2.68	CURV	CURVE 108:	966	1, 240	٦)	2. 89K)	580	0, 505	3, 03	0.411
1105.2	0. 197	576	0.65	464	2.80	(T=5.	29K)	725	1, 230			260	0.487	3, 03	0.425
1130.2	0.209	593	0.65	464	3, 60			610	1, 235	1000	0.805	478	0.460	3, 42	0.500
		611	0. 70	486	4, 50	1000	1, 265	490	1, 230	928	908.0	409	0,442	3, 92	0,583
CURVE	\$ 86 ÷	620	0.68	494	5, 15	808	1, 265	450	1. 2:30	90x	0, 812	335	0.440		
	}	650	0.72	724	5, 50	498	1, 260	4:30	1, 230	725	908 0	212	0, 437	CURVE 118	# T
	0, 351	690	0, 73	1000	5, 50	461	1, 260	410	1. 232	685	O. H08	0	0. 430		
303.6	0.350	702	96.0			438	1, 259	390	1. 235	642	0. 808			7,215	5,043
315.0	0.346	730	4, 45	CURVE	/E 106	420	1. 252	378	1. 235	602	0,698	<u>-</u>	×	7.226	5.009 *
327. 2		745	4.45	: <u>.</u>	4. 6K)	402	1,251	360	1, 235	570	0.626		,	7,236	5,012
346.5	0.344	788	4. 45			391	1, 252	338	1, 203	530	0, 558	CURVE 115	115	7.244	4.9K3
		815	4.50	83	1. 90	375	1, 247	350	1, 148	490	905.0			7.270	4.976
CURVE 99*	,,66	1000	4, 49	180	1.90	355	1, 240	908:	1. 112	450	0.420	2. 60	0, 653	7.253	4,910
	<u> </u>			262	1.91	320	0, 980	265	1.020	412	0.440	2.86	0.800	7.297	4,889
318.9	0, 324	CURV	CURVE 104	336	2.00	300	0, 937	226	0.950	370	e. 420	9 86 87	0.887	7.387	4.756
349. 7	0.331	E	2. 7K)	364	2.05	285	0, 910	205	0.922	340	0.412	3, 82	1. 015	7,455	4.661
386.8	0.318			342	2. 10	262	0.894	061	968.0	20:	0.408	1.47	1, 110	7, 491	4.609
410.8	c. 312	1000	4, 49	406	2, 20	225	0.384	X3T	0.885	797	a. 406	5.38	1, 260	7, 505	4.595
		798	4.55	428	2, 75	45	0.875	150	576	225	0.404	5.80	1, 250	7,629	4.431
CURVE 100*	100₽	150	4, 55	2	3, 61			11:3	0.865	o	0, 403	6.00	1, 240	7.662	4.403
		732	4. 20.	463	4.65			40	0.860			6.71	1, 205	7.765	4.277
327.5	0.324	720	4, 50	466	5, 55			a	0.855	CUR	CURVE 113	7.35	1, 150	7.797	4.239
355. 4	0, 317	669	3.48	490	5. 55					E	2. 92K)	7.63	1, 137	7, M35	4.206
378.7	0.317	683	2, 02	524	. 55							8, 11	1, 073	7,964	4,055
404.7	0.313	665	1, 35	610	5, 55					0	0, 555	9. S	0.931	086.7	4,043 2
		;								140	0, 561	10.60	0.870	8,113	3, 905
			ļ									11.44	0.803	016 X	3, 754
*	4-1-1-1											14.96	0.637		
NOT SHOW	Not shown or plot														

DATA TABLE NO. 26 (continued)

	141	0.350	0,339	0.338	0,343	0, 335	0, 343	0.335	0,334		142	\$1.00	202.0	0.314													-						•								•				
H	CURVE 141	323, 2	:16:: 2	:180, 2	389. 2	.195, 2	402, 2	414.2	434. 2		CURVE 142		0 OH:	5 ×62.																									ē						
×	CURVE 138	e, 360 e, 353	0, 346	0, 339	0, 332	0, 324	0, 317	0.310	ą	CURVE 135		0.3581	2542	0.3569	0.3541	0.3613	0.3514	0, 3501	0.3522	0, 3503	0.3500	0.3443	0.3390	<	CURVE 140		0.341	0.341	0.3.53	0.340	0, 541	0, 31.14	0, 332	0, 333	0.339	0.329	0, 330	0.328	0.332	C. 525	178.0				
۴	CURV	200	- 53 - 53 - 53	273	<u> </u>	::- *	523	573		C: B		* t	7 12.7	1.02	369.2	370.7	413.2	416.0	417.9	436.5	442.3	468, 9	601.5		CURV		2.16, 2	5.55. 2	2.96.2	335, 2	2.140	357.2	358, 2	372, 2	373, 2	377.2	381.2	389. 2	391. 2	401.2	470. 5				
×	E 135	0, 662	E 1:88	į	0.156	0.360	- -		프 교		6,343		i 1	F (.). 0	2 2 2	0.167	0, 166	0. 164	0, 162	0.161	0.159	0.157	0. 15¢	0, 155	:	اء اء		0.3036	0.29.5	0.2930	0, 1716 1716	0, 1400	0.1925	0, 1967	ŧ	CURVE 137		0.362	0, 155	040	1000	200	620.0	0, 321	0,315
٠	CURVE 132	0.42	CURVE 1:53		0.14	0,285	D. #		CURVE LE		323.2	No.	24100	995	9 9	505	100	207	300	1000	1100	1200	1:300	1:555		SURVE 1:8	;	474.2	27.0	28.50	627. 627. 627. 627.	740.2	823, 2	870, 2		CURV		22:4	273	5	36.5			1.70	57.3
*	(cont.)	0.057	0. 0575	0.067	0.068	0.058	0. 957	0. 6765	0. 075	0.0725	0. 086	C. 0×3	0.000	101.0	0.116	0.140	0.14:	0.155	0. 195	0. 200	0.213	0.250	0. 2HS	0.320	0.350	0.385 0.385 0.385	0.435	3	29.5 20.5	5.65 	0.71	130	į	o. 0430°	0, 06915	0.0864	o. 17o	,	131	1	0.130	0.400	0.235		
Ţ	CURVE 129 (cont.)	0,0168	0.050	0,0205	0,025	0, 023	0.054	0,025	0, 0265	0.028	0.029	0.031	0.003	0.000	6:00	0.0425	0.046	0.054	0.061	0.066	0, 073	0.081	0° 093	6, 103	0.110	0. 123 	0.140	0, 165	0.185	0, 215	0. 23	CURVE 130		0, 105	0.155	0, 26	[†.0	:	CURVE 131		0. 138	0, 240	0.55		
×	123	0.356	0,360	0.368	0, 368	0.372		124		0.358	0, 356	0, 356	301	22	0 175	07.0	0, 189	0, 196		<u>126</u> °		0, 0000467	0, 0001170	0, 0000885	0.0001010	5. 1	121		0.0000182	0. 0000:310	0.0000292	0,0000234		128		0.0000132	0,0000228	0.0000410	0, 00005K3	,,	<u>[2]</u>	54100	0, 0415	0.035	
۲	CURVE 125	291.3	308.5	317.6	323.9	333, 2		CURVE 124*		302.0	315.7	329.8	CHEVE	COUNTE	6.16.5	: +13	r 669	755, 4		CURVE 126		0, 129	0. 162	0. 221	0.292		CURVE 127		0. 176	0.214	0.255	0.363		CURVE 128		0.136	0, 2:19	0.309	0.378		CUKVE 129		0.015	0.0195	
±۷	CURVE 121 (cont.)*	6, 044 5 873	4, 937		E 122#	<u> </u>	2, 524	2, 542	2, 585	2, 555	2.668	2, 732	2.037	5.433	010	2 96.2	2.974	3, 140	3, 211	3, 246	3, 424	3,455	3, 592	3, 607	3, 751	3 803	3.886	000	4.187	4. 26.3	8070 T	4.4	4,607	4, 538E	4,628	4, 697	4, 761	4, 836	4, 919	995. 7		4, 988			
۴	CURVE 1	6, 756	7.27	i !	CURVE 1224		5. 484	5,407	5, 626	5, 793	5.911	6, 002	2,002	20.0	0.130	5 5	6, 272	6,336	6, 376	6.414	6.491	6, 521	6, 575	6, 583	6,618	6,670	6.669	6,759	6, 816	6, 850	6, 900 6, 900 6, 900 7, 900 8,	7 X X X	7,00.7	7, 051	7.00.0	7.117	7, 11,	7, 161	7, 193	7. 190	7, 213	7. 211			
×	CURVE 119	6. 790	6. 143	5, 617	5,451	5, 238	5, 159	5,055	4.811	4, 721	4.491	4.143	3,982	5. of 5.	9.133	CHRVE 190*		7,063	6.909	6.418	6. 299	5, 752	5, 570	5, 363	5,096	5. 0.24	4.989	4. 501	4 × 39	4.574	4,515	4.554	4,031	3, 970	363	13, 46.1	3,851	3, 721		CURVE 121		7 7 1- 1	7.	5.35	
T	CURV	6, 409	6.683	6, 932	7. rug	7, 110	7, 164	7, 219	7, 351	7.412	7, 591	7, 899	* C C	3, 203 3, 203	9, 230	VRITA		6, 279		6, 504	6, 623	6, 872	6, 955	7, 064	7, 195	7, 225	7, 250	7, 292	7, 329	7, 518	7, 561	1. 0.00 1. 0.0	975	400 x	3, 150	4, 157	1.167	*, :10		<u> </u>	!	£. 225	6, 273	21 3	

Not shown on plot

œ É

900 +

2 ×

တ္ က 🛧 ٠,

THERMAL CONDUCTIVITY, Wall om 1 K 1

-396.7 -378.7

0.462 0.451 0.412

0.435

0.424

600, 576 K

a F

9

FEMPERATURE, K 9 00 1

2 2

9 0 1

-01

REMARKS

P. (s. c.) 7. 191 K

~

-351.7 -333.7 -315.7 -297.7 -279.7

24.5 24.0 23.5 23.2 22.9 21.8

0.415 0.407 0.396 0.377

9.7 32.0 80.3 170.3 260.3

21.1 20.7 20.5 20.3 20.1 19.5

99.

440.3 620.3 621.2

621, 4 800, 3 980, 3 1160 1340

۲,

RECOMMENDED VALUES:

0.358 0.355 0.352 0.348 0.338 0.325 0.312 0.312 998.0 500 500 600.5 tivity $\rho_{\phi}=0.000000$ $\mu\Omega$ cm (characterization by ρ_{ϕ} becomes important at temperatures below about 80 K). The values below 1.5 Tm are calculated to fit the experimental data by using n = 3.00. $\alpha'=7.40 \times 10^{-4}$ and $\beta=0.0353$. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 3% of the true values near room temperature, and 3 to 10% at other temperatures. The recommended values are for well-annealed 99. 99*% pure lead with residual electrical resis-

T₁ in K, k₁ in Watt em 1K-t, T₂ in F, and k₂ in Btu hr-²ft⁻¹F-f.

The state of the s

#Values in parentheses are extrapolated,

193

SPECIFICATION TABLE IN: 21 THE WALL CONFECTIVITY OF LITHIUM

tradita - due anno

7

.

.. ?

The Bits majorated in Page 7 and Table 1861. 151.

SPECIFICATION TABLE NO. 27 (continued)

Carre	7.8	Method	Yea.	Tenta Rangy, K	Reported Erroz, "	Nume and Specimen Designation	Composition (weight percent), Specifications and Remarks
:	7.7	U	<u> </u>	541-1E3	15		Eats of the slave specimen calculated by comparing with the hotton reference material (Armeo iron, between specimen and heat cluk).
ដ	3 \$	•	15 9	461-138			Density reported as 0.4992, 0.4724, 0.4654, 0.4581, 0.4440, and 0.4289 g cm ⁻³ at 615, 8, 744.5, 862.7, 940, 4, 1054, 1157 and 1311 K, respectively; electrical resistivity reported as 12.16, 13, 36, 14, 54, 26, 54, 28, 30, 30, 39, 31,02, 32,10, 33,40, 34,90, 37,53, 38,61, 39,7,41,53, 42,68, 46,05, 48,21, 48,96, and 49,67µ ohm orm at 360, 39, 37, 412, 451, 487, 536, 597, 604, 655, 696, 764, 813, 878, 918, 941, 1045, 1104, 1246, 1319, 1342, and 1372 K, respectively; thermal continently take calculated from measured electrical resistivity values and the Lorenz number 2,45 x 10 ⁻³ V ² K ⁻² .
<u> </u>	§ .	1	%	CT-67:			n. 0490 (c), 0, 0130 Na, - 0, 0040 Fe, -6, 0050 Nb, < 0, 0040 N, < 0, 0005 Nb, and < 0, 0040 Zr, positivst impurities 0, 24 O, -0, 01 Fe, -0, 01 Nb, < 0, 0030 N, < 0, 0010 Nl, < 0, 0010 Nl, < 0, 0010 Nl, < 0, 0010 Zr, and - 0, 0010 Nb, < 0, 0010 Nb, < 0, 0010 Nl, < 0, 0010 Zr, and - 0, 0010 Zr, 25, 29, 32, 77, 35, 4, 38, 1, 40, 8, 43, 5, 46, 1, 48, 6, 51, 2, 53, 7, 53, 7, 36, 1, and 59, 1 µ ohm em at 1010, 100, 400, 500, 600, 700, 800, 900, 1100, 1200, 1200, 1300, 1400, and 1430 C, respectively; data calculated from the measured electrical resistivity data and the Lorenz number 2, 29 x 10 8 VKr², this value being based on measured thermal conductivity data of Cooke, J.W. (J. Chem. Phys., 40 (7), 1902-9, 1964).

ENTA TABLE NO. 27 THERMAL CONDUCTIVITY OF LITHIUM (Impurity < 0.20% each; total impurities < 0.50%)

٠,	
A. E.	
7 =	
_	
Watt	
-	
يخد	
. •	
2	
- 5	
-5	
ă	
ĕ	
Ę	
O	
7	
Ε	
-	
Æ	
Thermal	
ż	
H	
:	
Ĭ	
neratur	
C	
4	
Ē	
•	

	 ¥	CURVE 10	0.4+9	0.446	0.449	0,450	0.467	0,457	0,475	0.479	0.55 н	0.562	0.555	0, 552	0.549		CURVE 11	}	0.457	0.464	0.160	0.474	0.4K3	0.497	0.500	0.587	0.586	0.5H5	0.587	0, 582		CURVE 12"		0.409	0.416	0.446	0.471	0.515	0.555	0.591	0.621	0.645	0.662	0.675	
	۲	CUR	596.4	009	615. 1	651.7	652.2	655, 8	722.0	722.9	¥25.0	942.7	945.8	936.9	1051.6		CUR		631, 4	633.2	649, 5	631.6	691.6	776.9	771.6	873, 7	9.87.9	993, 5	997. 0	1103, 4		CUR		463	478	533	589	7 0 0	811	922	1033	1	1255	1:366	
	×	CURVE 9 (cont.)	0.471	9, 494	0.447	0, 493	0.478	0, 465	0.442	0,465	0,465	C. 301	0.439	9, 506	0.487	0, 477	0, 465	0.459	0,479	0.517	0.372	0.463	0.117.3	0,477	6, 449	0.471	0.529	0.487	0, 465	0, 457	0, 47.3	0. 4HK	0.445	0, 459	0, 504	0,475	0. 190	0.506	0.476	0.552	0, 529	0.556	0, 488		
	Ļ	CURVE	725.2	743, 2	745.2	756.2	759.2	763,2	763.2	773.2	179.2	779, 7	87.まに	7.5.2	C) X ()	198.2	501.2	K06, 2	S S 3	t- 818	21.2	£3, 3	829, S	81 °E	850, 2	561.3	362, S	0.82.2	188,2	201.2	198.2	305, 2	913.2	919.2	935, 2	938.2	948.2	962, 2	973.2	985.2	998.2	1010.7	1012.2		
(Temperature, T. K. Thermal Conductivity, k. Watt $\langle em^{24}K^4 \rangle$	æ	\ <u>E</u> ;	0.354	0, 395	454.0	0,459	0.4%	0.516	0.539	e, 133	0, 461		CURVE 9		e, 11 ,	-, ++;- -	0,451	997 0	141	0,465	0, 455	0,465	17, 464	u. 465	0.482	±7.4.5	0,439	0, 425	0, 463	587°=	9.4.86	0, 473	0.517	0, 46:	0.464	0, 453	0, 479	0, 506	0. 488	0,445	0,481	605.0	0.489		
tivity. k. Wa	۲	CURVE	466.8	472,4	552, 4	695, 4	51 × 07	917.6	1026, 8	1081.5	11:17, 6		CUR		511.2	535, 7	0.04.0	561.2	51,656	572, 2	71 27 17	592. 2	604. 2	611.2	616.0	627, 2	62 N. 2	6.00, 7	647, 2	652, 2	655, 3	66%, 2	57.1, 2	67.5	680, 2	7	? Z	594.2	69 r. 0	708.0	710,2	716.2	724, 2		
ermal Conduc	×	CURVE " (cont.)	5,0 £	6. 150	6, 165	6, 235	6, 165	6.0.9	5, 695	5, 555	0,040	5,030	4, 6:10	120	3, 600	555	7	5.055	0.00	1,000	1, 405	5131.7	7		CURVE ?	[0, 433	0,301	0.333	190.0	0.351	0, 372	11 TO 10	C. 35.55	0,3315	0,331	0.01	0, 322	0, 322	0, 322	0, 322				
re, T. K. Th	۰	CURVE	14, 37	15, 50	16, 43	17, 60	18, 65	26, 63	23, 30	4.47	25, 65	당. 당	30, 54	111, 60	01 30	14 85	17	0.00	2.	69, 00	95 T.	36	94, 60		H.J.J		5 (1) (S	502, 2	509,2	617, 2	623, 2	631, 2	6177.13	67.419	639.3	54:1, 2	646, 2	649, 2	650,3	651, 2	652.3				
Temperatu	×	CURVE 5 (cont.)	200.5	2,100	5. v.	3,633	3,415	8 0.0	5, 10	0,065	3, 253	000.4	3,905	9	3, 6%	210	9	12 71 71	7	0:: -	- F	1.36		CLTIVE 6		1, 405	1, 555	1, 705	1, 760	£3.51	(구 전 건 전	380.1	35. 51	5.275	3, 590	000 T	1000	4, 753	5, 123	5 5	5, 530	52.	5,905		
	٢	CURVE	00 ₹	9, 90	10.50	12,00	14, 10	16, 30	15,30	20, 15	21, 16	13.95	15, 40	9.	÷ ;	06.40	00 17	2- 17	(S)	(2)	3	95, 60		(LI)		ei ei	7	60.5	96 ii		£.33	90.0	5, X3	인 호	6.76	1.93	0.7	9. H	10°73	21.42	12, 60	13, 05	11.40	•	
	4	2 (cont.)	1,470	1.215	1, 105	1.0.15	06.5.0		10 E 10	; 		7		7.7	19.	a, 173	59. m	3.396	. 50¢	÷.	2	7 .	0 :		₽ : ₽ :	į L		1	į	50 T					CL NVE.	•	/ i i i	7 ()	7	1. (84)		ا ا دا	56 7	335	
	۲	CURVE		05 . 1	90.0	102, 30	11.1.15		CURVE		j. :	Z :	7	- 1 -	<u> </u>	<u> </u>	9,40	11, 50	47.	16, 67	** :		4		1 . T	0		L. KVE			2 1		9.11.	4		•	3 : 		3 (3, 13	 	£. ;	13 1	コーズ	
	id.	-	7	0.912	ý	1;	9	1.0	14:0	0,711	750	£\$9 0	2	0 6 6	1.90		101 2	71.3	:	r i		1. 402	2.7	5:1:3	17.450	7	1,517	7.4 17	4,36	4.674	5,241	68 19	6, 437	7, 149	124 TE	7.	7	6,906	6, 575	1.	417	4.345	195))
	 -	T.W.L	ñ	r:	4.	ij	7	n	161	ţ	71	Į.	X		40	Ę	ŕ	£	Ì	CIRVE		7	1	11	16,5	10	Ti si	51.5	£ . 4	T. 1	01.1	s o	9. 2	i E	14. 9E	17, 93	F1 .2	21, 50	11.60	1. 1.	# #	4	7		

Not shown on Plot

588.8 0.445 673.2 0.445 673.2 0.445 673.2 0.587 873.2 0.587 1073 0.588 1173 0.588 1173 0.614 1173 0.614 1173 0.614

and the common Prof. in the section of the company of the profit of the section o

FIGURE AND TABLE NO. 27R RECOMMENDED THERMAL CONDUCTIVITY OF LITHIUM

THE PARTY.

ander Bandin Indiana, արտարարական ու ու selled setting de Michael set հայացի և և ԱՄՄՄՄ համարաբարաց գու

II maranduning the form of the second section of

SPECIFICATION TABLE NO. 28 THERMAL CONDUCTIVITY OF LUTETICAL

(impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 28]

Composition (weight percent). Specifications and Remarks	99. 99 pare; polycrystalline; strip specimen 0.25 mm thick; annealed in stream of behinn vaper at 600 C for 3 hrs; electrical resitivity reported at 4.2 and 293 K, respectively as 12.3 and 79 gohn cm; data from smoothed curve; Lorenz function reported is 3.40 x 10 ⁻⁸ V ² K ⁻² in the residual resistance region.	-0.1 rare earth metal; ~0.5 Ta, ~0.05 base metals; polycrystalline specimen 1.2 x 1.2 x 0.31 em; electrical resistivity 59 µohm cm at 291 K; data proposed by the author from measurements of 2 different thermal comparators.	0.0600 Yb. < 0.0200 Ta, 0.012 < 0. 0.0100 Fr, < 0.030 Fe, 0.0025 N. 0.0020 Ca, < 0.0010 each of Al, Cr, Cu, Mg, Ni, Sl, and Tm, and < 0.0005 Se; single crystal; FlNA 1.81 al, 40 cm; grown from arc-metted buttons using the single crystal; FlNA 1.82 Al of Cm, for site about the specimen axis; electrical	strain anneal method; 1010 offertual control of the
Name and Specimen Designation				
Reported Error, "		4	4	
Temp. Range, K	4-100	291	5. 5-300	1.3-1.99
Year	1965	1966	1967	1967
Method Used	7	Ú	-1	۵
Ref.	98.50 9.30	256	*	**
Cure	<u> </u>	c.	es	→

^{*}Boys. D. W. and Logvold, S., "Thermal Conductivities and Lorenz Functions of Dy, Er, and Lu Single Crystals," to be published in Physical Review; also USAEC IS-T-185, 1967.

DATA TABLE NO. 28 THERMAL CONDUCTIVITY OF LUTETIUM

(Impurity < 0. 20% each; total impurities $\pm 0.30\%)$ [Temperature, T, K; Thermal Conductivity, k, Watt cm $^{-1}{\rm K}^{-1}{\rm J}$

	CURVE 4 (cont.)	4.		.4 0. 395	.4 0, 399	· •	÷.	. 5 0 399	65.0 0.399	→	•	.7 6.		0 9	.5	1, 2 0, 366	·0	.s		3	0	Ö	ص ص	÷ د	 ڪ	4	O	3 0.	.3 0.	0	о́ О	. J	-	ا خ ص		s x	0	_	4 0.						
		5 11.	5 12.	3 13.	2 14		3 16	17.	3	1 20	20	17.		82 23			76 29								159 79	157 80.					149 120.	49 139	21	41 130	39 200	36 224.	25	27	29	.507		77	##C	367	
•	JRVE 3 (conf.	9.2 0.155	4 0.1	90. 8 0. 193	3	9.0	1 7 0 1	3.5	0	0	1.0	0	0	0 0	. O	0	0	50	2	0	1 0	0	3	79. 3 0.16	0 9	0	6	0	6	ن ع	.0	0.0	25, 0 0, 14	0.0	.1 0.1	0 0.1		CURVE 4		•	• • • •	ه د	• • • • • • • • • • • • • • • • • • •		
4	تا																		103	103		2	1	162		-		.60	105	901	116	. 127	126	137	149	95	181							. 162	
-	CURVE 1	•	2	0	· =			_		•	3			• •	, ,		•	- c		•	•	CURVE		291		TIRVE		٥) t-	4	7	4	4		, 4		, -			15.4	16.2	17.5	18.4	
	CURVE 1 CURVE 3 (cont.)	7 0 006 19 2 0.1	7 0.010 19 4 0.1	0 0.017 20.8 0.	7 5 0 120 21 3 0.	9 0 0 127 21.6 0.	57.0	0 0 135 23 5 0.	0 9 5%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29 3 0	30.0	0 0 115 32.4 0.	0 113 34.0		25.30	901.0	0.105	2 77	0.103	66.1	70.0	79.3	0, 162 79. 5	3	100.0	2002 1002 1003	0.092	0 105	8 651 901 0 2	4 0,116 179.8	4 0, 127 200.0	4 0, 126 225, 0	4 0.137 250.0	5 0 149	0 156 300.0	5 0 163	A 0 163 CURVE		173	172	172	172 175 177 8.3	172 173 177 18.3 186	172 175 177 177 186 196 196 196

Not shown on plut

FIGURE AND TABLE NO. 28R RECOMMENDED THERMAL CONDUCTIVITY OF LUTETIUM

T in K, ki in Watt cm-1 K-1, T2 in F, and k2 in Btu lb-1 ft-1 F-1.

THE STATE OF THE STATE OF

*Values in parentheses are extrapolated.

مريا بالألام وتقابلا الأراقي الإيراع الأستوريس الأرساج إيقاله المالية المراجعة مرايع المستويس جيركا منسوعة والمراجعة إلى المالية والمراجعة إلى المالية الم

SPECIFICATION TABLE NO. 29 THERMAL CONDUCTIVITY OF MAGNESIUM

(Impurity $\leq 0.20\%$ each; total impurities $\leq 0.5(9\%)$

[For Data Reported in Figure and Table No. 29]

Specifications and Remarks	Composition (weight percent), approximately	Extremely pure; 3 cm x 1.23 cm ² ; electrical resistivity reported as 0.32, 3.31, 3.30, and 7.27μ ohm cm at 80, 273 , 373 , and 460K , respectively.	Commercially pure. 99.6 pure; 0.75 in. rod; obtained from Magnesium Co., Ltd.; extruded, then annealed 99.6 pure; 0.75 in. rod; obtained from Magnesium Co., Ltd.; extruded ty reported as for 6 hrs at 360 C; density (at 21 C) 1.75 g cm ⁻³ ; electrical resistivity reported as for 6 hrs at 360 C; density (at 21 C) 1.75 g cm ⁻³ ; electrical resistivity and 13.74 uohm cm at 20.0, 101.2, 199.4, 314.0, 4.59, 6.19, 8.13, 10.35, 11.13, and 13.74 uohm cm at 20.0, 101.2, 199.4, 314.0, 348.3, and 440.1 C; respectively.	99.95 pure; polycrystalline; 1-2 mm dia x5 cm long; ontained from Johnson 99.95 Mg, 0.03 Mn, 0.0075 Fc, and 0.004 Al; 15 mm dia specimen made from Johnson 99.95 Mg, 0.03 Mn, 0.0075 Fc, and 0.004 Al; 15 mm dia specimen made from Johnson Matthey standardized rod; annealed in vacuo at 500 C for 6 hrs. Matthey standardized rod; annealed in vacuo at 500 C for 6 hrs.	99.95 * Mg. 0.043 Mn, 0.00348 Zn. 0.0012 Zn. 0.0012 Zn. 0.0012 Zn. m dia x 9 cm long; Si. 0.0010 Zh. 0.0001 Cu. and 0.0001 Ni; polyerystalline; 3.2 mm dia x 9 cm long; Si. 0.0010 Zh. 0.0001 Co.; annealed; electrical resistivity reported as 0.1479, prepared by Dow Chemical Co.; annealed; electrical resistivity and 20 K, 0.1272, 0.1195, 0.1147, and 0.1217 uohm cm al 1, 5, 10, 14.5, and 20 K.	respectively. 99.94 Mg, 0.013 Fe, 0.0023 Mn, 0.0013 Pb, traces of Al, Ca, Cu, St, Ag, and Na; polycrystalline; 3.2 mm dia x 9 cm long; prepared from a Johnson Matthey spectropolycrystalline; 3.2 mm dia x 9 cm long; prepared from a Johnson Matthey spectrographic rod; electrical resistivity reported as 0.06624, 0.06456, 0.0655, 0.0679, graphic rod; electrical resistivity reported as 0.06624, 0.06480, 0.0655, n.0679, and 0.0727 µ ohm cm at 1, 5, 10, 15, and 20 K, respectively.	99.98* Mg, n. 013 Fe, 0. 0023 Mn, 0. 0013 Po, traces of or, or odd a rod drawn by Johnson-Matthey from a sample JM 1846.	The above specimen annulated in viscosity of the above specimen Mg 2. Similar to the above specimen Mg 2. J. 631 Si, 0.012 Cu, and 0.014 total Fe and Al; 1 in. dia x 12 in. long; annealed for 5 j. 631 Si, 0.012 Cu, and 0.014 total Fe and Al; 1 in. dia x 12 in. long; annealed for 5 j. 631 C before inachining.	0. 175 St, 0.052 At, and 0.014 Fer 3 mm did 8 50 cm construction on at 29 C. 4.52 u ohm cm at 29 C. The above specimen nanealed for 30 min at 450 C; electrical resistivity 4.42 u ohm cm at The above specimen nanealed for 30 min at 450 C; electrical resistivity 4.42 u ohm cm at	29 C. Extruded powder specimen; density 98-100% of theoretical value. Extruded powder specimen; density 98-100% of theoretical value. Pure; electrical conductivity 2.31 x 10 ⁵ ohm ⁻¹ cm ⁻¹ at 18.1 C. 99.95 Mg, 0.033 Al, and 0.012 Zn; 1.9 cm in dia and 30 cm long; supplied by the Metallurgy Division of the National Physical Laboratory; forged and stabilising heat treated; electrical resistivity reported as 4.5, 5.01, 5.85, 7.57, 9.30, and 11.04 treated; electrical resistivity reported as 4.5, xoli, 5.85, 7.57, 9.30, and 11.04 treated; electrical resistivity reported as 4.5, xoli, 5.85, 7.57, 9.30, and 11.04 treated; electrical resistivity reported as 4.5, xoli, xol	
	Name and Specimen Designation			JM 1703; Mg 1 JM 1703; Mg 2	Mg (Mn)	MK (F.e.)	JM 1349; MK 1	JM 1848; Mg 2 JM 1848; Mg 3	MR	Mk 3	
10.41	Reported Error, 73	3.0-4.0	0.1	2.0-3.6	0.1	1.0	0.5-1.0	0.5-1.0	< 0.5	+ 1.3	
	Temp. Range, K	80.460	373-423 430-729	2.5-35	1.5-24	1.6-22	2.5-91	2.5-149 2.2-27 373-623	302.2	301.2 493,553 291.3 323-673	
	Year	6261	1927	1952 1954	1957	1957	1953	1953 1953 1928	1925	1925 1952 1932 1964	
	Method	2 1	шн	7 -	u	u	<u>.</u>	בוני	ш	ന ലെപ്റ	
	Ref.	. So. So.	8 2 E	اد بر اد	137	137	275	275 275 225	408	408 295 673 674	
	Culve	og -	e 6 8	7 0	9	٠	oc	9 10 11	13	13 14 15	

SPECIFICATION TABLE NO. 29 (continued)

Specifications and Remarks	Composition (weight possession of a second to em long; supplied by Messis.	99.98 Mg, 6.017 Al, and 0.004 Zn; 0.635 cm in the subtricted as 4.34, 4.85, 5.70,	Johnson, Marking 1 293, 323, 373, and 423 K. respectively. and 6.51 u ohm cm at 293, 323, 373, and 423 K. respectively. Ejectrical conductivity reported as 24,47 and 17.5 x 104 ohm 1cm-1 at 0 and 100 C.	respectively. Spectroscopically pure: specimen 1.27 cm long; thermal conductivity values calculated Spectroscopically pure: specimen diffusivity data.	from measured the figure of the state of the	Specimen 4.025 in. in dia and 1.015 in. thick. Specimen 4.025 in. in dia and 1.015 in. thick. 99.98+ Mg. 0.01 Mn, 0.003 Zn, 0.0012 Pb, 0.001 Ca, <0.001 Si, <0.001 Su, 0.010 cm in dia: 99.98+ Mg. 0.01 Mn, 0.003 Zn, 0.0010 Ni; specimen 9.03 cm iong and 0.319 cm in dia:	0.000 m. sepectively. reported as 0.048, 0.042, 0.00, 0.50, and 30 K, respectively. electrical resistivity reported as 0.048, 0.15.0, 15.0, 15.0, 20.0, 20.0, and 0.058 μ ohm cm at 1.0, 3.0, 5.0, 10.0, 15.0, 0.011 Sn, 0.0010 Fe, < 0.001 Sl, and 0.058 μ ohm cm at 1.0, 3.0, 20.0, 20.0 μ ohm cm at 1.0, 3.0, 20.0 μ ohm cm at 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2	99.95 MK, 0.043 Mn, 0.0048 Zn, 0.0012 CR, 0.0014 B.95 cm long and 0.307 cm in dR, 0.002 Al, 0.0001 Cu, and 0.0001 Ni specimen 8.95 cm long and 0.127, and 0.137 0.0002 Al, 0.0001 Cu, and 0.153, 0.144, 0.136, 0.123, 0.120, 0.127, and 0.137 electrical resistivity reported as 0.153, 0.144, 0.136, 0.123, 0.120, 0.127, and 0.137 electrical resistivity reported as 0.15, 20, and 25 K, respectively.	99.87 MK, 0.12 Mn. 0.0036 Zn. 0.0014 Pb. 0.0011 Fe. Change and 0.305 cm in dia; 99.87 MK, 0.10002 Ni, and 0.0001 Cu; specimen 9.35 cm long and 0.305 and 0.37 chouse Al. 0.0002 Ni, and 0.0001 Cu; specimen 3.7 chort in cristivity reported as 0.365, 0.34, 0.32, 0.39, 0.275, 0.30, and 0.37 chort in cristivity reported as 0.365, 0.34, 0.32 chort in cristivity reported as 0.365, 0.30, and 40 K, respectively.	Spherical grains supplied by Valley Metallurgical Frosting + 200; thermal conduction at 0.75 in. dia x 2 in. long cylindrical cell; meah size -100 + 200; thermal conductivity measured by the transient line source method; measured in Front - 12 under a tivity measured by the transient line source method; measured in Front - 12 under a pressure of ~100 psig.	Similar to above; measured in are Similar to above; measured in nitrogen under a pressure of ~100 psig. Similar to above; measured in helium under a pressure of ~100 psig. Similar to above; measured in helium under a pressure of ~100 psig. Similar to above; measured in hydrogen under a pressure of ~100 psig.
	Name and Specimen Designation	Mg II				Sample ∯765	•	Sample # 767	Sample # 370		
İ	Reported Error, %										
	Temp.	n.inge.	323-423	273,373	293.2	293. 2 307 -324	1.0-4.7	1.1-4.4	1.0-4.5	298.2	298.2 298.2 298.2 298.2 298.2
	Year		1964	1881	1965	1965 1 96 3	1953	1953	1953	1966	1966 1966 1956 1966
	Method	Used	ەن	ü	А	د ء	1	-1	u.	۵	4444
	Ref.		674	206	719	719	121	721	721	943	943 843 843 843
	1	ź	11	18	31	20 50	22	23	7.	25	3 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

新聞の And Andrews

DATA TABLE NO. 29 THERMAL CONDUCTIVITY OF MAGNESIUM

(Impurity $\approx 0,\,20\%$ each; total impurities $\approx \theta/(50\%)$

[Temperature, T. K. Thermal Conductivity, k, Watt. em. 1K.1]

. .	CHRVE 22 (.:ont.)	1.30	2.00	2.13	2,48	2.55	2.65	2.60	2.63	2.70	3	CURVE 23		0.17	0.20	0.20	0.23	0.235	0.29	0.305	0.41	0.345	0.405	0.38	0.43	0.35	0.44	0.44	0.53	0.515	90.0	0.57	0.615	0.63	0.67	9.68	0.715	0.735	0.775	0.79	
!-	CURVE	1.95	2.93	3.13	3.53	4.03	4.23	4.40	4.43	4. 4 EV 5	Š.	CUR	{ 	1.06	1.10	1.24	1.25	1.33	1.56	1.57	<u>.</u>	1.85	1,83	1.93	1.48	2.00	2.14	2. 23	2.47		2.75	2 .¥	2.88	3.05	3.16	~; Z	3,43	3, 63	3.80	3,98	
¥	, 61 3 3	0.151	E 20		u. 150		CURVE 21		1, 60	. 59 53	1.57	1.56	1.59	1.60	1.60	1, 59	1.58	1.60	1. 59	1. 59	1. 56	1. 59	1.60	1.57	1.55	1.65	1. 58	1.58	1. 57	5	CURVE 22		0.575	0, 825	0.725	0.875	1.03	1.10	1.15	1.30	
Т	CURVE 19	293, 2	CURVE 20		293, 2		CURV		307. 1	307. 2	307.3	307.3	311.7	312.2	312. 3	312. 7	312. 7	312.9	313.1	313, 1	313, 4	318.1	318.2	318. 5	319.5	323.7	324.0	324. 2	324. 5		CCK		1.0	1.3	1.33	1.43	1.68	1.73	1.75	3.58	
ч	E 11	1, 297	1.255		21 31		1.441		: ::	1001	1	E 14	}	1.35	1, 33		E 15		1. 59s		E 16		1, 49	1. 43	1. 46	1. 45	1.43		E 17		式: :	1.52	1. 50		E 18		1, 573	1.573			
H	CURVE 11	375. 2	623.2		CURVE 12		302, 2 1, 491		CURVE 13	6 147	1	CURVE 14		493.2	653, 2		CURVE 15		291.3		CURVE 16	l	223.2	373, 2	173.2	57.3, 2	673.2		CURVE 17		323	373	42:3		CURVE 18		273. 2	373, 2	373. 2		
×	(cont.)	13, 10 15, 10	3	7, 13	5, 57	3, 21	i: 00	5.53	21 21 21	1.91	: : :	1.62	1.61		E 10		2, 650	3, 014	3, 043	90+ 10	3, 629	3, 895	4, 295	4, 741	5, 035	5, 433	5, 659	5. 202	6.473	6. 639	11.80	11.82	13. 17	14. 18	14.31	14, 19	13. 73	12, 89	11.85	10.65	
;·	CURVE 9 (cont.	20° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5	29. 6	15, 7	40.0	ر. چ	57, 3	63, 6	70, 4	2.1.0 0.1.0	111.9	129.3	149.3		CURVE 10		2, 175	2, 356	2,470	2, 716	2, 486	3, 103	5, 397	3, 733	3, 957	4, 284	4, 408	4, 725	4, 799	4, 92?	ე ი	10, 73	12, 85	15.0	15, 80	18, 31	20, 33	22, 19	25. 0	27.3	
¥	CURVE X	1.80	7 7	3. 10	6. 01	X.	9, 05	ر ال	5.23	∰ ; en e	: # () :	7, 05	2, 97	2.61	2 -1	1. 96	1.81		CURVE 9	ļ }	3, 106	250	3, 550	4. JKU	4.520	4, 920	5, 390	6, 240	6, 510	8, 560	9.420	10.00	11. 00	11.13	12.03	12, 69	13.01	13, 59	13.77	13, 75	
Ļ	COR	2 46 44 5	3, 60	4, 05	6, 28	10, 43	11, 59	10 86	14. 54	# S	27	33, 40	56, 40	61.30	68, 50	00.11	91.40		CUR	}	5. 49	7.61	2, 36	3, 23	3, 35	3, 91	4, 22	1 5. →	4. 92	6.61	7, 59	s, 40	8.55	9.47	10, 75	11. 52	12. 16	13.93	16.00	18.40	
×	6 (cont.)	1, 460	1, 830	1 945	2, 155	2, 460	2, 755	3, 090	3, 246	2, 4 60	02:0 ••	4, 230	4, 340	4, 430		 		0, 631	0.770	0.370	1, 108	1, 262	1,415	1,555	2, 640	1, 785	2, 030	2, 390	2,890	3,015	3, 520	3, 720		4, 230	4. x6c	5, 310	5, 900	6, 230	6, 355	6, 460	
۲	CURVE	5. 3.2 5. 5.	04 %	N. Gel	19, 00	11. 15	12, 73	14. 40	15, 50	16.35	SE 127	21, 60	22, 35	23, 50		S		1.60	1.96	2, 35	21	3, 32	5. 6 5	3, 95	4. 25	4, 55	5. HO	6.15	7. 60	چ ان هوا	9, 32	10.00	10, 25	11.35	13, 40	15, 45	17.80	19.85	20, 80	21.75	
¥	VE 5	2, 318 2, 645	2, 3,72	3, 026	3,250	3. 650	4, 020	\$ * : *	5, 125	791 o	0.3	7, 200	7.800	8, 610	9.310	9 5:36	10, 130	10, 650	11 035	11, 330	11, 585	11. 810	11, 610	11, 485	11, 425	11, 125	10, 560	9, 720	8, 240	7 730		CURVE 6		0. 292	0.462	0, 563	0.770	0, 923	1.055	1. 185	
4	CURVE	15 g			3.54	36-8	4, 38	4, 67	 	81 (10 (, (<u>.</u>	. 53.	8. 25 25. 25	9 17	10.03	10.83	12 25	13, 42	14, 33	15.30	16. 42	17.96	20, 08	21.67	22, 50	23, 83	26, 92	28.33	33, 58	34, 75		CUR			2.27		3.65	4.35	5.00	5. 60	
±Ł	Y. B. 1	5. 570 5. 5. 5.	1 655	1, 65.5		CURVE 2		1, 339	1, 351	1, 423	E 33 60 0		1, 372	1.331	1, 293	1, 314		CURVE 4	!	3, 211	4.000	4, 316	4, 947	5. 5HU	6, 316	6, 580	6.947	8, 080	9, 211	9. 632	9, 737	9, 605	9, 053	8.947	7, 263	6.842	6, 316	5, 580	5. 395	4, 737	
L	CCRVE	0.08	80 0 80 77 0 82 77 0 82 77 0 82 77 0 82 77 0 83 1	41:0.0		RUD RUD		37.8.2	393, 2	123, 3	210				589, 2			SUD	1	2, 63		5, 13	6, 05		7, 50	8, 48	9, 53	11.31	13. 94	15.78	17. 10	18.87	22, 36	25, 38	31. 17	33, 14	35, 37	40, 30	43, 40	47, 34	

Not shown on plot

CURVE 27	294, 2 0, 00272	CURVE 28	298, 2 0, 06406	5 60 AAB.15		294,2 0,00112		CURVE 30	5510 0	237.2																			
CURVE 23 (cont.)	0.82	ens n	63 64	0.092	5 G		9.103	0.113	0.120	0.125	0.150	0,180	0.170	0.132	0.138						74		0.370	23.0	0.343	VE 25	0.00100	-96- 3A	0.00269
CURVE	4. E. 3.	4.44	CURVE	1.02	3	1.20	1.20	1,20	1.22	3.1	3 23	χ. (-	1.50	1.97	1.99		٠.	٠.	 15. A51	2, 30			20 G		£. 43	CURVE	294.2	CURVE	298.2

FIGURE AND TABLE NO. 29R RECOMMENDED THERMAL CONDUCTIVITY OF MAGNESIUM

T₁ in K, k₁ in Wattern ≺ K-1, T₂ in F, and k₂ in Btu hr -1 ft -1 F-1. [‡] Value

*Values in parentheses are extrapolated.

209

contact that are a many a hadron or it is attential times a deliberal so, Latherholding the re-

SPECIFICATION TABLE NO. 30 THERMAL CONDUCTIVITY OF MANGANESE

(Impurity $\le 0.20\%$ each; total impurities $\le 0.50\%$)

[For Data Reported in Figure and Table No. 30]

Composition (weight percent). Specifications and Remarks	99.99 pure; polycrystalline; supplied by Johnson Matthey and Co. Ltd.; annealed; electrical resistivity ratio \(\rho(273K)/\rho(20K) = 1.47.\)	99.99 Mn, 0.001 Mg; α -manganese, cross section 3 x 1.1 mm; JM 10792 from Johnson, Matthey Co. Ltd.; ejectrical resistivity reported as 330 and 378 μ ohm cm at 4.2 K and room temperature, respectively.	Similar to the above specimen except annealed in vacuum at 600 C; electrical resistivity 150 u ohm cm at room temperature; residual electrical resistivity 11.3 u ohm cm.	eta -manganese; approx 16 mm long, 5 mm dia; electrical resistivity 110 μ ohm cm at -19° C.	Pure a - manganese with impurities Mg, Ca, and < 0.01 S; some gaseous impurity expected; specimen a small irregular -shaped flake < 0.1 cm thick from Johnson Matthey and Co. Ltd.; electrolytically prepared; high-alloy steel, titanium alloy, and an alumina based ceramic used as reference materials.
Name and Specimen Designation	JM 2472; Mn !	Mn 2	Mn 3		JM 810
Reported Error, %	2 - 3				
Temp. Range, K	2.3-32	4,3-9,	2.1-78	83.2	293
Year	1952	1957	1957	1935	1966
urve Ref. Method No. Used	1	ı	נ	ı	U
Ref. No.	97	372	372	697	255
Cu r ve No.	-	÷1	ო	7	10

DATA TABLE NO. 30 THERMAL CONDUCTIVITY OF MANGANESE

(impurity < 0.20% each; total impurities < 0.50%)

_
7
¥
٣_
Ë
ದ
S
>
ty, k, Waticm 1 K 1
ź
Ę.
Ħ
3
8
ပိ
ā
ë
er
Pe
Ä
Ę.
٠.
2
ÿ
E.
Š
E .
ř

CURVE 3 (cont.)

CURVE 1

12.71 0.0186 15.9 0.0193 20.3 0.0241 29.3 0.0302 55.9 0.038 64.2 0.042 78.0 0.056	83.2 0.05 <u>CURVE 5</u> 293.0 0.078		
0.0020 0.0022 0.0022 0.0025 0.0045 0.0045 0.005 0.0095 0.0095	0. 014 0. 0185 0. 022 0. 031	0,00335 0,00448 0,00172 0,0111 0,0147 0,022 0,023 0,023 0,025 0,045 0,045	CURVE 3 05 0.0059 07 0.0076 08 0.0077 09 0.0077 09 0.0077 09 0.0076 09 0.0086 09 0.0086 09 0.0086 09 0.0086 09 0.0086 09 0.0086
	16.7 0.0 20.9 0.0 21.4 0.0 31.8 0.0	4,31 6,09 10,9 14,3 18,4 18,4 22,2 27,6 67,5 78,0 78,0	CU 28 4 1 1 1 2 2 8 2 1 1 1 2 8 2 1 1 1 1 1 1 1

الأفطال الأهلاك الأملاء المؤمم الكوافية فحياهم مستمسم مباشئ المؤالات مستمسين الميطانيات المستارة مناسيتها

FIGURE AND TABLE NO. 30R RECOMMENDED THERMAL CONDUCTIVITY OF MANGANESE

(juli-

The recommended values are for well-annealed 99.99% pure manganese with residual electrical resistivity $\rho_0 = 11.3 \, \mu \Omega$ cm (characterization by ρ_0 becomes important at temperatures below about 200 K). The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures.

T, in K, k, in Watt cm - K-1, T, in F, and k, in Btu hr - ft - F-1.

* 'alues in parentheses are extrapolated or interpolated.

SPECIFICATION FABLE NO. 31 THERMAL CONDUCTIVITY OF MERCURY

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 31]

Curve No.	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	<i>3</i> 3	Li .	1919	80-423			Pure; specimen filled in an iron cylinder; electrical conductivity reported as 13.77, 7.292, 5.327, 4.287, 1.070, and 1.055 x 104 ohm lem at -193, -115, -75.1, -44.7, -37, and -20.5 C, respectively.
61	143		1957	1.5-4.1		Нg 3	99.9 Hg, 0.05 Cu, 0.05 Ag, and trace of other base elements; polycrystalline; commercially available cp reagent from Eimer and Amend, Cat. No. M-141; in superconnecting state.
ຄ	143	H	1957	1.4-3.5		Hg 3	The above specimen measured in a transverse magnetic field of 859 gauss; in normal state.
7	143	H	1957	1.4-4.4		Hg 3	The above specimen measured in a transverse magnetic field of 491 gauss; in normal state.
S	59	٦	1936	2.5-4.1			High purity; specimen contained in an U-shaped tube; in superconducting state.
9	29	u	1936	2.5-4.1			The above specimen incasured in a magnetic field of 436 gauss; in normal state.
7	316,65	٦.	1936	318-492			Pure, specimen contained in a 4.9 cm dia asbestos cylinder.
80	7-4	_ ;	1950	2.3-4.4		Hg 1	99.99† pure; in normal state.
6	7.4	-	1950	2.3-4.3		Hg 1	99.99* pure; in superconducting state.
10	74	_	1950	1.6-2.1		Hg 2	0.002 Cd; in normal state.
Ξ	7.4	_	1950	1.6-2.2		Нg 2	0.002 Cd; in superconducting state.
12	7.4	ı	1950	1.8-4.2		Hg 3	0.007 Cd. in normal state.
13	74	. 1	1950	1.8-4.0		Hg 3	0,007 Cd; in superconducting state.
7	7.4	- :	1950	1.6-4.3		9 XH	0.10 In; in normal state.
15	7.4	1	1950	1.6-4.1		Hg 6	0.10 In; in superconducting state.
16	657	C.	926!	298			Liquid specimen contained in a cylindrical tube of 4 cm dia and 20 cm long; thermal conductivity value calculated from measured thermal diffusivity.
11	265	ъ	1955	426-810	1.4		99,999" Hg.0,0001-0,001 Mg; chemical analysis after experiment showed 0,0004 Fe, 0,0002 Cr., and 9,0001 Ni; Lorentz function reported as 2,64, 2,59, 2,61, 2,63, and 2,64 x 10*8 V2K? at 100, 184, 256, 288, and 297 C. respectively.
19	258	.1	1903	303-308			Pure, specimen filled in a container of cross sectional area 315 cm ² and thickness 0.955 cm.
19	143	1	1957	1.4-4.2		Нg 3	99.9 Hg, 0.05 Cu, 0.05 Ag, and trace of other base elements; commercially available epreagent from Eimer and Amend, Cat. No. M-141; measured in a magnetic field of 737 gauss; in normal state.
02	143	ᆸ	1957	3.1		Hg l	99.99" Hg. 0.005 Ag., and trace Cu; commercially available op reagent from Eimer and Amend, Cat. No. M-141; measured in transverse inagnetic fields with strength H ranging from 8.4 to 190 gauss; in superconducting state.
21	143	ב	1957	3.1		Hg l	The above specimen measured in transverse magnetic fields with strength H ranging from 247 to 974 gauss; in normal state.

SPECIFICATION TABLE NO. 31 (continued)

THE REAL PROPERTY AND ADDRESS OF THE PARTY.

SPECIFICATION TABLE NO. 31 (continued)

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
<u>:</u>	×65		1:161	290.5			In liquid state; measurement made on a flowing specimen at a rate of 871 g per 15 min.
\$	593	-	1913	248.2			In liquid state; measurement made on a flowing specimen at a rate of 1003 g per 15 min.
3	298	ı	1913	288.0			In liquid state; measurement made or a flowing specimen at a rate of 1079 g per 15 min.
41	869	-1	1913	290.7			In liquid state; measurement made on a flowing specimen at a rate of 1099 g per 15 min.
œ Ŧ	298	ľ	1913	248,2			In liquid state; measurement made on a flowing specimen at a rate of 1159 g per 15 min.
43	598	-	1913	28.68.13			In liquid state; measurement made on a flowing specimen at a rate of 1199 g per 15 min.
33	594	_	1913	287.2			In liquid state, measurement made on a flowing specimen at 2 rate of 1296 g per 15 min.
23	598	٦	1913	288.7			In liquid state; measurement made on a flowing specimen at a rate of 1301 g per 15 min.
52	298	-1	1913	288.7			In liquid state, measurement made on a flowing specimen at a rate of 1361 g per 15 min.
S	298	<u></u>	1913	288.7			In liquid state; measurement made on a flowing specimen at a rate of 1422 g per 15 min.
Z	644	Ь	1880	278,290			In liquid state; specimen filled in a cylindrical container, thermal conductivity values colculated from measured data of thermal diffusivity, specific heat, and consity.
55	638	æ	1959	567-717			Chemically pure mercury vapor,
26	639	ပ	1961	304-343			Triple distilled liquid mercury, contained in a thin-walled reservoir of 3.5 in, deep; electrical resistivity reported as 96.7, 98.6, 101.1, 103.5, 109.1 and 115.0 μ ohm cm at 30. 50, 75, 100, 150, and 200 C, respectively, first experiment with thermocouples welled on the steel wall of mercury reservoir; stainless steel No. 15 used as comparative material.
52	640	œ	1889	476.3			In vapor state, contained in a glass tube of dia 18.2 mm; measured at pressures ranging from 3.0 to 10.3 mm Hg; measured by hot-wire method.
88	641	1	1915	313			In liquid state; contained in a cylindrical vessel of ~4.9 cm dia x 40 cm long.
29	642	J	1887	323			In liquid state; contained in a tube of 13.2 mm dia x 20 cm long.
9	643	۵,	1864	323.2			In liquid state; thermal conductivity calculated from measured thermal diffusivity.
61	637,592	J	1958	328-700		_	In liquid state,
62	637,592	٦	1958	353-556		91	In liquid state.
63	637,592	-:	1958	333-560		ж	In liquid state,
49	639	ပ	1961	307-351			Triple distilled liquid mercury; contained in a thin-walled reservoir of 3.5 in. deep; electrical resistivity reported as 96.7, 98.6, 101.1, 103.5, 109.1, and 115.0 µohm cm at 30, 50, 75, 100, 130, and 200 C, respectively; first experiment with thermocouple immersed in the mercury; stainless steel No. 15 used as comparative material.
65	639	ပ	1961	334.7			Second experiment of the above specimen with thermocouples welded on the steel wall of mercury reservoir, mercury and standess steel in proveelectrical contact.

SPECIFICATION TABLE NO. 31 (continued)

Composition (weight percent). Specifications and Remarks	Second experiment of the above specimen with thermocouples immersed in the mercury.	Third experiment of the above specimen with a honeycomb of mica inserted to subdivide the mercury column and with thermocouples welded on the steel wall of mercury reservoir.	Third experiment of the above specimen with thermocouples immersed in the mersory.	Fourth experiment of the above specimes with the mercury column still further sub- divided by the insertion of 36 cellophane drinking straws and with thermocouples welded on the steel wall of mercury reservoir.	Measurement made on new mercury specimen after having the test apparatus thoroughly cleaned with new thermocouples welded on the steel wall of the mercury reservoir, a honeycomb of mica also being inscrited to subdivide mercury column.	Similar to the above specimen but measured by guarded but-plate method.	Very pure; crystallized from triple distilled Hg; cylindrical specimen; cast in liquid air; in super conducting state.	The above specimen measured in a magnetic field of 600 gauss; in normal state.	The above specimen measured in a magnetic field of 800 gauss; in normal state.	0, 104 Na; liquid specimen contained in a hollow ashestos cylinder; prepared by melting funder paraffin) appropriate amounts of certified pure Hg (from Mallinck root Chemical Co.) and Na (from Chemistry Department of Univ. of Kansas) in furnace, the liquid then kept at 150 C for 13 hrs.
Name and Specimen Designation										Amalgam: 1
Reported Error, %										т У
Temp. Range, K	319-383	318-517	332-416	307-368	326-514	304,333	3.8-4.2	3,8-4.2	3,8-4.2	373-412
Year	1961	1961	1961	1961	1961	1961	1963	1963	1963	1936
Ref. Method Nr Used	ပ	C	ပ	ບ	ပ	÷	٦		-1	
Ref.	633	639	623	639	6::9	6.39	69:	1.69	633	316
Curve No.	99	29	89	69	<u>:</u>	ť	51	5	7.4	7.5

DATA FABLE NO, 31 THERMAL CONDUCTIVITY OF MERCURY

Garparety (), 20% each; total imparities (0,50%)

(Temperature, T. K. Thermal Conductivity, k, Watts em²¹ K²¹)

×	x (cont.)	0,08318 0.08494	0,08017	0,05301	0, 040252	51	1	5,68	96.0	5.93 :	6.01	5, 33	5.86	5, 59	5, 47	5, 27	4. 22	, 60° 7	1.35°		*	4	2			9.038	6, 943 6, 943	0.548	0, 952	0.956	0, 952	0.330	3	T 17	1. 24	1.35	1. 53	L 72	1, 96	2.08	2, 18	: ::	2.40	
L	CURVE 18 (cont.)	307, 54	307, 65	307, 32	307, 97	CURVE 19		1.33	1 55	1. 64 4.	1.72	<u>,</u>	35 I	5. 7.	2. 12	2, 20	2.43	3, 49	4. 23		H (Kaussia		CURVE 20	보		a; 4	74.4	87. 4	92. 0	93, 3	100,	106	114	125	136	143	160	171	176	179	181	ž:	981	
ע	(cont.)	0, 505 9, 525	0,550	0, 575	0,600	6, 6735	0, 723	0, 759	0, 803		%		÷. c.		듸		0, 1014	0, 1090	0, 1110	0. 1111	6, 1139	0, 1144	0, 1209	0, 1250	0. 1262	0. 125.6	0, 1293	0, 135 4		ΞĮ		0, 08463	D, 08824	0, 07520	0, 03092	0, 0H117	0, 08586	0, 08339	0, 08021	9, 08389 °	0, 08389	0, 07971	0, 08146	
	CURVE 15 (cont.)	2.51	2. 92	3. 10	සු දි ලේ ද	000	, x,	3, 96	¥.	;	CURVE 16		293		CURVE 17		426. 4	4.0.4	507.9	50 5 , 9	S. 23.25	5.40, s	600, 3	652. 1	0.0.0	670.0	715, 0	309, 5		CURVE 18		302, 50	302, 57	362, 61	302, 71	302, 72	302, 75	302, 76	302, 78	302, 82	303, 12	303, 24	307, 50	
. 	CURVE IS	# G G F G F	6, 915	0,945	0, 992	200 o	0, 587	0.970	6, 975	1, 00	1. O.1	1. 17	1,23		CURVE 14		1, 22	1. 24	F 73	1, 24	:: : :: :	1. 2.2	1. 19	1. 14	1. 12	1. 03	1. 02	U, DK2	0, 927	6, 8U5	(* ; · ;	5,7,5	40%		CURVE 15		0, 365	6, 353	0, 405	0,430	0, 453	0,460	0, 493	
-	3) 3)	1. 1. 1. 1.	2. 95	2, 13	동 # 하 :		 	æ ₩ ₩	3, 26	ς; •	3	3 3	1 . 04		<u> </u>		1, 61	L. 10	1, 95	71.7	: :: ::	¥.	oi oi	0 51 -	6.	60 °	3, 30	3	3, 67	9 ∺	ਤੰ ਜ਼	4. 16	7		<u></u>		1.61	1. 73	J. 45	2. 05	91 91	5, 26	2, 37	
¥	CURVE 9 (cont.)	F 65	1 :	CURVE 10	7:	- 4	19 6	9, 17	4, 81	χ. 32.	x :	7		CURVE		1, 60	1, 54	1. 57	1, 62	3 -	<u> </u>	L. 4.		CURVE 12		9. X	¥	 ₹.:	.: აე	:, 41	£21 ::	:: 3 2	* ;	2, 30	2 2 3	3, 05	3 . ;	1. ×1	1.64	1. 59	1. 51	- -	1, 34	
. <u>+</u>	CURVE	त्र जीव जीव	:	CUK		% (3 		1. 36	1. 97	24 24 24	7	5. 15		CCE		1. 61	1, 70	1, 52	1.95	6 6 6	7, 14	2, 10		CUR		1. 76	1. K3	1, 93	2, 02	2, 13	2,39	2, 60	ž vi	÷.	3, 23	3, 23	3, 45	3, 65	ь, <u>х</u>	3. 93	4. R	4 . 14	4. 24	
	(conf.)	0, 112	0, 11,	0, 115	0, 123	921 0	;	VEX		9.44	7, 13	Ŧ.	. je	۶. وکر	3, 12	2,455	en ei	2, 20	2. U.S	1. 91	1, 87	? -i	1. 77	** ; ; ;	L 63	1,65	1.61		VE 9		1. 67	1. 50	1. 40	1. 25	1, 25	1, 20	1: 31	1.24	1, 32	1. 3H	1.51	1. 55	1.60	
۲	CURVE 7 (cont.)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	441.2	44H, 5	466.5	4.5.5.	1	CURVES	, 	2, 25	2. 44	2. 65	۶ ن	3. 05 3.	3, 27	17. 47	:	3, 77	3. XX	4.00	4, 14	£. 4	4. 22	4, 25	4. 29	4.34	4.38		CURVE 9		2.31	2.48	2.68	2. 48	3.08	3, 29	3, 49	3, 69	3. ¥C	3, 91	4. 01	4, 05	4. 09	
¥	CURVE 4	5 m 10 m	គឺ ភ	3. 1.	Z :	1 5 2 5 2 6	J.	6, 25	4,68	3, 50	: e	7. :3	1.32		CURVE 5		0, 667	O. 800	になら	0,840	0, 639		CURVE 6		0, 735	0, SI3	0, 893	0.943	0. 775		CURVET		0,0827	0, 0950	0, 0973	0.0991	0, 0992	0, 0999	0. 101	0. 10 4	9, 106	U. 10H	1), 110	
H	CUR	1.35	100	1.73	75 H	5 50 1 6) i 2i	17.	11 11	2, ×0	3, 50	∰ •••	♣		(C)	İ	2. 51	3, 14	3.45	3.76	4. U7		CCE	•	2.51	2, 76	3, 15	3.76	4.67		CUE		318. 1	330, 9	346. 1	345, 3	345, 4	347.9	352. 1	364. 4	375. ℵ	386.1	398.0	
¥	CCRVE 1	C, 4.55	0, 325	0, 273	U, 0912	0,0945	0, 115	C. 125	0, 143	U. 146		0, 161		7 E S		1. 13	1.35	1.37	1. 40	1.39	1.35	1.31	1.28	1. 26	1. 14	L 63	0.98	7 40		VE 3		4.85	5. IX	5, 25	5.31	5, 32	5.24	5.07	5.00	4.81	4, 05	3. 26	2. 00	
۲	(원)	8.08 9.08 9.08	194.3	229. U	0 (SE)	207.0	300.3	323.6	349, 3	373. 1	399, 1	9 11 12		CURVE		J. 46	F 69	1.73	∯. -1	1.95	2. 06	2. 17	2, 23	87 %	2, 59	2, 89	3, 58	4, 13		CURVE		1.40	98 -1	1.67	J. 77	1.85	96 '	2.06	2. 1.3	5. 19	2.48	2, 79	3,49	

Not shown on plot

DATA TABLE NO. : 1 (continued)

×	CURVE 61 (cont.)	0, 117	0, 121	0, 122	0, 127	0, 1:31	0. 130	E 62	700	0.087	0, 092	0.00 0.00 0.00	0, 101	0,093	, 560 O	6.000 .	, kg	960 0	0, 09×	0. 163	0. 104	0, 103 103	0, 100	0.106	0, 102.	0.101	0.0	0, 103	0, 107	0, 105	0.10	0. 112 0. 113		0 113	;
←	CURVE	580, 2	606.2	613, 2 8 13, 2	543,2	676. 2	700. 2	CURVE 62		368.2	393, 2	396.2	413.2	413, 2	416.2	418.2	425. 2	433, 2	443.2	443.2	46.2	200 A	460, 2	466, 2	46× 2	2.53.5	7 07 1	1 50	471.2	25.3	500, 2	206.2	513.2	12	1
¥	CURVE 59"	0, 0843	CURVE 60	0, 0746	CURVE 61	0, 045	940 0	0 0 0 0 0	980 0	0, 093	0.094	0,0897	0,096	O, USB	6, 034	0,095	# # 6 5 6 5	0,099	0, 101	0, 099	0, 101	51 5	0, 102	0, 107	0. 10x	9, 110	601.0	901 0	0, 113	; ** ** ** ** ** ** ** ** ** ** ** ** **	0, 110		0, 115	0,116	0, 117
۲	CUR	323	CCR	323, 2	ä	324, 2	3.36, 2	347, 2	74 C	37.5	383, 2	3.56, 2	391.3	400, 2	40% 2		44 4 20 5 20 5 20 5	4.55	444, 2	450.2	4. 2. 3. 3.	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	1 C1 XX	1931.2	40 / 04	2016	N 2	2 2 2	520, 5	536, 2	53% 2	71 2 10	න : <u>ජූ</u> යි.රි		575, 2
ж	CURVE 52	0.0342	CURVE 53	0.0*45	CURVE 34	0, 0634	0, 0075	CURVE 55	504000000	0, 00000340	6, 000107	0, 000110	0, 000116		CURVE S	, ;	7 7 C	0,0%	0, 088	0.044	0, 6445	0.030	0,0935	0,0495	9, 0005	0,091	# F		CURVE ST	1	0, 000077.2		CLURVE 58	0 0169	
Ŧ	E 133	244, 7	CUR	15 F X 21	30.5	2777. 7	2300.2	SUCE	: (;	1 (- X	646, 9	20 X	717.3		CUR		2000	368, 2	318, 3	315.7	:15, 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.67.5	101.2	33.14, 7	(- ; (- ; (- ; (- ; (- ; (- ; (- ; (- ;	N 6		CUE		476, 3		Ĩ	7.1.0	:
F -	CURVE 40	×5, 55 0, 373	CURVE 41	36, 6 0, 345	CURVE 42	90, 6 0, 334	3	CORVE 43	86, 2 0, 399	CURVE 44		290, 5 0, 6843	CURVE 45		288, 2 0, 0832	- 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13	CURVE 46	239, 0 6, 0846		CURVE 47		290, 7 0, 0842	CHRVEAS		288, 2 0, 0547		C CRVE 45	0.0880 D 0.886		CURVE 50	į	247, 2 0, 0835		CONVE 31	288, 7 0, 0633. ⁸
<u>.</u> x	CURVE 28	196, 2 0, 330	CURVE 29	196, 4 0, 259	CURVE 30	196, 8 0, 341		CORVE	197, 5 0, 334	CURVE 32		197, 6 0, 303	CURVE 33		197, 1 0, 312		CURVE 34	198. 4 0. 345		CURVE 35	;	197, 3 0, 340	CHRVE 36		85, 2 0, 372		CURVE	062 0 740		CURVE 38	l	90, 2 0, 407		Creave S	85,5 0,395
H (gauss) K	CURVE 25			545 1.55 610 6.35	730 5, 95			943 4.74 1000 4.48		(T 1, 67K)		455 10,6					943 - 1. 944		CUINE 27	(T = 1, 98K)		05.50 00.00		7.20 7.30			17. '9 016								
	CURVE 20 (cont.)	3 i	7. °.	$\frac{\text{CURVE 21}}{(T = 3.1 \text{K})}$	25.5	2.50	. 6. 7.	2 7 7	CURVE 22	. IV	9, 935	9. 9. 3	1.23	. 55. 1.	2. 03	2, 35	5 63	7. 00	VE 23*	(T 3, 1K)		% 3 3	2 Q			CUHVE 24	1. 40K)	υς 30	. ×	6, 33	5, 03	4, 20	4. F	÷ ;	÷
स (ध्रुव पाइज्रो	CURVI	158	OGT -	S L	247	730	352	974	CER	-	139	167	3	<u>\$</u>	691	161	261 261	201	CUR	ī		7 (1005	727		COH	· L)	4.00 10.00 1	200	610	720	37K	23 E	6	600

Not shown on plot

FIGURE AND TABLE NO. 31R - RECOMMENDED THERMAL CONDUCTIVITY OF MERCURY

Single Crystal (If to trig. Axis) (A to trig. axis) (A to trig. axis) (A to trig. axis) (A to trig. axis) (A to trig. axis) (A to trig. axis) (A to trig. axis) (A to trig. axis) (B to trig. axi	Crystal Polycrystallir (**L to trig. axia) k ₁ k ₂ k ₃ (57.2) (57.2) (14.9) (14.40) (1.57) (1.97) (1.15) (1.15) (1.15) (1.15) (1.45) (1.15)
T, k, k, k, k, k, k, k, k, k, k, k, k, k,	k ₁ k ₂ k ₁ k ₂ 0 0 0 0 (57.2) (3310) (65.6) (3790) (14.9) (861) 17.1 948 (4.40) (254) 5.05 322 (1.15) (66.4) 13.32 (76.1) (1.15) (66.4) (1.32) (76.1) (1.15) (66.4) (1.32) (76.1) (1.15) (66.4) (1.32) (76.1) (1.15) (66.4) (1.32) (76.1) (1.15) (66.4) (1.32) (76.1) (1.15) (66.4) (1.32) (76.1) (1.15) (66.4) (1.32) (76.1) (1.17) (33.6) (0.665) (33.1) (1.17) (27.8) (0.491) (26.5) (1.17) (22.4) (0.445) (25.5) (1.17) (21.8) (0.432) (25.2) (1.17) (21.1) (0.432) (25.2)
1	(57. 2) (3310) (65.6) (3790) (14. 9) (851) (17.1 9988 (1.97) (1.15) (1.1
1	(57.2) (3310) (65.6) (3790) (14.9) (861, 17.1 948 (1.97) (
1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	(14.9) (561) 17.1 948 (1.40) (254) 5.05 292 (1.157) (1.15) (66.4) (1.32) (76. (1.15) (66.4) (1.32) (76. (1.15) (66.4) (1.32) (76. (1.15) (66.4) (1.32) (76. (1.15) (6.4) (1.32) (76. (1.15) (6.4) (1.32) (76. (1.15) (6.4) (1.32) (1.15)
10	(4. 40) (254) 3. 05 292 (1. 97) (1.14) 2. 26 131 (1. 15) (46. 9) (1. 132) (76. 9) (0. 710) (44. 5) (0. 882) (51. 1) (0. 411) (27. 8) (0. 665) (38. 6) (0. 442) (24. 8) (0. 491) (28. 8) (0. 491) (29. 8) (0. 31) (0. 460) (26. 1) (0. 312) (0. 312) (0. 312) (0. 312) (0. 312) (0. 312) (0. 312) (21. 1) (0. 437) (25. 1) (0. 432) (25. 1) (0. 437) (25. 1)
10	9, (1.15), (147), (157), (157), (157), (157), (166.4), (1.32), (76, 10.34), (1.15), (1
1. (1.15) (1.5.4) (1.15) (1.32) (1.15) (1.32) (1.15) (1.32) (1.15) (1.32) (1.15) (1.32) (1.15) (1.32) (1.15) (1.32	(1, 15) (66, 4) (1, 32) (76, 10, 170) (1710) (14.5) (14.82) (15.1) (10.5k1) (12.1) (14.5) (14.82) (15.1) (10.4k1) (27.8) (14.85) (14.85) (14.85) (14.85) (14.85) (14.85) (15.1) (14.85) (15.1) (14.85) (15.1)
Colored Colo	(0. 770) (44. 5) (0. 882) (51. (1. 51.) (2. 41.) (23. 6) (0. 665) (38. (1. 51.) (21. 41.) (2.
10	(0, 5h.) (33, b) (0, 6b.) (35, b) (0, 4h.) (27, b) (0, 55) (31, b) (0, 4h.) (28, b) (0, 4h.) (26, b) (0, 387) (22, 1) (0, 445) (25, b) (0, 377) (21, b) (0, 432) (25, b)
10	(0.474) (24.8) (0.451) (28.6) (29.7) (29.7) (29.7) (29.7) (29.7) (29.387) (22.1) (0.477) (25.6) (0.377) (21.8) (0.432) (25.7)
Delycrystalline	(0.460) (23.1) (0.460) (26. (0.387) (22.4) (0.445) (25. (0.387) (22.1) (0.437) (25. (0.377) (21.8) (0.432) (25.
10	(0,400) (23.1) (0.450) (20. (0.387) (22.1) (0.445) (25. (0.382) (22.1) (0.437) (25. (0.377) (21.8) (0.432) (25.
polycrystalline	(0.382) (22.1) (0.437) (25. (0.377) (21.8) (0.432) (25.
15 (0.357) (31.1) (0.377) (21.8) (0.427) (21.8) (0.427) (0.427) (21.8) (0.427) (0.427) (21.8) (0.427) (0.427) (21.8) (0.427) (0.427) (21.8) (0.427) (21.8) (0.427) (21.8) (0.427) (21.8) (0.427) (21.8) (0.427) (21.8) (0.427) (21.8) (0.427) (21.8) (0.428) (22.8) (0.428) (22.8)	(9, 377) (21, 8) (0, 432) (25,
14 (0.532) (0.0.2) (0.364) (21.3) (0.427) (0.427) (0.527) (0.0.5) (0.369) (21.3) (0.422) (0.527) (0.0.5) (0.369) (21.3) (0.418) (0.419) (0.527) (0.369) (22.3) (0.419) (0.419) (0.349) (22.3) (0.349) (22.3) (0.419) (0.419) (0.349) (22.3) (0.349) (23.4) (19.3) (0.349) (0.3	(, , , ,)
15 (0. 527) (100.5) (0. 369) (21.3) (0. 422) (0. 418) (0. 527) (100.5) (0. 369) (21.1) (0. 418) (0. 418) (0. 512) (0. 364) (22.1) (0. 418) (0. 419) (0. 512) (0. 364) (22.1) (0. 419) (0. 419) (0. 419) (0. 364) (22.1) (0. 354) (22.2) (0. 419) (0. 354) (22.2) (0. 354) (22.2) (0. 354) (22.2) (23.4) (23.4) (23.4) (23.8) (23.8) (23.4) (23.2) (23.4) (23.2)	(0.373) (21.6) (0.427) (24.
15 (0. 522) (10. 2) (0. 366) (21. 1) (0.419) (0.419) (0.522) (10. 2) (0. 364) (20. 8) (0.410) (0.410) (0. 544) (0. 544) (0. 544) (0. 344) (10. 344) (10. 344) (10. 344) (10. 345	(0.369) (21.3) (0.422)
15 (0.512) (29.6) (0.364) (20.8) (0.410) (0.410) (0.5410) (0.542) (0.544) (0.354) (0.3	(0.366) (21.1) (0.418)
29 (0.564) (29.1) (0.354) (20.5) (0.404) 20 (0.445) (28.2) (0.343) (19.3) (0.392) 30 (0.474) (27.4) (0.327) (19.3) (0.382) 45 (0.462) (26.1) (0.327) (18.3) (0.353) 45 (0.444) (25.7) (0.315) (18.5) (0.353) 45 (0.444) (25.2) (0.315) (18.5) (0.353) 45 (0.444) (25.2) (0.315) (18.5) (0.353) 47 (0.424) (25.2) (0.317) (18.5) (0.353) 48 (0.444) (27.3) (18.2) (0.353) 49 (0.424) (27.3) (17.6) (0.345) 40 (0.424) (27.3) (17.6) (0.345) 40 (0.424) (27.3) (17.2) (0.337) 40 (0.424) (27.3) (17.2) (0.337) 40 (0.424) (27.3) (17.2) (0.337) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (18.3) (18.3) 40 (0.424) (27.3) (27.3) (27.3) 40 (0.424) (27.3) (27.3) 40 (0.424) (27.3) (27.3) 40 (0.424) (27.3) (27.3) 40 (0.424) (27.3) (27.3) 40 (0.424) (27.3) (27.3) 40 (0.424) (27.3) (27.3)	(0.360) (20.8)
(0.45%) (28.2) (0.343) (19.3) (0.332) (0.332) (0.332) (0.332) (0.332) (0.332) (19.3) (0.332) (0.332) (19.3) (0.332) (19.3) (0.332) (19.3) (0.332) (19.3) (19	(0, 354) (20, 5) (0, 404)
30 (0.474) (27.4) (0.334) (19.3) (0.382) (0.373) (0.473) (0.474) (27.7) (0.327) (18.9) (0.373) (0.473) (0.452) (26.7) (0.320) (18.2) (0.373) (18.5) (0.373) (18.5) (0.373) (18.5) (18.5) (0.373) (18.5) (18.5) (0.373) (18.5) (18.5) (0.373) (18.5) (18.5) (0.373) (18.5) (18.5) (0.373) (18.5) (0.424) (25.2) (0.311) (18.0) (0.354) (17.6) (0.345) (0.424) (27.3) (0.297) (17.6) (0.345) (0.345) (0.424) (27.3) (0.297) (17.6) (0.345) (0.373) (0.424) (27.3) (0.297) (17.5) (0.337) (0.424) (27.3) (0.297) (17.2) (0.337) (0.340) (0.396) (22.5) (0.298) (16.5) (0.324) (0.396) (0.396) (0.298) (0.298) (0.396) (0.	(9, 343) (19, 8) (0, 392)
2 II 4 5 6 8 Lt 2 II 4 5 100 0 300 220 8 0 200 15. 9 0 373 0 0 373 0 0 373 0 0 373 0 0 373 0 0 375 0 0	(0.334) (19.3) (0.382) (22.
2 1 + 5 6 8 10 10 10 10 10 10 10	(0, 327) (18, 9) (0, 373)
2 1 5 6 8 10 ³ 2 3 4 5 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 34 3 6 3	(0, 320) (18, 5) (0, 365)
N. P. 234, 28 K	(0.31) (10.1)
M. P. 234, 28 K	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(a) 1 (a) 1 (b) 1 (c) 1	(0.304) (11.0) (0.043)
2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 6 8 Lc ³ 2 H + 5 7 6 H + 5 7 6 H + 5 7 6 H + 6 8 Lc ³ 2 H + 6 8 Lc ³ 2 H + 6 8 Lc ³ 2 H + 6 8 Lc ³ 2 H + 6 8 Lc ³ 2 H + 6 8 Lc ³ 2 H + 6 8 Lc ³ 2 H + 6 Rc ³ 2	(0.293) (11.2) (0.33) (13. 0.293 16.9 0.330 19.
2 H 4 5 6 8 16 3 2 H 4 100 0 390 22.5 0.285 16.5 0.320 K how with residual electrical 200 0.360 20.8 0.271 15.7 0.301 necreuzy with residual electrical 200 0.340 19.6 0.264 15.3 0.289 read on respectively, for single 234.28 0.329 19.0 0.260 15.0 0.283 are to trigonal axis and for polecys-	0,288 16,6 0,324 18.
i. K necessary the residual electrical 200 0,360 20,8 0,271 15,7 0,301 necessary with residual electrical 200 0,340 19,6 0,264 15,3 0,289 12 LG cm, respectively, for single 234,28 0,329 19,0 0,260 15,0 0,283 ar to trigonal axis and for polecys-	5 0, 285 16, 5 0, 320 18.
nercury with residual cleetrical 200 0.340 19.6 0.264 15.3 0.289 12.4 of trigonal axis and for polerys-ar to trigonal axis and for polerys-	0, 271 15, 7
increasy with resonant electrical 234, 28 0, 329 19, 0 0, 260 15, 0 0, 283 are to trigonal axis and for polecys- are to trigonal axis and for polecys-	0, 264 15, 3 0, 289
מוסוד כל לו מכנייונים אווילים ונווים מו ביניים בינים ביניים ביניים ביניים ביניים ביניים ביניים בינים ביניים ביניים ביניים בינים ביניים ביניים ביניים ביניים ביניים ביניים ביניים ביניים ביניים ביניים ביניים ביניים בינים ביניים ביניים ביניים ביניים בינים בינים ביניים ביניים בינים בינים בינים בינים בינים ביניים ב	0, 260 15, 0
about 10 Kg. The recommended values that are supported by experimental thermal	× 6 0

T₁ in K, k₁ in Watt cm⁻¹K⁻¹, T₂ in F, and k₂ in Btu lb.⁻¹ft⁻¹F⁻¹, ⁴Values in par

TO THE RESIDENCE OF

*Values in parentheses are extrapolated or estimated.

	ľ,	-37.97	32.0	80.3	170.3	250.3	440.3	620.3	800.3		1160	1340	1520	1700	1880	3060	2240	2420	3600	2660
State	ž.	4.03	4. 23 5. 52	4.82	5. 29	5.69	6.36	6.93	7. 34	7.40	(7. 16)	(6. 76)	(6.24)	(5, 69)	رن چ ک	(4, 23)	(3, 23)	(1.99)	(0, 543)	(0.026)
In Liquid State	k 1	0.0697	0. 0732	0.0834	0.0915	0.0934	0.110	0.120	0.127	0.128	(0, 124)*	(0, 117)	(o. 108)	(0.034)	(0.0872)	(0, 0732)	(0, 0559)	(0.0345)	(0.00 21)	(0.00045)
	1,	234, 28	250 273. 2		350	400	93	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1733

SPECIFICATION TABLE NO. 32 THERMAL CONDUCTIVITY OF MOLYEDENUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 32]

Composition (weight percent), Specifications and Remarks	the contraction consisted of 5 stacked disks each	99.9 Mo, < 0.005 Fe, and < 0.005 C, test specifical continuous from Fansteel Metallurgical of ~5 in. (), D., 0.75 in. 1.D., and 0.50 in. thick; obtained from Fansteel, then rolled to Corp.; prepared by powder-metallurgy techniques; pressed, sintered, then rolled to finished size at just below the recrystallization temperature.	Pure; 7 in. dia x 1.5 in. thick; arc-melled. Pure; 0.0520 cm dia x 45.0 cm long; density 9.933 g cm ⁻³ ; electrical resistivity reported Pure; 0.0520 cm dia x 45.0 cm long; density 9.933 g cm ⁻³ ; electrical resistivity reported as 5.806 and 8.516 uohm cm at 0 and 100 C, respectively.	Pure; 0.09983 cm dia x 9.915 cm long; annealed at 220 C; efectived in the second at 0.000 m at 0 and 18 C; respectively. as 5.10 and 5.51 µohm cm at 0 and 18 C; respectively.	The above specimen annealed at 300 C, etc. 1059 cm dia x 10.14 cm long; annealed at 220 C; Less pure than the above sample; 0, 1069 cm dia x 10.14 cm long; annealed at 220 C; electrical resistivity reported as 5.81 and 6.22 µohm cm at 0 and 18 C, respectively.	0.0269 C, < 0.01 Ca, < 0.01 Cu, < 0.01 Fe, < 0.01 Mg, < 0.01 Mg, Co, 01 Mg, and Co, 01 Mg, co, 01 M	1000, 1500, 2000, and 2500 co. 1257 mean values taken from data measurements made henting and cooling cycles, mean values taken from data of 4th to 7th cycles reported.	99.836+ Mo. 0.05 Bi, 0.05 Cd, 0.01 Al, 0.01 Ge, 0.01 Sn, 0.01 Ti, 0.01 V, 0.01 M, 0.001 Cd, 0.001 Cu, 0.001 Pt, 0.001 Rh, and trace of C; 0.09979 cm dia x 12.627 0.001 Co, 0.001 Cu, 0.001 Pt, 0.001 Rh, and trace of C; 0.09979 cm dia x 12.627 cm ong; electrical resistivity reported as 0.952, 3.39, 5.25, and 7.67 µohm cm at cm long; electrical resistivity reported as 0.952, 3.39, 5.25, and 7.67 µohm cm at 183.00, -78.50, 0, and 100 C, respectively.	Cut from the same wire as the above specimen; 0.09980 cm did x 3.305 cm	Pure; electrical resistivity reported as 29.2, 32.2, 35.2, 35.2, 35.2, 55.6, 55.7, 52.8, 66.0, and 69.2 µohm cm at 1200, 1300, 1400, 1500, 1600, 53.5, 56.6, 59.7, 62.8, 66.0, and 69.2 µohm cm and 2500 K, respectively. 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, and 2500 K, respectively.	Pure; supplied by Climax Molybderm Co.; 2 cm us x 13 cm long. 10.24 g cm ⁻³ ; Armco iron used as comparative material. 10.24 g cm ⁻³ ; Armco iron used as comparative material.	Spectroscopically statutary and the state of
Name and	Specimen Designation			Mo I	Mo I Mo II			MoI	Mo 2			
Reported	Error, %	S	ĸ	8	01 01							
Temp	Range. K	811-1422	749-1915 290, 373	277,283	278,283 277,,282	1173-2248		90-373	90-373	1200-2500	478-1144	86-377
	Year	1952	1956	1931	1931	1965		1933	1933	1927	1956	1961
	Mcthod Used	æ	٦ e	Ю	ыы	œ		ы	μ	ю	υ	ü
	Ref.	001	0 , 8	80 t-	78	723		79	79	156	89	966
	Curve No.	-	61 63	4	s s			œ	6	10	11	12

SPECIFICATION TABLE NO. 32 (continued)

Composition (weight percent). Specifications and Remarks	99.95 pure; polycrystalline; 0.52 cm dla x 2.85 cm long; obtained from Johnson, Matthey; electrical resistivity reported as 1.44, 1.44, 1.45, 1.49, 1.51, 1.80, 2.26, and 2.84 μ ohm cm at 20.4, 25.2, 29.3, 37.2, 48.6, 58.8, 75.3, and 90.1 K, respectively.	0.18 Fe. 0.073 Sl, 0.04 C, 0.036 Mn, 0.005 O, and 0.01 others; arc-melted and cast under inert gas, hot-worked, and hot rolled, polished; 0.125 in. dia x 10 in. long; obtained from Fansteel Corp.	99.95 pure; 1-2 mm dia x 5 cm long; supplied by Johnson-Matthey.	Coarse grain structure on the outside and fine grain structure in the interior; with a large number of inclusions; 1 in. bar; forged and machined.	99.98 pure; I mm wire; obtained from Radium-Elektrizitaisgesellsch, Wipperfurth; polished; amealed in vacuo for 12 hrs at about 1000 C; electrical resistivity reported as 24.4, 25.5, 26.9, 28.3, and 29.7 μ ohm cm at 761, 800, 850, 900, and 950 C, respectively.	Recrystallized at 1505 C; measured in a vacuum of 2 x 10°5 mm Hg; Armco iron used as comparative material; data taken from smoothed curve.	99.9 pure; received from Fansteel Metallurgical Corp; electrical resistivity 5.98 µohm cm at 23 C.	2nd rum of the above specimen.	3rd run of the above specimen.	Tubular specimen 8 mm 0.D., 5 mm I.D., and 100 mm long.	Heated in high vacuum (1075 mm Hg) by high frequency induction to 1000 to 3000 C; localized heating within 0,003 in, of the surface at current frequencies of \$00000 eps. specimen 0,4923 in, in dia and 0,863 in, in length: measured with the cylindrical axis parallel to the magnetic field; run G-2.	The above specimen; run G-3.	The above specimen; run G-5.	The above specimen; rwn G-4.	The above specimen; run M-1.	The above specimen; run M-3.	Spectrographically standardized molybdenum; obtained from Johnson, Matthey and Co.; rod of about 5 mm in dia and 15 cm in length; electrical resistivity reported as 5.65, 6.25, 7.45, 9.9, 12.45, 13.75, 15.1, 17.85, 20.6, 23.3, 26, 28.7, 31.5, 34.4, 37.2, 40.1, 43, and 44.7 μ ohm cm at 20, 50, 100, 200, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, and 1450 C, respectively; Armco iron used as comparative material.
Name and Specimen Designation	JM 2'831; Mo 1		JM 2331; Mo I			Heat No. 990											JM 720
Reported Error, %	€ +		2-3	t 2		ល ប											
Temp. Range, K	2.1-95	2384-2849	2.1-21	373-973	10 68-11 83	473-1173	290-871	290-890	290-1325	1122.1727	2129	2161	2200	2216.5	2351.5	2382	323-623
Year	1955	1960	1952	1954	1961	1955	1961	1961	1961	1961	1962	1962	1962	1962	1962	1963	1961
Method Used	7	Ħ	_	ר נ	ш	ပ	ш	ы	ы	ſιή							io
Ref. No.	122	255	8	414	503	543	599	599	599	101	601	601	601	601	601	601	789
Curve No.	13	14	ŕ	16	17	18	19	30	21	55	23	24	25	5.2	27	- 20 - 20 - 20	62

SPECIFICATION TABLE NO. 12 (continued)

SPECIFICATION TABLE NO. 32 (continued)

Composition (weight percent), Specifications and Remarks	No details reported. 99.9 Mo, 0.01 Mo ₂ O ₃ , 0.001 Ni, 0.001 SiO, traces *** and CaO; cylindrical specimen 10 mm in dia and 70 mm long; density 10.2 g cm ⁻³ at room temp; electrical resistivity reported as 5.78 µ ohm cm at 23 C; thermal conductivity values calculated from measured data of thermal diff'ssivity, specific heat, and density; reported val: es taken from smoothed curve.
Reported Name and Error, % Specimen Designation	Specimen 1
Reported Error, %	~
Temp. Range, K	1609-2355 1140-1816
Year	1966 1966
Method Used	ш С
Ref.	744 845, 844
Curve	4 4 5 6

DATA TABLE NO. 32 THERMAL CONDUCTIVITY OF MOLYBDENUM [Temperature, T, K: Thermal Conductivity, k, Watt on. 1K-1]

of Application of the open of the second

* Not shown on plot

A second and the second of the

The second secon

CURVE 40 (cont.) 0.895 0.895 0.992 0.950 1880.0 1976.5 2062.5 2194.5

CURVE 41 °

1592.0 0.854 1733.0 0.824 1889.5 0.826 1933.5 0.916 1974.0 0.929

CURVE 42*

0.960 0.950 0.920 0.940 0.960 0.960 1609 1765 1875 2005 2105 2275 2355

CURVE 43

1.125-1.061 0.983 0.913 0.824 0.704 1140 1253 1380 1500 1635 1816

FIGURE AND TABLE NO. 32R RECOMMENDED THERMAL CONDUCTIVITY OF MOLYBDENUM

T₁ in K, k₁ in Watt cm⁻¹ K⁻¹, T₂ in F, and k₂ in Btu hr ⁻¹ ft ⁻¹ F ⁻¹.

*Values in parer

TOP OF THE PROPERTY.

. *Values in parentheses are extrapolated.

مديعه بالطائبا للاطائط بالمهابي لمريط والطائلان بديادها وبالاقط المتهادلان كالالاط والطلقين بمديد عادية أسيما ويحسان فسأستن كالمستسم فيادياتها المتارات

فالمقطعة المقالسين محجوها والمتألي في المتابعة والمتفاقة المتابعة والمتفاقة والمتابعة

SPECIFICATION TABLE NO. 33 THERMAL CONDUCTIVITY OF NEODYMIUM

(Impurity < 0, 20% each, total impurities < 0, 50%

[For Data Reported in Figure and Table No. 33]

For Data reported in their was	Composition (weight percent), Specifications and Remarks	High purity; polycrystalline, specimen 0.25 in, in diameter and 0.25 in. long: supplied by Johnson Matthey Co.; electrical resistiv ty 65 μ ohm cm at 19 C. Monel metal used as comparative material; measurements made usi 2 different thermal comparators.	No details reported. Estimated values given as the sum of electronic thermal conductivity and the lattice thermal conductivity where electronic thermal conductivity values calculated from the theoretical conductivity where electronic thermal conductivity values calculated from the theoretical Lorenz number L ₀ = 2.443 × 10 ⁻⁸ V ² K ⁻² and the estimated electrical resistivity reported Lorenz number L ₀ = 2.443 × 10 ⁻⁸ V ² K ⁻² and the estimated electrical resistivity reported Lorenz number L ₀ = 2.443 × 10 ⁻⁸ V ² K ⁻² and the estimated electrical resistivity, whereas 400, 500, 600, 700, 800, 900, 1000, 1100, 1120, 1120, 1120, and 1200 K, respectively, whereas lattice thermal conductivity values calculated from the empirical equation k _L = 15.6 f ⁻⁷ .
For Data reported	Name and Specimen Designation		
	Reported Error, %	# 3.0	44 0.0
	Year Temp. Reported	291.2	301 300-1200
	Year	1965	1954
	Curve Ref. Method No. No. Used	o o	ī
	Ref.	777	811 999
	Curve No.	-	64 55

(Temperature, T. K. Therrind Conductivity, k. Wattem⁻¹K⁻¹,

291.2 0.165 291.2 0.166

CURVE 1

0.130 CURVE 2 301

CURVE 3

0, 165 0, 168 0, 173 0, 173 0, 181 0, 195 0, 203 0, 215 0, 225 0, 225 0, 225 0, 225 300 400 500 500 700 800 900 1100 1120 1200

and the second of the second o

RECOMMENDED THERMAL CONDUCTIVITY OF NEODYMUM FIGURE AND TABLE NO. 33R

440.3 620.3 800.3 980.3 1360 1350 1550 1556 1500

(12.9) (12.9) (13.0) (12.5)

(16. 0) (10. 4) (10. 8) (11. 3)

80.3 170.3 260.3

0 (9, 53) (9, 53) (9, 53) (1, 59)

REMARKS

The recommended values are for high-purity needymium. The recommended values are thought to be accurate to within 5% of the true values near room temperature.

*Values in parentheses are estimated. Ti in K, ki in Watt cm " K". Ti in F, and ki in Btu lb-1 ft-1 F-1.

And other continues of

SPECIFICATION TABLE NO. 34 THERMAL CONDUCTIVITY OF NEPTUNIUM

(impurity <0.20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 34]

Composition (weight percent), Specifications and Remarks	Nephnium in α-phase; data determined from resistivity measurements using Kannuluik method; electrical resistivity reported as 116.4, 115.1, 117.7, 117.8, 119.1, 119.3, 120.5, 120.7, 120.9, 120.8, and 121.3 μohm cm at 310, 314, 334, 347, 370, 373, 425, 433, 472, 512, and 538 C. respectively.
Reported Name and Error, % Specimen Designation	
Reported Error, %	į
Temp. Range, K	300
Year	1961
Method	
No. No.	819
CLT	-

DATA TABLE NO. 34 THERMAL CONDUCTIVITY OF NEPTUNIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[Temperature, T. K. Thermal Conductivity, k. Watt cm-tK-1]

CURVE 1

300 0.0

SPECIFICATION TABLE NO. 35 THERMAL CONDUCTIVITY OF NICKEL

(Impurity <0.20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 35]

Curve	No.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
-	114]]	1950	32-300	1. 2-2. 0	"L" Nickel	Commercially pure; 0, 5 in. dia x 20 in. long; supplied by International Nickel Co.
N	721	C.	1930	327-1016			Pure nickel, cl-etrolyzed from Mond anodes; wire, about 0.2 cm in dis; vacuum melted under a pressure of 0.3 mm Hg using an Arsen furnace and an alundum crucible; chill cast, forged, and cold drawn to the above dimensions, annealed twice at about 780 C for several hrs; electrical conductivity reported as 9.60, 5.95, 4.10, 3.03, 2.74, 2.47, and 2.32 x 10 chm ⁻³ ; cm ⁻³ ; thermal conductivity values calculated from measured data of thermal diffusivity, specific heat, and density.
က	129	၁	1933	330~775	w	ž	99.94 Ni, 0.03 Fe, 0.016 Co, 0.006 Cu, 0.006 Si, 0.005 C, and 0.004 S; specimen 2 cm in dia and 15 cm long; melted in Arsen furnace and furnace cooled; lead used as comparative material, reference value taken from International Critical Tables (vol. 1, p. 221).
•	101	1	1955	363-780	m		99, 65 pure (by difference), 0, 094 Si, 0, 082 Cu, 0, 056 Fe, 0, 027 C, 0, 025 Co, 0, 008 S, and 0, 007 Al; specimen 7, 938 in, long and 0, 787 in, in dia; prepared in z zircon crucible from high purity electrolytic nickel shot, hot rolled at 1000 C to a bar 1 in, square, machined and ground to size; annealed for 45 min at 1000 C in hydrogen atmosphere.
ĸ	33	ı	1956	2, 0-136		JN 4197	99, 99° Ni, traces of Al, Ca, Cu, Si, Ag, and very faint traces of Ll, Mg, and Na; material obtained from Johnson Matthey Co.: specimen 2 mm in dia; annealed for 4 hrs in vacuo at 750 C; electrical resistivity 7.22 pohm cm at 293 K; residual electrical resistivity 0.0347 pohm cm.
ø	122	ı	1955	2.0-44	Ð	JM 4884; Ni 1	99, 997 pure: polycrystalline; specimen 2.92 cm long, 0.305 cm in dia; obtained from Johnson Matthey Co. (JM 4884); annealed at 1150 C for several hrs in vacuo; electrical resistivity ratio $\rho(293K)/\rho(20K) = 80.9$.
7	186	<u>ц</u>	1928	305. 2		R-12	Wire about 35 cm long, 0.32 cm in dia; electrical conductivity 9.66 x 10 ⁴ ohm ⁻² cm ⁻¹ at approx 32 C; thermal conductivity value calculated from measured data of thermal diffusivity and specific heat.
æ	238	ш	1927	303. 2			0. 10 Fe. 0. 037 C. 0. 019 S. 0. 013 Cu. 0. 006 Si, traces of Al, Co. Mn. and P. specimen 20 cm long, 5 mm in dia; obtained from Mond and Co.; cast and machined, annealed for 40 min at 800 C; electrical resistivity 8. 58 µphm cm at 30 C.
o.	499	Δ,	1937	298. 2	90 '0		99, 987 pure; annealed in hydrogen at 870 C; density 8, 79 g cm ⁻³ ; electrical resistivity 7, 21 µohm cm at 22 C; thermal conductivity value calculated from measured data of thermal diffusivity, specific heat, and density.
or	230	ij	1925	329. 2		Electrolytic nickel	99, 75-99, 85 pare; supplied by International Nickel Co. of America; electrical conductivity 8, 24 x 104 ohm -1 cm -1.
11	\$	ပ	1940	80, 27:3	< 1 >		Specimen 60 mm long, 4 mm in dia; copper used as comparative material.
12	200	ပ	1954	333-763		Nivac	Extremely pure, specimen 1 in. cube, supplied by the Vacuum Metal Corp, vacuum cast.
13	300	၁	1954	333-753			Similar to the above specimen but with cylindrical pores of 0.746 cm in dis; porosity 9.8%.

SPECIFICATION TABLE NO. 35 (continued)

1	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
	500	U	1954	343-1073			Simular to the above specimen but porosity 19.5%.
	203	ш	1961	1093-1263		Nickel O	$99,95\ pure;$ wire 1 mm in dia; vacuum melted and cast; polished; annealed for 12 hrs at $\sim\!1000\ \text{C}.$
	504	۵	1961	295.2	က +၊		1.26 cm dia x 0.100 cm thick; the rmal conductivity value calculated from measured data of thermal diffusivity and specific heat, and density value taken from Smithsonian Physical Tables (9th ed., 1954).
	819	၁	0.96.1	305-323	• ec		Specimen 20 mm in dia and 18 mm long; skeel used as comparative material.
	819	ပ	0961	303-317	e: •.		The above specimen using pure Ni as comparative material.
	618	Ç	1960	302-320	€		The above specimen using yellow brass as a comparative material.
	819	c	1960	305-321	۲ ۲		The above specimen using Al as comparative material.
	55 26	æ	1961	778-1462		"I," nickel	Specimen consisted of 5 vertically stacked hollow cylinders, each 2,625 in, O.D. and 1 in, high, and having a 0.25 in. bore concentric with the axis.
	6	1	1956	778-1618	13	"A" nickel	Disk, 7 in, in dia and 1.5 in, thick; density 8,844 g cm ⁻³ .
	276	၁	1953	343.2	n	"A" nickel	Cylinder 1,75 in, long and 0,22 in, in dia; density 8,8 g cm ⁻³ ; Armeo iron used as comparative material.
	675	r. c	12 95 11	323-1123		Electrolytic nickel; Sample 1	 0.03 Fe. 0.01 each of Al. Cr. Co. Cu, Mg. Mn. Mo. Si. Sn. Ti. Zn. and Zr. 0.035 Fb. and · 0.002 B; supplied by The Castner Kellner Alkali Co.; tube of 1.272 cm. L.D., 1.908 cm. O.D., and 20 cm. long, density 8.61 g cm. ? electrical resistivity reported as 7.1. 8.3, 13.0, 19.4, 28.0, 32.8, 36.1, 39.3, 42.4, and 45.2 µohm cm at 293, 323, 423, 523, 723, 823, 323, 1023, and 1123 K, respectively. A rmco iron used as comparative material; data taken from smoothed curve.
	675	1., C	1965	323-823		Electrolytic nickel; Sample 2	Very high parity; supplied by the National Engineering Lab, ; tube with 0.634 cm 1. D. 2.801 cm 0.15., and 19 cm long density 8.90 g cm ⁻³ ; electrical resistivity reported as 10.6, 18.5, 20.7, and 33.2 μ ohm cm at 100, 260, 290, and 500 C, respectively; Armeo iron used as comparative material; data taken from smoothed curve.
	15	L. C	1965	323 - 423		Electrolytic nickel; Sample 3	19.5 • 0.1 Ni. 0.1-0.2 Co. 0.1-0.2 Si. 0.04 Fe. 0.03 Mg. and 0.01 Cr. supplied by the Atomic Energy Research Establishment in the form of 3 tabes of 1.589 cm O.D., 1.538 cm i. D. and about 43 cm long, 32 strips each 0.55 cm wide and 14 cm long were cut from the tabes and pressed tog ther to form a compact speciment dongity 8.9 g cm ⁻¹ ; electrical resistivity reported as 8.3, 9.6, 14.3, 20.6, 29.7, 34.1, and 37.3 u.ohm cm at 203, 324, 423, 523, 624, 723, and 922 K, respectively; Armeo iron used as compact together and crisis and a compact and curve.
	675	L.C	1965	323-623		Electrolytic nuckel; Sample 4	Commercial nickel, rod 2, 54 cm in dia, about 20 cm long; supplied by the Explosives Research and Development Establishment; electrical resistivity reported as 10.1, 11.3, 16.3, 22.8, and 31.5 µ chin cm at 293, 323, 423, 523, and 623 K. respectively. Arneo area as comparative material; data taken from smoothed curve.

SPECIFICATION TABLE NO. 35 (continued)

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	(* vosition (weight percent), Specifications and Remarks
28	675	'nс	1965	323-1323		Electrolytic nickel; Sample 5	High spectrographic purity; very small impurities of Al. Ca, Cu. Li. Si, Ag, Mg. and Na; supplied by Johnson Matthey Co. (Laboratory No. 4457); rod 0.5 cm in din and 15 cm long; density 3.91 g cm \(^3\); electrical resistivity reported as 7.1, 8.3, 13.1, 18.4, 23.3, 33.3, 35.3, 36.4, 39.2, 42.1, 44.7, 47.5, and 49.8 µohn cm at 293, 323, 423, 523, 623, 723, 823, 923, 1123, 1223, and 1323 K, respectively; Armoo iron used as comparative material; data taken from smoothed curve.
ន	716	ŋ	1962	4. 2, 81		Ni 5011 (I)	Specimen 0.15 cm in dia turned from a cylindrical sample 5.2 cm long; supplied by Johnson Matthey Co.; annealed for 4 hrs at 1273 K in vacuum of 10 mm Hg, then furnace cooled at a rate of 150 K por hr; electrical resistivity reported as 0.11, 0.676, and 7.16 john cm at 4.18, 80.5, and 292 K, respectively; electrical resistivity ratio $\rho(273K)/\rho(4.2K) = 60$.
30	716	٦	1962	4. 18	41	Ni 5011 (II)	Specimen 0.19 cm in dia drawn from a cylindrical sample 5.0 cm long; supplied by Johnson Matthey Co.; annealed for 10 hrs at 1573 K in hydrogen and left at 1573 K in a vacuum of 10 ⁻² mm Hg for 2 hrs; electrical resistivity reported as 0.0213, 0.60. and 6.35 µbhm cm at 4.18, 80.5, and 273.15 K, respectively; \(\rho (2X) = 298.\)
31	8	ı	1927	80, 273		Electrolytic nickel	Electrical conductivity reported as 90, 2 and 13, 05 x 104 ohm ⁻¹ cm ⁻¹ at 80 and 273 K, rospectively.
32	736	1	1965	0.42-0.95	7		Pure.
83	737. 877	ш	1965	373-773	+ 5	No. 1	99, 87 Ni + Co; tube 8, 51 mm O. D. and 8, 025 mm I. D.; electrical resistivity reported as 7, 90, 9, 30, 11, 50, 17, 24, 24, 70, 31, 84, and 35, 36 µohm cm at 20, 50, 100, 200, 300, 400, and 500 C, respectively.
\$	137	щ	1963	373-748	2	No. 2	Tube 12.96 mm O.D. and 11.025 mm I.D.; electrical resistivity reported as 11.60, 17.29, 24.74, 32.01, and 33.95 pohm cm at 100, 200, 300, 400, and 475 C, respectively.
35	743	ш	1964	340-920			 999 pure: specimen 30 cm long and 0.3 cm in dia, annealed in vacuum for 48 brs at 1173 K; electrical resistivity reported as 8.0, 11.5, 17.0, 24.5, 29.0, 35.0, 38.5, 42.0, 44.0, and 46.0 µohm cm at 40, 105, 210, 305, 375, 485, 590, 720, 780, and 900 C, respectively.
95	846	ĸ	1961	1201-1393			99.95 pure; 14 cm \times 1 cm \times 0.05cm; obtained from Johnson, Matthey and Co., London; data obtained without heating the ends of the specimen.
11:	846	ш	1961	1202-1386			99.95 pure; 14 cm \times 1 cm \times 0.05 cm; obtained from Johnson, Matthey and Co., London; measuring technique improved by heating the ends of the specimen.
¥.	84 3	c.	196 ₆	298. 2			Spherical granular specimen supplied by Linde Co. contained in a 0.75 in. dia x 2 in. long cylindrical cell; mesh size -230 +325; thermal conductivity measured by the transient line source method; measured in Freon-12 under a pressure of ~100 psig.
SE.	3	a.	1956	298. 2			Similar to above, measured in argon under a pressure of $\sim\!100$ peig.

SPECIFICATION TABLE NO. 35 (continued)

				T.	Reported	Name and	Commentation (month) represent) Specifications and Remarks
Cure No	Ref.	No. No. Used	Year	Range, K	Error. %	Specimen Designation	Composition (with personal property)
5	144	_	1966	298.2			Similar to above; measured in nitrogen under a pressure of ~100 peig.
÷ ÷	843	. Δ.	1966	298.2			Similar to above; measured in methane under a pressure of $\sim 100 \text{ psig.}$
45	843	ā	1966	298. 2			Similar to above, measured in belium under a pressure of ~100 page.
43	843	Δ,	1966	298.2			Similar to above, measured in hydrogen under a pressure of a role pole.
‡	917	ш	1965	2.0-90	c. 5-5	∢	Unite impurities (mostly re and 21), polycypomater. Johnson Matthey and Co.; annealed for 12 hrs at 850 C; electrical resistivity reported
							as 0,0005958, 0,001197, 0,003741, 0,005779, 0,00712, 0,00719 pohm cm at 5.5, 8.1, 13.4, 16.1, 20.1, 24.7, 34.4, and 40.0 K, respectively
45	917	ш	1965	5.7-114	0.5-5	B	 13 Cu; specimen 4 nm in dia; supplied by Johnson Matthey and Co.; chill cast from J. M. 890 Ni and J.M. 30 Cu; amealed for 12 hrs at 850 C.
4	186	۵	1928	305.2		A nickel	0.25 cm dia x 35 cm long; density 8.30 g cm ⁻³ ; thermal conductivity value calculated from measured data of thermal diffusivity, specific heat, and density.

DATA TABLE NO. 35 THERMAL CONDUCTIVITY OF NICKEL

[Temperature, T. K. Thermal Conductivity, k. Watt em ⁴ K⁻¹,

*	CURVE 32	0. 105	0.110		0.115	o. 115	0.120	0.125	0, 133	0. 131	0. 136	0.145	0.150	0.153	0.160	0. 163	0. 171	0. 184	0. 184	0. 185	0, 183	0.188	0, 156	0. 20x	0, 220	0. 22н	0. 2:30		CURVE 33		O. R7:3	0, 828	0, 774	0.751	977	1	0.630	0.660	0.643	0.633	6 .630	0. 630	0, 630	0.632	0. 634
L	CUR	0.423	0.435	0, 445	0.453	0.430	0. 500	0.518	0, 548	0. 560	0, 575	0.595	0.610	0.620	0. 643	0.650	0.680	0.735	0.750	0.765	0.785	0. 795	0.828	0. 505	0.915	0.938	0.945		CUR	,	373. 2	423. 2	473.2	2 2 2 2	1 2 2 4 7	N 6	57.3. 2	598, 2 393, 5	0.2.3. 2	648. 2	673. 2	698. 2	723. 2	748. 2	773. 2
¥	CURVE 26	0. ×00	0, 731	0, 669	0.611	0. 632	n. 652		CURVE 27		0, 657	0,616	0.581	0.547		CURVE 28	 	0.837°	o 200°	0.701	0.640	0.658	0.679	0.701	0, 723	0.745	0, 766	0.786		CURVE 29			I. 78		COUNTY OF	•	4, 13 4, 42	:	CUMVE 31	;	1. 11	0.833			
₽	CUR	323	42:3	52.3	623	72:3	423		CUR		32.3	42:3	523	623		CUR		323	423	523	623	723	823	923	1023	1123	1223	1323		150 150		£ .	80.3		5	•	. .		3		3	273			
- 2	CURVE 21 (cont.)	0, 644	0.647	0, 649	0.652	0,678	0, 723	\$ 1.1		/E 22	} [0, 433	0, 505 U. 505	6,504	0.551	9, 583	0.600	0, 651	069.0	0, 719		CURVE 23	ł	0, 636		/F 24		0.822	0, 738	0, 655	0.573	0.583	0.612	0. 637	0.007	0.687		CURVE 25		0.875	0, 777	0.697	0, 633	0.632	0. 652
←	CURVE	1070, 4	1083, 2	1092, 6	1105. 4	1205. 4	1:380.4	1461, 5		CURVE 22		178	815	842. 6	950	108K	1205	1380	1460	1616		CUR	İ	343, 2		CURVE 24		323	423	523	62.3	723	823	57. 60.	102.5	1123		SING		323	423	523	623	727	823
ऋ	CURVE 16	699 '0		CURVE 17		0. *16	0. ×16	0.811	00× 00	0.502	0, 301		CURVE 18		0.829	0, 828	0.815	0.819	0.815		CURVE 19	}	0. H26	U. H25	7. O	0,809	6 . 196	0, 79K	U. 797		CURVE 20		0,831	0.829	7	0.812	0. ×10	0. F22		CURVE 21		O. 568	0, 576	0. 533	609
∺	CUR	295-2		CUR		304, 5	308.3	312, 1	315 9	319, 3	323, 2		CUR		203 5	307.3	310.2	313, 9	317,0		CUR		301.9	304.1	306, 2	306. 4	313, 2	316.2	350.5		CEN		305, 2	.10x .20x		: : : :	317. 7	320, 7		SUB		777. 6	3.14. x	842.6	8 . 6 . 6 .
×	CURVE 12 (cont.)	0, 577	0, 377	095 0	536	÷ 5 0	0, 544		CURVE 13	ļ	0.435	0, 4:31	0.4:11	0.427	0.410	0.41%	x.1 + '0		CURVE 14		0,285	0.259	0, 25.8	0, 2H5	0, 285	0, 276	0.272	n. 264	101:10	0, 301	810 0	6, 314	0,338	0,318	:	CURVE 15) X	ر ج	0. 76	G. 7::	0. ≯≎	6, 73	9, 78	96.0
<u>(-</u>	CURVE	443, 2	5331, 12	598.5	663, 2	57.5	763, 2		CCIK		333, 2	423, 2	468, 2	54:3. 2	633, 2	793, 2	753, 2		CUB		343, 2	358, 2	393, 2	468, 2	518, 2	603, 2	683.2	703, 2	763, 2	783, 2	853.2	893, 2	983, 2	1073, 2		E50		1093, 2	1108.2	1108.2	1113, 2	1183, 2	1193, 2	1193. 2	1263. 2
غد	(cont.)	1, 22	1. 60	2, 19	5. 53	2.90	3, 35	3, 63	3. X.6.	3, 94	4, 03	90.7	3 30	4.00	3, 93	3.91	₽ *:	3.76		C 32	1	0, 70:1		ж <u>ж</u>	1	0, 761		9 <u>9</u>	}	0, 618		VE 10		G. 586		=		1. 184	0.828		VE 12		0.586	0.577	
T	CURVE 6 (cont.)	6, 20	9, 10	10, 0	12.4	14.0	17.0	20.7	22.3	23, 53	9 °63	36. U	2 × 5	55 G	31, 3	333, 6	33,0	☐ '		CURVE		305, 2		CURVES		303, 2		CURVE		295, 2		CURV		329, 2		CURVE 11		80.2	273, 2		CURV		333, 2	393, 2	
*	(cont.)	v. 695	0. 688	0.670	0.663	0, 643	0.636	0, 613	0.600	0, 579	0. 581	0.596	0, 603		<u>د</u>	1	1.351	536	27.4	2, 137	1.460	935	7, 380	7, 770	8. 030	7, 727	7, 273	5. 980	4, 940		2, 375	1.940	1, 705	1. 470	1. 40:1		9 3		0 44	0.51	99.0	0.80	0.97	1.00	
÷	CURVE 4 (cont.	423, 2	443, 2	457.2	こ ごかす	525.0	532. 1	560. 7	587. 5	705.3	716. 1	158 3	780.3		CURVE 5		1.98	01	79	21 12	200	7. ÷	13, 60	15, 40	18, 95	24, 00	27, 30	3.8, 05	38, 10	96. 7¢	65. 50	77, 65	91.10	115.90	135, 50		CURVE 6		1. 95	2. 20	2, 90	3. 60	4.40	4.60	
ħ	E 1	0.478	0, 623	969 p	0, 746	0.760	0. 768	0. 779	0, 785	0, 790	0, 793	1.47	0.785	0, 783	0.781	573	6.763	0.762	672.0		51 54	ļ	808	0.770	0, 686	t. 703	0.791	1, 113	1, 163		ë 	}	0,872	0.866	6. 715	e. 6:36	0. 597	0, 623		4		0, 723	0.714	0.715	
۲	CURVE	31. 53	47, 83	61. 97	76, 36	88.20	102, 40		132, 00	147, 00	161.90	177.30	192, 20	206. 20	220, 80	235, 20	250.80	287.40	09 656		CURVE 2		327. 2	452.2	558.2	690.2	803. 2	949. 2	1016.2		CURVE :		330, 2	352. 2	192. 2	575, 2	5,87.2	775. 2		CURVE		362.	380.0	392. 8	

Not shown on plot

「 And Andrews Andr

(continued)
몆
Ŝ.
BLE
TA
DATA

7 ×	CURVE 45 (cont.)	.5	?i ∢	30.3	vi o			27.0			113, 9 1, 20	. 90° an an a		305,2 0,615																								
T		56. (-									*																			
-2	CURVE 44 (cont.)	5, 44	59 °C	2 t	2 ¥	6.04	6, 15	5 5 9 4	6, 27	6, 23	6.31	स्त्र हैं के प	6, 25	6, 34	6 8 3 3	6.23	6. 13	 	5, 72,	新 (で)	7 7	3, 73	e. €. :	តី ក ក ក	2. 7.2	\$0.5 51.0	9 9	CURVE 45		0, 73	1.0.1	1, 32	177	ж.: Т			2 47	
H	CURV	14.3	s I	٧ : ماري	1. C.	14.0	5 X	x -	. s	20.3	20.3	2. E	22.4	2.1.7	त्र ज इ.स.	75. 2	25. 25.	27. 5	30.5	95 9 51 8 50 6	, 10+	¥.	45. 1	7 6 7 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8	34.0	71.6	96. 1) C	1	ر. ن	5. 5.	9. G	13.1	14.1	15. C	9 4 2 4	22. 4	
¥					^			1	-			⊊		:	6.7			<u> </u>		7.	ì		į	0.0149			۰.			_			ıa	29∶	. ×0	4. 1. 38. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50	, : I	5, 31
	Ε ::1	0,753	0.761	1 S. C.	588.0		20 E	500.00	3	'E 39		0.00230	.E 40.		0.00349	11-3		0.0M	/E 42°	1010	•	E +3		o. o	/E. 44		. S. S.	3 3	2.07	2, 70		£. €.	4.25	32	4	4 , r.	'n	
H	CURVE 37				96.0 H21		CURVE JS	6 70 6		CURVE 39	l	298,2 0,003	CURVE 40°		294.2 0.00	CURVE 41	1	295.3 0.00	CURVE 42	0 0 000		CURVE 43		298,2 0.0	CURVE 44			9 9	4.6 2.0	તાં જ	÷	#i	_			11.9		13.9
	CURVE 34 CURVE 37	1202	1231	F122		0.00			230.7	612			170		294.2	(761			7 7 7		124	745		!			ာ ယာ ဂို ကား	4.6 2.	6.3	674 7.8 3.	#i		21 (13.9

Not shown on plut

All Sales

FIGURE AND TABLE NO. 35R RECOMMENDED THERMAL CONDUCTIVITY OF NICKEL

end e fatte at fearble and fe book a confidence of the second of the sec

Tin K, ki in Watt cm-1 K-1, Tin F, and ki in Btu hr-1 ft-1 F-1.

* Values in parentheses are extrapolated.

والهجي فيكي الباريقول وفيل والستادية والمتادية ومنافديات فالسو أسمالي سفات المعاور بسريس اداردانةأت وسوالها والمالية المرافعة

SPECIFICATION TABLE NO. 36 THERMAL CONDUCTIVITY OF MOBIUM

(Impurity $<0,\,20^{\sigma_0}\,\mathrm{each}_{\odot}$ total impurities $<0,\,50^{\sigma_0}$

For Data Reported in Figure and Table No. 36

	mm d Lohm cm ttive	na ma stivity K, K,	Ë			m 5, 084, 5, 20. slee-		: .	gnetic	ting	3 011		reported F.2 K.	i.
Composition (weight percent). Specifications and Remarks	• 0.1 Ta, 0.015 Ti. 0.01 C, • 0.01 Fe. 0.01 N 0.01 O, and 0.01 Si ~6 mm dia v.10 cm long, manufactured by Murey Ltd; sintered above 2000 C and cold swaged; electrical resistivity reported as 15.0, 16.5, 18.7, 23, 2, and 27.7 jpbm cm at 293, 323, 373, 473, and 573 K, respectively; Armeo iron used as comparative material.	99, 95. W. 0. 011 O. 0. 005 C. 0. 0027 N., and 0. 0006 H; specimen 0. 25 m. in dia and 2 m. long; obtained from Kawecki Chemical Co.; refined by electron beam melting, annealed and machined to size; density 8. 61 g cm. ³ ; electrical resistivity reported as 15, 2, 2, 2, 39. J. and 49. 3 gohm cm at 300, 600, 900, and 1200 K, respectively; thermal conductivity values calculated from measured data of thermal diffusivity and specific heat data taken from Jaeger, F.M. and Vernstra, W.A. (Rec. Tray. Chim., 52, 677, 1934).	High parity; specimen consisted three stacked disks each of 0,625 in, 1, D., 3,0 in, O.D., and I in, thick.	High purity; in normal state; measured in a magnetic field.	High parity; in superconducting state,	99, 9° pure; wire drawn from a rod of ductife niobium 1, 59 mm dia obtained from Fansteel Metallurgical Corp; ideal electrical resistivity reported as 0, 038, 0, 045, 0, 07, 2, 35, 3, 90, 7, 0, 9, 8, 12, 3, 13, 5, 3nd 14, 5 John em at 15, 20, 30, 40, 50, 75, 100, 150, 200, 250, 273, and 295 K, respectively; residual electrical resistivity and phone em; transition temp 9, 25 K; in normal state.	The above specimen measured in superconducting state.	99, 99 pure; polycrystalline; magnetic field "frozen in"; in superconducting state; measured after removing the applied magnetic field.	The above specimen in superconducting state; measured before applying any magnetic field.	The alove specimen measured in a field of 2000 gauss; assumed in superconducting state below 6 K and in normal state above 6 K.	The above specimen measured in a field of 3300 gauss; assumed in superconducting state below 5 K and in normal state above 5 K.	The above specimen in normal state.	99, 99 pure; polycrystalline; 0, 470 cm dn x 3, 03 cm long; electrical resistivity reported as 0, 145, 0, 149, 0, 153, 0, 166, 0, 183, 0, 220, 0, 276, 0, 319, 0, 416, and 0, 462 pohim cm at 20, 6, 23, 4, 26, 2, 31, 7, 38, 9, 47, 7, 59, 2, 67, 1, 82, 9, and 90, 0 K, respectively.	99,99 pare; polycrystalline; magnetic field "frozen in"; in superconducting state; measured after removing the applied magnetic field.
Name and Specimen Designation						S.	S ÉX	JM 4526; Nb 1	N) I	KJ. 1	.Xb. 1	N. 1	JM 4526; Nb 1	N; 1
Reported Error, "				2.0-5.0	2.0-5.0			2, 0-3, 0	2, 0-3, 0	2.0-3.0	2, 0-3, 0	2, 0-3, 0	3.0	
Temp. Range, K	323-573	345-1195	365-1911	2, 2-10	2, 3-7, 3	8. 9. ყე	4.4-7.5	2, 3-3, 1	2, 0-9, 2	3, 1-7, 8	2.3-7.9	9, 5-21	24-94	0, 54-0, 75
Year	1961	1965	1958	1950	1950	1957	1957	1952	1952	1952	1952	1952	5561	1361
Method Used	ပ	<u> </u>	æ	-:	1	4	1	7	i	۔۔	T.	-ì	<u></u>	-
Ref. No.	652	728	39	96	96	151	151	53	97	97	97	19.7	77	400
Curve No.	-	61	77	4	S	ę	ţ-	20	s	10	17	12	;;	#

SPECIFICATION TABLE NO. 36 (continu

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Re. arks
51	207	٦	13 52	0.55-0.97	}	1 વર	95, 99 pure; polycrystalline; in superconducting state; measured before applying the magnetic field.
94	389	a	1938	1, 0-3, 7			Rod specimen; in normal state.
:	389	-1	1958	1, 0-4, 2			The above specimen bent to 5-13, 4% strained; in normal state.
<u>~</u>	389	-1	1958	1.0-3.7			The above specimen bent to 19, 5% strained; in normal state.
61	389, 676	1	1958	0.974.2			Single crystal; rod specimen; zone refined; not intentionally annealed; bent to 5.1% strained; in superconducting state.
20	389, 676	-1	1958	1.04.4			The above specimen bent to 13, 4% strained; in superconducting state.
ដ	389.	_1	1358	0.87-4.1		•	The above specimen bent to 19, 5% stritined; in superconducting state.
21	389, 501	1	1958	, 6-2.4		п 2 2	 0063 Cu and 0,0003 Mg; single crystal; specimen made by floating zone melting of polycrystalline, od; in normal state (data reported in Ref. 369 are 10 times higher than those reported in Ref. 501 and the latter are used).
ដូ	389.	u	1958	1.0-4.3		No II	The above specimen in superconducting state (data reported in Ref. 389 are 10 times higher than those reported in Ref. 501 and the latter are used).
7	389,	-1	89	1.0-3.0		1 gg	Similar to the above specimen; not intentionally annualed; in normal state (data reported in Ref. 389 are 10 times higher than those reported in Ref. 501 and the latter are used).
S	389 501 676	٦.	1958	1.94.3	•	i qu	The above specimen in superconducting state (data reported in Ref. 389 are 10 times higher than those reported in Ref. 501 and the latter are used).
98	413. 138	د	1955	353-888			99, 95 Nb and - 0, 05 O; rectangular specimen; density 8, 38 g cm ⁻³ ; electrical resistavity reported as 16, 41, 20, 85, 25, 29, 74, 34, 19, 38, 63, 43, 07, and 45, 30 µohm cm at 0, 100, 200, 300, 400, 500, 600, and 650 C; respectively.
27	413. 138	J	1955	323-856			99, 95 Nh and ~ 0, 05 O; cylindrical specimen; density 8, 65 g cm - ² ; electrical resistivity reported as 15, 22, 19, 18, 23, 13, 27, 09, 31, 04, 35, 00, and 38, 96 portmount 0, 100, 200, 300, 400, 500, and 600 C, respectively.
83	412		1955	0.39-0.72		JM 4526	99.99 pure; polycrystalline; measured with magnetic shielding; in superconducting state.
29	412	J	1955	0, 54-0, 76			The above specimen measured without magnetic shielding; in superconducting state.
8	412	ä	1955	0,54-0.99			Same as above, 2nd run.
31	909	J	198	417-853			Density 7,73 g cm ⁻³ ; electrical resistivity reported as 31,25, 35,78, 40,30, 44,83, 49,35, 51,88, and 58,40 johm cm at 0, 100, 200, 300, 400, 500, and 600 C. respectively.

SPECIFICATION TABLE NO. 36 (continued)

Curv		Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
32	677	ដ ,	1960	1.14.2			Single crystal: 4 mm in dia and 50 mm long; prepared by the "floating zone" technique in an electron bombardment furnace; in superconducting state.
<u>.</u>	2.50	7	1960	1. 2-4. 4			The above specimen irradiated by a dose of 10 to fast neutrons cm -2 at 30 ±5 C, then allowed a few weeks for radioactivity to decay; in superconducting state,
34	617	-1	1960	1.3-2.3			The above specimen before irradiation; in normal state; measured in a magnetic
35	21.5	1	1960	1, 7-2, 6			The above irradiated specimen (curve 33) in normal state; measured in a magnetic field.
38	705	7	1962	0. 26-1. 2	ഗ	II &	0.0003 Cu and 0.0003 Mg; single crystal; dia 4.0 mm; ratio of length to cross sectional area 25.7 cm ⁻¹ , obtained by the floating zone melting of polycrystalline rod of niobium in vacuum; electrical resistivity ratio $\rho(298K)/\rho_0=60.5$; in superconducting state.
37	705	'n	1962	0.25-4.2	ဟ	No III	Dia 2, 2 mm, ratio of longth to cross sectional area 89, 6 cm ⁻¹ , electrical resistivity ratio $\rho(298K)/\rho_0=120.0$; in superconducting state.
20 ,	724	r, C	1957	373, 473		Sample B	0. I Ta; electrical resistivity reported as 16. 2, 19. 5, and 23. 5 µohm cm at 20, 100, and 200 C, respectively; Armeo iron used as comparative material.
ရှိ	2	J	1966	1. 2-9. 4	10	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	0.03 Al. 0.03 Fe, 0.02 Si, 0.01 C, ~0.01 Cl, <0.01 Cr, <0.01 Pb, and <0.01 Mn; single crystal; 2.34 mm in dia and 20 mm long; supplied by Johnson Matthey and Co., obtained by fusion in a floating zone by electronic bombardment; residual electrical resistivity 0.09 µohm cm; transition temp 9.5 K; in superconducting state.
4 0	84 7	-1	1966	1, 3-9, 4	10	No I	The above specimen in normal state.
7	847	่า	1966	1. 1-9. 9	10	. % 1	The above specimen irradiated by 5.6 \times 10^{47} fast neutrons cm $^{-2}$; residual electrical resistivity 0.11 µbhm cm; in superconducting state.
7.7	847	د	1966	1. 2-5. 0	10	T ex	The above specimen in normal state,
4	2	. 1	1966	2, 4-9, 0	10	Z 02	The above specimen annealed at 1870 C in a vacuum of 5 x 10.4 forr for 63 hrs; residual electrical resistivity 2.48 jph:n cm; in superconducting state.
4	847	7	9961	1, 4-9, 2	10	Z6 1	The above specimen in normal state.
4.	847	٦.	1966	1. 3-9. 0	00	No III DA	0.1 Ta, 0.01 Ti, 0.007 Fc, 0.005 Cu, 0.005 N, 0.005 O, 0.003 Na, 0.002 Al, 0.002 C, 0.002 Si, and 0.301 H; single crystal; 5.10 mm in dia and 21 mm long; made from polycrystalline sample of Pechiney; annealed at 1350 C in a vacuum of <10-4 torr for 3 rain; residual electrical resistivity 0.21 µbhm cm; transition temp 9.25 K; in superconducting state
97	77	ı	1966	1. 3-9. 0	10	No III DA	The above specimen in normal state.

SPECIFICATION TABLE NO. 36 (continued)

			80
Composition (weight percent), Specifications and Remarks	Single crystal; 2.96 mm in dia and 21 num long; supplied by Kuhlmann; annealed at 1320 C by electron bembardment for 15 min in a vacuum of <10 $^{\circ}$ torr; residual electros resistivity ρ_0 = 0.38 µohm cm; transition temp 9.25 K; in superconducting state.	The above specimen in normal state. Single crystal; 2.96 mm in dia and 21 mm long; supplied by Kuhlmann; obtained by fusion in a floating zone; residual electrical resitivity 0.22 johm cm; transition temp 9.25 K; in superconducting state.	The above specimen in normal state. 99.7 Nb + Ta, 0.17 Ta, 0.06 Si, 0.03 Fe, and 0.025 Ti; cylindrical specimen 65 mm lcng and 14 mm in dia finished to an "eighth-class" surface (max height of asperittes 2.2 \mu); preheated at 2000 to 2200 K for 4 hrs; density 8.56 g cm 3; measured in a vacuum of 5 x 10 4 mm lig.
Name and Specimen Designation	Nb IV AA	Nb IV AA Nb IV B	Nb IV B
Reported Error, %	707	10	10 2 3
Year Range, K E	1.3-8.8	1.4-9.2	1, 5-5, 9
Year	1966	1966	1966 1966
Curve Ref. Method	-1	י י	ឯធ
Ne.	45	7.12	24 8
Cury	47	8 4 6	51

DATA TABLE NO. 36 THERMAL CONDUCTIVITY OF NIOBIUM

(Impurity < 0, 20% each; total impurities < 0, 50%)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1,

 . x	CURVE 19 (cont.)	0.0730	0.0800	0.102#	; (CURVE 20		0.00470	0.00280	0.00725	0.00960	0.0135	0,0180	0.0220	0.0300	0.0340	0.0380	0.0408	0.0448	0.0462	0.0550	0090	0.0820	0.0320		CURVE 21		6,00337	0.00380	0.00490	0,00620	0.00815	0.0110	0.0145	0.0190	0.0240	0.0275	0.0320	0.0355	0,0400	0.0445	0.0500	0.0650	0.0780	0.0850
←	CURVE	3.90	4 . 09	4.23	(1.02	1, 10	1, 19	1.33	1,55	1.82	2.00	2,34	2.51	2, 70	2.90	3,03	3, 13	3,50	3,60	4, 10	4,39		CUR		0.810	1.00	1. 10	1, 19	1,35	1.55	I. 79	2. 9.	2.30	2, 50	2.67	2.90	3, 02	3.13	. e.	8 8	4.03	4, 13
×	CURVE 17	0.061	0.082	0. 101	0, 119	0, 141	0.173	0. 183	0, 199	0.200	0.220	0.240	0.276		CURVE 18	ì	0,054	0.060	0,097	0.115	0, 134	0, 152	0.170	0.184	0, 195	0,215		CURVE 19		0.00600*	0.00650	0.00200	0.00350	0,0131	0.010	0.0225	0.0308	0.0385	0.0500	0.0520	0.0550	0.0570	0.0620	0.0655	0.0722
۴	CUR	1.00	1, 298	1. 52	 8	2. 21	2	2.88	2. 92	3, 10	3,38	3.60	4. 16		CUR		0.999	1.04	1, 62	1, 98	2.34	2, 60	2, 95	3, 18	3, 39	3, 65		CUR		0.970	1.00	1. 02	1. 10	1. 29	1. 40	1. 60	1.85	2, 10	2 63	2, 76	2, 98	3, 15	£.	3, 59	3, 75
ᅶ	13 (cont.)	0, 4:19	0. 44.8	0, 454	0,461	0,479	0. 484	0, 499		± 1		u. 00053	U. 00054	0.0005H	0.00060	0, 00069	0, 00072	0.00082		E 15	-	0, 000:302	0,00032	0.00042	0, 0004:1	0.00044	0.00047	0.000485	0.0005e	0.00051	0, 00034	0.00000	:	E 16		0.062	0.077	0.089	0.118	0, 131	0, 160	0, 182	0,225	0.250	0.275
٠	CURVE 13 (cont.	34, 90	41.04	51,04	60, 62	5x, 54	. 6 0	9:1, 75		CURVE 14		0, 535	0, 560	0,580	0, 590	0.640	0,685	0.748		CURVE		0.545	0,555	0,728	0.74	0.78	0.82	0.83	98 .0	98.0	0.52	0.97		CURVE 16		1. 02	1, 22	1, 41	28	2.08	2,35	2.69	3.21	€	3, 70
×	2 10	0.0158	0.0250	o. 0483	0, 6538	0. 122	0. 131	90, 136		E 11		0.0175	0, 0253	0.0205	0.0240	0.0360	0,0640	0, 0938	0, 107	0, 136	O. 138		TE 12		0, 154	0, 160	0, 150	0.164	0.172	0, 177	0, 179	0.188	0.214	0.261	0, 314		0, 327		21 34		0.365	0.397	814.0	:	
۲	CURVE	3.08	3, 50	4.35	4. 63	:- :-	09 ··	3		CURVE 11		2, 25	2,38	2.55	2, 88	3, 05	4, 65	5.68	6,38	7. 88	2, 90		CURVE 12		9, 48	9, 50	9, 83	10.0	10, 1	10.3	11, 1	11. 6	13, 2	15, 8	20.3	20.6	20.9		CIRVE 13		24 17	25. 23	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	
¥	6 (cont.)	0.608	0.560	0.528	6, 534		/E 7	I I	0.0%	o. 136	0,380		/E &		0.00100	0,00875	0.00975	0, 0133		VE 9	:	0.0125	0,0175	0.0208	0.0218	0.0248	0,0388	0,0375	0.0445	9,046	0.0555	0.0618	0,0945	0.126	0, 133	0, 133	0, 130	9, 138	0 145	0.148	0 152	0 152	,		
۲	CURVE 6 (cont.)	55.80	7 .	77. 90	8.8		CURVE		4. 42	ö. 77	7, 50		CURVE	•	2, 33	2, 53	2, 9,	3, 13		CHRVE		00	. S. S.	25	3, 13	3, 60	4, 25	4, 45	5.00	5.08	5. 85	9.00	7, 13	£.	8. 60	8, 13	8,48	. 85 53	ā	3	5	3 2	;		
24	*	0.0000	0.0124	0.0175	0.0212	0.0234	0.0272	0.0313	0.0427	0.0830	0, 115	0.117	0, 135	0.157		5 3		6.0146	0.017	0 0500	0 0220	0 0220	0.0290	0.0294	9, 0330	0,0370	0.0410	0.0570	0.010	0.0785	0.0350			763	26	0.320	0.082	0.660	0.76	0.842	0. 870	0.865	0. 835	0.736	
۲	CURVE	2.20	2.55	3, 05	3. 5	S	3, 73	3, 95	4.40	20 30	7, 70	æ .8	9.21	10, 35		CURIT		2, 30	2.55		3 E	3 2	6	8	7. 4	4 V	7.4	5, 45	5.97	6.52	7, 30	2110112		90	8 8	2 6	70.	12. 70	16. 90 16. 90	19. 23	23.65	28.50	33.30 30	41.8	1
**	1 2	0.50	0.51	0.52	0.53		7E 2	1	0,545	0.545	0,550	9.555	0.560	0.570	0.575	0,575	0.580	0.585	999	0.00	0.610	0.50	0.615	0.90	6.635	0,640	099.0	0.660	099.0	0.675		VE 3	1	0,466	0.486	0,521	0.532	0.583	A12 C	: 79	9	2.5.0			
۲	CURVE	323, 2	373.2	473.2	373, 2		CURVE		345	390	395	410	430	510	525	555	570	610	089	1 2	3.5	024	958) (r	200	9	1040	1095	1140	1195		CURVE		364, 8	521.1	79.5.1	95 X 2	1154 7		1617	1.0101				

Not shown on plot

	. .	CURVE 37 (cont.)	0.148	0.165	0.200	0.180	0, 165	0.150	0, 140	0.140	0.170	0.200	0.235	0.256	0.285	0.340		CURVE 38	202.0	0.00	0.361	CURVE 39		600.0	0.012	0.014	0.0Is	0.026	0.035	0.050	0.074	0.103	0.212	0.362	0.485	0.615	0.803	0.981	1.176	1.375	1.578	1.919	2.017	
	₋ ⊢	CURVE	1.60	1.68	2,05	2.20	2,35	2.50	2.70	2.95	3.40	3 60	88	3, 90	4, 10	4.20		5	6	2.5.6	413.4	DO	<u> </u>	1.22	1.26	1.35	1.4	1.74	1.94	2.21	2.59	2.93	25.0	4.31	4.73	5.13	5.72	6.20	6.76	7.26	7.75	. a	9.39	
	¥	CURVE 37 (cont.)	0.00360	0.00440	0.0050	0.00520	0.00480	0.00540	0.00625	0.00650	0 00725	00800	0.00850	0,0100	0,0105	0.0110	0.0102	0.0130	0.0145	0.0143	0.0160	0.0160	0.0210	0.0220	0.0340	0.0320	0.6330	0.0370	0.0330	0.0350	0.0430	0.0430	0.00	0.0480	0.0520	0.0280	0.0601	0.0650	0.0680	0.0780	0.0925	0.108	0, 130	ı
	۴	CURVE 3	0.360	0.380	0. 400	0,410	0.410	0.420	0.420	0.470	64.0	0.490	0.510	0,540	0.540	0.550	0.560	0.590	0.600	0.630	0,650	90.0	0.71	0.73	0.82	S 8	8 8 • •	8	8	0.90	0.95	. e.	8	1.05	1,05	1.05	1. 10	1, 10	1. 12		1.30	1.45	8 8	· •
	×	6 (cont.)	0.00245	0.00255	0.00290	0, 00280	0.00290	0,00305	0.00410	0.00370	0.00340	0.003	0.0053	0.0060	0,0095	0.0105	0.0120	0.0125	0.0138	0.0155	0,0165	0.0130	0.0215	0.0230	0.0270	0.0285	0.040	0.038	0.042	0.054	0.057	0.057	e cox	E 37	0.00145	0.00150	0.00165	0.00200	0.00215	0.00220	0.00250	0.00230	0.00330	
(continued)	۲	CURVE 36 (cont.)	6.420	0.430	0 4 4 3	0.45	0.47	0.48	0.51	0.53 53	20.0	5,0	500	0,60	0.66	0.68	0,73	0.76	0.77	0.78	8 8	8 6	0.83 88.0	0.00	0.92	0.95	96.0	3.5	1.04	1.08	1, 10	: :	F. 15	CURVE 37	0.245	0.255	0.255	0.285	0.285	0,300	0.305	0.310	0.330) •
9.	*	E 33	0.0340	0.0450	0. 0210	0.440	0,0960	0.0880	0.0700	0.0680	0.0670	0.070	0.030	0.0560	0, 102	0,116		E 34	•	0, 122	0.138	0.163	0.215		'E 35		0.138	0.153	82.0	0, 195	0.212	9	99	0.06079	0,00083	0.00086	0.00101	0.00103	0.00105	0.00140	0.00155	0.00185	0.00200	•
DATA TABLE NO.	_	CURVE	1, 20	1.30	1.40	; -	2, 10	2,30	2.68	2.90	e 6	9.0	5. 40 20 00 20 00	5	4.11	4, 37	•	CUIRVE		1.30	1.50	2 9	2.50 30	i i	CURVE		1.70	5. S	3 6	2.40	2.61	9	CORVE	0.260	0,265	0.275	0,300	0.310	0, 325	0.350	0.360	0.390	0.410	;
DAT	м	VE 29	0.00055	0.000555	0.00059	0.000705	0.00076	0,09087		CURVE 30	100000	0.000303	0,000315	0.000425	0.000445	0.00047	0.00048	0.000505	0.00056	0.00065		CURVE 31	0.334	0,338	0,348	0.343	0.357	0.364	25.0	CURVE 32		0.0520	0.0720	0.151	0.185	0, 189	0.166	0. 122	0.098	0.095	0.102	0.109	0.132	
	۲	CURVE	0.54	0.55	86°0	0.50	0.695	0, 755		CUR	4	0.040	0.555	0.740	2 2	0.810	0.820	0.850	0.930	0.99		CUR	417.2	505.2	583, 2	643.2	669.2	778.2	933. 6	CUR). 10.	1.24	1. 50	1.86	2, 00	2, 20	2.60	3.00	3, 53	8 6 6	න් දි ල්	4. 18	
	*	5 (cont.)	0.0137	0.0305	0.0450	0.000	0 0700	0,0702	0, 0700	0.0695	0.0690	0.000	0.0700	0,0730	0.085	0 107	;	VE 26		0.477	0.510	07.0	0.573	0.619		VE 27		0.524	0.014 607	0.628	0.636	;	VE 28	0.00071	0.00096	0.0012	0,00215	0,00224	0,00290	0.00315	0,00380		0.00600	
	۲	CURVE 25	1.28	1,51	+ 6 - 6		17 .	2.45	7.64	2.75	3 5 (3. US	÷ ÷	, . , .	3. 94 4 03	3 5		CURVE		353.2	463.2	569.2	656.2	588.2	! •	CURVE		323.2	4.0.6	726.2	856. 2		CURVE	95.0	0.42	0	0.495	0, 505	0.59	0.595	0.655		0.720	
	±2	;; u	0.6940	0, 105			0,130) (2 2 3 3 3 3 3	0.216		E 23		0.0355	c. 0445	0.0660	0.146	173	0, 181	0, 174	0. 141	0. 122	0, 109	0.100	0.9925	0,0915	c. 0935	0.0971		0. 12.1		E 24		0.0640	0.0.90	0.034	0.135	0, 150	0, 182	0.200		E 25		0.00300	0.0140
	٠	CURVE	50	1, 15	07.1	Q :	70 V	5 i	60.5		CURVE 23		0.997	1,05	1.20	1.32	1.61	2. 05 2. 05	2, 18	2, 42	2.60	2,75	ei e	3.11	3.30	3,46	3,61	8 °C	4.05		CURVE		1.02	7.20	2 2 -		98	2.70	2.95		CURVE 25	;	8;	1. 14

Not shown or plot

		(i)	2	25	얾	9	32			20	\$	80	9	32	2																														
	*	CURVE 50 (cont.)	0.643	0.7	0.3	0.880	r. 962	CHRVF 51		0.6	0.6	0.6	0.706		· · · · · · · · · · · · · · · · · · ·																														
	t٠	CUR	5.95	6.49	7.27	8.46	9.81	כ	5]	1400	1600	1800	2000	2200	5300																														
(continued)	ж	CURVE 48 (cont.)	0.230	0.310	0.355	0.392	0. 4.0	0.496.00 0.000 0.000		CURVE 49		0.020	0.026	0.031	0.035	0.041	0.000	.690.0	0.070	0.078	0.092	0.111	0.148	0.136	0.222	0.250	0.33	184.0	0.642	908.0	0.941		CURVE 50	1	0.171	0.215	0.243	0.275	0.303	0,339	25.33	0.412	105.0	104.0	2000
36	H	CURVE	4.38	4.91	5.52	6.17	2.06	6.8 2.87	;	CUR		2.3	1.38	1.46	55 E	3 5	3.6	2.43	2, 75	3.16	3.50	3.85	4.15	3	3:		\$ 5 5 0	6.42	; ;;	8.15	9.6				7	1.89	2.13	2.45	2.75	2.5	ري دو . دو	£ .		 	:
DATA TABLE NO.	*	s (cont.)	0.565	0.613	0.630	0.764	0.544	1.058	2.47	i	0.037	0.040	0.049	0 056	0.063 0.063	0.069	0.073	6.065	0.063	0.071	0.081	0.112	0.129	5	0.182	0.223	0.273	0.429	0,536		5 48		0.074	0.030	0.089	0.101	0.103	0.116	0.127	0.142	3 2	0.174	0.132	0.133	
DATA	۴	CURVE 46 (cont.)	4.95	5.37	5.73	6.30	7.77	9.03	CURVE 47		1.33	1.39	1.46	1.57	1.71	1.83	2.17	 	51.55	3.61	3.86	4.22	4. 2.	4.92	5.29	5.73	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	 	8.81		CURVE 48		1.33	1.42	\$ 7 .	1.55	1.67	1.86	2.05	2.26	2.32	2.02	8.5	, c	?
	¥	CURVE 44 (cont.)	0.064	0.068	0.070	0.073	0.079	0.030	31.0	T 45	2	0.121	0.113	0.141	0.152	0.162	0.166	0.143	5.1.5	0.10	0.122	0.152	0.181	0.228	0.259	0.318	0.382	0.472	0.651	1.021		E 46		0.212	0.245	0.211	0.198	0.235	0.267	0.305	0.337	0.382	0.414	0.491	2
	۲	CURVE	4.95	5.34	5.66	6.13	6.75	7.67	9.15	CHRUE 45		75	37	2.	1.66	¥.	2.06	2.35	76.6	9	3.66	4.00	4.34	4.63	4.93	5.31	5.70	6.13 6.13	3 6	3.00	;	CURVE 46		1.31	1.37	1.43	1.67	3	2.07	2.38	2.66	3.03	3.32	3.37	
	צג	E 42	0.273	0.357	0.480	0.613	0.885	1.087	F 43	<u>:</u>	6.019	0.016	0.017	0.020	0.019	0.023	0.027	9.036	0.033	0 032	0.032	0.044	0.946	0.046	0.044	0.030	0.059	0.070	660.0		E 44		0.015	0.016*	0.017	0.019	0.020	0.022	0.025	0.029	0.033	9.037	0.040	0.030	000
	۲	CURVE 42	1 23	3	2, 13	2.73	3.95	5.01	CHRVE 43		17 .	47	1,57	1.69	1.73	3	2.08	2.41	2.72	5	3.78	4.14	4.47	4.79	2.08	5.40	6.05	6.72	2	3	CURVE 44		1.42	1.49	3.60	1.70	3. 3.	2.08	2.41	2.71	3.09	3.41	3.7	4 .01	7
	¥	E 40	0.347	0.402	0.397	0.529	0.620	0.678	1 000	1.96	1.120	1.15	1.596	1.670	1.782	1.877	1.938	1.981	E 41		0.004	0.00	0.005	0.010	0.020	0.028	0.032	6.050	10.0	0.156	0.242	0.392	0.513	0.647	0.886	1.080	1.295	1.502	1.660	1.920	1.931	1.958			
	۴	CURVE 40	30	3 %	8 8	80	48	6	16	3 2		. 8	213	05	19	=	92.	36	CHBUE 41		12	ន	ន	S	36	જ	91	<u>ئ</u> و	8 12	2 6	35	29	=	2	12	72	23	11	ឌ	57	E .	91			

RECOMMENDED THERMAL CONDUCTIVITY OF NIOBIUM FIGURE AND TABLE NO. 36R

	ī.	k ₁ k ₂	T,	T,	¥.	k ₂	T2
	0			200	0.567	:32.8	440
		251 14.5	-	009	0.582	33.6	620.3
			9 -456.1	700 800	0.598	4. 7. 6. 4	800.3
	, 4. o	0.993 57.4		006	0.629	36.3	1160
	5		1 -450.7	1000	0.644	37.2	1340
		1.46 84.4		1100	0.659	38.1	1520
	7			1200	0,675	39.0	1700
	8 1.	1.86 107	-445, 3	1300	0.690	39.9	1880
	9 2.		-443. 5	1400	0. 705	40.7	2060
	10 2.		-441.7	1500	0.721	41.7	2240
			-439.9	1600	0.735	42.5	2420
		39 138	-438.1	1700	0,750	43.3	2600
			4 36.3	1800	0.764	4.1	2780
	14 2.	2, 49 144	-434. 5	1900	0.778	45.0	2960
	6		-432 7	2000	0.791	45.7	3140
			430 9	2200	0.815	47.1	3500
	18		-427.3			•	
			-423.7				
	25 1.	1.87 108	-414.7				
		1, 45 83.					
	35	1.16 67.0	7.396.7				
			5 -378.7				
T. P. (s. c.) 9.13 KJ							
	80	0.58 33.5	5 -315.7				
2 3 4 5 6 8 10° 2 3							
TEMPERATURE, K	100	$(0.552)^+$ (31.9)	5) -279.7 6) -189.7				
		•					
	200 (0.	526) (30.4)	4) - 99.7				
	_) (2)	1				
HEMARIKS		33	0) 80.3				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. 4					
The recommended values are for well-anneated 33.3 % pure monum with restudat effectives		5					

\$ \$ £ The recommended values are for well-annealed 99.9*% pure niobium with residual electrical resistivity $\rho_0 = 0.0975 \, [\mathrm{fc}$ cm (characterization by ρ_0 becomes important at temperatures below about 150 K). The values below 1.5 T_m are calculated to fit the experimental data by using $n = 2.00 \, \mathrm{cr}^4 = 5.92 \times 10^{-4}$ and $\beta = 3.99$. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature, and 5 to 10% at other temperatures.

Tim K, ki in Watt cm - K-i, T2 in F, and k2 in Btu hr - it - F-i.

Management of the angle of th

*Values in parentheses are interpolated.

SPECIFICATION TABLE NO. 37 THERMAL CONDUCTIVITY OF OSMIUM

(Impurity < 0, 20% each; total impurities -0.50%)

[For Data Reported in Figure and Table No. | 37]

Composition (weight percent), Specifications and Remarks	99, 995 pure; specimen 0.6 cm in dia and 6 cm long; powder supplied by Johnson Matthey and Mallory Ltd.; specimen prepared by arc-melting of pressed powder; residual electrical resistivity 0.10 polm cm, electrical resistivity ratio $\rho(295K)/\rho_0 \approx 92.6$.	99, 99 pare; specimen 0, 188 cm in dia and 5 cm long; powder supplied by Baker Platinum Co., specimen prepared by are-melting of pressed powder; residual electrical resistivity 0, 0872 polm cm; electrical resistivity ratio $\chi(295K)/\rho_b \approx 105.7$.	99, 995 pure: powder supplied by Johnson Matthey Co.; specimen prepared by aremelting of pressed powder in helium atmosphere; electrical resultivity ratio p(29.5K)/p(4, 2K) - 20, 41.	0,0091 Ag. 0,0002 Cu. 0,0005 Fe. 0,002 Rh. and 0.03 Ru; specimen 0.489 cm in dia and 2.7 cm long; supplied by Johnson Matthey Co.; prepared by argon-are melting and ground to stay; density 22,45 g cm ⁻³ ; electrical resistivity 8,532 and 0,272 point cm at 273 and 4,2 K. respectively; electrical resistivity ratio p(273K)/p(4,2K) = 31,4; data extracted from smooth curve.	0, 0001 Ag, 0, 0002 Cu, 0, 0005 Fe, 0, 002 Rh, 0, 03 Ru; polycrystalline; specimen 0, 459 cm in dia and 2.7 cm long supplied by Johnson Matthey Co.; arc-melted and ground; annealed at 1820 K; density 22, 45 g cm 3, electrical resistivity ratio $\rho(273K)/\rho(4, 2K) = 33, 3$ (the paper reported density as 12, 45 g cm 3, and the latter ratio as 22, 45, apparently a typographical error. This has been confirmed by the
Name and Specimen Designation	0 s 2	0s 3	0s 1		
Reported Error, %					
Temp. Range, K	2. 0-140	2.0-91	10-100	323-523	337-518
Year	1953	1958	1957	1962	1967
Curve Ref. Method No. No. Used		-1	٦	O	U
Ref.	# £57	384	512	665	249
Cun.	-	61	n	4	v

CURVE 3

CURVE 1

0.87 0.87 0.87 0.87

323 373 423 473 523

CURVE 4

CURVE 5

336.7 343.0 343.1 353.5 398.4 399.0 444.5 517.5

CURVE 2
2.0
0.5
2.2
0.5
3.4
4.5
10.8
10.8
10.8
20.0
25.0
30.0
30.0
90.8

FIGURE AND TABLE NO. 37R RECOMMENDED THERMAL CONDUCTIVITY OF OSMIUM

*Values in parentheses are extrapolated or interipolated. k1 in Watt cm-1 K-1, T2 in F, and k2 in Btu lb-1 ft-1 F-1. T₁ in K, 1

THE PARTY OF THE PROPERTY OF

فهاوالام بالطاس موافي مضار فالوالكواليام المرافعية والوالواليال القال ماليس هاماء بالمرافعية والمرافعية المرافعة والمرافعة وا

SPECIFICATION TABLE NO. 38 THERMAL CONDUCTIVITY OF PALLADIUM

(Impurity < 0, 20% each; total impurities \leq 0, 50%)

[For Data Reported in Figure and Table No. 38.]

Composition (weight percent), Specifications and Remarks	Pure; specimen 1,610 cm in dia and 27.0 cm long; cast, density 11.96 g cm ⁻³ at 18 C. 99, 995 pure; annealed polycrystal; specimen 0,152 cm in dia and 2,82 cm long; supplied by Johnson Matthey [No. 2134]; electrical resistivity ratio \(\rho(293K)/\rho(20K) = 34.1.\)	Commercially pure; specimen 0, 1010 cm in dia and 35, 1 cm long; supplied by Messr. Isenthal and Co.; electrical resistivity 17, 815 and 15, 532 pohm cm at 4, 96 and 93, 57 C, respectively.	Pure; specimen 0.0905 cm in dia and 35, 2 cm long; electrical resistivity 10.334 and 13.497 pohm cm at 13.26 and 99.14 C, respectively.	99, 995 pure; traces of Ag. Ca, Cu, Si, and Mg: specimen 3 mm in dia; supplied by Johnson Matthey (JM2928); strained.	The above specimen annealed in vacuo for about 4 hrs at 250 C.	The above specimen annealed at 450 C for about 4 hrs.	The above specimen annealed at 650 C for about 4 nes.	The above specimen annealed at 1000 C for about 4 hrs.	The above specimen drawn to 2 mm dia, annealed at 450 C for about 4 nrs, erectivatives significant to 2, 12 x T ² , 2 ohm cm (the last term should have a factor resistivity 1, 82 x 10 -6 + 2, 12 x T ² , 3 ohm cm (the last term should have a factor of 2 x 1 x 2 x 10 -6 + 2 x 10 x 10 x 10 x 10 x 10 x 10 x 10 x	10-12)	Medium pure; unannealed; residual electrical resistivity	The above specimen measured and 3.5 months, 1997.	Very pare; drawn and unannealed; residual electrical resistivity $\mathbf{v}_{i} = 9.61$ jubin cm.	The above specimen annealed for 2 hrs at 300 C; restaunt electrical contents.	Fure,	Pure,	Pure palladium.	0.005 kh, U. 0003 M. U. 0003 Tev. O. 0005 kh, U. 0003 M. U. 003 M. U. 0
Name and Specimen Designation	Pd I			Pd 1	Pd 2	E pd	Pd 4	S Pd S	9 Pd		I Pd	I Pd	II Pd	п РА				
Reported Error, %	2, 0-3, 0																	
Temp. Range, K	291, 373	290, 373	290, 373	2, 3-154	2.3-150	2. 7-157	2, 1-131	2.4-91	2, 2-24		79-91	21, 22	21-91	21-81	375. 2	298. 2	0.42-0.92	314-502
Year	1900	1914	1914	1955	1955	1955	1955	1955	1955		19:34	1934	1934	1934	1956	1911	1965	1962
Method Used	ы —	Ĺų	1		ı	1	J	-1	1		1	1	ü	J	Δ,	Œ	1	O
Ref.	97. 122	æ	20	8.5	82	82	82	82	82 0		Š	28	28	58	390	241	736	665, 249
Curve No.	÷1	m	4	íO	æ		- oc	, 5	01		11	12	13	14	15	16	17	£ 1

DATA TABLE NO. 38 THERMAL CONDUCTIVITY OF PALLADIUM (Impurity < 0.20% each; total impurities < 0.50% $\rm 0$

(Temperature, T, K; Thermal Conductivity, k, Watt cm⁴K ¹)

×	E 16	0.670	E 17		0.153	0.161	0.165	0.200	6.204	0.215	0.234	0.2.0	0.2:5	0.2.3	0.250	0,260	0.264	0.270	0.235	0,294	0,313	0.350		E 18	}	0.734	0.750	0,754	0.750	0.745	0.749	0.761	0.761	0.755	0.748	0.753	0,760	0,75M			
÷	CURVE 16	294.2	CHRVE 17		0,418	0.45	0.47	0.545	0,568	0.578	0,625	0.635	0,655	0,655	0,713	0,733	0,735	0.765	0,415	0,838	0, 483	0.32		CURVE 18		313, 8	320.3	326.2	345.0	343, 5	347.1	366.1	381.4	422.B	451.5	452.1	456.3	501.7	· :		
*	E 10	2.95	3.33	5, 52	¥.61	7.60	6.07	4.15		E 11	İ	0.762	0, 7:32	0.709		E 12	İ	1.75	1.77		E 13		3.43	3.44	3,40	0.786	0.785	0.735		F 14		4.14	4.02	0.783		E 15	ļ	0.745			
۲	CURVE 10	61.5	ဆ တ လ် လ်	91 	11.6	14.5	9°9	2.3. 5		CURVE 11		79.4	80.4	91.2		CURVE 12		21.3	22.3		CURVE 13		21.4	21.4	22. 2	78.7	×0.2	91.4		CURVE 14		21.2	22.1	80.7		CURVE 15		375.2			
*	(cont.)	8.30	10.76 10.76	10.20	9.65	9.06	7.02	5.12	3, 49	2,36	1.003	0.959	0.872	0.80×	0.771	0,735		E 9	ł	3.08	3,58	02.4	÷.÷	4.93	5.36	5, 72	6.00	er*	×.32	7.51	5.66	4.06	2.79	0.952	0.861	0.789	0.774				
۲	CURVE 8 (cont.	5,14	27.80	11.07	12,33	13, 52	17.33	21,52	26, 62	32.79	57,93	o. E 9	69.8	80.2	6.06	1.30.7		CURVE 9		2.35	2.7.5	3,26	3, 47	3, 36	4.21	4,58	4.77	7.90	12, 50	14.60	19.15	23,95	29,60	60,29	70.25	81.33	91,04				
¥	(cont.)	9.762		E 7		4.591	5.76	969.9	. 000	7.283	7.717	e. 000	. S.	11.60	11.36	19.74	10.32	9.63	8,63	6.9×	5.77	99 151 -	8. PS	2.68	978.0	0.823	0.765	0.767	0. 13:	0.756		ر این		5.5 <u>15</u>	3.67	4.59	5.77	5.78	6.49	6.91	7.69
Ţ	CURVE 6 (cont.)	120.2	1.66.1	CURVE		2,654	2.9%	5 5 5 7 7 7	734	3,913	7. 7.	4, 99K	7, 53	9.67	10, 53	18.11	12.69	13, 53	15, 42	18.11	20, 55	23, 48	26,06	30, 43	60.13	76, 66	91.0	9.30	x.	157.0		CURVE		2.059	2,413	2,703	3,276	3,460	3,925	4.31	4.80
**	(cont.)	4,055	2.62	1.3	1.475	0.917	. .	0.769	0.741	0.748	0.736	0.739		E 6		1.315	1.432	ور الم	1.694	1.814	1.903	1.993	2.124	2.273	2.491	3.23	1.13	1.51	÷.	1.71	70	÷. 42	90.	3.30	8 21	1.37	9.946	0.843	0.813	0.767	0.780
۴	CURVE 5 (cont.)	18.24	27.66	36,64	42.59	61.71	69.9	æ. æ.	91.3	106.1	136.8	153.6		CURVE		2.347	2.600	2.792	3,053	3,277	3, 421	3,622	3, 447	4.131	4,501	5.84	8. 61	10.06	10, 80	11.73	15.32	16, 63	20.25	23,87	29,39	44, 54	60.1	70.8	80.0	91.1	91.1
*	1 1	0.704		27		0.203	0,364	0.653	0.795	0.934	1.082	1.212	1.416	1.356	1.280		ကျ		0.423	0.418		т Ф		0,602	0.598		S)	,	1.150	1.298	. 536	1.626	1.743	1.861	5.029	2,232	2. K 3	4.02	4,39	4.43	#: : ;
۲	CURVE	291.2	1 2 2	CURVE		2.43	4.35	7.48	9.45	11.48	14,03	17,39	23.13	28.26	30.61		CURVE		290	373		CURVE		230	373		CURVE		2.261	2,538	3.040	3,230	3,475	3,684	4.046	4.45	5.81	9.45	12.07	13,89	15,60

Not shown on plot

FIGURE AND TABLE NO. 38R RECOMMENDED THERMAL CONDUCTIVITY OF PALLADIUM

7, 440.3 620.3 800.3 980.3 1160

	k, k,			(0.755) (43.6)		(0, 755) (43, 6)	(0.755) (4:3.6)							-										٠			-											
	T,	200	900	700	800	900	1000																															
	. T	459.7	-457.9	456.1		-452.5	-450.7	-448.9	-447.1	445.3	443.5	-441.7	439.9	438.1	434.5	432.7	430.9	-427.3	423.7		-405.7	-396. 7	-378.7	-369. 7	-351.7	-333.7	7.615-	-279.7	-189.7	- 99.7	1 9.7	32.0	80°	260.3				
	κ γ	9	115	226	339	440	528	595	641	670	929	13 9	647	618	5.45 4.85	513	478	409	346	553	165	124	82.6 4.0	71. 1	56.7	2.5	46. 9	4 0 4 1	43.6	(43.6)	_	(43.6)	43.6	4. 5. 6. 5. 7. 6.				
	Ą.	9	1.99	98 8	5.86	7.61	9.13	10.3	11.1	11.6	11.7	11.5	11.2	10.7	10, 1	£ 20	3.28	7, 03	დი - ი - ი	5	. F.	2. 15	1. 43	1, 23	0.982	0. нбн	0.811	0, 786	0.755	(0, 755)*	(0.755)	(0.755)	0.755	0.755	2			
	т,	•	-	1 (4)	n	-	ıs	9	2	20	ກ	10	11	27	Z 4	: 51	97	£	₹.	071	۶.	ري دي د	5 4 5 5 5	ියි	9	30	9 9	9 5	150	200	250	273.2	300	320) r			
- 10. The second of the second	9	9			6		7						<u></u>			2 2						# 1			N. P. 1825 K J			1 2 3 4 5 6 8 10 2 3 4 5 6 8 10 ² 2 3 4 5 6 K 10 ³ 2 3 4 5		TEMPERATURE, K		REMARKS		The recommended values are for well-annealed 39,995% pure palludium with residual	teneral residuity $p_0 = 0.0$ for the values below 1.5 $\Gamma_{\rm m}$ are alculated to fit the	experimental data by using $n=2.00$, $n=0.40$, $m=2.40$, $\alpha'=1.54 \times 10^{-6}$, and $\beta=0.502$.	thought to be accurate to within 4% of the true values near room temperature and 4 to 10%	

*Values in parentheses are extrapolated or interpolated. Tin K, ki in Watt cm-1 K-1, Tr in F, and kr in Btu lb-1 ft-1 F-1.

SPECIFICATION TABLE NO. 39 THERMAL CONDUCTIVITY OF PLATINUM

(Impurity < 0.20% each; total impurities < 0.50%)

(For Data Reported in Figure and Table No. 39]

Curve	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
-	70	લ	1830	293-1293	, rs		99. 95 pure; electrical resistivity data fitted into the equation $\rho = 10.48\{1 + 3.695 \times 10^{-3} \times (T-15) - 5.98 \times 10^{-1} \times (T-15)^2 + 5.25 \times 10^{-11} \times (T-15)^3 \mu$ whin cm, T in C.
8	95	w	1915	21-374			Very high purity; drawn and electrically annealed; electrical conductivity 10.2 and 9.5 x 104 mho cm ⁻¹ at 278.1 and 291 K, respectively.
6	77	ы	1 900	291,373		2.11	Pure; specimen 1,614 cm in dia and 27.0 cm long; density 21.39 g cm-3 at 18 C.
4	97, 122	듸	1952	2.4-32	2-3	Pt I	99.999 pure; supplied by Johnson Matthey and Co. (JM 2157b); annealed wire; ρ (293 K)/ ρ (20 K) $^{\circ}$ 202.
Ŋ	œ	ĹĿ	1914	273-373			Pure, electrical conductivity 10.24 and 7.35 x 104 mho cm-1 at 273 and 373 K, respectively.
Ģ	143	د	1967	2.3-91			99, 99" pure; specimen 1. 5 mm in dis; supplied by Baker Platinum Co.; annealed at 1050 C; ρ (295 K)/ ρ_0 = 833; residual electrical resistivity 0.0125 μ ohm cm.
	22	٦	1927	21.63		Pt 1II	Very pure; polycrystal; drawn and electrically annealed; electrical resistivity 0.0650, 2.10, and 9.81 µohm cm at -252, -190 and 0.0, respectively.
æ	273	ы	1954	1200-1800			Spectroscopically pure wire; obtained from Johnson Matthey and Co.
ø	487	٦	1 894	326.2			Pure; specimen 2.0 mm in dia.
01	451	υ	1330	291.2			Pure; tempered at 800 C and quenched, rolled and drawn; gold used as comparative material Ik data 3.09 W cm ⁻¹ K ⁻¹ J.
11	399	٦	1925	290,373			Pure,
12	436	ר	1938	21.17		Pt IV 33	Quasi-isotropic; electrical resistivity 9.0416 and 9.81 µohm cm at 21.38 and 273.2 K, respectively.
13	436	د	1938	22.01		Pt IV 33	The above specimen, second measurement.
14	436	J	1938	21.21		Pt IV 33	The above specimen measured at H $^\circ$ 8750 cersteds; electrical resistivity 0.04578 μ ohm cm at 21.38 K.
15	436	J	1938	22.10		Pt IV 33	The above specimen measured at H = 8750 oersteds.
16	436	٦	1938	22.15		Pt IV 33	The above specimen measured at H = 12200 oerstods; electrical resistivity 0.04820 μ ohm cm at 21.38 K.
17	488	ш	1929	293-1293	0.7-2.0		99.95 pure; electrical resistivity 10.65, 24.90, 35.01 and 43.61 μohm cm at 20, 412, 725, and 1020 C, respectively.
18	380	۵,	1956	384.2			Pure,
19	503	ធ	1961	1073-1223			99.9 chemically pure; specimen in the form of 0.1 mm dia wire stretched between two heaters; wire surface polished with Viennese chalk or Paris rod (crocus, polishing powder); annealed at about 1000 C for 12 hrs.
8	599	Œ١	1961	301-1473			99.9 pure; electrical resistivity 10.6 μohm cm at 23 C.
21	599	M	1961	292-1376			Similar to the above specimen.
ដ	241	J	1911	298.2			Less than 0.03 impurity.

Cure	Ref.	Method	Your	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
ន	52	J	1927	21.2		Pt IV	Pure: polycrystal; anrealed; clectrical resistivity 0.0899 and 9.83 µohm cm at 21.2 and 273.2 K, respectively.
24	665	ပ	1962	323, 523			0.0001 Cu, 0.0001 Fe, and <0.0001 Pd; specimen 0.635 cm in dia and 6.1 cm long; supplied by Johnson Matthey and Co.; amedicd at approx 1000 C; density 21.51 g cm ⁻³ ; ejectrical resistivity 0.013 and 9.85 µohm cm at 4.2 and 273 K, respectively; 0.321 cm dia Armco iron rod used as comparative material; heat outflow also measured by water-flow calorimeter.
25	545	ပ	1963	315-503		Pr.1	0.0001 Cu. 0.0001 Fe, and < 0.0001 Pd; specimen 0.62 cm in dia and 6.1 cm in length; deusity 21.5 g cm ⁻³ , machined; annealed at about 1000 C; 0.321 cm dia Armeo iron rodused as comparative material; heat outflow also measured by water-flow calorimeter.
36	£	ပ	1963	445-1220		P. 1	The above specimen; 0.371 cm dia Armco iron rod usod as comparative material.
33	645	ပ	1963	787-1153		Pt 1	The above specimen; 1.273 cm dia Armeo iron rod used as comparative material.
28	645	ပ	1963	760-1070		Pt 1	Same as above; reassembled.
თ ზ	3	ပ	596: 1	335-467		Ft 2	0.0001 Si, <0.0001 Ag, <0.0001 Ca, <0.0001 Cu, 0.0001 Fe, <0.0001 Mg, and <0.0001 Pd; specimen 1.269 cm in dia and 10.16 cm in length, annealed at <1000 C; density 21.5 gcm ⁻¹ ; electrical resistivity (measured after all other tests) 9.9, 13.8, 17.4, 21.0, 24.5, 27.9, 31.1, 34.3, 37.3, 40.2, and 43.0 µohm cm at 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 C, respectively; Lorenz function at these temperatures being respectively 2.66, 2.70, 2.68, 2.67, 2.64, 2.60, 2.57, 2.54, 2.51, and 2.47x10 ⁻⁵ V ² K- ² ; 1.222 cm dia Armeo iron red used as comparative material; heat outflow also measured by water-flow calorimeter.
30	3	ပ	1963	357-800		Z 2	Same as above but 1.9 cm dia Armeo iron rod used as comparative material.
31	35	ပ	1963	575-1141		P. 2	The above specimen; 0.371 cm dia Armeo iron rod used as comparative material.
32	736	د	1965	0.43-0.82		Pt 2	Pure platinum wire.
ន	547	ω	1952	90-579			Wire 11.6 cm long and 1.5 mm dia.
*	8	د	1861	298-358	0.5		99. 98 pure: 30,0030 Ir, 0.0021-0.0023 Per 0.0021-0.0023 Rh, 0.0015-0.0017 Al, 0.0015-0.0017 al, 0.0015-0.0017 Pd, 0.0011 Au, 0.0007-0.0009 Mg, 0.0007-0.0009 Ag, and 0.004-0.0005 Fer specimen 5.0 cm in dia and 7.0 cm long; cast, cold-pressed and machined; density 21.32 g cm ⁻² at 20 C; held at 600 C for 2 hrs; first run.
35	299	J	1964	294-349	0.0		The above specimen; second run.
36	299		1964	294, 365	0.5		The above specimen; third run.
37	662	٦	1964	296-363	0.5		The above specimen; fourth run.
8	*	ı	1967	0.42-0.81	<1.0		99, 999 pure; polycrystalline wire specimen; form factor t/a = 7.74 x 10 ² cm ⁻¹ ; obtained from Johnson and Matthey Co.; electrical resistivity 0.08004 μohm cm at 1.5 K; ρ(293 K)/ρ(1.5 K) = 148.

SPECIFICATION TABLE NO. 39 (continued)

The state of the s

Composition (weight percent). Specifications and Remarks	99.95 Pt sheet of 1 mm thickness; average grain size after test 1000 µ; density 21.5 g cm ⁻³ ; data calculated from thermal diffusivity measurements using the specific heat data of Kubaschewski, O. and Evans, L. Li. (Metallurgical Thermochemistry, Pergamon Press, 1956).	99.99 pure; polycrystal.	99.999 Pt. inpurities (atomic %): 0.002 Pd. 0.001 Ir. 0.001 Ag. 0.001 Zn. 0.0006 Mo. 6.0066 Os. 0.0006 Ru. 0.0004 In. 0.0002 Re. 0.0002 W. 0.0001 Cu. 0.0006 Rh. and 0.0006 Ru. 1 supplied by J. Bishop and Co.: ρ ₂₁ κ/ρ ₄ κ = 900. unnealed at 1.200 K for at 1 lenst 1 hr: dettic calculated from thermid diffusivity that using a constant density of 21.37 g cm² and the specific heat data of Jaeqer. F.M. and Rosenbohm. E. (Physica. 6, 1123-5, 1939).	99.9 Pt. impurities (atomic %): 0.35 Rh. 0.24 Ir. 0.05 Pd. 0.04 Ag. 0.034 Ru. 0.015 Cu. 0.007 Zn. 0.001 W, 0.0006 Ta. 0.0005 In. 0.0004 Re. 0.0001 Og. and <0.0001 M: supplied by J. Bishop and Co.; \(\rho_{21} \text{iff} \rho_{10} \text{iff} = 12; annealed at 1200 K for at least one h: jata calculated from thermal diffusivity data using a constant density of 21.37 g cm ⁻³ and the specific heat data of Jaeger, F. M. and Rosenbohm, E. (Physica, 6, 1123-5, 1389).	Platinum wire 0.3 mm in dia.	99.999 Pt (nominal). impurities (atomic %): 0.2 Pd. 0.06 Cu. 0.057 Rh, 0.01 Ag. 0.004 Zn. 0.001 Ir. 0.001 Ru. 0.0006 Ob. 0.0002 Re, 0.0002 W, <0.0001 Mo. 0.0007 Ta, and 0.0006 Ir, rod 0.1875 in. in dia and about 10 in. long; supplied by Engelhard Invastries, annoaled at 1200 K for at least one hr; electrical resistivity. 10, 9., 14, 75, 18.45, 22.10, 25.64, 29.00, 32, 20, 35.35, and 38.45 μohn cm at 3300, 400, 500, 500, 700, 800, 900, 1000, and 1100 K respectively and electrical resistivity ratio \$\rho_{TM}/\rho_{LM} \rho_{TM} \rho_{LM} \rho_{TM} \rho_{LM} \rho_{TM} \rho_{TM} \rho_{LM} \rho_{TM} \rho_{LM} \rho_{TM} \rho_{LM} \rh	Data from a similar specimen having a nominal purity of 99. 9;impurities (atomic%): 0.009 Rh. 0.006 Pd. 0.004 Ag. 0.003 Zn. 0.002 Cu. 0.001 Ir. 0.0006 W. 0.0005 In. 0.0004 Re. 0.0003 Os. < 0.0003 Mo. 0.0002 Ta. and < 0.0002 Ru; and electrical resistivity 11.30, 15.13, 18.90, 22.60, 26.14, 29.51, 32.76, 35.86, and 38.89 uohm cm at 300, 400, 500, 600, 700, 800, 900, 1000, and 1100 K respectively; Prix/Pa.1K = 34.
Name und Specimen Designation			-	H		щ	O
Reported Error, %			က +'	Ç ,	< 5	£	ជ
Temp. Range, K	1190-1750	323-773	300-1150	300-1250	273-1383	400-1200	400-1200
Year	1965	1959	155	1964	1965	1965	1965
Method Used	c.	<u>(4)</u>	2	ρ	ы	D ₄	ρ.
Ref. No.	ī,	624	648. 993	648. 953	689. 690	98. 88.	993
Curre No.	33	40	4	C2 च	€.	4	A

SPECIFICATION TABLE NO. 39 (continued)

Curve	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
46	700. 9.93	د	1965	400-1200	£3	a	Data from another specimen having a nominal purity of 99, 999;Impurities (atomic %); 0.002 Zn. 0.001 Cu. 0.001 In. 0.001 Ir. 0.001 Pd. 0.001 Ag. 0.0006 Mo. 0.0006 (1)s. 0.0006 No. 0.0006 No. 0.0006 No. 0.0007 Rh, and 0.00006 Ta; from Sigmund Cohn Cohn, with a corresponding electrical resistivity of 10.90, 14.68, 18.40, 21.98, 25.45, 28.82, 32.04, 35.10, and 38.13 µohm cm at 300, 400, 500, 600, 700, 800, 900, 1000, and 1100 K, respectively; \$\mathcal{\textit{Partial}} \text{Fig. 18.60}.
7.	507	J	1966	300-1903			99.999 Pt. 0.0004 Rh. 0.0003 Fc; specimen 1.2 cm in dia and 10 cm long; supplied by Engelhard Industries, Inc., Newark, New Jersey; machined from a special lot of platinum.
8	۶۰ ۱۰ ۳	۵	1986	970-1611			Nominal purity 99. 9, following percentages are upper limits; 0.1 Ag, 0.2 Au, 0.01 Cr, 0.1 Cu, 0.1 Fe, 0.01 Mn, 0.01 Ni, 0.1 Pd, 0.2 Rh, 0.2 Ru, 0.1 Si; speciation 0.479 cm in dia and 15 cm long; supplied by Engelhard Inc.; electrical resistivities from smoothed curve of author's measurements: 34. 54, 35. 68, 37. 90, 40. 06, 42. 60, 45. 01, 46, 89, 49, 75, and 52. 28 uohm cm at 970, 1006, 1078, 1153, 1243, 1331, 1402, 1511, and 1611 K respectively; thermal conductivity values calculated from the thermal diffusivity measurements using a constant density 21.37 g cm ⁻³ from Forsythe, W. E. (Smithsonian Physical Tables, 9th revised ed.) and the specific heat data of Jaeger, F.M. and Rosenbohm, E. (Physica <u>6</u> , 1123, 1939).
6	879. 991. 1000	ı	1966	373-1373			99.987 pure; density 21,384 ± 0.002 g cm ⁻³ at 21 C, ice point resistivity 9.847 ± 0.01 pohm cm (corrected to 0 C dimensions); Vickers Hardness Number subsequent to annealing 37.
20	879. 991	۵	1966	373-1373			The above specimen measured by different method.
53	249	ပ	1967	80-294		Platinum I	0.0001 Cu. 0.0001 Fc. <0.0001 Pd; polycrystalline specimen 0.635 cm in dia and 6.1 cm long; supplied by Johnson, Matthey and Co., annealed at 1273 K; density 21.51 g cm 3electrical resistivity ratio $\rho_{23} K/\rho_{4.2} K \approx 740$.
23	249	ပ	1967	300-500		Platinum II	0.0001 each of Fe and St. < 0.0001 each of Hg. Cu. Pd. Ca, and Mg; polycrystalline; specimen 1.269 cm in dia and 10.16 cm, long; supplied by Johnson, Matthey and Co., unrealed at 1250 K; density 21.5 g cm ⁻³ .
23	989	ш	1947	195-373			Wire specimen 1.438 ± 0.003 mm in dia; measured in a vacuum of <10 ⁻⁵ mm Hg.

And Market at Mark and Market State of the S

Not shown on Piot

DATA TABLE NO. 39 THERMAL CONDUCTIVITY OF PLATINUM

. 50%)
0 >
impurities
total
each;
0, 20%
v
(Impurity

	. .	CURVE 32	0, 115	0, 135	0, 138	0, 148	0, 163	0, 175	0, 178	96.0	0, 207	0,213	0, 223	0.223	0,231	0,245	0.248	0,238	0,263	CHRVF 33		0.693	0.688	0.702	0.720	0.733	0,743	CHRVE 34		0 704k	0.7056	0.7045	0.7048	0. 7069	0. 7097	מונסווט	2	0.7041	0. 7049	0, 7034	
	۴	5	0, 425	0.470	0.480	0. 500	0, 560	0,575	0,540	0,600	0,645	0,680	0.710	0.720	0.745	0.770	0.773	0.730	0, 415	E 2	<u> </u>	90.2	194.7	27:3, 2	373, 2	491.2	579, 1			7 156	297. 9	312.9	327.8	343.0	358, 1	di c		294.3	297.7	305. 2 318. 7	
	×	CURVE 29*	0.725	0.738	0.750	0.734	0.729	0.732	0.729	0.724	0.727	:	CURVE 30		0.732	0.715	0.732	0.734	227.0	765.0	0.724	0.729	0.721	0.730	0.725	0.736	0.722	0	22	CURVE 31		0.738	0.732	0.735	0.731	0.734	0.738	0.732			
	(-	Οl	335 346	370	371	376	3.82	401	434	(- (2)	() (Ü		357	26.5	444	267	21 2		: : : : :	662	219	68.9	713	-1:30 	4. 1.00			S		575	6.4×	-126	346	10.85	1100	1141			
n-1 K-1]	¥	2 25" (cont.)	0,730	0, 7:12	0, 724	0, 738	0,722	6, 735	0. 736	0, 723	0. 727	0,727	0,715	0.722	0.712	0,723		CURVE 26	960 0	0.713	0.707	0,715	0,707	0,690	0,726		CURVE 27	91.0	0.723	0,723	0.730	0, 739	0.723		CURVE 28	0.707	0, 7:36	0.718	0.718	0, 722	
k, Watt ci	1	CURVE 25"	327	337	343	343	360	370	373	2 2	0.64	0:4	4:17	4 33	0£ 7	503	•	<u>ا</u> د	£ 47	91.0	25.80	916	1011	1170	1226		ပါ		7 E	776	1027	1140	1153		ပါ	760	810	880	890	1070	
[Temperature, T. K: Thermal Conductivity, k. Watt $$ cm $^{-1}$ K $^{-1}$]	×	CURVE 20	0,640	0,738	0,761	C. 794	0,805	0, 875	096'0	1.00	;	CURVE 21		0, 577	0, 609	0, 762	0, 79 ×	0.830	0.857	200	. 890°.	9, 962	0, 939	•	CURVE 22		0.700	00 1101	CURVE 23	2,96		CURVE 24		0.740		CHRVE 25		0, 737	0,732	, 13d	
K: Therm	۴	ΟÍ	301	35	730	880	921	1037	1200	1331		O	1	292	293	649	3	7	925	2001	1245	1365	1376		ပ	l	298.2	(اد	21.2		Ç	1	323, 2	523, 2	٢)]	315	323	250	
nperature, T.	*	CURVE 12	4.25	CURVE 13	}	3, 97		CURVE 14		3, 98	CHRVE 15		3,74		CURVE 16		3,63	:	CURVE 17		0.776	0.836	0.897	•	CURVE 18		0.690	9	CURVE 19	0.82	0,87	98'0	0.8H	0.87	0.91	0.91	; ;				
Ten	H	51	21, 17	10	l	22, 01		히		21. 21	5	\$ }	22, 10		5		22.15		티	5	5,83,2	998.2	1293. 2		C	1	384.2	Š	기	1073. 2	1118.2	1128, 2	1148.2	1173, 2	1173, 2	1223, 2	1				
	.¥	CURVE 6	3,810	5.325	6.494	8,052	9, 134	6,667	4.978	4.026	50.0	1.429	0,823		CURVE 7		3,690	0.780	ė	CONTE	0.680	0.636	0.647	0,641	0,636	0.634	0, 633		CURVES	0.778	•	CURVE 10		69.0		CURVE 11	0.690	0.711			
	H	CO	 8.3	, , S &	3, 75	4	12. 72	15, 79	18.86	21, 05	2 5	3. 75	91,00	•	ממ		21.2	83.2	į	3	15.00	1300	1400	1500	1600	1700	1800		3	326.2	1	DO	}	291.2			290.2	373.2			
	*	1 2	0,699	. 843	006	•	VE 2	1	3, 635	U. 762	20.00	25.0	200	;	VE 3	{	969.6	0.725		£	,		968	8 215	9.462	11,785	12.820	12.560	11.400	6.882	4, 387	3, 140	2, 452	2, 280	•	2	0.691	0.690	0.711	1	
	H	CURVE	292.7	2,600	1943.2	1	CURVE		20.7	91.4	273.1	1 1 20	2 2 2 2 2	5	CURVE		291, 2	373, 2		CURVE		7.41	2. 50	3. 40	4	5, 59	7.74	18 i	11.35	15. 16	21, 25	24, 95	29, 00	31, 74		CURVE	273.2	290, 2	373.2		•

DATA TABLE NO. 39 (continued)

⊬ ∡	CURVE 50 (cont.)*	573.2 0.7315 673.2 0.7417			1073.2 0.7963				CURVE 51			179.4 0.760					276.2 0.745*			293.7 0.735		CURVE 52"	300 0.73		500 0.735	CURVE 53		1.M. 7 0.6707	213.2 0.1003										
×	(cont.)*	0.751 5:				0.710 12		0.715	0.721			0.781		CURVE 48 2:			0.766* 2				0.830	0.850	0.922		CURVE 49 50		0.71963	0.7274	0.1310	0.7652	0.7815		0.8180		0.8577	CURVE 50*		0.7186	
۴	CURVE 46	1090		į	5	300	400	200	009	700	200	000		CUB		970	1006	1978	1 23	1243	1331	1402	1611	1	CUB	373.2	473.2	573.2	75.0	873.2	973.2	1073.2	1173.2	1273.2	1373.2	CUB		373.2	473.2
*	CURVE 42 (cont.)	0.846			CURVE 43	1.2 0.690						1.01	CURVE 44°									0.0		CURVE 45°					0.120					CURVE 463				0.719	
£-		03 1100 96 1150				273	. 4 . 5	8* 673.2	_		1273.2											5 1100			,			,	000	_		9 1200			"				800x
F A	CURVE 40*	323.2 0.6903 373.2 0.7196			773.2 0.7907	CURVE 41						550 0.103			700 0.725							1050 0.775			CURVE 42				101.0		600 0.729		700 0.749						050 0.828
74	cont.1*	0.7065 3 0.7076 3			0.7042 7	1607	<i>1</i> 4					0.7121										0.178 10			0.214				+ +07.0								cn cn	2	91
Ţ	CURVE 35 (cont.)*	333.9 0. 349.2 0.	CURVE 36*		294.4 0.		CURVE 37*			319.9 0			CURVE 38*									0.577 0.							0.011	CHRVE 39		1180 0.				1750 0.			

Not shown on plot

FIGURE AND TABLE NO. 39R RECOMMENDED THERMAL CONDUCTIVITY OF PLATINUM

Tin K, kjin Wattem 1 K 1, Tgin F, and kjin Bou br 1 ft 1 F 1. Value

رهاجرين كالهو

* Valuce in parentheses are extrapolated.

SPECIFICATION TABLE NO. 40 THERMAL CONDUCTIVITY OF PLUTONIUM

(Impurity <0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 40]

Composition (weight percent), Specifications and Remarks	99.95 pure; isotopic content; 94.76 Pu-239, 4.51 Pu-240, 0.29 Pu-241 and 0.44 Pu-242; specimen 0.231 in.in dia and 3.50 in. long; heat generation 0.11067 cal sec ⁻¹ cm ⁻² ; density 19.58 g cm ⁻³ ; phase transformation (σ to β) at 397 o ± 0.2 K, electrical resistivity 61.1, 128.0, 157.0, 153.5, 146.3, 141.0, 107.5, 107.0, 106.2, 105.0, 97.7, 98.5, 99.4, and 107.1 μohm cm at 77.2, 50, 100, 150, 273, 380, 420, 475, 505, 590, 625, 725, 735, and 774 K, respectively.	99.97 pure; isotopic content: 95.35 Pu 239, 4.37 Pu-240, 0.26 Pu-241 and 0.03 Pu 242; specimen 0.250 in. in dia and 3.50 in. long; heat generation 0.01034 ral sec ⁻¹ cm ⁻² ; density 19.56 g cm ⁻² ; phase transformation (α to β) at 396.4 ± 0.1 K; electrical resistivity 68.5, 128.0, 156.8, 133.5, 146.6, 141.8, 109.5, 110.0, 109.5, 109.3, 103.0, 104.0, 104.8, 114.0, and 141.1 μολην cm at 25.8, 50, 100, 130, 273, 380, 420, 475, 535, 590, 625, 725, 735, 774, and 787 K, respectively.	99.93 pure; isotopic content; 95.33 Pu-239, 4.39 Pu-240, 0.28 Pu-241 and 0.06 Pu-242; specimen 0.227 in. in dia and 3.75 in. long; heat generation 0.01034 (assumed) cal sec ⁻² cm ⁻³ ; density 19.53 g cm ⁻³ .	Impurities 0,025; or-phase; specimen 1 in. in dia and 5 in. long; zone refined; self heating used as source of power during measurement; data extracted from two runs.	Imparities 0.025; a-phase; 1.6 in. long; 0.08 in. dia; zone refined; cast.	The above specimen, data corrected for emissivity (assumed to be 0.3).	99.95* pure; monoclinic crystalline; specimen 0.25 in. in dia and 1.91 in. long; arcmelted and induction cast—into an MgO mold; density 19.62 g cm ⁻³ ; specimen had randomly oriented grains and a large number of microcracks.	99.98° pure; monoclinic crystalline; specimen 0.25 in. in dia and 1.81 in. long; arc-melted and east—into a mold at 40 C, then annealed at 110 C; density 19.77 g cm ² ; specimen had randomly oriented grains and very few microcracks.	59.98* pure; specimen 0.25 in. in dia and 1.80 in, long with long axis parallel to preferential alignment of the (020) plane in the monoclinic crystals; prepared by heating the cast ingot into the beta-phase temperature range and then cooling it to room temperature under a compressive load of 60,000 psi; density 19.77 g cm ⁻³ .	Similar to the above specimen except the long axis aligned perpendicular to the (020) plane of the monoclinic crystal.
Name and Specimen Designation	T.	N	တ				α-Plutonium	a-Plutonium	α- Plutonium	n-Plutonium
Reported Error, %				ဟ	1.5		н	1		
Temp. Range, K	108-413	152-413	148-413	309-357	309-374	309-274	62-300	90-300	80-300	80-300
Year	1957	1957	1957	1958	1958	1958	1961	1967	1967	1967
Method Used	1	1	ı	-	ы	ш	យ	ш	ш	ш
Ref. No.	921, 373	921, 373	921. 373	767	767	767	281	281	281	281
Curve No.	-	e.	က	4	ß	9	!-	œ	თ	10

DATA TABLE NO. 40 THERMAL CONDUCTIVITY OF PLUTOMUM

(Impurity < 0,20% each; total impurities < 0,50%)

(Temperature, T. K; Thermal Conductivity, k, Watt em 1K-1)

±	VE 10	0.0306	0.046	0.0674																																					
H	CURVE	80.0	195.0	300.0																																					
¥	CURVE 4 (cont.)	0.0431	0.0456	0.0435	0.0448	0,0433	0.0444	0.0469		CURVE 5		c. 8	0. M 00	0.0433	0.0416	0,0433		CURVE 6		0.0331	0.6312	0.0285	0.0251		CURVE 7	0.0256	0.0268	0.0285	0.0436	0.0645		CURVE 8		0.0313	0.0452	0.0648	CURVE 9	0.0281	0.0439	0.0651	
۴	CURV	339.2	346.2	34.2	349.2	349.7	351.2	356.7		CM	1	303.2	316.7	345.7	354.2	374.7		CO		309.2	340.2	360.7	374.7		링	61.5	ნა. ს	86.0	195.0	300.0		5		0.0	195.0	300.0	3	80.0	195.0	300.0	
x	CURVE 1	0.0146	0.0146	0.0226	0.0226	0.0544	0.0879	0.0837	0.1088	0, 1213	0.1255	0.1527	9,1548		CURVE 2		0.6209	0.0481	0.0536	0.0849	0.1021	0.1192	0.1320	0.1464	0.1506	CURVE 3	1	0.0146	0.0272	0.0460	0.0711	0.1050	0.1192	0.1339	0.1548	0.1590	CURVE 4	0.0448	0.0433	0.0460	0.1429
۲	CO	107.5	115.0	143.0	155.0	220.0	286.0	288.0	337.0	373.0	383.0	405.0	413.0		CC		152.0	220.0	222.5	295.0	337.0	373.0	390.0	405.0	413.0	DO	•	148.0	187.0	230.6	280.0	337.0	375.0	390.0	405.0	413.0	히	309.2	314.7	323.2	328.2

FIGURE AND TABLE NO. 40R RECOMMENDED THERMAL CONDUCTIVITY OF PLUTONIUM

-459.7 -315.7 -297.7 -279.7 -189.7

> 1.77 1.84 2.31

0 0,0306 0,0318 0,0331 0,0399

RECOMMENDED VALUES**
(For Polygrystalline)

- 99.7 - 9.7 32.8 80.3 170.3

2.75 3.28 3.56 3.89 4.56

0,0476 0,0568 0,0616 0,0674 0,0790

0 30 90 150 150 250 273.2 300 350

TEMPERATURE, K

REMARKS

The recommended values are for well-annealed 99.98% pure plutonium. The recommended values are thought to be accurate to within 10% of the true values near room temperature and 19 to 20% at other temperatures.

* T₁ in K, k₁ in Watt cm⁻¹ K⁻¹, T₂ in F, and k₂ in Bu hr⁻¹ tt⁻¹ F⁻¹.

THE THE THE PARTY OF THE PARTY

THERMAL CONDUCTIVITY OF POTASSIUM SPECIPICATION TABLE NO. 41

(Impurity <0.20% each) total impurities <0.5%

±
Š.
Table
pue
in Figure and Table No. 4
=
or Data Reg
o.

						For Data Ref	in Figure and Table No. 41]
Curve	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
-	105	d	1956	334-891			Pure; in liquid state; thermal conductivity values calculated from measured (in argan) pure; in liquid state; thermal conductivity data using the specific heat and density values given in Liquid Metals Handbook (Lyon, R., Editor), 2nd Edition, 1952.
2	502,38	ı,	1921	448-883	1		70.001 (). (0.00001 each of Na. Ca. A). 3b, and Li; distilled: in liquid state. Pure; trace of N.; supplied by Elmer and Amend; electrical resistivity reported as
n	55	ia)	1913	100-812			6, 492, 6, 442, 7, 015, 7, 035, 6, 980, 8, 353, and 8, 338 younger at e.g., 5, 5, 5, 20, 3, 20, 7, 20, 9, 57, 4, and 57, 8 C, respectively.
4	93	1	9561	2.4-13		ž	Very pure: 1.3 mm dia; electrical resistivity ratio o (295 K)/ ρ (0 K) = 532 (using Hackspill's value o (295 K) = 7.09 μ ohm cm); Lorenz function I. (0 K) = 2.55 x 10 4 VeV.
S	92	ı	1956	2.3-91		X 51	Very pure: 2.1 mm din; electrical resistivity ratio $\rho(295 \text{ K})/\rho$ (0 K) = 5.3 (using Hackspill's value $\rho(295 \text{ K}) - 7.98 \text{ u}$ ohm cm); Lorenz function L (0 K) = 2.3 i x 10 $^{\bullet}$ V/K?
œ	95	J	1956	2.6-19		7 ¥	Very pure; 1.:1 mm dis; electrical resistivity ratio ρ (295 K)/ σ (0 K) = 325 (using Hackspill's value ρ (295 K) = 7.09 μ ohm cm); Lorenz function L (0 K) = 2.49 x 13 eV/K ² .
t~	385	1	1940	298-433	7		Doubly distilled, measured across melting point (approx 62 C). Doubly distilled, measured across melting point (approx 62 C).
m	919,	٦.	8961	382-1007			M. P. 63.7 C; specimen in Itquit state; measured in accumon to the Co. and Mi-
6	769	ن ا	1963	319,333			0. I Nn, 0.0050 Rb, 0.9035 O, 0.0030 Lt, < 0.0010 each of US, ZI, Fe, CV, and Fr. Nb-1 Zr alloy used as comparative material.
01	766, 854. 855, 856	O H W	1963	360 449			Liquid state; same pretest impurities as the above specimen; additional impurities after test; 0,00105 Nb and 0,00015 Zr (contaminated from specimen container, made from Nb-1 Zr alloy); electrical resistivity reported as 15,4,21.5, 28,4,35,8,44,4,54.7,66,4,79,5,93.8,11F 131,145, and 1534,001; cm at 373,473,773,473,873,663,4073,1073,1173,1273,1373,1423, and 1448 K, respectively; Nb-1 Zr alloy used as comparative material; run A, equilibrium 1.
=	766, 854,	ပ အီ.೫	1963	408-511			Run A., equilibrium 2 of the above specinien.
ឌ	766,854,855,856	ں جز 38	1963	412-501			
13	766.854, 855.856	ν 2,8	1963	491-658			5
† -1	756,854 855,856	ပ အ်%	1963	529-787			Run A
15	766,854. 855,856	Σ . 38	1963	584-953			Run A. equilibrium 6 of the above specimen.
16	766, 854. 855, 856	2, 28 C	1963	611-1054			Kun A, equalogram of the book of the second of the book of the second of the book of the second of t

SPECIFICATION TABLE NO. 41 (continued)

Composition (weight percent), Specifications and Remarks	Same specimen as above; run B. equilibrium 1.	Run B. equilibrium 2 of the above specimen.	Run B. data set 3, reading 1 of the above specimen.	Run B. data set 3, 'reading 2 of the above specimen.	Run B. data set 3, reading 14 of the above specimen.	Run B. data set 3, reading 15 of the above specimen.	Vapor; measured in the 1 mm gap between concentric cylinders 900 mm long; vapor pressure - 0.01 kg cm ² .	Similar to the above except vapor pressure = 0.05 kg cm^2 .	Similar to the above except vapor pressure = 0.1 kg cm ⁻³ .	Similar to the above except vapor pressure - 0.5 kg cm ⁻² .	Similar to the above except vapor pressure = 1.0 kg cm ⁻² .	Similar to the above except vapor pressure = 2.0 kg cm ⁻² .	Similar to the above except measured on saturate curve.	99.97 pure; single crystal; rectangular specimen with length/cross-sectional area = 12; material obtained from Mine Safety Appliances Corp.; prepared by growing from the bulk material using the Bridgman technique.	Originally 99.97 pure; single crystal; rectangular specimen with length to cross-sectional area ratio ± 12; material obtained from Mine Safety Appliances Corp.; prepared by melting in a stainless-steel boat, zone refined at a rate of 1 in. hr ⁻¹ for 16 passes, grown by using the Bridgman technique. The zone refining technique is believed to have introduced impurities not present in the original bulk material.	Similar to the above specimen	Specimen in liquid state; density reported as 0.7851, 0.7434, 0.7161, 0.5887, 0.6664, 0.6024, and 0.5861 g cm ⁻³ at 520.5, 701.3, 827.7, 944.3, 1048, 1206, 1302, and 1.774 K, respectively; electrical resistivity reported as 7.02, 7.32, 7.54, 8.05, 15.05, 17.96, 20, 31, 24, 83, 28, 34, 32, 64, 41, 43, 47, 70, 51, 81, 58, 51, 65, 94, 71.44, 81.18, 87, 88, 98, 61, 106.63, 119, 87, 84, 41, 40, 41, 40, 41, 40, 41, 43, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41
Name and Specimen Designation														K-9	2K-1	2K-2	
Reported Error, %					' مر		08 #	± 20	₹ 30	± 20	£ 20	± 20	7 70	2	t -	(~	
Temp. Range, K	604 -822	745-897	923-1154	970-1210	1219-1435	1234-1449	700-1500	900-1500	900-1500	1000-1500	1100-1500	1100-1500	700-1100	4.3-18	3.1-32	2.7-12	341-1366
Year	. 58 286 	. 1963	1963	1963	1963	1963	1966	1966	1966	1966	1966	1966	1966	1961	1961	1961	1965
Method Used	o	ပ	U	ပ	ပ	ပ								_1	ı	-1	1
No.	766, 354, 355, 856	766,854. 855,856	766, 854. 855, 856	765, 354. 855, 856	766, 854, 855, 856	766, 454. 855, 956	148,857	148,857	142, 457	149, 857	143,857	145, 957	148,857	858	8 8 8	358	60% 60% 10%
Curve No.	Li .	13	13	20	21	22	133	54	25	56	27	X.	53	98		83	E/

المحافظ والمتامية والمرابية والمحافظ والمتعافظ والمتحافظ والمحافظ والمتحافظ

ANGUNE CONTRACTOR

CHOOL STATE OF STATE

SPECIFICATION TABLE NO. 41 (continued)

Composition (weight percent). Specifications and Remarks	Thermal conductivity values calculated from the measurements of electrical resistivity, reported as 15.4, 21.5, 28.4, 35.8, 44.4, 54.7, 56.4, 74.2, 79.5, 93.8, 110, 151, and 145 μ ohm cm at 100, 260, 300, 400, 500, 600, 700, 760, 800, 900, 1000, 1100, and 1150 C, respectively, Lorenz Number assumed to be 2.14 x 10 8 V/K 2 based upon experimental information.	Vapor specimen filled in a test cell * in. long connected with a hoiler; hoiler pressure 10 mm Hg; thermal conductivity areasured by using the dynamic hot-wire method.	Same as above except boiler pressure 37 mm Hg.	Same as above except boiler pressure 72 nm Hg.	Same as above except boiler pressure 80 mm Hg.	Same as above; in different run.	Same as above except boiler pressure 7n mm Hg.	Same as above except boiler pressure 1417 mm Hg.	Same as above; in different run.	Same as above except holler pressure 1144 mm Hg.	0.32 Na, 0.02 Fe, and 0.004 O (posttest); molten specimen contained in a type 347 stainlens-steel tube; supplied by Fisher Scientific Co.; electrical resistivity 8.07, 8.24, 8.59, 8.47, 9.47, 9.81, 14.77, 15.44, 17.90, 21.86, 26.06, 29.57, 34.11, 38.32, 43.30, 48.47, 59.04, 59.47, 60.02, 66.75, and 74.30 µohm cm at 25.3, 29.4, 38.3, 51.4, 58.3, 59.2, 79.4, 91.9, 140.8, 205.0, 256.4, 313.9, 373.6, 429.2, 481.9, 542.8, 593.3, 646.9, 651.4, 706.7, and 764.2 C, respectively; thermal conductivity values calculated from measured electrical resistivity data and the Lorenz function of 2.97, 2.11, 2.14, 2.17, 2.21, 2.29, and 2.34 x 10 ⁴ V/R ⁻² at 200, 300, 400, 500, 600, 700, and 750 C, respectively, the first five values being derived from the thermal conductivity measurements of Ewing, C.T. and Grand, J.A. (NRL Report 3835, 1951) and the authors own electrical resistivity data.
Name and Specimen Designation		Run No. 1	Run No. 2	Run No. 3	Run Nc. 4	Run No. 5	Run No. 6	Run No. 7	Run No. 8	Run No. 9	
Reported Error, ण	61 # V										
Temp. Range, N	373-1423	45.2	847.2	914.2	978.2	983.2	1034	1035	1036	1116	473-1073
Year	1963	1966	1966	<u>1966</u>	1966	1966	1966	1966	1966	1966	29 c.
Nethod Used	:	1	:	1	•	•	1	:	1	•	
Ref. No.	766. 455	ş	1:95	563	S 9 8	262	.99	863	86.3	863	756
Curve No.	#	35	36	r,	89	39	0.7	1 1	42	43	प

DATA TABLE NO. 41 THERMAL CONDUCTIVITY OF POTASSICAL

(Imparity 0, 02% each; total imparities 0, 50%)

(Temperature, T. K. Thermal Conductivity, k. Watt em. 1 K. 1

																			٠																						
CURVE 14 (cont.)"	0.373	0.00		CURVE I		0.4519	0.412	0 411	22.0	20.0	0.30	9.326		C ORVE IN	12.1	957. 0	3	0.336	6.295	0.282		CURVE 179		0.431	0.423	0.407	0.384	0.363	6.338		CURVE 18		0.399	0.389	0.390	0.361	0.358	0.338			
CUBVE	747.2	7.161		3 3		594.2	.32.2	202	1 6 6	2.000	63.5.2	953.2		5	5	2.11.0	10	1 6 7 7	979.2	1054.2		CLE	1	604.2	633.2	678.2	740.2	788.2	822.2		CUR		745.2	766.2	797.2	840.2	874.2	897.2			
VE 5	0.817		91	L L KVE 10		0.30×	9.91	5075	(1)			-	991	967.0	97.0	757	0.462	0.456		CURVE 12		0, 500	0, 497	0.490	0.500	0.435		CURVE 13		0.473	0.449	0.464	0.465	0.407		CURVE 14"		0.462	0.422	0.430	2 2
CURVE	31.12	4 1975 - 1974 -	10.10			360.2	393.2	6 141	2 5 6	7	10.10	I I IVE I	2 201	7 COT	1 7	1 2 12	107. 9	11.11		CI.R		412.3	427.2	449.2	ひょう	501.2		CI.R		491.2	519.2	201.2	615.2	553.2		CI.B)	529. 2	564.2	617.2	
(cont.)	0,360			1.04.0	G. 1140	. tsl. 0	0. 104	7 LT		4 1 1		71.5	- 07	1191. 0		, , , , , , , , , , , , , , , , , , ,	577	0. :5.	F 111 0	0.349	0.374	0.342	0.321	6. 333	0.114	0, 333	0, 30S	0, 32:1	0.322	0, 291	0,315	0. 254 0.	0 . 305	0, 267	0.2%	0, 295	0.291	6K7 0	0.245	0. 303	
CURVE & (cont.)	27.129	7 (1)	1 1	100.	709. 7	710, 6	713, 3	515		1 0	1 1	81 G		1 (-	1	7 17	1000	10.805	785.2	1.721	7.00.7	799, 2	709, 7	814.2	NIN G	819, 5	526.2	745.2	855, 3	800° 1	563, 7	864.2	884. 3	NSR. 2	893.5	916, 2	924, 2	944.2	958.2	983, 2	e Circle
(cont.)	[: / - -	: 1:1 : : : : : : : : : : : : : : : : :			0.465	#:F '0	0.1.4	0.451			7 3	107 0		1 4	- F. F		7	0,460	0.430	0, 452	0.418	0.130	0, 442	0, 407	0, 397	0000	0.120	0.44.0	0,355	0, 455	r. [+]	+ 1+	111	101.0	0.430	0.442	0.414	0.416	. 397	C +13.	
CURVE'S COME.	5,24	- ? - !:	1 0	7.05	n Ç	51.05.4	493, 2	5.04	1 0	2000	1 5	500.	1 000	10.00		- 7	115	27.55	556.2	553, 1	561, 2	568, 2	571.2	587.2	595, 2	598, 7	60H. 3	610.3	613, 7	619, 7	624.3	629. 2	6.83.2	638, 2	641.2	646.2	657.2	660.2	663, 2	664. 2	5 433
(cont.)	0.00	: <u>: : :</u> : : :		· ::0:		١٠		100		3 6		ر اور اور اور اور			() () ()		76.	0, 792	u 792	0.535	6,835	0, 910		XI H	İ	0, 442	0, 451	0. 477	0.45]	0, 465	0, 465	0.400	0, 41;4	137 0	0.485	0, 465	0.477	0, 475	0.451	U. 453	978
CURVE 6 (cont.	# 7 21 :	3		2		CURVE	İ	1000	1 / 1 / 1	7	7	N II II I		7 11 11 11 11 11 11 11 11 11 11 11 11 11	1 2 3 4 4		21 X T	10-	1000	1900	25.100	7.17.7		CURVES		61 dy (1)	389, 2	394, 3	398, 2	401.2	409, 2	7 7 7	421.3	01 2017 7	7.7	140.1	447.2	453, 2	455, 2	459.2	10.1
(cont.)	5, 400	127		.555		0.33		1139	45	500.0	0	7 (c) (c)		2 7 5 6 6 6	(F) (c)	3.6	37.5	3. 2.17	2, 506	2, 0639	1, 494	1, 264	1, 130	1, 126	1, 126	1, 149	1, 149		/E 6		2, 759	2, 897	3, 074	3, 379	3, 655	3, 977	4, 300	4, 713	4, 345	3, 793	50.7
CURVE 4 (cont.)	₹. ₹.5			25.		CURVE 5	1	6 *	: <u>:</u>	; ;	ē 3	8 1	; ;	- T		} = : =	11.03	5	14, 40	16.39	21.20	25, 23	35. 96	40, 10	62, 30	79, 00	91.00		CURVE		2, 65	2.70	3, 80	ე ე	3,46	₹. G3	80 °	7. 66	9. 16	10, 37	11.40
1 30	100.0	• (c)		ŝ	0, 472	0.4+4	0.407	200	300		:	1	100		707 0	75.0	0.377	0, 353	0.352		VES		0.971	0, 992	0. 979	0.962	0.971	0° 504	0.912		,E 4		÷. ₹	4, 529	4. 49.	5, 3331	5. 90x	6. 200	7.237	5, 690	(. F
CURVE	380, 8) (c)		2. OST	7.750	606, 1	697. 9	7		0.000	į	NA PE	0 250		6.47.9	100	157. 2	875.2	883.1		CURVE		278, 2	278.2	293, 8	93. 9	294.1	339, 6	131.0		CURVE		라 라	2.71	99	3.23	3, 55	: 6. €	£.03	6, 35	77.

Not shown on plot

DATA TABLE NO. 41 (continued)

*	CURVE 40°	1034 0, 000227	CURVE 41*		1035 0, 000237	See andio	CONVE 42	1036 0, 900240		CURVE 43	1116 0.000250		CURVE 44		473.2 0.458		609.2 6.417					~ 1	1073 0.328																			
! -	CURVE 33 (cont.)		4, k 0, 563			NII 0.426	1033 0.352		1255 0.286	1966 0, 257	CURVE 34*	1	373, 2 0, 519		673, 2 0, 402	21				1373 0, 225	1423 0.210	•	CURVE 35	4	845, 2 0, 000196	36 33000		847, 2 0, 000186	,	CURVE 37	914, 2 0, 000266		CURVE 38?		178, 2 0, 6062Zi	4	CURVE 33		983, 2 0, опозон			
(-	CHRVE 32 (cont.)	3, 17 1, 73	3,45 1,70	3, 67 1, 92	3, 86 2, 07	100 mm mm mm mm mm mm mm mm mm mm mm mm m	4, 16 2, 44			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					4, 79 8, 467	4, 92 4, 23					51 St 150				e e e e e e e e e e e e e e e e e e e		6,61				i oi oi			÷i	9, 36 2, 35	10, 1 2, 46	11.7 2.08		CURVE 33		341 0, 631	
⊢	CURVE II	3,06 1,48	5 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		SE 32 5		7 년 시 : 1 1 : 1 1 : 1			50 m Th m			5, 30 4, 46	5, 42 4, 05			6, 21 4, 05		1, 35		8,40		まら と で で で	음 (A A A A A A A A A A A A A A A A A A A	15.4				31, 5 0, 512	100	CONT.	2.69		2, 72 1, 86					2.96 1.56	2, 58 1, 65		
¥	CURVE 25	700 0, 000166	900 0, 000210		1100 0, 000320		CURVE. 30	4, 29 15, 7	7.T. E. T.	4,4% 17,4	4, 49 16, 5	4, 53 17, 8		4, 63 17, 5	4, 67 15, 4		_				_		5, 51 12, 2		5, 62 H. 6		6, 11, 10, 2				7, 23 7, 46				9, 00 4, 04	_	11.4 3.57	13, 4 2, 38	-			
٠ ع	CURVE 24		1000 0.000171	0.000150	0.000194	1.500 0.000203	1500 0.000238		CURVE 25	Syludia o may		1100 0, 000136		1:100 0, 000209		1500 0. 000239	,	CURVE 26							1300 0.000247	LI-BAE 94		2190 0.000270		1300 0.000241			CURVE 28						1500 0. 000267			
بر ب	CURVI !	6,5 0 E 177	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			11.54, 2 0, 249	CURVE 201		71	1001.2 0.312	1 21	1169, 2 0, 227	1210, 2 0, 197		CURVE 21		¢)	(۱)	٠	÷1	÷1	1435, 2 0, 078		CORVE 22	1304 9		1 61		2	1449, 2 0, 087	CHBVE 237		700 0.090169								1500 0.000238	

Not shown on plot

*Values in parentheses are extrapolated, interpolated, or estimated. T in K, k, in Watt cm 1 K-1, T, in F, and k, in Bu lb -1 ft -1 F-1.

SPECIFICATION TABLE NO. 42 THERMAL CONDUCTIVITY OF PRASEODYMIUM

The second secon

[For Data Reported in Figure and Table No. 42]

Composition (weight percent), Specifications and Remarks	Impurities: 0.5 La, 0.04 Cu, 0.03 Fe, and 0.01 Ca; prepared by briquetting powder under a pressure of approx 8006 Kg cm ⁻² and annealing in vacuo (~1 x 10 ⁻⁴ mm Hg) for 1-2 hrs at 1600-1800 C; measured in vacuo of ~5 x 10 ⁻⁶ mm Hg; data taken from smoothed curve of measurements on several specimens.	No details reported.	~0. 1 Ta, · · 0. 1 other rare earth metals, and ~0. 03 other base metals; high purity polycrystalline specimen 2 cm in dia, 1.2 cm iong; electrical resistivity 66 µnhm cm at 291 K; data proposed by the author from measurements of 2 different thermal comparators.
Temp. Reported Name and Range, K Error, % Specimen Designation	-	_	
Reported Error, %		10	₩
	83-360	301	291
Year	1964	1954	1966
Ref. Method No. Usiad	1		ပ
Ref.	810	811	256
Curve No.	п.	c a	n

DATA TABLE NO. 42 THERMAL CONDUCTIVITY OF PRASEODYMIUM

(Temperature, T,K, Thermal Conductivity, k, Watt cm-1K-1)

¥ ⊢ CURVE 1

83.0 0.072 150.0 0.076 150.0 0.096 250.0 0.107 250.0 0.131 350.0 0.133 380.0 0.143 CURV. 2

301.0 0.117

CURVE 3

291.c 0.120

FIGURE AND TABLE NO. 42R—RECOMMENDED THERMAL CONDUCTIVITY OF PRASFODYMIUM

- 9.7 32.0 50.3 170.3

6, 12 6, 70 6, 93 7, 22 7, 63 (7, 86)

440.3 620.3 800.3 980.3

(8, 49) (9, 07) (9, 76) (10, 6) (11, 6)

(12. 5)

- 99.7

-315.7 -297.7 -279.7 -189.7

5, 4, 4 5, 44 5, 35

TEMPERATURE, E.

REMARKS

The recommended values are for well-anneated 99.4% prascodymium. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures. *Values in parentheses are extrapolated or estimated. Tim K, ki in Watt cm-1 K-1, Ti in F, and ki in Blu lb-1 ft-i F-1,

THE RESERVE OF THE PERSON OF T

Marie Land Andreas (Marie Lands of Marie Lands of Marie Lands of Marie Lands of Lands of Lands of Marie Lands of Marie Lands of Lands o

SPECIFICATION TABLE NO. 43 THERMAL CONDUCTIVITY OF PROMETHIUM

(Impurity < 0, 20% each; total impurities < 0, 50%)

For Data Reported in Figure and Table No. 43

Composition (weight percent). Specifications and Remarks	Solid state; estimated thermal conductivity values given as the sum of electronic thermal conductivity values calculated from the theoretical Lorenz number Lo 2, 443 x 10.8 V2 K ⁻² and the estimated electrical resistivity reported as 54.0, 68.0, 80.0, 92.0, 102.0, 102.0, 111.5, 120.5, 128.0, 134.5, 139.0 (a), 146.0 (b), 149.0, and 152.0 unhm cm at 300, 400, 500, 600, 700, 800, 1000, 1100, 1185, 1185, 1185, and 1351 K, respectively, and lattice thermal conductivity calculated from the comprised equation $t_1 = 16 T^{-1}$; c. p. h. to b. c. c. transformation temp estimated to be 1185 K, Neel temp estimated to be 4 K.	Liquid state; estimated thermal conductivity values given as the sun of electronic thermal conductivity values calculated from estimated values of Lorenz number, and electrical resistivity, values calculated from estimated values of Lorenz number, and electrical resistivity, whereas phonon conductivity values ranging from 0,004 to 0,012 w cm ⁻³ C ⁻⁴ being based on predictions due to Rao, M. R. (Phys. Rev., 52, 212, 1941), Turbull, A. G. (Aust., J. Appl. Sci., L2, 134-29, 1361) and Powell, R.W. (Amer. Soc. Mech. Engrs. 235-95, 1965); approx mean conductivity values given by k = 0,110 + 6,0 x 10 *********************************
Name and Specimen Designation		
Reported Error, %		
Temp. Range, K	300-1333	1353-2258
Year	9981	1996
Curve Ref. Method No. No. Used	1	1
Ref. No.	666	566
Curve No.	-	8

DATA TABLE NO. 43 THERMAL CONDUCTIVITY OF PROMETHIUM

(Impurity $\leq 0,\ 20\%$ each; total impurities $\leq 0,\ 50\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

H

CURVE I
300 0.179
400 0.184
500 0.185
600 0.185
600 0.191
800 0.201
1000 0.207
1100 0.215
1185 0.222
1363 0.230

CURVE 2

1353 0.175 1400 0.178 1500 0.194 1600 0.190 1700 0.196 1900 0.202 2000 0.220 2200 0.226 2253 0.229

and the property

SPECIFICATION TABLE NO. 44 THERMAL CONDUCTIVITY OF RHENEM

(Impurity $\leq 0,20\%$ each; total impurities $\leq 0,53\%$)

For Data Reported in Figure and Table No., 44.

Composition (weight percent), Specifications and Remarks	99.5 Re, total metallic impurities <0.1, consisting of Cu. Fe, and Mo; cut from a rolled sheet 0.75 mm thek sipplied by A. D. Mackay Inc.; density 21.3 g cm ⁻³ at roum temp; residual electrical resistivity. γγμοhm cm; electrical resistivity ratio ρ(295K)/ρ ₀ · 24.9.	Cut from the same sheet as the above srecimen; annealed in vacuo at 700 C for 2 hrs, residual electrical resistivity 0.469 μ 0hm; cm; electrical resistivity ratio of 295K)/ ρ_0 = 40.7.	Total impurities ≤ 0.01 ; prepared by zone-melting thenium powder in an argon arc furnace; 0 mm dia x 5-8 cm long; residual electrical resistivity 0.01:19 μ ohm cm; electrical resistivity ratio $\rho'(295K)/\rho_0 = 1357$.	Spectrographically pure: 0.10 in. dia; electrical resistivity reported as 75.2, 84.9, 92.0, 95.2, 160.0, 103.9, 106.5, 108.3, 109.5, and 110.1 μohm cm at 1130, 1410, 1630, 1415, 1975, 2115, 2250, 2370, 2495, and 2605 K, respectively; measured in a vacuum of ~10 ⁻⁵ mm Hg.	High purity; truces of noble metals; 7.0 cm long, 0.486 cm in dia; supplied by Johnson Nathey Co.; heat treated at 1390 C; electrical resistivity reported as 2.9, 5.8, 9.6, 13.3, 17.2, 18.8, 21.2, 24.9, 28.8, 32.6, and 36.1 gohn cm at 83, 123, 173, 223, 273, 293, 373, 423, 473, and 523 K; residual electrical resistivity 0.078 µohn cm; density 20.38 g cm ⁻³ ; data taken from smooth curve.	The above specimen measured by comparative method using Armeo Iron as comparative material; data taken from smoothed curve.	0.0047 C and 0.001116 O; hexagonal; specimen 1.0711 cm in dia and 0.1582 cm thick; density 20.97 g cm ⁻³ ; mernal conductivity derived from the temp distribution on the flut surface of the cylindrical disc specimen heated in bigh vacuum (10 ⁻⁵ mm Hg) by high frequency induction generating localized heating within 0.005 in. of the surface at current frequency of 500,000 eps with heat lost only be radiation; the cylindrical surface being assumed isothermal, and the temp gradient along the radius was analytically correlated to the thermal conductivity.
Name and Specimen Designation	Rc 1	Re 3	Re 4				
Reported Error, %				10			
Temp. Range, K	2.6-118	2.1-112	2, 1-92	1700-2650	83-373	423-523	1577-2397
Year	1957	1957	1957	1962	1963	1963	1366
Method Used	 _1 	٦	٦	ω	۲ı	υ	•
Ref.	150	150	001	1999	610	610	£
Cun e	-	C1	က	→	ഗ	و	1-

DATA TABLE NO. 44 THERMAL CONDUCTIVITY OF RHENIUM

(Impurity <0.20% each, total impurities <0.50%)

[Temperature, T. K: Thermal Conductivity, k. Watt cm-1K-1]

-	CURVE	ò	123 0, 56	17.3 0, 53	0	27.3 0.49	293 0.42	Ö	37.3 0, 47		CURVE 6		Ö.	0	Ö		CURVE 7		Ö		Ö	37.5 0.472	0	0	2142.5 0.450	J	2226 0.171	ċ	2397 0.411															
×	VE 3			5. 128	556	3 50	720	025	670	14.050	14, 050	13, 230	-	٠,	1		2. 820	2. 020	333		718		0.636		4	7		251		*1 ::0			0.253	0.314	0,418		0,305	0.314						
-	CURVE	2, 05					15 ×				12.51	15.48				25, 90				œ,		a)	91.70		CURVE		1700	3.655		1510	2050	5907	2150	065	05r	2330	2420	2650						
¥	WE 1		0.113	0.149	0.221	0.277	0.345	0, 433	0, 538	0.641	C. 704	11.0	0,749	0.738	0.759	0.738	0.585	0.595	0.544	0.544	0.533	S.	0.503		URVE 2						c, 513		0.541	0.934	1.067		1,072	0.934	00%	299 0	0,637	0,605	9.0	7,000
-	CURVE		3,51	4.23	5, 62	61 .	명 신 년	. 4		15, 20	21.56	25, 20	25.35	33 00	37, 14	40, 13	58.05	64. 16	70.91	1તે. 4 0	F1.30		117.70		CUR				7		. 8. . 8.	16.01	14.03	2°.1	34° 40	٠.	Ĵ.	1 1:	/· =	E 16		Ē.		12.20

to the many of the state of

FIGURE AND TABLE NO. 44R RECOMMENDED THERMAL CONDUCTIVITY OF RHENIUM

*Velues in parentheses are extrapolated or interpolated. Tin K, kim Watt cm-1 K-1, Trin F. and krin Bur br-1 (t-1 F-1,

江苏州岛西北部港區

Miller of the second of the se

Second 1.00 a mercella control ted menter a familiar or a mindifficiency of the second

SPECIFICATION TABLE NO. 45 THERMAL CONDUCTIVITY OF RHODIUM

のでは、100mmの

(Impurity $\leq 0.20\%$ each; total impurities $\leq 0.50\%$)

[For Data Reported in Figure and Table No. 45]

Composition (weight percent). Specifications and Remarks	99. 995 pure; 1-2 mm dia x 5 cm long; supplied by Johnson Matthey.	Pure; 0.1030 x 0.1036 x 10.0 cm; electrical resistivity reported as 4,811 and 6,211 µnhm cm at 0 and 100 C, respectively; specific gravity 12.505.	99. 9° pure; 1.5 mm dia; supplied by Baker Platinum Co.; anneated at 1050 C; residual electrical resistivity 0.44 μ ohm cm; electrical resistivity ratio $\rho(295K)/\rho(0K)=12$.	99. 997 Rh. 0. 002 Fe. and 0. 0005 Cu; 1.5 mm da; supplied by Johnson Matthey; annealed at 1300 C; ideal electrical resistivity reported as 0. 00075, 0. 0022, 0. 0124, 0. 048, 0. i07, 0. 42, 0. 87, 1. 91, 2. 93, 4. 34, 4. 78, and 5. 8 john cm at 15, 20, 30, 40, 50, 75, 100, 150, 200, 273, 295, and 359 K, respectively; residual electrical resistivity 0.0084 john cm; electrical resistivity ratio p(295 K)/p(0 K) = 570.	Pure; supplied by Heracus; rolled into square wire; annealed in vacuum at 1030 C for 10 mm; electrical resistivity reported as 0, 01635, 0, 595, and 4, 58 john cm at 21, 2, 83, 2, and 273, 2 K, respectively.	Specimen 7.5 x 0.15 x 0.15 cm; made from the specimen used by Grunelsen and Goens, 1927; electrical resistivity reported as 0.0155, 0.0160, 0.0167, 0.0188, 0.0318, 0.05x1. 0.170, 0.3x0, 0.524, 0.751, 1.178, and 5.043 µohm cm at 4.2, 14.3, 18.7, 23.2, 32, 32, 40.8, 54.7, 70.1, 78.8, 90.2, 110.6, and 292.3 K, respectively.	Same source as the above specimen; dimensions 3.4 x 0.15 x 0.15 cm; annealed in vacuum at 1400 C for 5 hrs and cooled slowly; residual electrical resistivity 0.0148 µohm cm.	0. 03-0, 1 Ir. 0. 003 Fe. 0. 002-0.005 Ag, and 0. 001-0. 003 Pd; 5 cm long. 0. 349 cm dia; supplied by Johnson Matthey Co.; annealed in vacuum at 1326 C; density 12. 45 g cm ⁻³ ; electrical resistivity reported as 0. 63, 0. 765, 0. 86, 1. 02, 1. 16, 1. 265, 1. 34, 2. 95, 2. 99, 3. 155, 4. 44, and 4. 51 µohm cm at 85, 8, 92, 4, 97, 1, 104, 9, 112, 2, 117, 6, 121. 6, 202, 6, 204, 8, 213, 8, 277, 8, and 281, 6 K, respectively.	The above specimen measured by comparative method using Armoo iron as comparative material; residual electrical resistivity 0.024 polm cm; electrical resistivity ratio $\rho(273K)/\rho_0 = 182$.	6. 03-0, 1 Ir. 0. 005 Fe, 0. 002-0. 005 Ag, and 0. 001-0. 003 Pd; specimen 0. 348 cm in dia and 5 cm long supplied by Johnson Matthey Co.; annealed at 16.0 K; density 12. 44 g cm ⁻³ ; electrical resistivity reported as 0. 92, 2. 9, 4. 90, 6. 95, and 9. 15 µobm cm at 100. 200. 300, 400, and 500 K. respectively; electrical resistivity ratio p(273K)/p(4. 2K) = 180.	The above specimen measured by comparative methor using Armeo iron as comparative material.	0.001 Fe, 0.0002 Ag. 0.0001 Cu, and 0.0001 Pd; specimen 0.6 cm in dia, 6 cm long; supplied by Johnson Matthey and Co.; density 12, 22 g cm -3; electrical resistivity reported as 0.3, 2.95, 4.95, 7.05, and 9.22 pohm cm at 100, 200, 300, 400, and 500 K, respectively; electrical resistivity ratio \(\rho(273K)/\rho(4, 2K) = 233.\)
Name and Specimen Designation	JM 2357; Rh 1		Rh 1	JM 5203; Rb 2		٦	ea .			Я5 1	Rh 1	Rh 2
Reported Error, "							•					
Temp. Range, K	2, 2-21	290, 37.3	6, 1-9!	2.3-116	21, 83	2, 1-111	4. 1-90	36-2×2	323-458	01 02 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	318-591	310-521
Year	1952	1914	1957	1957	1927	1959	1959	1955	1962	1961	1967	1967
Method Used	_1	ند	٦	٦	ı	1	٦	ı,	U	٦	ပ	ပ
Ref. No.	9,	ж.	149	149	55	285	25.3	417	665	249	249	249
Cun	7	71	m	•	က	ω	t-	øn	Ø	07	11	13

DATA TABLE NO. 45 THERMAL CONDUCTIVITY OF RHODIUM

(Impurity · 0. 20% each; total impurities < 0. 50%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

×	CURVE 12 (cont.)	1 1.403"						1.32																																				
7	링	6×8	295. x	207	+27	7	÷97	7.7	520																																			
æ	CURVE 10	: ::	90 :	10.5	1.96	46.1	1.855	1.755	1.70	1.69	1.66	3 -	97. -	1.5.15		1. 55	1.505	1. 52		CURVE 11		7.4%	1.50	1.53	1.49	1,445?	1.51	1.49	1.4	1.43	1,405	1.39	1.345		CURVE 12		7	7.47		Τ.	;	1.45	1.41	
٠	COL	en 7	າກ ເກົາ	92.3	95. x	- ਫ਼	97.7	105.3	112.9	2.5	122.3	202.6	204.9	7.5	5.55	277.9	0.T < 0	2*1.5				317.5	322. x	324.6	3310.1	331.1	340.6	363.6	370.3	414.6	152.5	475.1	591.2		5		310.0	316.1	330.0	£ .	355.9	360.	370.8	
æ	CURVE & (cont.)	1.82	1.66		CURVE 7		7. 43	13, 21	18.09	23, 37	24, 79	20, 61	13, 03	. 30	2 41	2. 06		CURVE 8	!	2, 31	2, 10	1.98	1. 82	1. 71	1.67	1. 63	1.51	. 23	25	1. 51	1. 51		CURVE 9		1. 52	1, 47	1. 43	1.40						
Н	CURVE	90.8	111.2		CC		7.7	۱- د-	11.2	15.9	21.2	27.6	34.9	63. Ն	37.80	90.3		CCE		85. &	92. 4	97. 1	104.9	112.2	117.6	121.6	202.6	207	213.8	277. 8	251.6		CUE		323.2	573, 2	423.2	458.2						
24.	CURVE 4 (cont.)	23, 661	25, 893	31.696	33, 462	37.054	38.244	37,649	35, 714	32, 292	26.488	21, 726	16.220	11, 584	4.431	3, 713	3, 267	2, 550	2, 228	1,683		CURVE 5		23, 800	2, 150		CURVE 6		3, 27	3. 77	2.00	8	6, 73	11.28	20. 99	23, 38	22. 60	13. 92	8. 43	3, 85	3, 15	2.47	2. 12	
۲	CURVE	8.67	9.44	11.48	13, 27	15.30	17.09	19.64	21.94	24, 23	27.30	30, 10	33, 40	38.98	55, 10	C.), 70	65, 30	78, 30	90.80	115.60		CU	}	21, 20	83.20	!	CC		2.1	وي ر	o or i mi	4	7	e	14.8	19. 0	F 4:3	33,2	40.9	53.5	u2. 2	71.0	79. 5	
¥	VE 1	1. 720	2, 581	3.140	4.860	5. 740	6, JAK	7. 41	9. ú32	10, 150	11, 230		CURVE, 2		6.8.0	0.803		CLTRVE 3		0.371	c. 548	0.663	C. 917	1.114	1.312	1.485	2.535	1.658	1.683	1,559	1.510	1.485	1.460	1.460	1.485		VE 4		5.272	6.559	8, 24.3	10.470	13, 000	
H	CURVE 1	2, 15	3, 16	4, 82	6. 88	B. nS	9, 46	11, 35	14. 37	17. 12	21.07		CCE		290.7	37.2. 2		CLE		6 12	5. 18	11, 43	14.03	18,37	22, 96	26, 53	29, 34	30, 87	36, 22	55, 36	61, 22	65, 05	71, 43	78.86	30. 80		CURVE 4		2, 27	2.68	3, 32	÷ 03	4.98	ı

Not shown on plot

FIGURE AND TABLE NO. 45R RECOMMENDED THERMAL CONDUCTIVITY OF RHODIUM

	<u>۱</u>	ž.	ä	T,	т,	.x.	k ₂	T,
	3	þ	9	459.7	900	1.40	80.9	440
**************************************	_	(2, 91)	(168)	-457.9	009	(1, 36)	(78.6)	620.3
	**	(2, 41)	`@:::)	456.1	700	(1, 31)	(75, 7)	908
	r :	A. 72	70.	:: :3 *	800	(1.27)	(73, 4)	986
	4	11.6	670	452.5	900	(1. 24)	(71.6)	1160
	17	7	ź	450.7	1600	(16.51)	(6 69)	1341
	: 42	2 2	1000	44x c	1130	(81	(68.2)	1520
<u></u>	-1		1160	-447	1200	25.5	(199)	1200
	. x	x 2	1320	-445.1	1306	(1, 13)	(65, 3)	1880
	6	25, 4	1470	-443, 5	1400	(1, 11)	(64.1)	2080
	4	t c	00.30	2411				
	07 =		0.21	7.7				
	3 5	2	0.75	125.4				
	21	5.5	1830					
	. 4	15.1	2030	6.45				
7	: :						-	
	.a :	7.9	2030	-432, 7			-	
	9 .	5 9 9 1	2130	-430.5				
	2	61 ·	2150	427.3				
***	0.7		1011	414.7			-	
<u></u>		.00	0.11					
5	39	21.6	1250	-405.7			-	
# I I I I I I I I I I I I I I I I I I I	35	:: • • • • • • • • • • • • • • • • • • •	X :	-396.7				
	⊋	10. 2	0 .	-387. 7				
	4	1.	432	-378. 7				
2	93	5. 4 <u>0</u>	329	-369, 7				
N: Y: 7233 N	93	3, 78	218	-351.7				
	5	2, 39	167	-333, 7				
	Ş.	2.34	138	-315, 7				
1 2 3 4 56 8 10 2 3 4 56 8 10 ² 2 3 4 56 8 10 ³ 2 3 4 5		2.06	119	-257.7				
	100	1, 36	107	-279, 7				
TEMPERATURE, K	150	1, 54	91.3	-189.7				
	200	1, 54	89.0	- 99.7				
	250	1, 52	87. ×	- 9.7				
3/G1710	273.2	15.1	87.2	32.0				
NEMARKS	300	1, 50	2.98	80.3				
	350	1.48	85. 5	170.3				
The recommended values are for Well-anneated 99, 997 to bure thedrum with residual		:		:				

at temperatures below about 200 K). The values below 1.5 $T_{\rm Pl}$ are calculated to fit the experimental data by using n=2.70, oʻ =3.16 x 10°5, and β =0.344. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 4% of the true values near room temperatures and 4 to 10% at other temperatures.

Tin K, kim Watt em-1 K-1, Tin F, and kim Binhr 4 ft-1 F !

and also process

*Values in parentheses are extrapolated or estimated.

SPECIFICATION TABLE NO. 46 THERMAL CONDUCTIVITY OF RUBIDIEM

Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 46]

	electrical resistivity K) = 14,6 µ ohm cm).	ce 35% greater than	5 11.28, 12.51, 26.55, 5, 54.49, 58.01, 60.70, 14.17, 144.27, 159.55, 14.3, 414.7, 442.1, 14.3, 418.7, 401.5, 1303, 7, 1367, 6, and rom electrical resistivity	change theory; data specific heat of the Rept. AGN-8192, 1967),	ctivity data estimated.	9.13 No. 0.11 K. 0.03 Ca, specimen contained in a hemical Corp.; electrical Corp.; al. 62, 37.06, 42, 30, 91, 29, 99.05, and 109.31 260.3, 308.3, 309.4, 361.7, C. respectively; resistivity data and the
Composition (weight percent), Specifications and Remarks	High μ trity: 1.65 mm dat: supplied by A.D. MacKay (New York), electrical resistivity ratio $\gamma(295 K)/g$ (0 K) = 350 (using electrical resistivity p.295 K) = 14.6 μ ohm cm).	Supplied by Ukraine Chemical Institute of Odessa; specific resistance 35% greater than that of pure Rb; M, P, > C lower than that of pure Rb.	99.5 pure: electrical resistivity measured in argon and reported as 11.28, 12.51, 26.55, 30.12, 30.18, 32.82, 35, 39, 35, 90.40, 56, 42.70, 47, 03, 47, 48, 54, 49, 56, 01, 60.70, 69.82, 77, 47, 85, 30, 86, 59, 50, 105, 82, 117, 59, 129, 56, 144, 17, 144, 27, 159, 55, 174, 96, 196, 97, and 197, 36 µ ohm em at 273, 2, 302, 6, 366, 5, 444, 17, 144, 27, 145, 17, 462, 1, 482, 6, 524, 3, 547, 1, 592, 1, 554, 4, 647, 7, 691, 5, 374, 8, 750, 9, 848, 7, 901, 5, 903, 7, 969, 3, 1620, 9, 106, 5, 1135, 4, 1100, 9, 1195, 4, 1249, 8, 1303, 7, 1367, 6, and 1369, 8, K, respectively: thermal conductivity values calculated from electrical resistivity data using theoretical Lorenz number 2, 45 x 10° V2 R.	Specimen in vapor state, measuring method based on the study of laminat flow in a long tube with a constant wall temperature, combined with the heat exchange theory; data calculated from the measured temperature and flow rate and the specific heat of the vajor which was obtained from Achener, P.Y., et al., (USAEC Rept. AGN-8192, 1967).	Vapor Rubidhum specimen; atomic dla g = 12, 7 Å, thermal conductivity data estimated.	0.32 Cs, 0.06 K, and 0.65 Na; composition after testing, 0.39 Cs, 0.13 No, 0.11 K, 0.03 Ca, 0.008 Fe, 0.005 O, 0.003 Nl, -0.001 each of Cr and Ll; molten specimen contained in a type 347 stainless-steel tube; supplied by American Potash and Chemical Corp.; electrical resistivity reported as 13-85, 14-67, 22.84, 22.93, 23.36, 25.96, 31.62, 37.06, 42.30, 46.59, 46.61, 52.45, 58.01, 59.37, 64.61, 71.48, 72.49, 81.06, 91.29, 99.05, and 109.31 µ phm cm at 25.6, 37.5, 30.2, 4, 17.7, 44.91.7, 146.7, 204.2, 260.3, 308.3, 309.4, 361.7, 412.5, 426.1, 463.1, 520.3, 528.9, 581.7, 650.1, 697.2, and 751.7 C, respectively; thermal conductivity values calculated from measured electrical resistivity data and the theoretical Lorenz number 2,45 x 10 ⁻⁸ V ² K ⁻² .
Name and Specimen Designation	Rb 1					
Reported Error, "						
Temp. Range. K	2.0-70	281-361	367-1370	822-369	944-1121	312-1025
Year	1956	1940	1964	1967	1962	1962
Method Used	د ا	-1	1	t		1
Ref.	85	385	655	288	881	756
Curve	-	e)	n	•	Ŋ	¢

DATA TABLE NO. 46 THERMAL CONDUCTIVITY OF RUBIDIUM

(Impurity < 0, 20% each; total impurities < 0, 50%;

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

¥	CURVE 4*	0,0000486 0,0000537 0,0000625	CURVE 5*	0.0000116	0.0000114	0.0000111	IVE 6*	0.335	0.325	0.309 0.297	0.289	0.258	0.248	0. 230													
T	CUB	822. 1 874. 3 969. 3	CUB	7	1060	1121	CURVE	312.4	419.9	533.5 634.5	699.3	854.9	923.3	1025													
¥	ကျ	5, 3387 0, 3327 0, 3321*		3236 3223	3179	3172		3042	0.3003	2929	2859*	2767	2747	2683 2670*	2578	2574	0.2480	0. 2363 0. 2363	0.2275	0. 2260*	0.2149	0.2042	0. 2033*	0, 1927	0.1820	0, 1814*	0. 1692 0. 1688*
	~1	0000	် ၁ ၁	5 6	3	ં ં	ဝင်	<i>i</i> 0	0	0	0	ö	Ö	0 0	Ġ	Ö	0	9	_			-		_			
L	CURVE	366.5 0 414.3 0 418.7 0) -1 m	482.6 0. 492.1 0.	_	528.7 0.		• 20		733.7	20	_	61	848.7 0.	9	_	957.1 0			1076. 5	1135.4		_	æ	1303.7	1307. 1	1367, 6 1369, 8
*	CURVE 1 CURVI	5000	442.1	9-1	524. 3	_		300 618.2	.024 643.7		700 734.8	6.067 190.9	618 803.2	n ⊢	9	903.7		59 1020.9	1068.7	55	575		42 1195, 4	45 1249.8	47	45	0, 53 1367, 6 0, 52 1369, 8

Not shown on plot

FIGURE AND TABLE NO. 46R RECOMMENDED THERMAL CONDUCTIVITY OF RUBIDIUM

Trin K, k, in Wettem " K", Trin F, and k, in Bunhr 1 ft 1 F",

TIME TO SERVICE

F-1, *Values in parentheses are extrapolated, interpolated, or estimated.

SPECIFICATION TABLE NO. 47 THERMAL CONDUCTIVITY OF RUTHENIUM

(Impurity $\sim 0,\,26\%$ each; total impurities $<0,\,50\%)$

[For Data Reported in Figure and Table No. 47]

	Composition (weight percent). Specifications and Remarks	99, 905 'pure; polycrystalline; grain size 1 mm, approx 6 mm in dia and 7 cm long; Ru powder supplied by Baker Platinum Co.: specimen prepared by are-melting pressed pelters of powder in an inert atmosphere; specific gravity 12.9 at 22 C, ideal electrical resistivity reported as 0.034, 0.067, 0.19, 0.38, 1.07, 1.90, 2, 6, 6.55, 7.60, and 8, 27 µohm cm at 25, 30, 40, 50, 75, 100, 150, 200, 201, 273, and 295 K, respectively; residual electrical resistivity 0, 235 µohm cm; $\rho(295K)/\rho_0 = 36.1$; Lorenz function 2, 40 x 10 ⁻⁸ V ² K ⁻² at 0 K.	Similar to the above specimen except dimensions approx 5 mm in dia and 6 cm long; specific gravity 12, 25 at 22 C; ideal electrical resistivity reported as 0, 005, 0, 10, 0, 037, 0, 11, 0, 054, 1, 125, 2, 80, 4, 33, 5, 76, 6, 69, and 7, 37 arothm cm at 25, 30, 40, 60, 75, 100, 150, 200, 250, 273, and 295 K. respectively, residual electrical resistivity 0, 0.058 µohm cm; ρ (295K)/ ρ_0 = 467; Lorenz function 2, 46, v 10 4 V/2 K 2 at 0 K.	6. 1 Fe. 9, 03 Rb, 0, 002 Pt. 0, 001 Cu, 0, 001 Ni. and 0, 0005 Pd; 2. 5 cm long, 0, 669 cm in dia; supplied by Johnson Matthey Co.; argon-arc melted and ground; density 12, 36 g cm. ³ , electrical resistivity reported as 0, 566 and 7. 13 polm cm. at liquid beham and ice temp. respectively; Armoo iron used as comparative nativitied.	99.96 Ru (by difference). 0.03 Os. 0.006 Fe, 0.003 Ni, and 0.001 Pd; single crystal; specimen 0.65 cm in dia. 10 cm long; axis of specimen perpendicular to prism axis of crystal; supplied by the International Nickel Co. Ltd. (Mond); as received; density 12.34 g cm ⁻³ ; electrical resistivity reported as 1.42, 4.59, 7.62, 10, 5, and 13.3 µabhn cm at 100, 200, 300, 400, and 500 K, respectively; electrical resistivity ratio $\rho(273K)/\rho(4,2K) = 94$.	The above specimen measured by comparative method using Armoo iron as compara- tive material.	Same purity and supplier as the above specimen; 0.68 cm in dia, 10 cm long; single crystal; axis of the specimen parallel to prism axis of crystal; axis of the specimen parallel to prism axis of crystal; as received; density 12.18, g cm ³ electrical resistivity reported as 1.07, 3.46, 5.82, 8.15, and 10.4 point cm at 100, 200, 300, 400, and 500 K, respectively; electrical resistivity ratio \(\rho(273K)\rho(4.2K) = 76, 5.	The above specimen measured by comparative method using Armeo iron as comparative material,	0, 03 Os., 0, 006 Fe, 0, 003 Ni, and 0, 001 Pd; polycrystalline bar 0, 635 cm in dia, 10 cm long; supplied by the International Nickel Co.; pressed at 20 ton in?, sintered in vacuo at 1920 K and hot forged; as received; density 12, 24 g cm?, electrical resistivity reported as 1, 30, 4, 38, 7, 43, 10, 4, and 13, 2 µnhm cm at 1.0, 200, 300, 400, and 500 K, respectively; electrical resistivity ratio p.273K\rangle\ra	The above specimen measured by comparative method using Armeo iron as comparative material.
	Name and Specimen Designation	Ru 2	Ru 3		æ	c	٩	g	v	င
	Reported Error, %	 II	ಕಾ	C1						
	Temp. Range, K	2, 0-124	2.0-140	313 - 573	83-280	322-476	83-208	310-404	83-277	365-510
	Year	1958	1958	1962	1967	1967	1961	1967	1967	1961
	Method Used		<u>ب</u>	U	ے	Ú	- 3	ပ	٦	ပ
-	사 년	7	7.	999	249	249	249	249	249	249
	Cune No	-	¢1	Ħ	4	1.7	w	(-	œ	a

SPECIFICATION TABLE NO. 47 (continued)

Composition (weight percent), Specifications and Remarks	0.03 Rb. 0.01 Fe. 0.002 Pt. 0.001 Cu, 0.001 Ni, and 0.0005 Pt; polycrystalline; 0.66 cm in dia. 2.5 cm long; supplied by Johnson Matthey and Co.; arc-melted and ground; as received; density 12.36 g cm ⁻³ ; electrical resistivity reported as 1,83, 4,83, 7,85, 10,74, and 13,4 µhhm cm at 100, 200, 300, 400, and 500 K, respectively; Armoo iron used as comparative material.
Reported Name and Error, 7. Specimen Designation	7
Reported Error, T	
Temp. Range, K	1967 341-592
Year	1967
Method Used	10 249 C 1967
Curve Ref. No. No.	240
Curve No.	10

Not shown on plot

DATA TABLE NO. 47 THERMALACONDITIVITY OF RUBESHIN

(Impurity $\leq 0.20\%$ each; total impurities < 0.50%)

Temperature, T. K. Thermal Conductivity, k. Watt. $\mathrm{cm}^{-1}K^{-1}$

,		-	••						25	~1	1, 02	2 :	≌.	-																														
í.	CURVE 9 (cont.)	470.1 1.01	510.1 1.015		CLEVE 10						1.0																																	
¥	CURVE 6	2.09	3.	3 :	77.7	7.7	ş. ~	.	ē: :	1.31	1.33		CURVE !			Ξ.:	1, 325	1, 305	1::1	1,305		1,365		CURVE 4		9	1.67	1.66	1.1	= :	= :				2 :	7.10		CURVE 9		1.05	1.46	1	1.05	1.04
j-	티	9.5	7	- ;	175.::	177.1	9. 3. 3.	2007	276.6	279.1	297.6		El		1,010	327.1	7.5	350, 1	356, 1	362. 1	366.1	1.70+		כהו	:	×2, 6	7.5	83.1	7.1.1	205.1	219.6	9.122	0.1.00	9 6 6 7 7	6 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	7:17	{	5		365. 1	385.1	1.6%	:102.1	441.1
æ	CURVE 2 (cont.)	t- 15	3.5	2,35	₹.	1.60	₹.	1,39	1.28		CURVE 3		1, 060	1, 069	1 050	1,045	1. Q.	1.040	1, 0:15		CURVE 4		1.63	1.54	. I	1.14	1.14	1, 08	 90.1	 Ş	 	1	COMME	·	70.	1.065		1,065	. 000 	1.0.1	1.055	1,065	1.03	1.03
←	CURVE	55.2	36,5	67.0	2	30.8	107.6	0.221	140.0		บ		313		 		11.7	::	::		00	; 	6.28	7.7	ų,	175.3	1.71	223.9	225.1	2° . 1- 1- 21	7. 9	i	3		1,55.	5.31.3	3.36	7.012	300.	57 TASE	Ø. 9000	366.9	412.1	476.1
æ	CURVE 1	5	1.5		÷	: :: :::	. c		, ; ; ;	; ; ; ;	o o	2.21	ei ei		0.0	- -	: -		: - : -		- 0			6 300	CURVE	23.33	7	(? -	5.08	10	5, 22	10.05	12, 5	18.0	21.3	22, 5	23, 0	8.02	18.8	15.08	9 21	of of		
۰	딍	÷	; ; ;	i es	7			1 d) () =	9	17	12	3)	0.4	13						3.15 1.15	1.1	-	î	31	0) o	i 17	7	4	4	æ. æ	9.7	:- ::	8.9 1	19, 3	21.0	25.6	29.5	32. 1	36.0	6.14		

RECOMMENDED THERMAL CONDUCTIVITY OF RUTHENIUM FIGURE AND TABLE NO. 47R

The recommended values are for well-annealed 99.995% pure ruthenium with residual electrical resistivity q_1 = 0.00860 $\mu\Omega$ cm (characterization by ρ_0 becomes important at temberatables below about 250 K). The values below 1.5 Tm are calculated to fit the experimental dark barses below about 250 K). The values below 1.5 Tm are calculated to fit the experimental days busing n = 3.10, n = 5.60, α' = 3.91 x 10¹⁰, and 3 · 0 .705. The recommended values are thought to be accurate to within 4% of the true values near room temperature and 4 to 11% at other temperatures.

 T_{1} in $K,\ k_{1}$ in Watt cm $^{-1}\,K^{-1},\ T_{2}$ in $F,\ and\ k_{2}$ in Btu $hr^{-1}\,ft^{-1}\,F^{-1},$

tyalues in parentheses are extrapolated.

SPECIFICATION TABLE NO. 48 THERMAL CONDUCTIVITY OF SAMARIUM

・ 日本のでは、大学のでは、1900年には、1900年に、1900年に、1900年には、1900年には、1900年には、1900年には、1900年には、1900年には、1900年には、1900年に

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 48]

Composition (weight percent), Specifications and Remarks	6. 05 Eu, 0. 02 Ca, 0. 01 Cd, 0. 01 Mg. and 0. 005 Si; polycrystalline; 0. 479 cm dia, 6 cm long. Sm supplied by Research Chemicals; arc-melted in 100 torr argon atmosphere and machaned; electrical resistivity reported as 6. 73, 7. 90, 12. 1, 15. 1, 18. 18. 18. 29. 8, 9. 91. 3, 16. 91. 8, 62. 3, 63. 0, 64. 7, 70. 5, 82. 5, and 93. 4 µbhn cm at 4. 17, 8. 12, 13, 18, 16, 20, 40, 60, 80, 100, 105, 110, 120, 160, 240, and 308 K, respectively; data taken from smoothed curve.	High purity; polycrystalline; 0.25 in. in dia, 0.25 in. long; supplied by Johnson Matthey and Co.; electrical resistivity 94 pohm cm at 18 C; measurements made using 2 different thermal comparators. Monel metal used as comparative material.	Impurities: 0.5 Eu, 0.18 Ca, 0.02 Cd, 0.01 Nd, and 0.01 Y; prepared by briquetting powder under a pressure of ~8000 Kg cm $^{-2}$ and annealing in vacuo (~1 x 10 $^{-4}$ mm Hg) for 1.2 hrs at 1500–1800 C; measured in vacuo of ~5 x 10 $^{-6}$ mm Hg; data taken from smoothed curve of measurements on several specimens.
Composition (weight percen	0, 05 Eu, 0, 02 Ca, 0, 01 Cd, 0, 01 6 cm long. Sm supplied by Ress atmosphere and machined; elec 15.1, 16.3, 18.2, 28.2, 39.6, 93.4 jabhn cm at 4, 17, 8, 12, 1 240, and 308 K, respectively; e	High purity; polycrystalline; 0.25 Matthey and Co.; electrical rec made using 2 different thermal material.	Impurities; 0, 5 Eu, 0, 18 Ca, 0, 02 Cd, 0, 01 Nd, and 0, 01 Y; propowder under a pressure of ~ 8000 Kg cm ⁻² and annealing in v for 1-2 hrs at 1600-1800 C; measured in vacuo of $\sim 5 \times 10^{-5}$ m from smoothed curve of measurements on several specimens.
Name and Specimen Designation			
Reported Error, %		m	
Temp. Range, K	6. 0-196	291. 2	83-397
Year	1965	1965	1964
Ref. Method No. Used		ပ	-1
Ref.	812	777	816
Curve No.	-	8	m

أدالفكالم يتديما الطائمين يجدنا بالاستولاق اللايف أمار المائيل حديد مساطا بالكال الملاء الطيف باستمده مالمتيت إماليليت بسيد

CURVE 1

CURVE 2 291.2 291.2 CURVE 3

0.0552 0.0753 0.0836 0.0895 0.0933 0.100 0.107 82.5 163 195 225 247 308 360 397

RECOMMENDED THERMAL CONDUCTIVITY OF SAMARIUM FIGURE AND TABLE NO. 48R

REMARKS

The recommended values are for well-annealed 99.9% pure samarium with residual electrical resistavity $\rho_0 = 6.73 \, \mu \Omega$ cm (characterization by ρ_0 becomes important at temperatures below about 200 K). The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 3% of the true values near room temperature and 5 to 13% at other temperatures.

*Values in parentheses are extrapolated

0. 133 0. 133 0. 133 (0. 135)*

and ke in Bouhr 1 (1.1 F.1, Tin K, ki in Watt cm-1K-1, T2 in F.

SPECIFICATION TABLE NO. 49 THERMAL CONDUCTIVITY OF SCANDIUM

(Impurity : 6, 20% each; total impurities : 0, 50%)

For Data Reported in Figure and Table No. 49

Composition (weight percent). Specifications and Remarks	Approx 99, 9 perc., flat enecimen 0, 25 mm thick; electrical resistivity 71 polim cm at 253 K; electrical resistivity ratio $\rho(293K)/\rho(4, 2K) = 9, 59$; Lorenz number 2, 96 x 10 $^{-6}$ V? $K^{-2} = \frac{1}{2}, \frac{1}{2}$	High paraty: pyoney scalline; specimen 0, 25 in. in dia and 0, 25 in. long; supplied by Johnson Mathiew Cocy, electrical resistivity 52 john cm at 18 C; Monel metal used as comparative cocyan discoveriently measurements hade using 2 different thermal comparatives.	High purrity, for accountry, Can, and Fe; polycrystalline; specimen 0, 486 cm in dia and 6,35 cm long; supplied by St. Eloi Corp. electrical resistivity reported as 10,7, 12,0, 18, 9, 40, 1, 47,9,54,8, and 61,8 john cm at 6,2,40,80,120,160,200,240,280,240,280,400,80,100,100,100,100,100,100,100,100,10	and 3 Ta. 10, 02 Cu. 10, 64 Ag. 10, 002 Fe, and 10, 01 other rare earth metals; melting point 15.22 - 5 C; electrical resistivity reported as 67. 91, 112, 131, 146, 159, 172, 181, 183, 203, 212, and 215 phylm and 0, 100, 200, 300, 400, 500, 600, 700, 800, 600, 1000, and 1860 C, respectively; bermal conductivity value calculated from the measured datum of electrical resistivity and the Lorenz function taken as 2.7 x 10 ⁻⁴ V ² K ⁻² .
Name and Specimen Designation				
Reported Fron, %		0.11.0		
Year Temp. Reported Fron, & Erron, M	2, 0 - 21	291.2	5-316	298.2
Year	1965	1965	1964	1961
Curve Ref. Method No. Used	1	ပ	- i	1
Ref. No.	817. 897	177	818	1003
Curve No.	-	81	ო	4

DATA TABLE NO. 49 THERMAL CONDUCTIVITY OF SCANDIUM

(Impurity < 0, 20% each; total impurities < 0, 50%)

[Temperature, T. K. Thermal Conductivity, 4, Watt cm-1K-1]

T k CURVE 3 (cont.)	က်ဆေးက်သွားသည်။ ကြောင်းသည်	55.5 0, 173 77.0 0, 137 77.0 0, 137 83.0 0, 140 90.0 0, 144 105.0 0, 144 112 0, 145 121 0, 149 124 0, 153 146 0, 157 156 0, 159 175 0, 163	2008VE 4
T k	60000		CURVE COURVE

RECOMMENDED THERMAL CONDUCTIVITY OF SCANDIUM FIGURE AND TABLE NO. 49R

TEMPERATURE,

The recommended values are for well-annealed high-purity scandium with residual electrical resistivity $\rho_0 \approx 10.6 \, \mu\Omega$ cm (characterization by ρ_0 becomes important at temperatures below about 250 K). The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures.

T; in K, k, in Watt cm-1K-1, T2 in F, and k2 in Btu hr-1ft-1F-1.

*Values in parentheses are extrapolated

SPECIFICATION TABLE NO. 50 THERMAL CONDUCTIVITY OF SELENIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 50]

Composition (weight percent). Specifications and Remarks	Pure.	99.996 pure; vitreous and amorphous; specimen 20 mm; in dia; polished.	 665 Br; same structure and dimensions as the above specimen; prepared by fusion in a molybdenum crucible, solidified and polished. 	0.13 Br; same structure, dimensions, and fabrication method as above.	0.16 Br; same structure, dimensions, and fabrication method as above.	99.996 pure; hexagonal crystalline; specimen 18 mm in dia; polished.	0.065 Br; same structure and dimensions as the above specimen; prepared by melling vitreous selenium containing bromine in a ceramic crucible, pouring into a molybdenum beaker, first crystallization at 130 C for 30 min, then second crystallization at 200 C for 25 min, polished.	0.13 Br; same structure, dimensions, and fabrication method as above.	0.032 Br; same structure, dimensions, and fabrication method as above.	Pure selenium from Merck; thermal conductivity values caiculated from measured data of thermal diffusivity, specific volume, and the specific heat data taken from Tammann. G. and Von Gronow, H. E. (Z. Anorg. Alig. Chemie, 182, 193, 1930).	Vitroous selenium; 6.5 cm in dia and about 0.5 cm thick; cast in a hot iron mould, aged for 7yrs.	Vitreous selentum; 6.5 cm dia x 0.7523 cm thick; cest in a hot iron mould, aged for 1 to 8 days.	The above spectmen re-tested after being aged for 1 yr.	Vitroous selenium; 6.5 cm dia $\kappa \sim 0.5$ cm thick; cast in a bot iron mould, aged for 10 days.	The above specimen re-tested after being aged for 1 yr.	Similar to above but prepared from highly purified selenium and aged for 10 days.	Similar to above but aged for 2 days.	Crystalline specimen 6.5 cm dia $x \sim 0.5$ cm thick; prepared by heating the vitreous disk in an oil oven to 160 C for 1 hr, cooled slowly, ground and politaked; aged for 11 days.	The above specimen aged for 164 days.	The above specimen aged for 1 yr.	Similar to the above specimen but prepared by heating at 170 C and aged for 16 days.	The above specimen aged for 134 days.
Name and Specimen Designation											Disc-1	Disc-2	Disc-2	Disc-3	Disc-3	Disc-4	Disc-5	Disc A-I	Disc A-II	Disc A -III	Disc B-I	Disc B-II
Reported Error, %	< 1.8	*	*	*	<u>^</u>	7	* *	*	*													
Temp. Range, K	361,319	300.7	300.7	300.7	300.7	293.2	293. 2	293. 2	293. 2	273-323	298.2	297-331	298.2	298.2	298.2	298.2	298.2	298. 2	298. 2	298.2	298.2	298.2
Year	1943	1957	1957	1957	1957	1957	1957	1957	1957	1956	1917	1617	1917	1917	1917	1917	1917	1917	1917	1917	1917	1917
Method Used	د	1	-	-1	1	ı	1	ı.	J	Ω,	- 1	٦	u	٦	ч	ı	,	J	ı	ı	u	ı
Ref. No	357	358	358	358	358	358	358	358	358	359	360	360	363	360	360	360	360	360	360	360	360	360
Curve	-	23	٣	4	ιn	9	-	œ	6	10	11	12	13	**	15	16	71	5	19	20	21	22

SPECIFICATION TABLE NO. 50 (continued)

	ءُ ا	Method		Temp	Reported	Name and	Composition (weight percent), Specifications and Remarks
No.	No.	Used	Year	Range, K	Error, %	Specimen Lesignation	The shows ensemble aged for 1 yr.
2:3	360	د.	1917	298.2		Disc B-III	The move appearing at 180 C Crystalline specimen; 6.5 cm dia x 0.5774 cm thick; prepared by heating at 180 C
	360	_	1917	29K-326			and aged for 38 days.
25	360	-1	1917	298-326		Disc C-11	The above specimen re-tested after being aged for 1 yr.
	360	_1	1917	298-330		Disc C-III	Similar to the above specimen but prepared by heating at 192 C and aged for se days.
12	360	٦	1917	298-325		Disc D-1	The above specimen re-tested after being aged for 148 days.
28	360	٦.	1917	238.2		Disc D-III	The above specimen re-tested after being aged for 1 yr.
23	360	٦	1917	298.2		Disc Date	Similar to the above specimen but prepared by heating at 200 C and aged for 3 cay 3.
, S	360	_	1917	298.2		Dasc E-1	The above specimen re-tested after 156 days.
71	360	٦	1917	298.2		Disc E-II	The above specimen re-tested after 1 yr.
32	360	1	1917	29 % 62 74 62		Disc E-III	Similar to the above specimen but prepared by heating at 214 C and aged for 42 days.
, g	360	٦	1917	298.2		Dasc F-1	The above specimen re-tested after being aged for 1 yr.
: ਜ	360	-1	1917	298.2		Disc F-III	99 994 pure; amorphous; 20 mm dia cylindrical specimen.
35	361	٦	1957	智		- -	6 0035 Cl; amorphous; 20 mm dia cylindrical specimen.
36	361	د.	1957	5 8		7	Similar to the above specimen but doped with 0.015 Cl.
37	361	.1	1957	294		-: -	Similar to the above specimen but doped with 0.03 Cl.
38	361	٦	1957	15 T			Similar to the above specimen but doped with 0.06 Cl.
S	361	1	1957	587		- , -	Similar to the above specimen but doped with 0.125 Cl.
9	361	٦	1957	294		- -	99, 994 pure; crystalline; 20 mm dia cylundrical specimen; prepared from Vilrous
4]	361	1	1957	294		4	form by heating at 130 C for 40 min.
ç	145	1	1957	7 62		24	Similar to above but doped with 0, 030 Cl.
. 4	361		1957	1 60		6 1	circular to above specimen but doped with 0, 06 Cl.
4	361	ا ت	1957	462		2 1 C	Similar to above specimen but doped with 0, 125 Cl.
3	361	ו	1957	29 4		:4 :	99 991 pure; crystalline; 20 mm dia cylindrical specimen; prepared from virresua
9	361	1 I.	1957	36 7		m	selemium by heating at 200 C for 40 min.
7.	361	<u>.</u> ت	1957	294		m	Similar to above specimen but dopen with 0.03 C.
oc	361	1 L	1957	294		: ריי	Similar to above specimen but doped with 0.06 C.
6	361	1 L	1957	-		יים ניי	Similar to above specimen but doped with 0.125 C.
3	:161	1 r	1957	294		,	

N.J.

SPECIFICATION TABLE NO. 50 (continued)

Composition (weight percent). Specifications and Remarks	99, 996 pure; amorphous.	Amorphous Scientiff depict with 5, 500 Cl.	Similar to the above specimen but doped with 0.015 Cl.	Similar to the above specimen but doped with 0.03 Cl.	Similar to the above specimen but doped with 0,06 Cl.	Gimilar to the above Specimen but doped with 0.125 Cl.	on one may existalling.	Create Hing Scientism deject with 0, 0035 Cl.	Crystalline selenium doped with 0.007 Cl.	Crestalline selenium doned with 0.015 Cl.	Carried line ecterium cooked with 0,06 Cl.	Caretalline columning doined with 0, 03 Cl.	co coa muse ameridadis.	as as an unit orestalline specimen formed by beating vitreous selentum at 214 C.	o og 1. amorahous specimen.	o og 1. crestalline saccimen.	o 10:11: ornaruhous succimen.	o and a constalling survined.	of 100.1, tributing selentum powder (of	Glassy specimen ~3 cm long and a cm From a about 250 C and quenching rapidly in probable 99. 9* purity) in a split briss mold at about 250 C and quenching rapidly in ite water.	Polycrystalline; same dimensions and preparation method as above.	Green Hine: 6 cm long, 1 cm in dia; supplied by Fairmount Chemical Co. (Newark, N.J.	The state of the s	~20 µ; produced by melting 99, 999 pure selenium powder (from Canadian Copper ~20 µ; produced by melting 99, 999 pure selenium powder (from Canadian Copper con produce solid rod	Refiners Lidt) under victum in a fine and about 210 C for 50-60 hrs. of glassy selenium, and annealing in vacuo at about 210 C for 50-60 hrs.	Similar to the above specimen but having a regular triangular cross section of about	0, 26 cm.
Name and Specimen Designation	1	21	en -	egr L	a c	-		→ ✓	v :	· ·	-# ·	යා ·	ఆ							- ਤ	es V		÷ Å	د و		S. S.	
Reported Error, %																											
Temp. Range, K	291.7	291.7	291. 7	291.7	291. 7	291. 7	291.7	363-353	303-353	303-323	303-353	303-353	303-353	239. 2	299. 2	299. 2	299. 2	299. 2	299. 2	1.9-95	6	2. 2-1:0	4, 3-90	2, 7-92		2.8-77	; i
Year	1957	1957	1957	1957	1957	1957	1957	1958	1958	1958	1958	1958	1958	1957	1957	1957	1957	1957	1957	1958	;	8261	1958	1958		8201	2
Method	1	-1	٦	د	٦	-1	-1	1	ı	٦	J	-1	1	,	1	-	႕	1		1		J	د	u			1
Ref.	1962	362	362	362	362	362	362	363	363	363	363	363	363	364	365	364	364	364	364	365		365	365	365		9	365
Cun	 	; 8	3	3	55	·8	55	æ	59	9	61	62	63	64	65	99	67	89	9	3 05		12	72	73		į	4.

SPECIFICATION TABLE NO. 50 (continued)

Composition (weight percent), Specifications and Remarks	99. 996 pure; polycrystalline; specimen about 10 mm thick and 16 mm in dia; amealed at 110 C and 210 C for 1 hr.	0.05 Ti; polycrystalline selenium specimen of similar dimensions as above; prepared by melting together 99.996 pure selenium and Ti ₂ Se in a vac um of 10 ⁻⁴ mm Hg; arnealed at 110 C and 210 C for 1 hr.	Similar to the above specimen but doped with 0.0125 Tl.	Similar to the above specimen but doped with 0.1 Tl.	99, 996 pure; crystalline; ~10 mm dia cylindrical specimen; heated at 215 C for 8 hrs.	Similar to the above specimen but doped with 0.01 Bi.	Similar to the above specimen but doped with 0.02 Bi.	Similar to the above specimen but doped with 0.04 Bi.	Similar to the above specimen but doped with 0.06 Bi.	Similar to the above specimen but doped with 0.08 Bi.	Similar to the above specimen but doped with 0.1 Bi.	Amorphous; about 10 mm in dia; prepared from the melt of 99, 939 pure selenium by rapid cooling in vacuum.	Similar to above but prepared from 99, 9999 pure selenium.	Similar to above but prepared from 99, 99999 pure selenium.	Crystalline; about 10 mm in dia; prepared from the amorphous specimen V-3 by annealing in vacuum at 210 C for 50 hrs.	Similar to above but prepared from the amorphous specimen V-4.	Similar to above but prepared from the amorphous specimen V-5.	Data cover both solid and liquid state.	Amorphous selenium, glass-formation temp $\sim \! 31$ C.	Amorphous selenium irradiated by an electron beam with an energy of 5 MeV for 30 min.	Similar to above but irradiated for only 10 min.	Amorphous selenium.	0.197 P. amorphous.	Hexagonal single crystal grown out of a melt of grade B5 selenium (99.99599 pure); each crystal being 15 x 2 x 2 mm in size; specimen dimensions 7 x 6 x 4 mm; measurement carried out in darkness under a vacuum of 10 d mm Hg; heat flow parallel to crystal axis.
Name and Specimen Designation					1	81	3	4	2	9	7	V-3	P-V	V-5	V-3	* ^	V-5		7	n	81	1		
Reported Error, %												3-5	3-5	3-5	3-5	3-5	3-5	± 10	27	n	က	က	ກ	
Temp. Range, K	293-363	293-363	293-363	293-363	293-373	293-373	293-373	293-373	293~373	293 -373	293-373	90-300	87300	87-300	85-453	30.453	85-455	293-573	294-313	294-313	294-313	288-318	288-318	87 455
Year	1961	1961	1961	1961	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1964	1966	1966	1966	1966	1966	1966
Method Used	٦	J	1	1	u	ų	-	J	د	د	_1	J	-1	1	٦	-	J	c.	<u>۔</u>	٦	-1	1	-1	- 1
	1											.:	21	22	ai a	2	~	3	'n	G	10	ı.o		
Ref.	223	522	522	522	191	191	791	791	191	791	791	792, 1012	792, 1012	792, 1012	792. 1012	792, 1013	792, 1012	750,904	805	803	808	8 0 5	13 13	9 5

The second manual control of the second seco

Market No. 1

SPECIFICATION TABLE NO. 50 (continued)

-												a. 70			÷
	Composition (weight percent), Specifications and Remarks	Similar to above but measured perpendicular to crystal axis.	99.99999 pure; prepared from the melt by rapid cooling in vacuum; vitrification temp $31\mathrm{C}_{\odot}$	Doped with 0, 05 Cd; prepared from the melt by rapid cooling in vacuum; vitrification temp 32, 5 C.	99, 9999 pure; amorphous; prepared from the melt by rapid cooling in vacuum.	Similar to the above specimen except annealed at 373 K for 0, 5 hr.	Similar to the above specimen except annealed at 373 K for 2 hrs.	Similar to the above specimen except annealed at 373 K for 10 hrs.	Crystalline specimen prepared from the amorphous phase (specimen B-4) by amealing in vacuum at 210 C for 60 hrs; includes the liquid phase.	Doped with 0.05 TI; amorphous specimen, prepared from the melt of 99, 99999 pure selenium with admixture of thallium by rapid cooling in vacuum.	Similar to the above specimen except doped with 0,125 Tl.	Single crystal; specimen 1.46 mm² in cross section and 1.21 mm long; grown from the vapor phase; heat flow parallel to the e-axis(additional information and the tabulated data obtained from author).	Single crystal; specimen 0.973 mm² in cross section and 0.98 mm long; grown from the melt, heat flow parallel to the c-axis (additional information and the tabulated data obtained from author).	Out from the sume crystal as the above specimen. In the form of an almost circular platelet 12.1 mm in dia and 1.2 mm thick, with c-axis parallel to the flat faces; measured in the direction perpendicular to both the thickness and the c-axis, in the central portion of the platelet across a length of 2.5 mm with effective cross-section 15 mm ² (additional information and the tabulated data obtained from author).	Cut from the same crystal as the above specimen, in the form of an almost circular platelet 12.1 mm in dia and 1.60 mm thick, with c-axis parallel to the flat faces; measured in the direction perpendicular to both the thickness and the c-axis, in the central portion of the platelet across a length of 3.66 mm with effective cross-section 19.4 mm² (additional information and the tabulated data obtained from author).
	Name and Specimen Designation		B-5		B-4	B-4	B-4	B-4				∢	£1	O	۵
	Reported Error, %		3-5	5 - 5 5	3-5	3-5	3-5	3-5	3-5	3-5	3-5				
	Temp. Range, K	93-465	293-315	293-315	89-341	86-338	88-335	86-338	89-533	290-317	291-317	1.8-94	1.9-112	2. 0-90	1. 8-89
	Year	1966	1956	1966	1966	1966	1966	1966	9961	9961	1966	1961	1967	1967	1967
	Method Used	'n	٦	٦	٦	1	-1	٦	1.	1	1	1	H	ı	1
	Ref.	300	898	898	868	868	898	868	898	898	868	1961	196	961	961
	Cune No.	8	100	101	ਸੂ ਬ	103	3	8	106	107	108	109	110	111	112

DATA TABLE NO. 50 THERMAL CONDUCTIVITY OF SELENIUM (Impurity < 0, 20% cach; total impurities < 0, 50%)

Watt cm ⁻¹ K ⁻¹
×.
1 Conductivity.
Pherma
×
.×
Temperature.

k CURVE 55.	7 0.00623	7 0,00766	URV	7 0.00849	CURVE 58				CURVE 59"	2 0.0233		2 0,0203 2 0,0198	CURVE 60	2 0.0215		2 0, 020.5 2 0, 0198		2		2 0.0199
←	291.7	291,7		291, 7	5,	303, 3	333.	345.	0,	303.	2 8	340.	Ο,	::03	323.	24.8	303	,	303.2	333,2
T K	294. 2 0. 0217	294.2 0.0226	E H	294.2 0.0272	CURVE 47	294.2 0.0230	CURVE 48	294.2 0.0210	CURVE 49	05 300112	294. 2 0. 0251	CUR	291, 7 0, 0131	CURVE 32	291.7 0,0077×	CURVE 53	291.7 0.00728	CURVE 54"	291.7 0.00741	
T k CURVE 33	298.2 0.00766	248 2 0 00582	S S	294.2 0,0115	CURVE 36	294, 2 0,00774	CURVE 37	294, 2 0, 00745	294, 2 0, 00628	CURVE 39	294.2 0.00766	CURVE 40	294, 2 0, 00k37	CURVE 41	294.2 0,6251	CURVE 42	294.2 0.0209	CURVE 43	254, 2 0,0206	
T k CURVE 25 (cont.)		314, 3 0, 00456 325, 8 0, 00485	CURV		300,4 0,00464 301,7 0,06414 329,7 0,0661	CURV.	208 2 0 0(672			314, 5 0, 00703	CURVE 28	298, 2 0, 00464	CURVE 29	298,2 0,00502		298, 2 0, 00703	CURVE :1	298, 2 0, 00502	3	298, 2 0, 00460
T CHRVE 16	298, 2 0, 001:17	CURVE 17	URV	298, 2 0, 00460	CURVE 19	298, 2 0,00339	CURVE 20	298.2 0.00291	CIEV	29K, 2 0, 00657	298 2 0 00544	URV	298.2 0.00406	CURVE 24	23			319, 2 0, 00661 325, 8 0, 00665	URVE	298.2 0.00414
T k		299. 2 0.00199 301. 2 0.00210			318.2 0.00243 323.2 0.00248	CURVE 11	298.2 0.09137	CURVE 12			298.2 0.00136 298.3 0.00141 556.4 0.00142				CURVE 13	298.2 0,00138	CURVE 14	298 2 0 00123	URV	298, 2 0,00126
T k	301.2 0.00237 319.2 0.00230	CURVE 2	300.7 0.0129	CURVE 3	300.7 0.00573	2000	300. f 0, 00363	300 7 0.00628	ĸ	293.2 0.0294	CURVE 7	293.2 0.0142	CURVE 8	293.2 0.0178	CURVE 9	293,2 0.021k	CURVE 10	273.2 0.00179 278.2 0.00187		293, 2 0, 06205

		$\overline{}$																																											
	. .	CURVE 89 (cont.)	0.0121	0.0121	0.0126	0.0136	0.0134	0.0146	0 0159	0.0172	0.0188		CURVE 90		0.0418	0.0180	0.0146	0.0142	0.0138	0.0138	0.0142	0.0159	0.0176	0.0184	0.0205		CURVE 91		0.0435	0.0213	0.0163	0.0155	0.0150	0.0163	0 0176	0.0192	0000	0.0230		CURVE 92		0.010	0.0104	0,00825	
	۲	CURV	315	328	545 1045	. 085 085	000	400	415	435	453		리		90	200	277	293	325	350	200	000	4 4	435	453		D)	j	82	200	275	262	676	36.5	200	415	4.35	455) }	n)	¦	293	303	388 455	
	¥	CURVE #4"(cont.)	0.0100	0.0189	,, yo	COKAF 83	0160	0.0210	0 0204	0.0208	0.0207	0.0205	0, 0203		CURVE 86		0.00142	0.00251	0.00377	0.00418	0.00439	70000	CHRVF 87		0.00155	0.00272	0.00418	0.00439	0.00502	0.00544		CURVE 88	22100 0	0.00101	0.00460	0.00481	0 00544	0.00586		CURVE 89		0.0314	0.0159	0.0130 0.0126	
	۲	CURV	353	373	7	5!	600	303	212	323	333	353	373		ઇl		S ;	200	563	275	067	200	٤	δl	87	200	260	277	230	300	•	آد ا	5	197	260	275	One	002) :	٥l		.g	200	277 297	
=	¥	CURVE 80	0.0223	0,0222	0.0220	0.0220	0.0220	0.0216		CIRVE 81		0.0172	0.0172	0.0170	0.0170	0.0167	0.0164	0.0162	;	CURVE 62		0.0157	0.0131	0.0155	0.0153	0,0151	0.0149		CURVE 63		0.0179	0.0178	0.017	0.0176	0.0175	0.0173		CIRVE 84		0,0195	0,0195	0, 0193	0.0192	0,0191	
(continued)	т	COR	293	303	313		999	323	•	CITE		29.3	::0::	313	353	::::::::::::::::::::::::::::::::::::::	353	#1. #1.		5	,,,,,	200		1.62		353	373		CUR		293	303	515	250	200	17.3	:	217		293	303	313	323	333	
	4	CURVE 75	0, 02 50	0.0264	0.0209	0.0167	0.0146	0.0126	AL TUBIL	2	0.0133	0.0126	0,0117	0.0109	0.0096	U. 00 KX	0.0079	0, 0067		CURVE 77		0.010	0.017	110.0	0.0079		CURVE 78		0.0159	0, 0146	0.0138	0.0126	0.0121	0.0100	6.00.0		or 111 and	1 1 1 1 2	1660 0	0.0269	0.0267	0.0266	0.0264	0, 0262 0, 0258	
DATA TABLE NO. 50	t	CC	293.2	303, 2	323.3	343, 2	10.5	59.5, 2	9115		293.2	303.2	313,2	327.2	333.2	343,2	353, 2	363.2			4	233.2	232.5	3,000	3,000		CUE		293.2	303,2	313.2	323.2	3.63.2	345.2	2.000	3.6.95	į		203	303	313	323	333	353 373	
	¥	CURVE 72 (com.)	0,0199	0.040	0.0:17	0.030	0.028	CHRVE 73		0 000.3	0.033	0.027	0.050	0.087	0, 130	0, 150	0.190	0, 200	0. 198	0. 190	0, 175	0.155	0.00	0.066	0.060	0.055		CURVE 74		0.0083	0,0130	0.0240	0.0670	260.0	0.130	0.200	2.0	0.220	0 190	0.170	0.150	0.130	0.077	0.062	
	۲	CURVE	11.0	17.0	65.0	0 x 0	90'06	3110		0	- m i m	4.2	5.6	٠,٠	۲. 4	9.3	12.0	14.0	16.0	19. 0	23.5	26.0	0.7.3	0.40	75.0	92.0		CUE		2, 75	ව ස්	√ :	ه ع د غ	⊃ ¢	9 u	0 C		27.0	2 4.0	28.0	32.0	40.0	60.0	72.0	
	×	CURVE 70	0,00023	0,00025	0.00027	0.00036	0.000333	0.00037	0.000.0	0.00041	0.00058	0.00086	0.00110	0.00105	0.00120	0.00150	0.00165		CURVE 71		0.0037	0.0071	0.0101	0.017	0.035	0.077	£0.0	0.089	0.087	0.082	0.080	0.073	0.070	0.061	0.048	0.037	0.032	0.028	0.064	CURVE 72		0.0021	0.0102		
	۲	S	1.9	v :i	.	 	न	د ه د د		0.5.1			72.0	79, 0	87.0	95.0	95.0		2		61 : 61 :	ю і Ni :	, .	n r Fi	o e	11.0	12.5	15.0	16.5	21.0	23.0	29.0	33.0	96.0	0.4.6 6.0	9.0	0.10	105.0		cn		₽ .	7.7		
	il.	CURVE 61 (cont.)	0,0195	0,0177		CURVE 42	:	0,0212	2020 0	0.0203	0.0193	0 0188		CURVE 63		0.0210	0, 0205	0.0201	9610.0	6, 0192	0.0187		CURVE 64	6	0.0123	CTRVE 65		0.0295		CURVE 66		0.0106	t 5	CURVE 67	0000	U. 0266		CURVE 68	07000	0.00348	CURVE 69		0.0248		
	<u>-</u>	CURVE	51 12 13 13 13 13 13 13 13 13 13 13 13 13 13	71.00		El			1 1	1	10	1 61		CO	1	303, 2	313, 2	323, 2	333, 2	343, 2	353.2		티	á	23.667	כנו	31	299.2		CC		238.2		밁	6	2.83.2	į	3	9	233.5	CC	1	299.2		

(continued)	
20	
Š.	
TABLE	
DATA	

×	10 (cont.)	0,146	0, 133	0.10	0.101		E 111	25.	0.0266	0.043	0.084	0.141	0.169	0.202	0.230	0.223	0.166	0.109	0.047	0.0388	n, 0322	0.0285	E 112		0.0077	0.0108	0.0172	0.0216	0.0292	0.0438	0.0588	0.081	0.10	0,133	0.133	169	6.185	0.158	0,102	0.0885	0.033	0.0665	0,0635		
۲	CURVE 110 (cont.	62.5	20.8 40.8	100.2	112.0		CURVE 111	1 46	2.34	2.78	3.84	4.59	5.32	. · ·	CF. 6	3.50	17.2	25.8	51.2	59.1	75.5	89.6	CURVE 112		1.76	1.96	2.36	2.36	67.5 67.6	3,48	3.91	5.01	9 9	90°	9.00	5	13.6	17.2	25.6	30.3	35.2	37.8	42.6	-	
. ¥	CURVE 109	0.272	0.0	0.78	1.05	1.26	1.63	76. I	1.84	1.52	94.0	0.72	0.555	0.425	0.045	0.247	0.194	0,166	0.142	0.120		CURVE 110	0.087	0.112	0.152	0.217	0,355	0,40	0.535	0.63	0.725	0.88	86.0	70.0	20.0	88	0.67	0,57	0.505	0.43	0.367	0.322	0.229	0.182	
÷	CURV	1.77	2.36	2.80	3.35	3,45	5.10	7.02	8.04	9.50	13.8	17.1	20.2	20.00	35.2	43.1	51.6	60.7	72.7	93. в		COR	1.88	5.09	2.38	2.77	3.38	× × ×	6.5	4.75	5.16	6,1	7.0	00.0		12.5	15.2	17.9	20.1	23.4	26.6	30.1	40.9	50.9	
*	6 (cont.)*	0.0337	0.0350	0.0192	0.0184	0.0191	0.0184	E 107		9,007663	0.00803	0.00874	0.00912	0.009624	0.0108	0.0102	0.00983	0.0101	0.0107	0.0110	0.01127	0.0115	•	E 1088		0.0141	0.0141	0.0138	0.0139	0.0141	0.0144	0.0145	0.0143	0.0147	0 0147	0.0147	0,0147	0.0147	0.0148	0.0147					
T	CURVE 106 (cont.)*	471	492	494	508	524	5.5.5	CURVE 107		8.067	293.4	296.9	298.9	300.3	302.9	303.2	304.2	304.8	305.9	308.9	312.4	217.4		CURVE 1085		290.9	292.0	294.0	299.1	301.3	302.3	303.3	304.4	207.0	202	309.6	311.1	312.8	314.3	316.7					
¥	CURVE 103 (cont.)*	0.00757	0.00775	0.00786	0.00786	2001 1000	VE 104	0.00808	0.00834	0.00874	0.00874	0.00890	0.00870	0.00890	0.008%6	0.00911	0.00928		CURVE 105		0.01.54	0.0129	0.0131	0.0118	0.01157	0.0113	0.0114	0.0113	0.0112	0.01117		CURVE 106	0.0480	0.0520	0.0313	0.0245	0.0233	0.0216	0.0216°	0.0216	0.0227	0.0252	0.0309	0.0305	
←	CURVE	313	328	332	33%	ē		88	185	190	274	263	202	315	323	330	335		CUR	1	\$	36.	192	275	294	300	367	324	331	338		SI	o	6 8	2 2	8 4 5	274	300	318	339	371	399	443	456	
×	CURVE 100 (cont.)	0.00671*	0.00695*	0.00727		CURVE 101"	0.00411	0.00416	0.00413	0.00428	0.00418	0.00421	0.00743	0.00675	6.00663	0.00711	0.00745	0.00774		CURVE 102	0.000	0.00256	0.00428	0.00428	0.00496	0.00496	0.00510	0.00536	0.00642	0.00599	0.00660	0.00673*	0.00101	0.00727		CURVE 1035	1	0,00383	0.00512	0.00546	0.006:30	0.006:36	0.00707	0.00786	
۲	CURVE 1	311.1	313.2	315.0	į	COR	292.6	296.5	299.2	301.6	303.8	204.0	306.7	306.9	308.8	311.7	313.2	315.1			90	6 a	186	193	275	293	299	30.5	308	314	319	324	336	341	:	CURV		98	183	££.	273	297	300	304	
ᅶ	(cont.)	0.0114	0.00879	0.00870	0.00858	0.00837	0.00000	0.00962	0.0107	0.01:7	0.0129	00	ol .	0.0236	0.0241	0.0238	0.010	0.00975	0.00724	0.00669	0.00640	0.00607	0.00669	0.00690	0.00711	0.00724	0.00711		Æ 100		0.00497	0.00505	0.00321	0,00531	0.00544	0.00545	0.00551	0.00725	0.00699	0.00665	0.00621^{*}	0.00620	0,00634	0.00656	
۴	CURVE 9	215	275	293	313	553	375	395	413	435	155	Li Qui V	S COY	93	97	26	200	207	253	275	167	340	360	380	400	420	440	9	CURVI		292.6	294.6	2.000	301.6	302.9	303.3	303.6	303, 6	304.1	304.8	306.3	307.1	308.3	309.9	
×	7E 96	0.00502	0.00502	0.00502	0.00502	0.00323	0.00523	0.00523	0.00606	0.00669	0.00732	0.00649	0.00669	0.00690	0.00732	0.00753	0.00774	0.00816	0.00837	5	5	0.00266	0.00266	0.00264*	0.00268	0.00268	0.00268	0.00310	0.00310°	0.00320°	0.00326	0.00331	0.00341	0.00345	0.00354	0.00358	0.00368		/E 58		0.0285	u. 0277	0.0282	0.0123	
1	CURVE	298 2	292.2	294.2	295.7	0.000	301.2	302.2	363.2	303.7	304.2	305.3	308.5	309.7	311.7	313.2	315.0	316.7	318.0		CONVE	288.2	290.0	291.5	293.2	295.5	2.77.2	300.7	302.2	304.7	306.7	308.0	311.0	312.2	314 0	316 0	318.0		CURVE		7.4	£6	95	(102	
×	CURVE 92 (cont.)	0.00610	0.00285	0.00270	2		0.00454	0.00498	0.00502	0.00519	0.00552	0.00000	0.00669	0.00644	0.00628	0.00644	0.00644	0.00653	0.06653	0.00665	700	<u> </u>	0.00707	0.00690	0.00686	0.00686	0.00669	0.00661	0.00563	0.00644	0.00649		E 95		0.00655	0,00669	0.00703	0.00707	0.00711	0.00728	0,00828	9,00828	0.00.11	0.001349	Not Shown on plot
	E 3				Ē	CORVE		297.3	300.0	302.8	303.2	204.0	305.4	306.4	307.2	308.4	310.0	310.4	4	313, 4	CYTD VE		294.2	~1	297.5	297.7	299.6	304.2	305.8	309, 1	513.3		CURVE		294.2	295.8	300.2	301.8	303.2	304.9	306.0	307.4	310.9	31:1.1	AS SO

RECOMMENDED THERMAL CONDUCTIVITY OF SELENIUM SUB FIGURE AND TABLE NO.

The recommended values are for high-purity scienium. The recommended values for sclenium single crystals that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures above 20 Kt. Below 20 kt to values are intended only for indicating the general trend, since the thermal conductivity near and below the corresponding temperature of its maximum is highly sensitive to small physical and chemical variations of the specimens. The recommended values for amorphous selenium are thought to Trin K, krin Watt em 1 K-1, Trin F, and krin Btu hr 1 ft-1 F-1 be accurate to within 10%.

* Values in parentheses are extrapolated or estimated

& 9. 5.

RECOMMENDED VALUES*

	T, '	87.5	88.4	89.3	90, 2		91. 1	92. 0	92. 9	93. ≉		£. 7	96. 5	98.3	116, 3																											
	k ₂	0.423	0.393	0.380	0.370		0.362	0.358	0,358	0.361		0.365	0.372	0.379	0.452																											
	¥.	0,00732	0, 00681	0.00657	0.00640		0,00627	0, 00619	0,00619	0,00625		0,00631	0.00644	0.00656	0.00782																											
	T.	304	304. 5	302	305, 5		306	306. 5	307	307. 5		308	309	310	320																											
	T ₂	-459.7	457.9	-456.1	-454.3	452.5	-450.7	-448.9	-447. 1	445.3	-443.5	-441.7	-439. 9	438.1	7 36.3	73. 2	432.7	430.9	427.3	-423.7	-414.7	405.7	-:396.7	-387.7	-378, 7	-369, 7	-351.7	-333. 7	-315, 7	-297. 7	-279.7	-189.7	ا 99. ا	- 9.7	32.0	62.3	71.3	80.3	82. 1	83.9	85.7	9e. 6
w	ŗ.	0	(0.00751)	0.0136	0.0168	0.0187	0.0198	0.0207	0.0216	0.0225	0.0234	0.0243	0.0251	0.0260	0.0269	0.0277	0,0285	0.0294	0.0309	0.0324	6. 0358	0, 0390	0.0422	0.0455	0.0487	0.0520	0.0589	0.0653	0.0722	0.0786	0.0855	0.118	0.152	0. 208	0.247	0.280	0.231	0.305	0.308	0.311	0.314	0.316
Amorphous	, r	•	(0.000130)	0.000236	0.000290	0.006323	0.000342	0.00035R	0.000374	0.000390	0.000405	0.000420	0.000435	0.000450	0.000465	0.000480	0.000494	0.00050H	0.000534	0,000560	0.000619	0,000675	0.000730	0. 0007вя	0,000843	0.000920	0.00102	0.00113	0.00125	0.00136	0.00148	0.00204	0.00263	0.00360	0.00428	0.00484	0.00504	0.00528	0.00533	0.00538	0.00544	0.00547
	T.	0	-	~	ဗ	4	s	9	2	æ	6	10	7	12	13	7.	15	316	18	9 2	25	30	35	40	45	33	99	2	æ	3 5	100	150	200	250	273.2	290	295	300	301	302	303	303, 5

T in K, ki in Watt cm-1 K-1, T2 in F, and k2 in Bu br-1 ft-1 F-1.

* Values in parentheses are extrapolated.

en en de state de la company de la company de la company de la company de la company de la company de la compa

SPECIFICATION TABLE NO. 31 THERMAL CONDUCTIVITY OF SILICON

(Inpurity $\le\!0,\,20\%$ each; total impurities $\le\!0,\,50\%)$

[For Data Reported in Figure and Table No. 51]

mp. Reported Name and Composition (weight percent), Specifications and Remarks e. K. Error, c. Specifications	5. 1.	1-149 1-5 Si 1 Pure single crystal; n-type; specimen cross sectional area 1,75 x i, 5 mm²; electrical resistanty 6,7 ohm em at 295 K.	*C**	-100 Si 2	Cold-doped single crystal; p-type; axis of specimen [100] direction; 5 x 9, 236 x 0, 221 cm; carrier concentration 10 ¹⁵ cm ⁻³ ; electrical resistivity 18-26 ohm cm 21 room temp.	3-579 ±5 toom temp; FH stainless steel used as comparative material.	5-533 ±5 Pure single crystal; n-type; electrical resistivity 3 ohn; em at room temp, FH stainless steel used as comparative material.	7,846 ±26 KA-1 (Knapic) p-type single erystal; 22 mm dia x 8 mm thick; specimen axis in (111) orientation; supplied by Knapic Electro-Physics; carrier concentration 10 ¹⁸ cm ⁻³ , Armon iron used as comparative material.)-989 ±20 KA-1 (Knapic) Second run of the above specimen.	1-997 ± 20 KA-1 (Knapic) Third run of the above specimen.	±20 KA-1 (Knapie)	9,778 ±20 KB-1 (Knapic) n-type single crystal; 23 mm dia x 3 mm thick; specimen axis in (11) orientation; supplied by Knapic Electro-Physics: carrier concentration 5 x 10 ³⁶ cm ⁻² ; Armeo reconstruction axion used as comparative material.	7, 906 ± 20 KB-2 (Knapic) Sımılar to above.	s ±20 KB-2 (Knapic) Second run of above specimen.	9-1002 ± 20 KB-2 (Knapic) Third run of above specimen.
Temp. Range, K	1.7-100	1, 9-149	283	1, 8-300	2, 1-80	303-579	328-533	767, 846	769-989	756-997	687, 826	679, 778	857, 906	748	669-1092
Year F	1954	1956	1954	19547	19561	1960	1960	1962	1962	1962	1962	1962	1962	3961	1962
Method Used	٦	-1		- i	ı	ပ	ပ	ပ	ပ	Ö	ပ	ပ	ပ	၁	ပ
Ref. No.	274	343	155	3	2 2	578	578	692, 745	692, 745	692, 745	692. 745	692. 745	692, 745	692, 745	692.
Curve No.	-	61	er.	. 4	2	9	7	æ	6	10	11	12	ដ	41	15

SPECIFICATION TABLE NO. 51 (continued)

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight persent), Specifications and Remarks
91	678	ы	1962	588-1073			p-type single erystal; 0, 25 in. dia v 1, 5 in. long; corrected for isothermal conditions and shield.
17	678	ſεŝ	1962	593-833			The above specimen held for some time at 1073 K; measured in the cooling-down period.
18	829	ш	1962	334-473			The above specimen measured with the length of the thermocouple wire between junctions and shaeld increased by a factor of approx two to three.
19	679	-1	1961	3, 5-210	10	Q-20	p-type single crystal; boron doped (1 x 10 ¹⁵ atoms cm ⁻³); O concentration, 2 x 10 ¹⁷ atoms cm ⁻⁴ , dimensions 3 x 3 x 2 0 mm; supplied by H. L. Taylor. Texas Instruments, Inc.; electrical resistivity reported as 7.2 ohm cm at 0 C.
20	679	ت	1961	2, 6-190	01	M-1	p-type single crystal; boron doped (2 × 10) ² atoms em ⁻³); oxygen concentration, 10 ^R em ⁻³ ; dimensions 3 × 3 x 20 mm; supplied by F.J. Bourassa, Electronics Chemical Div., Merck and Co., Inc.; electrical resistivity reported as 2000 ohm em at 0 C.
21	089	7	1961	5, 5-246		ž	n-type single erystal; oxygen concentration, 1.4×10^{18} cm ⁻² ; specimen cross section 0, 625 × 0, 627 cm; carrier concentration 3, 5 × 10^{44} cm ⁻³ ; dislocation density of the order of 10^6 cm ⁻² ; electrical resistivity reported as 12 ohm cm at room temp.
23	680	r	1961	5, 2-208		Ks	n-type single crystal, oxygen concentration, 6 x 10^{17} cm 3 ; specimen cross section 0, 622 cm; carrier concentration 3, 5 x 10^{12} cm 3 ; dislocation density of the order of 10^6 cm 2 ; electrical resistavity reported as 110 ohm cm at room temp.
ន	089	-1	1961	5, 3-200		M6	n-type single crystal; phosphorus doped, oxygen concentration, $\pm 10^8$ cm ⁻³ ; carrier concentration 1.1 x 10^{15} cm ⁻⁴ ; specimen cross section, 0,634 x 0.640 cm; dislocation density of the order of 10^4 cm ⁻² ; electrical resistivity reported as 5 ohm cm at room temp.
53	689	٦.	1961	6-120		M4	n-type single crystal, phosphorus doped, oxygen concentration. 10% cm. 3, carrier concentration 4 x 10 th cm. 3, cross section 6.637 x 0, 629 cm; dislocation density of the order of 10% cm. ² , electrical resistivity reported as 260 ohm cm at room temp.
25	680	≓	1961	6. 3-29к		SA-1	p-type single crystal, boron doped; oxygen concentration 7×10^6 cm ⁻³ ; chectrical resistivity reported as 3,0 ohm cm at room temp.
56	089		1961	5, 2-275		M3	p-type single crystal, horon doped; oxygen concentration -10^{16} cm 3 ; cross section 0,635 x 0, 632 cm; carrier concentration 4, 0 x 10^{16} cm 3 ; dislocation density of the order of 10^4 cm 2 ; electrical resistivity reported as 4, 5 ohm cm at room temp.
27	089	J	1961	5. 9-300		M S	p-type single erystal; boron doped; oxygen concentration 110 ¹⁶ cm ⁻³ ; specimen cross section 0,630 x 0,640 cm; carrier concentration 4,0 x 10 ¹⁴ cm ⁻² ; dislocation density of the order of 10 ⁴ cm ⁻² ; electrical resilivity reported as 45,5 ohm cm at room temp.

SPECIFICATION TABLE NO. 51 (continued)

Composition (weight percent), Specifications and Remarks	p-type single crystal; specimen axis in [111] orientation; 0.9 cm in dia, 6 cm long; electrical resistivity reported as 107 ohm cm at 300 K; thermal conductivity values calculated from measured data of thermal diffusivity using the specific heat data taken from Dennison, D. H. (Institute for Atomic Research, Ames, Jowa) and density (determined by Smakula, A. and Sils, V.) 2, 32902 a.3 x 10 ⁻⁶ g cm ⁻³ at 298 K.	n-type single crystal; 0.9 cm in dia, 6 cm long; specimen axis in [111] orientation; electrical resistivity reported as 33.9, 50.0, 58.0, 42.0, 6.2, and 0.1 oftn cm at 300, 400, 460, 500, 650, and 1000 K, respectively; thermal conductivity values calculated by the same method as above.	n-type single crystal: 0.9 cm in day, 6 cm long; specimen axis in [100] orientation; electrical resistivity reported as 1010, 2000, 1700, 125, 6.2, and 0.1 ohm cm at 300, 375, 400, 500, 650, and 1000 K, respectively; thermal conductivity values calculated by the same method as above.	High purity; p-type single crystal; specimen axis in [111] orientation; 2 cm long and average dia 0.44 cm; vacancy clusters $< 1 \mu$ in dia; electrical resistivity reported as ~ 2000 ohm cm at room temp; measured in helium atmosphere.	n-type single crystal; 2.6 cm dia N ~ 13 cm long; axis of cylinder in [111] direction; produced by floating zone process in argon atmosphere; dislocation density of the order of 10 ⁶ cm ⁻² ; carrier concentration, 1.27 × 10 ¹⁸ cm ⁻² ; electrical resistivity reported as 440 ohm cm at room temp; measured in belium atmosphere; after the measurement, room temp resistivity drupped to 177 ohm cm, carrier concentration rose to 2.46 × 10 ¹⁸ cm ⁻³ .	Single crystal; p-type; impurity concentration 2 x 10 ⁸⁵ atoms cm ⁻³ ; supplied by Battelle Memorial Institute; ground to a dia of 11. 8 mm and sliced to 7 mm thick; measured in a vacuum of 10 ⁻⁵ mm lig; Armoo iron (99,9 ⁺ Fc) used as comparative material.	Second run of the above specimen.	Third run of the above specimen.	Similar to above except impurity concentration 6 x 10 status cm.	Second run of the above specimen.	Polycrystalline, p-type; major impurity boron, 5 x 10th atoms cm 1, 1,24 cm enterined dia, 3,2 cm long; electrical conductivity reported as 3,8 x 103 obm -1 cm at 300 K.	Synthetic single crystal, p-type; major impurity toron, 3 x 10% aloms cm % 0, 50 cm circotive dia, 2, 6 cm long; electrical conductivity reported as 2, 2 x 10% ohm "lem lat 300 K.
Name and Specimen Designation	V	1.5				S-B-1	S-B-1	S-B-?	\$-B-2	S-B-2	13 -3	R-5
Reported Error, %				£ 5	က #						\$ #	÷ 5
Temp. Range, K	300-N50	775-1200	1115-1370	4, 3-304	418-1577	320-578	300-495	404, 307	302-467	336-594	10-320	2, 1-300
Year	1963	1963	1963	1564	1964	1961	1961	1961	1961	1961	1961	1961
Method	2	a.	ů.	ä	œ	ပ	ပ	υ	ပ	ပ	1	ı
Ref.	681.	631. 660	6S1.	75	3	747,	747.	747.	747.	747,	748	748
Cen e	ži –	29	30	31	ឌ	g	ਨ	35	36	37	38	39

SPECIFICATION TABLE NO. 51 (continued)

1	Be	Method	1	Temp	Reported	Name and	Composition (weight percent). Specifications and Remarks
S S	No.	Used	Year	Range, K	Error, %	Specimen Designation	2 0 x 10 ²³ atoms cm ⁻² ;
9	748	1	1964	3, 2-340	ទ	R-5	Synthetic single crystal, n-type; major impurity prospection, 2, 20 cm effective dia, 3, 2 cm long; electrical conductivity reported as 3, 6 x 10 ² ohm "1 cm at 300 K.
7	748	ı	1964	3, 8-300	t S	R-55	Synthetic single crystal, n-type; major impurity phosphorus, 1, 7 x 10 ³⁰ aloms cm ⁻³ ; 0, 55 cm effective dia, 1, 7 cm long; electrical conductivity reported as 1, 5 x 10 ³ ohm ⁻¹ cm ⁻¹ at 300 K.
4 61	749	7	1961	2, 7-290	m	Si-1	High purity; 0.2 x 0.4 x 2 cm; supplied by Texas Instruments Inc.; electrical resistantivity 49.600 ohm cm at more than the companies.
₹	749	د	1961	3, 1-106	п	SI -2	9 .
4	749	٦	1961	3.6-290	c	£;- 3S	Similar to the above specimen but with more impurities; electrical resistivity 1.2 ohm cm at more hearest entering 96.
4 S	945	1	1961	5, 8-210	e	N. A.	Similar to the above specimen but with more impurities; electrical resistivity 0.57 ohm cm at max thermal conductivity.
9#	286	ပ	1956	313		õ	p-type; electrical resistivity 2 to 3 ohm cm at 293 K; Firth Brown F. H. steel used as comparative material.
4.	750	Q.	1961	311-1013	C)	Sl-142	Solid specimen; electrical resistivity 100 ohm cm at the form measured data of measured in vacuo; thermal conductivity values calculated from measured data of thermal diffusivity using specific heat data taken from Amer. Inst. 14ysics Handbook (McGraw Hill Book Co., New York, p. 4-42, 1957).
4 35	751		1963	84-285			Virgin specimen. Specimen except irradiated with 1.2 \times 10 ¹³ fast neutrons cm 4 .
\$ G	751 752	a.	1963 1962	78-250 310-1220		Si-1142	Pure; intrinsic; single crystal; thermal conductivity values calculated from measured data of thermal diffusivity using specific heat data taken from Amer. Inst. Physics
£0	86x	٦	1965	9,3-299		-	Handbook (McGraw Hill Book Co., New Tork, 1997). Prepared from high-purity vacuum-floating-zone single crystal 9-type (residual boron material obtained from Merck and Co.; 0.152 cm wide x 0.046 cm thick; long disnession to the <111> direction; electrical resistivity 5000 ohm cm, carrier disnession no.3 x 10º cm. 3.
3	90%	J	1965	47-59			The above specimen irradiated in < 110> direction with a total time-integrated flux of 8.0 x 10 ¹⁸ 2-Mev c cm ⁻² on a length of 1.0 cm; annealed at 60 K for 15 min.
គ្និត្តម	599 400 400 400 490		1965 1965 1965 1965 1968	9, 5-76 9, 3-132 9, 1-146 9, 1-176 8, 8-227			The above specimen annealed again for 15 min at 77 K. The above specimen annealed again for 15 min at 135 K. The above specimen annealed again for 15 min at 150 K. The above specimen annealed again for 15 min at 180 K. The above specimen annealed again for 15 min at 230 K.

SPECIFICATION TABLE NO. 51 [continued]

Composition (weight percent), Specifications and Remarks	The above specimen annealed again for 15 mm at 280 K.	The alaxe specimen annealed again for 15 mm at 410 K.	name of the boardy greenum-floating-cone single crystal p-type (residual boron)	maternal obtained from Merck and Co., 9, 123 cm wide x 0, 048 cm blick; long maternal obtained from Acres and Co., 6, or and constituted 5000 ohm cm; carrier	dimension was the 111 different, excession of the concentration ~3 x 10 ¹² cm ⁻³ .	The above specimen repadated in 110 direction with a total time-integrated flux of	8, 0 × 10 m 2-MeV e em - on a range of a contract of 17 K.	The above succinen annealed again for 15 min at 135 K.	The share suscemen annealed again for 15 mm at 150 K.	The above Specimen anneated again for 15 min at 180 K.	The above succinen annealed again for 15 min at 230 K.	The above specimen annealed again for 15 min at 280 K.	The above specimen annealed again for 15 min at 410 K.	Assolutive dought 15 N 4 X 2 mm; long dimension in the < 1117	direction; obtained by Healing zone technique; electrical resistivity of 30 vain con-	irradiated at 39 C with a fast-neutron integrated flux	Similar to the move specimen. 1. 1. 1. 10 ¹⁵ n cm ⁻² .	Simular to the above specimen, irradiated at 30 C with a fast-neutron integrated flux	2, 5 s, 10 ft n cm 2. Similar to the above specimen; trradiated at 30 C with a fast-neutron integrated flux	1.7 x July nem 2.	Simular to the above specimen; irradiated at 30 C with a may mean 3, 4 x 10 ⁵⁰ n cm ² .		used as comparative material.	n-type single crystal; No 2.3 x Cm	Armen iron used as comparative material.	2nd run of the above specimen.	3rd run of the above specimen.	
Anne and Automated		┩ .	-	÷ı		e		çı e	21	5N S	24 - 5	ei (ei (÷1	pe							S-1		S-2				
Reported	i														10 in 4-20K and	15 in 20-100K	Same as above	-	Same as above	Same as above	Some as above							
femb	4 3612	9, 7-172	9, 4-300	8, 6-303		i	00-77	8, 9-76	8, 9-132	8, 8-146	8, 7-176	8, 4-226	8.5-81	8, 9-301	5,4-285		5, 5-28%		4, 9-277	5, 5-173	5, 2-286	565 1079	201-100	596-1073	8 5	356-821	143, 217	
		2965	1965	1965			1361	1965	1965	1963	1965	1965	2967	1965	3965		1965		1965	1965	5961		2 1	1965	1965		1965	
 Method	1.504	نہ	نـ	ىـ			- :	J	J	نـ	J	د	٦	_	-		د		٦.	٦.	ب	i	ပ	ပ	၁		ပ ်	
1	, S	662	66.4	668			899	390	658	399	56%	989	899	668	339.	7,55	339,	7 5	339. 853	583	8 28	-	335	335	335		33 33 35	
	?	3		; 3	<u>.</u>		T -1	ij	! @	3	:2	99	13	7.	, <u>"</u>		70		1.1	15	į.	:	7.	75	92		7.	

SPECIFICATION TABLE NO. 51 (continued)

Salarisand Bernaria	Composition (weight percent). Specifications and accuration	Wannie Fleetro-Physics; 23 mm dia x 8 mm thick;	n-type single crystal; supplied by halp control of the cristal of x 10 th cm ⁻³ ; circular cross-section perpendicular to 1112 direction; N _D ~5 x 10 th cm ⁻³ ; Armon intention as comparative material.	0.1 P-doped; n-type single crystal; measured in a vacuum of 5 x 10 4 to 10-4 torr; Armee from used as comparative material.
	Reported Name and Free, % Specimen Designation			Si-E4
	Reported Freez. %		2	20-25
	Tenty	nauge, n	98-255	588-1276
	Year		1965	1967
	Method	Used	ပ	υ
	urve Ref.	Š	901	903
	Curve	d N	7.9	88

DATA TABLE NO. 51 THERMAL CONDUCTIVITY OF SILICON

(Impurity <0, 20% each; total impurities <0, 50%)

[Temperature. T, K. Thermal Conductivity, k. Watt cm-1K-1]

×	9 (cont.)	1,30	1.90	20.00	00.0	6.75	æ.	9.50	10.00	12.50	12.00	13.2	13.2	14,5	13.6	11.0	10.02	8, S0	8,00	7.00	5, 50	4,50	5.00	3, 50	3, 70	3, 00	3, 00		E 20		0.85	1,70	2.65	4.50	6.50	9.50	16.0	13. C	17.0	28.0	26.5	30.0	25.5	
۴	CURVE 19 (cont.	8.5	9.0	12.0	0.4.0	16.0	18.0	20.0	23.0	29.0	31.0	40.0	50.0	55,0	63.0	80.0	9 9. 5	111,0	120.0	126.0	140.0	145.0	149.0	170.0	199. 5	199. 5	210.0		CURVE		2.63	3. 50	4, 10	2.00	6.0 ₀	6.50	8, 00	8, 10	10,00	15.0	18.0	26.0	21.0	
×	(cont.)	0.37	0.36	0, 37	0; ;0 ;	0.27	0.32		7E 16		0.741	0.694	0, 735	0.680	0,613	0.529	0.459	0.398	0, 333	0.263		'E 17°		0.621	0,417	0.377		'E 18		1.111	0.847	0.926	0.794	0.769	0.840		E 19		0.200	0.395	0.505	0.950	1.30	
۲	CURVE 15 (cont.	875	668	941	200	666	1002		CURVE	!	588.2	627.2	641.2	662.2	676.2	741.2	798.2	863.2	982.2	1073.2		CURVE		593.2	781.2	883.2		CURVE		334.2	387.2	390.2	413.2	441.2	473.2		CURVE		3.5		S	7.0	7.5	
×	CURVE 9 (cont.)	0.38	0.35	9	UKVE 10		0.45	0,45	0. 41	0.35	0.34	0.31	0,30	0.31	0.31		CURVE 11		0.56	0.39	•	CURVE 12		0.52	0.44		CURVE 13		0.42	0, 34		CURVE 14		0,48		CURVE 15	<u> </u>	0.63	0, 56	0,42	0.46	0.37	0.39	
H	CURVE	834	686 6	Č	3	i	7.56	8	\$	848	888	924	924	962	- - -		COI	İ	657	826		COI	•	619	778		CUI	Ì	857	906		Car		748		COI	l	699	746	116	835	857	698	
¥	(cont.)	10.05	11.60	12. 10	12.30	12.90	12.80	12.70	12.60	11.50	10.90	10.30	9.50	9.00	8.15		VE 6	1	1,27	1.16	1, 13,	0.975	0,778	0,761	0,653	0.561		Æ 1		1.13	0.933	0.837	0.661	0, 632		Æ 8	1	0.48	0.35		6 37		0.46	
۲	CURVE 5 (cont.)	15.20	17. 50	18, 70	19, 30	21. 50	26, 00	31.5	36.0	44.5	51,0	58,70	66, 00	74,00	80,50		CURVE 6	}	303, 2	328.2	333,2	373,2	435.2	459.2	523.2	579.2		CURVE		528, 2	406.2	410, 2	508.2	533, 2		CURVE		767	946		CURVE		769	
*	CURVE 4 (cont.)	13. 40	13.00	12.50	37.50	11.70	11.20	10. 20	9, 15	8.50	8, 40	8 8 8	8, 00	4 8	3, 70	2, 55	2.48	1.85	1, 76	- 		CURVE 5	1	0.117	6. 128	0.168	6, 173	0.238	0,250	0.345	0.500	0. 776	1.02	1, 76	2.60	3, 60	4.53	5.50	6.40	8:	8.40	9.30	08 6 6	
٦	CURVE	41.5	45.0	20.00	36.2		65.0	71.0	80.2	<u>X</u>	90.2	90.2	92.0	150.0	154.	195.0	200.0	250.0	276.0	300.0	•	CUB		2,05	2.15	2, 38	2. 42	2.60	2.65	3.00	3.50	4 .00	4.50	5.30	6.20	7.26	8, 15	9.20	10.00	10, 50	12.70	13, 60	14, 50	
¥	(cont.)	7.95	7, 03	9 6	5. (2	5. 13	4. 52	3, 29		CURVE 3		1.088		VE 4		0.222	0.252	0,315	0.450	0,675	1.06	1, 30	1.66	2, 50	2, 73	3, 50	4.98	6.20	7.50	8.90	9.98	11.40	12.00	13, 30	16.00	17.00	17.50	17.00	16. 50	16.50	15, 50	15.00	13, 50	
۲	CURVE 2 (65.6	72.0	ກ ເ ກໍາ	91.3	93.4	116.0	149.0		CUR		283.2		CURVE	1	8	1,95	2.05	2.45	2.75	3.23	3, 60	3,75	4, 45	4. 53	5.00	5.92	6.70	7.30	8. 10	9.00	9, 95	10.3	11.6	14.5	16.8	20.4	23.0	25.0	25.3	29.0	33.0	39.0	
-22	VE 1	0.0087	0.0101	0.0172	0.027	0.0468	0.0803	0.175	0.265	0.478	0.720	1. 168	1.595	2.290	2.810	3,330	4,670	5, 120	5.270	5, 270	5, 225	5,060		VE 2	}	0.186	0.274	0.356	0.575	0.898	1.60	4.4]	5.03	5.30	6.62	9.91	10.8	11.7	12.2	11.5	11.1	11.1	8, 49	
۲	CURVE	1,75	1. 88	 	2.83	3, 40	4.40	6.65	7.41	9.24	11,23	14, 30	17.30	21.60	25, 30	28.90	34, 20	44, 80	62.00	78.00	36.65	100.00		CURVE		1.91	2. 13	2. 4	2.91	3.44	4.29	6.99	7.65	7.81	9.03	.v. .v.	14. ¥.	17.9	22.4	27.4	8	38.5	57.6	

	. . .	29 (cont.)	0.30	00.0	0, 29	0.29	0,27	0.27	7 6	CORVE 30	0, 30	0.28	0.28	F. 2	60.0		0.28	0.28	0.27	0.27	0.27	K 7. 0	7 3 7 3 1	10.0			7, 96					26.37	35,78									1.56,		
	T	CURVE	1030	1030	1090	1115	1190	1200	į		1115	1140	1160	961	1220	1230	1250	1270	1320	1340	1:360	137.0	ario		4. 26	5,29	7, 53	10, 59	4. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1	17,40	17.69	18.16	19, 23	25, 60	32.36	43, 25	66.89	93, 21	138, 47	199, 36	200.18	299, 10	299. 15	304, 04
t=2.1	-x	7 (cont.)	7.50	3 6	4, 75	2.30	2. 00°	1, 75	1.64		E 28	•	1. 42	1. 22		46	0, 72	0.76	0.72	0.66	0,64		n de		0.50	0.47	0.45	0, c	0.41	0.40 36		E 29		0.41	0.41	0. 40	0,35	0.3 4	0.33	4.0	, e	0.31	 	; ;
	+	CURVE 27 (cont.	116.0	120.0	148.5	240.0	265.0	280.0	290.0	203.0	CURVE 28		300	350	400	420	445	470	495	520	545	252	000	620	969	720	745	770	695	020	QC C	CURVE		775	800	8.30	820	880	006	626	950	975	30.00	201
	æ	26 (cont.)	26.5	24.0 18.0	17.0	15.4	14.0	12, 3	10, 5	7.50	2, 20		:	12	4 95 x	 	7.70	9, 50	13.0	15,0	16,0	19.0	0.00	0.25	40.0	42.0	43.0	46.0	45.0	0.18	45.0	44.5	42.03	40.0	38.0	34.5	24.5	18.0	16, 3	15.0	13.0	11.0	9.00°	%. 30
	۲	CURVE 2	55.0	39.6	75.0	80.0	85.0	0.06	99.7	12.0	250.0	275.0		CORVE								0. 0. 1.						21.0				32.0	34.0	35.0	37.0	40.5	57.5	7:3.0	80.0	82. 5	87.5	95.0	106.0	109.0
ned)	×	25 (cont.)	11.1	11.0	. 05.9 . 50.9	9, 20	96 96 96	я. 50 _.	8.00	7.50	9.20	5, 65	5.00	2, 55	2	2.2	1. 9: 1. 9:	1.80	1, 42		58	9	2 2	7 40.	10	5, 60	7, 65	98 ∉ 5 ;	11.6	4.01	13.3	24.0	28.0	2-), 5	32.5	35, 5	37.0	39. 5	41.0	41.5	13.0	42.0	39.0	, 3. U
(continued)	۴	CURVE 25	66.3	71.0	81.5	85.0	87.5	0.05	92.0	97.0	107.0	118.0	123.0	150.0	0.002	225.0	242.0	255.0	298, 0		CURVE 26		02.0	, , , ,	8 8	8, 00	9, 00	10.0	11.0	× 5	4. 4.	16.0	17.0	18.0	18.7	20.0	21.0	2:1, 0	25. 0	27.5	28.5	32.0	ნ ლეგ დე	
E NO. 51	×	24 'cont.)	30.5	> c	0	. 0	3.0	0.	0	2.5	. 50	8, 50	. 90	6 8	3 %	3	25	1	. 80 80	2, 30	. 10	4.40	8 9	8 6	8 0	11.0	. 2	12.8	o .	o •	٠,٠	15.0	. 2	5.1	15.0	0.0	14.6	0.	12. 9	en	4.	12.2	- ن	٥.
DATA TABLE NO.	٠	CURVE 24 '	45.0 30											110.0			CURVE :	ĺ			8.00	40	>	12.0		17.0		20.0									_	45.0 1.		54.0				
ñ												_									•			_																				
	*	E 23 (cont.)	42.3	44.8	45.0														12.2				HVE 24		3 %			25.0									30.0	52.3	20,0	31.0	49.8	40.5	9 9 9	
	⊢	CURVE	16.9	1.71	19.0	20.0	21.5	24.0	26.0	27.0	80.0	33,0	34.5	38.5	9.5	57.0 62.0	82.0 0.23	85.0	88.5	92.0	200.0	Š	밁	,	9 6	7,50	9, 75	11.0	13.0	14.0		16.7	17.8	18.2	19.0	29.0	21.5	22, 5	23.8	26, 0	30.0	36, 0	40.0	42. O
	*	(cont.)	8.90	13.0	. 4. 8. 4.	16,0	18.0	19.5	21.0	22.7	, , , o	28.0	29. 5	30.8	32.0	32.7	32.9	32.0	32.0	30.6	29. 5	28.0	16.4	4 :		11.2	11.0	10.0	2, 50		523	5, 30	10, 7	13.6	14.5	17.7	19, 2	21.6	24.6	2 k, 6	31.0	0.H	ر ا ا	o 2
	۲	CURVE 22 (cont.)	6.30	2.50) ()	9,29	10.5	11.0	11.4	12.0) E	14.5	15. 1	16.2	16.7	⊋. ç.	2.02	23.5	24.5	25.1	27.5	0.9 9.5	55.6	69.0	74.0	. 25 . v	88.0	90.0	208.0		CURVE 23	5, 25	7,00	8,00	8.50	9.20	9.70	10.2	11.9	12.0	0.:1	14.0	15.2	5. 5.
	×	(cont.)	26.5	23.5	16.0	15.0	17.7	14.0	11.2	9.00	6 . 90	221	[5.60	6.45	7.50	16.9	19.5	19.4	19.6	19.1	18.5	18.0	17.2	16.5 5.5	14.0	12.9	12.7	11.0	10.0	000		8, 50	7. 30	7.00	6.60	5,30	2, 15	1.54		: 22		8 :	<u> </u>
	1	CURVE 20 (cont.	24.0	30.0	73.0	0.55	8	109.5	110.0	140.0		CURVE		5, 50	5.90		12.45	15,5	18.0	20.5	23.5	25.0	28.0	30.0	55. 5 0 . 45.	0.65	41.0	45.0	0.09	70.0	75.0	0 (n	28.0	95.0	97.0	100.0	119, 8	240.0	246.0		CURVE 22		021 12 1	3

Set shown on plot

	×	ont.	77	. y	74	51	85	£6	11	97	¥ \$	2 6	. 16	82	64				*	٠,	~ c	n c	,		4					•	٠ 4										#					
	7	CURVE 50 (cont.)	0.877		0.7	0.7	9.0	0.5	0.5	0	0 0	, ,	0.2	0.282	0.2		CURVE 51		27 4.84	٠.									19.1							22.5								13		
_	L	CURV	439	4 5.55	489	503	3	613	725	.		1010	1042	1136	1220		히		9. 27	oi i			75.0	15.0	15, 1	16, 1	16.5	15. (22. 1	75	24.	78.	ன் 6 நேர்	30.1	24.0	F 65	3		,	40.0		9 9	65	0,		
	.	CURVE 47 (cont.)"	0.775	0.690	c. 602	0.515	0.410	0.346	908.0	i	CURVE 48	0 61	7.7	10.0	9.50	8, 50	6, 50	5,30	4.20	3.20	2.36	79.1	01 TV0117		2.92	2, 92	2, 80	2.70	2,75	2.66	2.60	2.60	2.03	1.70	1.41	1.23	1 24	:	Section Control	200	318	1, 192	1 109	0.962) } }	
	(CURVE	490	540 500 500	615	723	818	916	1018			70	06	96	100	108	120	136	160	190	230	c8 Z	מונט		38	2	94	86	100	108	112	115	140	170	900	240	05.0	2	0.00		310	336	357	007	?	
	. ¥	(cont.)	3,55	3.70	3, 15	2.6	2. 1	2.06		/E 45		0.123	0.248	0,400	98.0	1.7	3.4	6.5	5.5	ري دي	7.0	4.0	n :	: id		5.9	3,6	3,45	3, 25	3.08	2.4		£ 46	÷	67.1	CHRVF 473	:	1001	700	1.204	0 420	28.0	0 877	0.813		
	۲	CURVE 44 (cont.)	172	081	199	230	275	290		CURVE 45		y y	- e:	: cz	10,1	12.9	16.0	21	25	£	7 7	5.2	4.00		104	110	152	163	170	172	210		CURVE 46	0	313.6	CHRI			110	920	40.5	438	447	47.1	•	
ned)	×	CURVE 43 (cont.)*	1,28	4. c	4.15	7.5	11.0	16, 9	17.8	18.0	16.5	12.1) 'S	2.5		E 42"		0.2	6: :0	0.52	0.94	1.28	2.279	0 ° °	 	9	7.7	4.6	o. 6	12. 9	12. 5	14.0	14. 0 :	0 to	n u	0 : S	o ur		e :			4 6	4	. 4 . 55	;	
1 (continued)	۲	CURVE 4	3, 56	. 50 . 1	· 8	7.0	9. S	15, 5	22	28	39	29	901	106		CURVE		3.6	4 .9	6, 5	7.0	 	o o xoʻq	9.6	14.0		17.5	20	22	27	31, 5	39, 5	æ •••••	ខ្លួ	# 0	7 C	103	701	011		611	251	338	142	4	
BLE NO. S1	×	CURVE 41 (cont.)	0.0085*	0.0175*	0.030	0.080	0, 13	0.24	0.35	1.0	1, 18	 8	1.02	· ·	E 42	1	0.85	1,59	2,65	4.40	6, 70	9.20	12.5	10.0	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	28.0	28.0	27.0	26.9	24.0	16.9 ^a	ं 0 है।	16.0	17.1	· ·	o = x	o c	;;	2.0	6.3		2 4	308	-	2	
DATA TABLE NO.	ŕ	CURVE	7.4	20.5	14.	20	25	30	37	10	& ;	145	900	2	CURVE 42		2.7	3.6	4.3	5, 3	6.0	6.7	ල ව ත් (10				3:	110	22	7.1	250	200	CHOVE A	A COL	40 %	, c.	÷.	
	*	CURVE 39	0.00108	0.00145	0.0023	0.0045	D. 0050	0.0054	0.0115 *	0.05	0.033	0.064	9 7 9	6. to	0.38	0,43	0,49	6.50	0.53	0.55	0.52	0.53	0.49	0.47	CURVE 40		. 900 0	000.0	0,0155	0.02:3	0.075	0.248	. 8.0	6 ° 0	2 ; -: ;	3.73	o •		1.2	1.05	;	CURVE 41	2000	0.000	0,00475	
	(1	CO	2.1	2,75	6 6 7 8	. 4	9	2.0	10, 05	14.0	17.5	22.0	33. c	3 5	55.0	62.0	70,0	85.0	0.06	105	145	530	250	90S		i 	٠	1		6.5	11.0	15.5	22	27	35	<u>د</u> د	5 6	907	900	0 1 :	č	31	ď	c e	2.0	
	×	CURVE 34 (cont.)*	1, 017	1, 197	1. 305	CIRVE 35 °		67.8	1,343		CURVE 36*		0.787	0.00	1 067	1,209	1, 205		CURVE 37 *		0.481	0.557	0.628	0. 724	2.0	, c	5	1 050	i i	CURVE 38		0.01	0.06	0.09 ⁴	0, 105	0.14	9. 10	3 : o	J. 32	98.0	5 G	9 5	, 53 c			
	۲	CURV	349	330	3	15	3	41)4	302		5		467	200	362	333	305	,	CO		694	613	261	£84	460	* 6	n - c	326	}	CC	ł	91	22	တ္တ ု	31	95	76	2	99	06	200	300	350			
	. ¥	VE :12	986	0.815	0.694	20.0	# you	30.0	0.500	0.487	0.460	0.452*	0.421	878.0	0.362	0.318	3.74	1224	0000	0.269	0.287	0.266	0.259	0.269	0.249	0. 2.0 0. 25.0	0.50	0.230	0.223	0.218		VE 33		0.678	0.736	0.770	0.830	0.992	1.218	•	CURVE 34	i d	0.734	0.812	0.879	
	(-	CURVE	417.6	493, 1	167.1	6.55.0	2.52	207	722 7	731 6	766. 1	780.2	80% 90%	2.1.2	976.0	2 17	957.9	962.3	1035 4	1076.1	1102.6	1174.2	1182.2	1174.7	1229.4	1000	1275.0	1474.8	1576.9	1577.0		CURVE		578	520	483	02.0	371	0 닭		50		495	45	404	

DATA TABLE NO. 51 (continued)

æ	CURVE 58 (cent.)	9	4.04	5,44	10. 8	10.0	10.9	11.8	10.8	11.9	11.0	10.7	10.6	11.4	11.0	11. 7	11.4	12.0	12.0	12. 2	11.8	11.5	11.3	9.01	10.7	10.9*	10.3	. 36°.	9.62,	300 S	. 4. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	3, 13	*	2	4, 97	5, 93	7, 16	7. 78	8, 75	9. E2	9. 66	11.0	11.4	13.3	14.6	14.9	14.7	
۴	CURVE	17.0	18.0	19.0	20.0	21.6	2:3. 0	24.0	26. 1	28.1	30.1	30. 1	32. 2	34. 1	:16. 1	37. 9	40.0	42.0	44.0	46.3	48.4	50.1	52.6	55.5	9x.0	9.09	65.6	70. 7	15. U	¥0.	139. 7	171.8		CORVE	9, 42			12.0	12.0	13.0	14.0	15.0	15.9	17.0	17.0	17.0	18.0	
*	7 (cont.)	y, 23	8,67	8.83	S. 28	9. 14	9. 14	9.27	8. 73	5. 29 [¢]	x, x5	5, 10	9.05	9.25	9.33	9. 53	9. 3H	9. 9.	9, 35	9.42	9. 62	ن 2	8.77	8.07	7.66	7.02	7.02	6.71	6.35	s. 66	. 89.	4, 42	3.50		2.31%	2, 12,		E 58		4.06	4.68	4.84	5.88	7. 05	7, 98	8. 43	8. 71	
۲	CURVE 57 (cont.	20.1	21.0	64 61	24. 1	26. 1	28.1	30.1	30.4	30.4	32. 1	34. 1	36. 2	38.3	40.4	47.5	50.5	93. 6	55. 4	58.0	60.4	65.6	70.7	75.7	80.4	85.3	90.1	5.5	101.2	116.4	120.8	1.41.2	151.0	166. 3	201.4	227. 0		CURVE		9.66	10. 1	11.0	12.0	13.0	14.0	15. U	16.0	
×	6 (cont.)	7. 4x	7.35	7. X.	-î.	7, 23	7. 82	3. 00	». 00	3.00	7. 5X	8, 15	8, 312	8, 51	8, 63	K. 26	8, 55 8	7	3. So	8,33	5.00	7, 35	E 3	6, 55	6, 32	5, 83	5. 16	4, 76	4 . 2π	3. 57	() ()	2. 88.	;	2	34	3.42	3, 81	4.17	4. 26	5, 18	5.75	6.28	6.65	7.46	7.28	7, 93	8.81	8 7 6
÷	CURVE 56 (cont.)	26. 1	23. 1	30.1	32. 1	32. 1	34, 4	36. 2	35. 1	10.3	42. 1	:: +	48. 1	48.1	50, 5	51, 2	55.4	58.0	60.3	65. S	70. 5	50.7	85, 7	90.8	95, 7	160, 5	110.2	121. 1	129. 1	141.3	160.4	176.2	Š	CURVE	8	9.06	10.0	11.0	11.0	12.0	13, 0	14. 1	15.1	16.0	17.0	18.0	19. 0	19.0
×	5 (cont.)	3	0 +0	6,33	6, 70	6. 80	7, 13	7. 05	7, 15	7. 00	7, 30	7, 19	7. 02	7, 05	7.33	7.36	7, 13	7, 36	7, 06	7.28	6.84	6.43	6.18	6, 12	5. 8 6	6,64	4.55	*. UO.	3, 55		اري ا		2, 91	3. 63	3,74	25.38	4,67	5, 22	5.32	5. %	9.00	6.55	6.84	7.06	6.55	6.55	6.95	
۲	CURVE 55 (cont.	c xc	30.1	12, 3	34. 1	36, 2	38. 2	40°.	43, 2	47.2	7.7	50.4	50. 4	52. 4	55.4	58.0	9.09	65.3	68.6	70.7	JS. 6	¥0.4	35. S	90.4	95, 7	100.5	120.5	131.2	145.6		CURVE		9, 12	9.42		11.7	13.2	14. 1	14. 9	16.1	17.1	18.0	19. 1	20. 1	22. 0	22. 7	24. 1	
×	4 (cont.)	13	10 10	5, 7.1	c, 15	6, 10	6.34	7.9	6, 07	6, 00	6. 53	9,48	6.28	6. 1 .3	6. Uî	6, 41	6, 15	5, 8 3	5. 74	136 136 136	5, 46	5, 33	4, 89	4, 36	3, 92			35		2, 00	5. 7. 5. 7.	5. 83	3, 16	. r.	: 4 : 3	4, 35	6.66	5.01	5, 46	5, 64	5.64	5, 42	5.37	5. 70	5, 89	5, 55	5. 33.	
۲	CURVE 34 (cont.	50 85 85	20.5	42.3	7	¥6, 8	46,3	4 X	50. 4	52, 4	55. 5	53.1	60.3	9.59	G .K.9	72.0	75. 2	80.0	85, 1	90. 3	95, 1	100.3	109. 5	120.5	131, 9			CURVE		y. 14	5, 29	10.0	11.0	7 7 7	2.4	15.0	16.0	17.0	19.0	19.0	20. 1	20.9	22. 1	22.4	24.1	26. 1	26. 1	
¥	3 (cont.)	7	7	100	₹ *	13	4.51	5. 19	¥6.4	5. 25	5. 07	5, 16°	(S)	5.40°	5.46	5.46	5. 73	5.81	5.81	5.56	5.68	5.85	5.70		E 52		2. 00	2. 02	2.03	2. 41	2. 56	2.86	3.01	3. 13.	3.72	36.5	**************************************	4.9	. OG	4.04	4.45	₹. %	4.84	5. S	4. 57	5, 32	S. 53	
۲	CURVE 53 (cont.)	000	22. 4	28.3	30.4	35. 2	34.3	36. 2	38.3	40.3	42.3	44.4	46.6	49.4	53.3	55.6	57. 4	50. 4	65.3	68.1	70.2	73.5	75. 5		CURVE		5.33	9.46	10.0	11.0	13.0	13.1	14.1	15.1	16.1	17.2	1 81	19. 1	20.0	22. 1	24. 2	25. 2	28.1	30.1	32.2	34. 1	36.3	
¥	(cont.)	-	207	16.3	9.18	ດ ເ- ໝໍ	3.5	6.64	5. 75	4. 99	4.40	1,96 15	3.65	3. 22	3.06	2.83	2.66*	2.39*	2. 24	2.03	1.86	1.72		33		5.40		3	5.42	5, 55	5.63	5.52	5.62	00	3	2.20	2.25	2. 2.3	2. 44	2. 44	2. 36	3. 05	3, 18	3.46	3, 57	3, 74	3. H4	
۲	CURVE 51 (cont.)	7.7 3	70%	1.5	0.06	1 .00	100.7	109.7	120.8	130.6	140.3	151.0	161. 8	171.0	181.2	191.5	201.0	216.3	231.8	250.7	276. 8	299. 3		CURVE		47.2	47.2	49.7	51.5		55.6	57.4	55.3	2010	TAN O	9.51	9.66	10.1	10.8	12.0	13.1	14.0	14.9	16. 1	16.9	18.0	19, 1	

DATA TABLE NO. 51 (continued)

.	CURVE 65 (cont.)*	5, 27	4. 93 5. 93	, c	3, 24	2.87	#	99	. 47. 6	200	3,85	4.85	5. 16	5. 83	5.72	6. 41	5. 86 	7.43	7. 2.3	7.31	7, 31	7, 15	7. 96	8. 40	9. 18	16.6	10.8	10.3	10.6	10, 4	n .	8.5	+ 0.7	10.6	10.6	11.4	11.6	11.6	11.3	11.9	11.6	10.5	11.1	10.5	9. 55	
2°* ←	CURVE 6	111.2	121.1	101.9	160.7	175.8	i	CORVE 66	40	. 83 44.	96.6	11.1	12.0	13.0	14. 1	15, 1	16. 0	17. 0	17. 9	18.3	19. 1	19.6	20. 1	20. 1	21.3	22. 1	22. 2	22. 7	24.1	26. 2	Z		36.3	* 5.	36.3	40.2	46.9	47.9	50.9	53,0	55. 5	58.0	60.7	62.9	76. 7	
æ	CURVE 64 (cont.)	6.61	3. 2.5	6. 03 6. 03	65.65	4. 10	3.59	ě	CURVE 65	2, 83	3, 16	3.72	4. 44	4.65	4.67	5.36	5, 33	6. 03	6.34	6, 78	6, 52	7. 10	7.94	8.75	8.91	8. S	87 ·6	9.44	9. 27	9.51	70.7	9.57	56 56 57	2, 0		5	9.48	88.89	9.14	9 6	8.36	7.89	7. 13	6.58	6. 03	
Ŧ	CURVE	90. 4	95.3	100.5	121.4	131, 2	146.0	•	SOCIE	K 67	86.6	11.0	11.8	13.0	14.0	15.0	16.0	17. 1	18.1	19.6	20. 1	22.0	24.0	26.0	28.1	32.0	34. 1	36. 2	38.5	49.2	42.5	44.4	2 . 2	8.0°	, v,	5 5	60.4	65.6	70.2	75. 5	BO. 4	85, 5	₹ .06	95.3	101. 4	
אר	CURVE 63 (cont.)	5, 65	359°C	5. 00 7. 4.	. 4.		/E 64"	4	2. 50 6. 50	5.5	2, 79	3, 09	3.45	3,85	4.35	4.74	5. 32	5.02	4 93	<u>د.</u>	o. 30	5. 74	6.53	6. Z	6.82	6.65	6. 40	7. 43	6.97	7.69	5. 93	7.87	2	42.54	. 6		7.66	8,34	7.94	7, 91	7. 83	7.76	6.82	6.95		
۴	CURVE	95. 7	100.7	191.7	131. 9		CURVE		n u	? *	96 6	11.0	12.0	13.0	14.0	15.0	16.0	17.1	18.1	18.1	19.1	20.0	22. 1	24.1	26. 0	28.0	30.1	32, 1	34. 2	36. 1	38. 2	40.1	43.1	7.7	20.5	- c	57.5	57.8	2 09	65, 3	68.4	70, 3	75. 2	80.4	85. 5	
æ	CURVE 62 (cont.)"	6, 14	6,05	5. 32			E 63	te d	7.30	 	2, 29	2. 59*	2, 75	2.83	3, 15,	3,68°	3.66″	4.06			4. 56	3	4.82	5. 20	5. 1	5. 72	5.94	5.85	5. 93	6, 05	6.46	6.46	6.52	6.52	9. 3	÷ 4		96	6.65	6,55	6.43*	6.59	6.22	5.98*	5. 93*	
H	CURVE	53.4	65, 3	1 6 0° 1	25.55		CURVE 63		, o	1,56 d or	11.1	12.0	13.1	14.1	15.0	16.1	17.1	18.1	19.0	20.0	22. 1	24.1	26.0	28.1	30.3	32. 1	34.1	36. 1	38.0	40.3	42. 2	44.2	46, 5	4. 20. 20.	2.00	, ,	57.75	60.3	9 2	68.7	72.0	75. 4	80.6	85.7	4.06	
. ¥	60 (cont.)	1. 37	1.71	CHBYE CIR		6.01	6.14	5.86	76 6 76 6	R #	5,85		E 62*		2. 02	1.98	2. 16	2.32	2, 71	2.80	2. 97	3, 24	3.57	3, 68	3, 82	4. 21	4.06	4.35	4. 47	4.55	4.68	5.00	5.41	82.5	, . , .	, i	; r	5, 73	5.74	6, 11	6.05	ت. ئ	6.24	6.14	6.22	
H	CURVE 60 (cont.	276.1	302. 8	Tan C	S COL	46.9	49.9	51.4	9 t	57.5	98.6		CURVE 62*		8. 9.	9. 0S		10.9		12.8	14.0	14.9	16.0	17.0	18.1	19. 1	20. 1	22.0	23.9	26.0	27.9	30.0	32. 2	24.1	1 000	3 6	42.0	44 2	46.4	49.1	51.4	53.1	55.0	57.6	60.4	
æ	30 (cont.)	8. 19	10.6	17.9	14.	17. 18	19. 1 [‡]	18.3	1 6 6	9 6	22. 1	22. 1	24.6	26. 1	27.4	24. 7	26.0	24.6	25.9	24. 8	24.8	24.8	24.8	23.4	22. 2	20.3	19.3°	17.7	15.3	13.4	12. 7	11.6	10.8	7 to		**************************************	***	4. 10	3, 77	3, 40	3, 12*	2. 68*	2. 42*	2, 25	2. 09	
H	CURVE 60 (cont.	11.4	12.7		14.6	16.8	18.2	21.0	25. 1	27.5	27.9	29.1	33.0	35.7	37.3		41.5		4 .	45.7	47.1	48.2	50.4	51.7	% (57.6	61.7	66. 4	71.8	77.6	8 1 . 7	86. 1	91.0	100.9	130.6	130.0	141.9	151. 4	160.7	171.8	181.6	202. 3	217.3	235.0	251.8	ļ
¥	CURVE 59 (cont.)	14.7	15.9	9 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	13.6	14. 7	13, 3	12. 9	2.2.3	13.4	13.8	13.0	13.1	13. 2	12.4	12.0	11.8	12. 4	13, 0	12.4	12.8	12.3	11.7	11.3	10.8	11.0	10.0	10.0	9. 20	8.67	7.91	7.30			0.30 A.A.	÷ •	3.14	2.47	1.92	1.65		E 60	ł	4.72	7.02	
۲	CURVE	19.0	19.0	n i	36.0	28.1	30.1		7 9 3 2 3 2	200.	+0.1	42.1	1.7	46.0	48.2	50.1	53. Z	53.2	7 .95	57.8	60.4	64. 1	67.3	67.3	70. 2	71.8	75. 5	79.6	30 30 30 30 30 30 30 30 30 30 30 30 30 3	85. 5	90.6	95. 7	100.3	7 00.7	120.3	1 1 1 1	171.0	201.4	251. 2	300.0		CURVE 60	}	8.61	10.5	

DATA TABLE NO. 51 (continued)

*	CURVE 80 (cont.)	0.17	0. 18 0. 22	0.21	0.18	0.18	6. 19	9 7	6. 13																											-							
H	CURVE	719	742	873	873	1072	5701	9701	9171																																		
ж	73 (cont.)	0. 971 1. 03	0.0	CURVE 74*	; }	1. 20	0.452	0.383		E 75		0.219	0.163	0. 162		CURVE 76*		8.80	*	CURVE 77	2 .	1.60	1.45	1.66	,	CURVE 78*	;	4.60	1.80	***	CURVE (3	00	0.00	÷ ~	; -	1.65	55	1.80	; i	E 80		0.22	
H	CURVE 73 (cont.	83.0 91.0	172. 6	CURV		567	77.	1.8	7/01	CURVE		596	121	1073	: : :	CURV		97.8		CURV	e a	218.0	240.4	256.3		CURV		142.9	217.0		200	ò		761	212	217	240	255	2	CURVE		588	
w	CURVE 71 (cont.)	2, 55	1. 55	65 374017	(E 15	0.604	0.687	0. 7.33	0.986	1. 14	1.24	1. 29	1.39	1.77	1.89	1. 83	1.82	1.75	1.77	1.65	 	1 1	0.991	0. 796		CURVE 73		0. 454	0.477	0.502	0.652	0.120	0.730	0.563	96.0	0 443	90 -	3 = 1	11.	1.06	1, 15	1.09	
۲	CURVE	137.4	221.3	Said	בריים בריים בריים	5.20	. v.	. e.	9 6 30	9, 51	10, 7	11,4	17. S	19.6	25.5	34. 2	39.9	46. 5	6.95 6.95	71.8	32. 6	138.1	177.8	285.8		CUR		5, 48	5.80	5. 8.	1.31	61.0	0.00	,	13.0	14.5	17.6	7 0		26.1	40.4	49.2	
×	CURVE 70 (cont.)	8.32	9, 12 8, 89	8.49	7.93	3 6 20 6	5	 	5. 14	3.36	2.75		1.33	v. 71	:	1.26	1.45	1.71	1.85	1. 97	2.62	3	3, 21	3.78	4. 12	4, 12	4, 39	4. 59	. 90 . 50 . 50	5.07	5 C	7	. c.	 	. 4 8 8	3	4 72	. 4	9	4.60	4.97	3,48	
H	CURVE 7	22. 1 23. 3	26.2	33.8	39.5	42.5	ه. د د د	9.6	97, 5	128.8	164.5	225. 5	288. 4	CHRVE 71		4.87	5.56	6.55	6.68	6. 92	e e	0.01	11.4	13.5	15.9	17.0	17.1	19. 9	22. 6	23.8	2.4.3 2.4.3	2.00	*	34.0	; ;	9 000	¥1;	5 E 4	9 9 9	. 4 . 6	58.6	97.7	
×	(cont.)*	8. 64 7. 40	6, 24 5, 35	4. 14	3, 16	2. 25	2.00	F. 10	69		2. 99	4.49	 	17.4	26.8	24. 2	36. 1	32.6	26. 7	20.9	13.7	* 20.9	3, 10	2. 23*	1.66*	1	2		2. 12	2,36	7. 27	, .	3.6		. 4		5 20	2 25	2 2	7.66	7.91	8.63	
H	CURVE 68 (cont.)*	95. S 100. S	111.5	141.0	171.8	201.4		300.	CURVE 69		5.40	6.25	60 60 60 60 60 60 60 60 60 60 60 60 60 6		15.4	22. 4	29.8	31.3	44.3	57.8	7. C	121.4	175.8	222. 4	285. 1		CURVE 70		5. 50	6. I5	i i	9 6	0 70	o c	9 4	* 0	5 2	4		× 1	19.0	20.0	
be.	(cont.)*	13.3 12.4	12.0	10.7	98.6	9. C2	***	8	26.	5.08	6.31	6.62	, o. o.	10.5	; 23 i oi	12.0	13.7	16.2	16.0	16.2	16.5	12.0	16,9	14.4	15.1	15.9	15.9	16.3	16. 0	15.4	15.6	29.5	14.0	13.6	7.2		13:0	. a	. 4	0.71	9,44	8.85	
H	CURVE 67 (cont.)	55.6 58.0	60.7 65.9	70.8	75.7	80.7		CURVE 68	8.83	96.6		12.0	0 : 2	15.7	16.0	18.2	20. 1	22. 1	24. 1	26. 1	28.1	3.0.5	34.3	36, 3	38.3	39. 5	40.7	42.4	46.4	4.8	4.00	, ,	7 .00	, c	4 6 6 6	. 1.	2 2 2			4 5. 5. 08	, (X	90.2	
뇬	(cont.)*	9. 51 9. 16	8. 11 7. 73	6.87	6.71	\$.75	5.21	eric Sign	6 6 6 8	2.84	ر. ج	2. 10	*63	<u> </u>	76 76	4.19	4.33	5. 25		6. 59	7. 10	20. 4	10.9	11,2	11.0	11, 5	9, 95	10.6	12.7	12.6	13.1	1.5. 2	7 7 7		11.0	9 2		. 4	1 c	14.6 6	: es	1:: 7	
H	CURVE 66 (cont.)*	75. 5 80. 2	გე გე	95.7	100.9	110.9	120.8	131.9	151.4	181. 2	202.3	226.0	414	CORVE	8.46	9.08	10.0	11.0	12.0	13.	14.1	15.0	17.2	17.2	18.1	18. 5	19. 1	20.2	22.3	24. 3	26.3	20.0	32.4	2 :	: 4 : 3 : 5	40.4	40.0	7 - 3	1 -	4 4. x	(- - - - -	St. 1	

RECOMMENDED THERMAL CONDUCTIVITY OF SILICON FIGURE AND TABLE NO. 51R

* Values in parentheses are extrapolated. Tin K, ki in Watt cm -1 K-1m Tin F. and ki in Bus br-1 ft-1 F-1.

And the second of the second o

SPECIFICATION TABLE NO. 52 THERMAL CONDUCTIVITY OF SILVER

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 3]

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	51	ı	1956	14-21		Ag 2	Commercially pure; supplied by Nordiska Affiveriet, Halsingborg; cold-worked; electrical resistivity ratio $\rho(273K)/\rho_0=38.4$.
N	23.	ᆈ	1956	15-21		Ag 2t	The above specimen etched and annealed at 740 K; electrical resistivity reported as 0.00447, 0.00519, 0.00619, 0.00743, 0.238, 0.297, 0.359, and 1.47 \muohm cm at 14, 16, 18, 20, 70, 80, 90, and 273 K, respectively; electrical resistivity ratio $\rho(273K)/\rho_0 = 417$.
ო	51	ı	1956	16-90		Ag 4t	Similar to the above specimen but annealed at 750 K; electrical resistivity reported as 0.00694, 0.00758, 0.00352, 0.00983, 0.235, 0.299, 0.363, and 1.48 pohm cm at 14, 16, 18, 20, 70, 80, 90, and 273 K, respectively; electrical resistivity ratio $\rho(273K)/\rho_0=250$.
4	77	Œ	1900	291, 373			99. 98 pure; 1, 1086 cm dia x 25.2 cm long; density 10.53 g cm -3 at 18 C; electrical conductivity reported as 61.4 and 46.9 x 10° ohm -1 cm -1 at 18 and 100 C. respectively.
S.	9	٦	1931	437-838			99. 9 pure; 0. 585 cm dia x 7-8 cm long; melting point 961 C,
9	%	7	1934	21-91		Ag 1	Pure; cold-worked and annealed at 350 C for 2 hrs.
2	97. 122	1	1952	2, 3-38	2-3	JM 1722; Ag 1	99. 99 pure; polycrystalline wire; 1, 22 mm dia x 2, 85 cm long; supplied by Johnson Matthey, $\rho(273K)/\rho(20K)\approx 30$. 9.
œ	18	ம	1931	283-291	2	Ag 1	Commercially pure electrolytic silver; 0.05286 cm dia x 8.82 cm long; electrical conductivity 64.6 x 10% hm $^{-1}$ cm $^{-1}$ at 27:1 K; Lorenz function 2.32 x 10^{-6} V ² K $^{-2}$ at 273 K.
6	38	ធ	1931	278-284	8	Ag II	Spectroscopically pure; 0.05059 cm dia x 8.74 cm long; electrical conductivity 61.2 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 273 K: Lorenz function 2.41 x 10 ⁻⁴ v ² K ⁻² at 273 K.
10	86 86	i)	1908	110-306			99. 9 pure; 0. 585 cm dia x 7-8 cm long; density 10, 47 g cm ⁻³ at 21 C; electrical resistivity reported as 0. 460, 0. 470, 0. 456, 0. 609, 0. 660, 0. 693, 0. 880, 0. 923, 0. 942, 1. 236, 1. 239, 1. 245, 1. 468, 1. 471, 1. 675, and 1. 684 pohm cm at -178, 3, -177, 7, -176, 1151, 2, -144, 9, -139, 2, -109, 0, -102, 5, -98.6, -54.9, -52.8, -50.6, -13.0, -12.0, -21.0, and mone C, respectively.
11	122	٦.	1955	1.5-44	m	JM 3351; Ag 2	99, 99° pure; polycoystalline; 1.33 mh dia x 2.8 cm long; supplied by Johnson Matthey; prejured from a 5 mm rod by rolling and drawing; amealed in vacuo at 750 C for several hrs.
21	95	ы	1933	90-373			Traces of Bi, Cd, Cu. Pb, Mg, Si, and Na, 0.06095 cm dia x 9.770 cm long; drawn from a rod of H.S. brand silver supplied by A. Hilger, Ltd.; annealed at 500 C; electrical resistivity reported as 0.341, 1.035, 1.510, 2.123, and 2.853 μohm cm at -183.00, -78.50, 0.100, and 217.96 C, respectively; measured in a vacuum of 10.4 mm Hg.
13	147		1953	2.0-140	1-3	JM 4606; Ag 1	99, 999 pure; polycrystalline; 2 mm dia rod supplied by Johnson Matthey
*	147	ı	1953	3, 3-131	1-3	JM 4606; Ag 2	The above specimen annealed at 650 C; grain size ~0.1 mm.

SPECIFICATION TABLE NO. 52 (continued)

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
۲	14.0	-	1953	1.7-134	1-3	JM 4606; Ag 3	1. 16 mm dia rod drawn from the above specimen.
T 2	147	a -	1953	3, 0-135	1-3	JM 4606; Ag 4	The above specimen annealed at 650 C.
2 2	147	1 4	1953	2.4-95	1-3	JM 4606; Ag 5	The above specimen, Ag 4, after being removed and replaced in cryostat.
; :	24.5	۱	1953	2, 3		Ag 1	99, 99 pure; polycrystal; annealed; measured in a transverse field of 4, 2 kilonersteds.
9 1	. 67	ı _	1953	6		Ag 2	99, 999 pure; polycrystal; annealed; measured in a tranverse field of 1.09 kilooerstods.
3 8	342	ı <u>-</u>	1953	es es		Ag 2	The above specimen measured in a transverse field of 1, 75 kilooersteds.
2 2	342	ı	1953	3.2		Ag 2	The above specimen measured in a transverse field of 1, 97 kilooersteds.
: :	, ¥2.	نہ ۱	1953	83		Ag 2	The above specimen measured in a transverse field of 2. 7 kilooersteds.
1 5	3.45	1 _	1953	გ. 21		Ag 2	The above specimen measured in a transverse field of 3, 6 kilooersteds.
3 2	342	ı <u>-</u>	1953	2.2		Ag 2	The above specimen measured in a longitudinal field of 3, 6 kiloocrsteds.
5 5	24.5	٠ ـ	1953	25		Ag 2	The above specimen measured in a transverse field of 3.7 kilooersteds.
5 29	246	. ⊢	1919	273, 373		,	I mm dia wire; rolled and drawn; heated 0.5 hr at temp close to melting point; electrical conductivity reported as 57.0 and 41.3 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 0 and 100 C, respectively.
,		•	9	91		Ag 37	Single crystal.
27	436	J	13.50	77. 10		; P	0. 1 (distribution of the consequence of the conse
88	436	٦	1938	21. 24		Ag 37	The above specimen measured at H (the transverse magnetic field in a plane perpendicular obsisteds and at θ (the angle of rotation of the magnetic field in a plane perpendicular to the specimen axis) z + 1° at which the dependence of k on H is maximum.
9.	4.16	_	1938	21.26		Ag 37	The preceding specimen measured at H = 10850 oerstods and at θ = +1°.
; ;	9.4	۱ –	1938	21.18		Ag 37	The above specimen measured without magnetic field.
3 5	436	1 1	1938	21.20		Ag 37	The above specimen measured at H = 4580 versteds and at θ = +45° at which the dependence of k on H is rotatimum.
ę.	4.36	ت	1938	21. 26		Ag 37	The above specimen measured at $H = 8810$ oersteds and at $\theta = +45^{\circ}$.
; ;	5 5	1 -1	1938	21. 27		Ag 37	The above specimen measured at H = 10850 oersteds and at $\theta = +45^{\circ}$.
3 3	8	1	1934	79.91		73 %V	Pure; single crystal; deformed; electrical resistivity 1.50 pohm en af 0 C.
19	S.	1	1934	95		V\$ 64	The above specimen annealed for 2 hrs at 350 C; electrical resistivity 1, 49 point on at 0 C.
95	S		1934	16,08		Ag es	Pure; single crystal.
Ħ	504	<u>-</u>	1361	295. 2	∵		Pure: 1.9 x 1.9 x 0.322 cm; thermal conductivity value calculated from measured datum of thermal diffusivity using specific heat and density values taken from Smithsonian Physical Tables (9th ed., 1954).

SPECIFICATION TABLE NO. 52 (continued)

Composition (weight percent), Specifications and Remarks	0.14 at. % Mn; polycrystal; rectangular rod specimen of square cross section 2.5 x 2.5 mm; annealed at 720 K for several hrs in vacuo; electrical resistivity reported as 0.233, 0.234, 0.235, 0.237, 0.473, 0.534, 0.534, 0.595, and 1.69 µphm cm at 14, 16, 19, 20, 70, 80, 90, and 273 K, respectively; electrical resistivity ratio $\rho(273K)/\rho_0 = 7.26$.	0.32 at. % Mn; polycrystal; rectangular rod specimen of square cross section 2.5 x 2.5 mm; annoaled at 720 K for several hrs in vacuo; electrical resistivity reported as 0.521, 0.521, 0.523, 0.526, 0.772, 0.830, 0.881, and 1.98 µohm cm at 14, 16, 18, 20, 70, 80, 90, and 273 K, respectively; electrical resistivity ratio $\rho(273 K)/\rho_0 = 2.77$.	0. 14 at. % Mn; polycrystal; prepared from pure silver and from manganese of 99. 995* pure; melted, rolled, and cut into rods of cross sectional area ~2.5 mm²; residual electrical resistivity 0. 27 µoim cm.	 32 at. % Mn; polycrystal with fine grains; same fabrication method as above; residual electrical resistivity 0.54 johm cm. 	0. 14 at. % Mn; measured in a magnetic field of 25. 5 kilooueds.	0, 14 at. % Mn; measured in a magnetic field of 19 kilocerateds.	0. 14 at. % Mn; measured in a magnetic field of 12 kilooersteds.	0, 32 at. 7, Mn; measured in a magnetic field of 19 kilooersteds.	0, 32 at. % Mn; measured in a magnetic field of 25. 5 kilooersteds.	99.9 pare; electrical conductivity 58.8 x 104 ohm -1 cm -1 at 25 C.	Impurities < 0.3; electrical conductivity 57.35 x 104 ohm -1 cm -1 at 25 C.	99. 99 pure; polycrystal; electrical resistivity reported as 1.89, 2.21, 2.97, 4.62, and 5.91 jubin cm at 338.2, 385.2, 503.2, 753.2, and 917.2 K, respectively; Lorenz function reported as 2.45, 2.45, 2.42, and 2.44 x 10 ⁻⁸ V ² K ⁻³ at the above temps, respectively.	99. 99 pure.	Pure silver wire.	0,005 el. % Mn; prepared from 99,9999 pure silver supplied by Cominco and 99.95 pure manganese supplied by Johnson Matthey and Mallory; meited in argon; chill cast, rolled to 1 mm thick, rectangular wire cut from the ingot; annealed at 750 C for 4 hrs in a vacuum of < 2 x 10 ⁴ torr.	0.067 at. % Mn; same sources of materials and fabrication method as above.	0. 11 at. % Mn; same sources of materials and fabrication method as abeve.	0.31 at. % Mn; same sources of materials and fabrication method as above.
Name and Specimen Designation	Ag-Ma 3	Ag-Mn 2				•			•				•		69 grade	59 grade	59 grade	59 grade
Reported Error, %								•	•		•				2.0	2.0	2.0	2.0
Temp. Range, K	14-91	15-94	1. 6-74	1, 5–76	1. 5-4. 1	1.9-4.1	1,44.0	3.04.0	1.54.0	333	298	338-917	306	0. 43-0. 93	1.9-22	1.8-82	2.0-85	1.8-86
Year	1958	9561	1959	1959	1956	1956	1356	1956	1956	1925	1911	1957	1960	1965	1966	1966	1966	1966
Nethod Used	ــ	1	u	٦	-1	ר ו	1	-7	1	J	ш	ш	ш	H	. .	1	۔	ı,
Ref. No.	51	51	23	23	649	3	649	649	3	230	241	617	35	736	382	382	382	382
Cun.	S. S.	65	2	‡	42	. 1	: \$	4	9	47	8	4	ŝ	51	22	8	: af	જ

SPECIFICATION TABLE NO. 52 (continued)

Cure No.	Ref.	Method Used	Year	No. No. Used Year Range, K	Reported Error, 7	Name and Specimen Designation	Composition (weight extreent), Secrifications and Remarks
36	56 570		L 1963	2, 2-30	1. 5		lure; specimen it inm in dia and about 6 cm long; supplied by Engelhard Industries in Toronto; rolled and drawn, etched with nitric acid; annealed at 850 C in vacuo for
10	570	-1	1963	2, 2-17	1.5	71	Similar to the above specimen except residual electrical resistivity 620 a nobre on
3	803	٦	1966	3, 4-29		и РМ735; 1	99, 9999 Ag. 0, 00001 Fe, 0, 00001 St. 70, 00001 Ca, and 0, 00001 Mg; fine grain polycrystathne; obtained from the Consolidated Mining and Smelting Co.; remelted and outgassed, annealed at 550 C for 24 hrs; residual electrical resistivity 0, 00081 polymercm.
ลู	903	-1	1966	+ 1-00		HPM535; 2	Similar to the allove specimen except annealed at 530 C for 24 hrs and residual electrical resistivity 0,000ss goling en.
09	ጀ	Ų	1961	208.2			0.05 In, east; copier used as comparative material,
ច	1003	ы	1927	275, 2			99.9 pare; 0.125 in. dia N.10 cm long; obtained from Baker and Co.; electrical resistavity 1.494 polymen at 0.C.
रु	45	sa:	1923	90-373			Traces of Bi. Cd. Cu. Pb. Mg. Si. and Na; 0.06095 cm dia x 9.770 cm long; drawn from a rod of II.S. brand silver supplied by A. Hilger Ltd.; electrical resistivity reported as 0.377, 1.036, 1.509, and 2.121 µohm cm at −183.00, −78.50, 0, and 100 C. respectively; measured in a vacuum of 10 4 mm Hg.

DATA TAPLE NO. 52 THERMAL CONDUCTIVITY OF SILVER (Impurity < 0.20% each; total impurities < 0.50%)

	<u>بد</u>	CURVE 21	3.2 11.14	CURVE 22		2.2	CIBUE 22	CONTRACT	3.2 10.50		CURVE 24		2.2	26 37077	COUNTY CO	,00	J	AC TURIO			373.2 3.95		CURVE 27*		21.13	CIBUT 28	2 100	21.24 23.3		CURYE 29		21.26 22.0	CURVE 30		21, 18 31, 4		CURVE 34		21.20 27.3			
	×	CURVE 16(cont.)	80.85	59.58	46.80	36.17	25.53	16.60	10.12	6.383	5.300	5.105	5, 105	5, 105		CURVE 17		23.4	34.9	43.0	50.3	603. 5	9.66	30.3	67.6	39.1	19.1	6.15	5.53	5.16	CURVE 18	į	1.29	40, 61,61,0	4	7 75	?	CURVE 20		7.46		
	٢	CURVE	14.05	17, 23	19, 35	21,70	26.38	31,50	41.05	54.68	70.17	96.60	118.95	135.10		CUR		2,38	2,88	3,50	* *	6.0	11.3	12.9	15.9	21.4	29.8	57.5	76.6	8. 76 8. 8	CUR	}	2.3			0	i	CUR		2.2		
ר. צ	*	CURVE 14[cont.)	60.85	26.80	17.50	11.70	9.560	5, 380	4.800	4.725	4.330	4, 255	4.255		E 15		1.702	2, 235	2.980	3.550	0.615	0.60	10, 760	10, 380	8,830	7,553	5.870	5.020	4,550	300	4,210	4.210+		E 16	86 38	08.99	74.90	84,70	111.50	105.30	93.60	
, Watts cm	۲	CURVE	19.70	25.32	31.06	36, 20	40.45	55.47	61.90	67.25	10.00	110 85	130.60		CURVE 15		1.70	2.87	3.40	S	10.43	03.4	19,35	23, 20	28.50	34.05	41.70	54.90	62.55	76, 60	115,50	134.05		CURVE 16	6		4.25	4.58	10.20	10.95	12.98	
obductivity, k	¥	CURVE 11 (cont.)	26.95	19.65	16.35	13.65	11.16	9.45		CURVE 12.	950	4, 205	4.180	4 . 176		E 13		0.298	0.596	1.277	1.532	1.373	494	2.765	2, 695	2.935	2, 580	3, 010	3.060	3,190	3, 360	3.575		#* ** #1	05 801	130 (5)	134.50	145.50	174.00	115.00	82.10	
Thermal Co	۳	CURVE	21.40	27. 10	30.00	33, 16	37, 58	43.58		CURV	90.3	194.7	273.2	373.2		CURVE 13		1.98	4.47	10.00	12. 13	10.12	22, 55	25.95	31.95	38, 00	26.60	65.95	77.87	95,75	120,60	139.60		CURVE 14	100		1 C	40.4	5.10	14.05	16, 15	
Temperature, T, K; Thermal Conductivity, k, Watts cm -1 K-1	×	CURVE SICORE.)*	4. 100	. 103	8 3.	l	4.033	4.029	4.038	4.038	10	:	4.150	4.176	4, 185	4, 205	4.218	4. 200	4, 172	4. 173	4. 105	7.00	2	E 11		5. 45	6.90	7.79	10.45	11.54	15.34	16.56	17.45	20.10	35.55	28.20	20.35	31.66	32.35	32.75	31, 25	
Temp	۲	CURVE	286.6		CURVE		278.2	279.0	281.9	284.0	CIRCE		110.2	113.2	123.2	148.2	173.2	198.2	223. 2	248.2	213.2	2 167		CURVE 11		1.47	2.00	2, 21	2.95	1 5 E	4.47	4.74	s. 8	6.00	7.59	. «	10.43	11.79	12. 42	14, 74	17.63	
	*	CURVE S(cont.)	3,673	3.506	3.540	3.569	3.648	3, 628	3.753	2 44		9.46	84.6	9.52	‡	₽ . 38	4 .30		<u>VE 7</u>		1.311	268	3.661	4.700	6.011	6.557	7.760	5.634	8.743	8.470	8.415	8.306	7.980	7.923	7.380	6 830	6.557		VE 8*		4, 105	
	f•	CURVE	570.2	660.2	595.2	732.2	759.2	794.2	838.2	370110		21.0	21.4	21.6	16.1	7.67	91.0		CURVE	•	2.30	•	6.33	7.43	9.72	11. 20	13.92	16.71	20.97	22, 11	24.79	26.32	28.12	29.70	33.74	35.22	37.90	,	CURVE		283.2	
	ĸ	CURVE 1	1.710	1.920	2.130	2.540	3.050		CURVE 2	72	41.20	40.30	39.40	38.40	37.70	34.20	33.20	31 10	30.00 30.00	23.10	CIRVES	21	19.50	17.60	17.10	15.30	15.60	2.57	9.76	2.42	2.54		IVE 4	4 210	4.150		IVES		3.749	3.711	3.615	
	۲	כנו	14.4	16.6	17.7	19.5	51.3		135	7 ::	1 15	191	9.91	17.0	17.3	18.7	19.4	20.0	21.0	21.4	ביי).	15.5	11.0	18.5	9.9	20.0	70.2	e e	85.2	89.5		CURVE	941.9	373.2		CURVE	!	437.2	508.2	538.2	

·		CURVE 51 (cont.)	0. 120	CITRUE S.		4.97	5.70	7. 55	8. 07	72 61	16.0	19. 5	19.6	21.6	25. 5	26.8	26. 5	23.6	22	CORVE	0.532	0,578	0.661	0. 708	0.800	660.0	1, 10	1. 23	1.70	2.11	2. 77	3.03	3. 13	3. 51	4.47	4. n	a. o.
	H	CURVI	0.890			1.91	2.31 2.43	3. 10	3.4	3.78	6.65	7.96	8.47	9.48	11.7	13.9	16.3	21.6	Č	5	1.83	2. 14	2, 29	2. 52	2. %	3 c	3. 51	4.06	5, 59	6. 75	8.81	9.66	10.5	11.7	14.6	17.8	£ .03
	.	CURVE 48*	4.68	CURVE 45	•	•	• •	•	•	4. 12 20.4			3,85		•	CURVE 50	,	4.068	419 434	CURVE 31	425 0.055				525 0.0700			53 0.090						oʻ	o	840 0.111	685 U. 119
	۲	리	293	티	338, 2	352.2	412.2	455.2	503, 2	5.100	753.2	786.2	863, 2	917.2		티		306	Č	31	0	0, 450	0, 463	0.5	0.0	s ir	0	0, 653	9 0	9 0	0, 7,			0.7		zo ∓	Ď
	ᅶ	CURVE 45	0. 178 0. 190	0. 194°	0, 207	0.207	0.214	0, 229	0.250	CHRVE 46		0.096	0.124	0. 136	0.150	0. 161	0.164	0.172	0.157	0. 197	0.209	0.201	0. 206	C. 201	0.221	0.220	0.230	0, 234	0.240	0, 261		CURVE 47		4.05			
(continued)	←	CUB	3,00	3,32	3,48	3, 52	3, 57	3,78	4, 02	8110		1,51	1.88	2.01	2. 19	2.41	2.60	. i.s	9 5	3, 20	3, 20	3, 29	က် ကို	υ, υ,		3, 55	3,67	3, 76	3, 77	4.02		SUS		333			
53	4	CURVE 41 (cont.)	1,025	1, 112	1,251	1,343	2, 190	2,227	2, 262	5, 514 9, 333	i	CURVE 42		0. 197	0.245	0.272	0.239	9,320	10 c	0,409	0,500		CURVE 43	•	0.274	0.319	0.474		CURVE 44		0.132	0.222	0.240	0.262	0.349	0,363	; ;
DATA TABLE NO.	(-	CURVE	14. 84 15. 70	16.67	18, 77	19, 70	65, 33	67.96	70.86	76.94	; ;	CO		1, 52	1.87	2.21	2.56	6.10	7. 5. 5. 6.	3,59	4, 11			•	2. 36	2.87	4, 12		CUE		1.40	2,02	2.24	2, 59	3,24	3.01	3
DAT	¥	CURVE 40 (cont.)	0.422	1.704	1.847	1.765	2 5 Z	1.922	1.981	2, 161 2, 082	2, 148	2.616	2.618		CURVE 41	9	0.0755	0, 0805 0, 0805	0.094.7	0.119	0, 132	0, 138	0.141	., ce .	0, 148	0. 171	0.179	0.183	0.186				0, 137	0.208	0.228	0.230	0.634
	H	CURVE	14.05	15.97	17.07	17, 10	18.08	18,90	19.03	: 4 : <u></u>	19.57	70, 32	73, 82		50		15 T	1.56		2, 12	2, 33	2, 57	2. 72	7. 2. 3. 3.	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	3, 19	3, 31	3, 40	3, 50	3, 51	છ લ	6 6	3, 70	3,80		\$ 0.4 0.4	÷
	*	CURVE 39	954	0.970	1. 070	1.075	1. 186	1,150	09.1	1.220	1,280	1,950	1,980	2.240		CURVE 40	6	0.152	5 6	0.180	0.215	0.210	0.225	0.238	0.246	0.258	0, 263	0.277	0.277	0.278	٥. چو.	0.303	6.329	0.335	296.0	0.367	70E .70
	1	CUR	14.6	15.4	16.4	17.2	17.4	18,5	4.64	1 6		3.4.	o. t	93.5		CUR	i	1.56	5 5	1.92	2, 11	2. 14	2.34	2.42	2, 5,	2, 73	2,75	2.83	2, 94	2.95	3. 16	3, 19	‡	3, 47	3.74	9 9	3 F
	4	32.	23.0	233	21.1	į	5	4.27	4.12	35	3	4.54		: 36 :		4.25	4, 13	•	2	3,975		238		1. 300°	1. 730 1. 870	1, 900	2.050	2. 100	2, 170	2.220	2.350	3, 320	3, 100	2.950	2.800	2, 880	7. 300
	۲	CURVE	21.26	CURVE 33	21.27		CURVE 34	78.6	æ. æ.	CHRUE 25		90°0		CURVE 36		79.8	91. 1		CURVES	295. 2		CURVE 38		14. ±0	15, 30	16, 90	17,30	18,50	19, 70	20, 40	21.00	71,00	72.20	79, 20	3 8	3 5 2 5	3

440.3 620.3 800.3 980.3

1340 1520 1700 1762

2240 2420 2600 2786 2960

3140 3500 3860 4220 4580 4940 5300 5300 6020

6740 7640 8540 9440

Tin K, ki in Wattem - K-i. Tin F, and kin Bun hr - ft - f F - f.

*Values in parentheses are extrapolated or estimated.

SPECIFICATION TABLE NO. 53 THERMAL CONDUCTIVITY OF SODIUM

(Inpurity <0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 53]

105 P 1866 274-961 Part Holland Rechard Conductive Part Holland Rechard Roun Reservation In Proceed Active Part Holland Rechard Roun Reservation In Proceed Active Part Holland Rechard Round Rechard Round Ro	Curve	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
502, L 1951 455-786 I 38 72 E 1913 279-361 65 L 1936 358-495 7 10 L 1926 33-348 2-3 10 L 1951 4.7-99 2-3 Na I 92 L 1956 2.1-16 Na 2 Na II 243 L 1956 2.2-9.6 A 3 A 3 243 L 1950 407-452 A 3 A 3 385 L 1950 403-549 A 3 A 3 866, P 1961 623-1153 42.5 A 3 770, C 1965 300-1500 #2.0 853 B 1966 900-1500 #2.0	-	105	<u>p</u>	1956	374-961			Pure; thermal conductivity values calculated from measured (in argon) thermal diffusivity data using specific heat data of Ginnings, D.C., et al (J. Res., NBS, 45, 1950) and density data of Miller, R.R. (Liquid Metals Handbook, 2nd ed, 1952).
55 L 1933 279-361 65 L 1938 358-485 12 F 1926 33-348 10 L 1951 4.7-99 2-3 Na II 92 L 1956 2.2-9.6 243 L 1950 407-462 243 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20	64	502 38		1951	455~786	~		
65 L 1938 358-495 12 F 1926 33-348 10 L 1951 4.7-99 2-3 Na II 10 L 1956 2.1-16 92 L 1956 2.2-9.6 243 L 1950 403-549 385 L 1950 403-549 592 L 1950 403-549 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20	n	2 2		1913	279-361			Pure. supplied by Eimer and Amend; electrical resistivity reported as 4.66. 5.03, 6.04, and 6.63 µ ohm cm at 5.7, 21.5, 42.1, 61.4, and 88.1 C, respectively.
12 F 1926 33-348 10 L 1951 4.7-99 2-3 Na I 10 L 1951 5.3-96 2-3 Na II 92 L 1956 2.1-16 Na 2 243 L 1950 407-462 Na 3 243 L 1950 403-549 Na 3 592 L 1950 403-549 And And And And And And And And And And	•	65	1	1938	358-495			Pure; measured across melting point (97.5 C); electrical conductivity 1.02 and 0.73 x 10 ⁵ ohm ⁻¹ cm ⁻¹ at 100 and 200 C, respectively; extrapolation of the thermal conductivity data for the solid and the liquid state to the melting point gives the ratio 1.33.
10 L 1951 4.7-99 2-3 Na II 10 L 1951 5.3-96 2-3 Na II 92 L 1956 2.1-16 Na 2 92 L 1956 2.2-9.6 Na 3 243 L 1950 407-462 243 L 1950 407-549 385 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20	w	21	fa	9261	33-348			Pure; 1.10 cm in dia, 25 cm long; extruded; electrical resistivity 4.26 μ ohm cm at 0 C.
10 L 1951 5.3-96 2-3 Na II 92 L 1956 2.1-16 Na 3 243 L 1950 407-462 Na 3 243 L 1950 403-549 2 385 L 1940 296-433 2 582 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853 L 1966 900-1500 ±20 857 L 1966 900-1500 ±20	φ	10	H	1951	4.7-99	2-3	Na I	Approx 0.01 to 0.1 Ca and Al; supplied by British-Thomson-Houston Research Lab.; cast under vacuum in soft glass tubes; electrical conductivity ranging from 106 to 3.15 x 106 ohm ⁻¹ cm ⁻¹ at 2 to 46.7 K.
92 L 1956 2.1-16 Na 2 92 L 1956 2.2-9.6 Na 3 243 L 1950 407-462 Na 3 243 L 1950 403-549 2 385 L 1940 296-433 2 582 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853, 148, 1966 900-1500 ±20	7	21	,	1951	5.3-96	8-3 8-3	E ez	Trace of Ag; supplied by Messrs. Philips Ltd. Mitcham; cast under vacuum in soft glass tubes; electrical conductivity ranging from 756 to 1.0 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 2 to 90 K.
92 L 1956 2.2-9.6 Na 3 243 L 1950 407-462 243 L 1950 403-549 385 L 1959 402-1011 866, P 1961 623-1153 ± 2.5 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ± 20	œ	8	ᆈ	1956	2.1-16		Na 2	High purity, 0.5 mm in dia; electrical resistivity ratio 0(295 K)/ ρ (0 K) = 3420 (using Hackspill s value ρ (295 K) = 4.75 μ ohm cm).
243 L 1950 407-462 243 L 1950 403-549 385 L 1940 296-433 2 592 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20	ø,	8	ŋ	1956	2.2-9.6		C α χ.	High purity; 0.13 mm in dia: electrical resistivity ratio $\rho(295 \text{ K})/\rho(0 \text{ K}) = 2860$ (using Hackspill's value $\rho(295 \text{ K}) = 4.75 \mu \text{ ohm cm}$).
243 L 1950 403-549 385 L 1940 296-433 2 592 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853 146, 1966 900-1500 ±20 857	01	243	.1	1950	407-452			Commercial grade (high purity); supplied by Mine Safety Appliance Co.; 0.684 in. dia; M.P. 97.9 C; specimen in liquid state; apparatus in open air.
385 L 1940 296-433 2 592 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20 857	:	943		1950	403-549			The above specimen; apparatus in heated oven.
592 L 1959 402-1011 866, P 1961 623-1153 ±2.5 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20 857	: :	385		1940	296-433	63		Distilled; measured across melting point (approx. 97 C).
866, P 1961 623-1153 ±2.5 769 770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20 857	1 2	292		1959	402-1011			M.P. 97.5 C; specimen in liquid state; measured in vacuum of approx. 4 x 10 * mm Hg.
770, C 1965 363-1103 5.5 853 148, 1966 900-1500 ±20 857	3 3	866, 769		1961	623-1153	± 2.5		Impurities (after test): 0.049 Cr, 0.041 K. 0.016 Fe, 0.016 O. 0.014 Ni, <0.002 Pb, 0.0017 Mn, 0.0011 Ti, <0.001 Al, 0.00045 Cu, 0.0003 Ca, 0.00027 Mg, and 0.0002 Ag; distilled; 8.4 mm dia, approx. 230 mm long; in liquid state; measured in vacuum; data calculated from an empirical equation derived from experimental data.
148, 1966 900-1500 ±20 857	97	770, 853		1965	363-1103	5.5		Melting point 97. 81 C; specimen in liquid state; AISI 300 stainless steel used as comparative material.
	91	148, 857	•	1966	900-1500	±20		Vapor; measured in the 1 mm gap between concentric cylinders 500 mm love, vapor, pres = 0.01 kg cm ⁻² .

SPECIFICATION TABLE NO. 53 (continued)

						2967 g cm ' trical 12.42, 7.35, 41.76, 1.366, 365, 1.366, 365, 1.365, 1009, number	048 N. 0, 0032 375 K. 0, 0215 NI; purchased olden liquid esistivity 0, and 51.60 772. 8, and ical resistivity ical resistivit	
Composition (weight percent), Specifications and Remarks	Similar to the above except vapor pressure . 0.05 kg cm ⁷ .	Similar to the above except vapor pressure · 0, 1 kg cm ³ .	Similar to the above except vapor pressure = 0.5 Kg cm ² .	Similar to the above except vapor pressure $arepsilon$ 1.0 kg cm 4 .	Similar to the above except measured on saturation curve.	Density reported as 0. 9977, 0. 8255, 0. 8119, 0.7841, 0.7640, 0.7381, and 0.6967 g cm at 481,8, 804.1, 873.1, 972.7, 1085, 1149, and 1394 K, respectively, electrical resistivity reported as 5.21, 5.72, 6.54, 6.70, 6.82, 11.04, 11.10, 11.99, 12.42, 14.54, 15.61, 16.25, 18.01, 20.09, 21.86, 24.76, 28.01, 31.54, 35.31, 37.35, 41.76, 46.44, 48.91, 54.16, 60.10, 66.17, 69.59, and 72.48 µ ohm cm at 302, 324, 356, 355, 370, 406, 413, 431, 444, 501, 525, 542, 554, 680, 668, 720, 750, 869, 913, 910, 1081, 1171, 1238, 1300, 1334, and 1360 K, respectively; thermal conductivity values calculated from measured electrical resistivity data and the Lorenz number 2.45 x 10.8 v3K.	Composition (pretest): <0.0375 Cs, <0.0375 K, <9.0150 Li, 0.0066 Fe, 0.0048 N, 0.0032 O, 0.0022 Ni, and <0.0010 Ur; composition (posttest): <0.0375 Cs, <0.0375 K, 0.0215 C, <0.0215 Li, 0.0055 O, 0.0049 N, 0.0045 Fe, <0.0040 Cr, and <0.0009 Ni; purchased from U.S. Industrial Chemicals Co., purfled by melting and forcing the molten liquid through <0.0009 Ni; purchased from U.S. Industrial Chemicals Co., purfled by melting and forcing the molten liquid through <0.0009 Ni; purchased for steinless steel filter under purfled argon; electrical resistivity reported as 9.64, 11.44, 13.78, 17.38, 23.16, 28.69, 34.91, 41.86, 46.40, and 51.60 µ ohm cm at 371.2, 424.5, 482.5, 585.7, 693.9, 804.4, 908.7, 1012.8, 1072.8, and 11.05, 0.K, respectively; thermal conductivity values calculated from electrical resistivity data, using Lorenz function of 2.31, 2.31, 2.33, 2.36, 2.41, 2.48, and 2.5x I of values being derived from the thermal conductivity measurements of Ewing, C.T. and Grand, J.A. (NRL Rept. 3835, 1951) and the authors' own electrical resistivity data.	0. 13 Na ₂ O.
Name and Specimen Designation								
Reported Error, C	+ 20	t 20	t 20	± 20	¥ 20			< 15
Temp. Range, K	1990-1500	1000-1500	1100-1500	1200-1500	800-1200	4:7 - 1:366	473-1173	328
Year	1966	3961	1966	9961	1966	1964	1962	1965
Method Used						•		٦
No.	75. 75.	143. 857	2. CS2	148.	148.	851. 859.	7.862 8.622	868. 867
Cura e	1	¥	61	20	21	8		7.

DATA TABLE NO. 53 THERMAL CONDUCTIVITY OF SODIUM (Impurity 0, 24% each; total impurities 0.54%)

[Temperature T. K, Thermal Conductivity, k, Watt on 4 K $^{4}_{\odot}$

.	(3 (conf.)	0, 680	0.710	0. 668 7. 668	0.672	989 0	0.679	0. 665	0.688	0, 639	0.664	0.661	0.652	o 664	0.663	0,645	0 673	0.676	0.639	0, 628	0.638	0.618	0, 618	6,668	0.608	0.636	0, 629	0, 629	0, 610	0 590 0	0, 639	0.610	- C04	0.622	0. 638 0	909 0	J. 614	0, 614		E 14	٠	0, 732
;-	CURVE 13 (cont.	685.2	689. 2	698.2	704. 7	705. 2	719, 2	723. 2	733.2	734.2	738.7	743.2	753 2	757.2	760.2	763.2	764. 2	781.2	787. 8	7.90.7	801.2	811.4	824 2	825. 2	827.5	828.2	835.2	348.5	853, 2	855.2	x76.2	884 2	809.2	904.2	936.2	048.2	964, 2	1010.7		CURVE 14		623. 2
*	CURVE 13 (cont.)	0.832	0.866	0. 34.	0.825	0.846	O. H39	o. 831	0. H14	0.814	0. 80я	0, 750	11 x '0	0,819	0. 790	0.779	96, 0	0, 791	0, 767 2	0, 728	0, 766	0, 755	0, 751	0, 7.12	0, 752	0, 729	J. 744	0, 726	0, 703	0. 7.12	0.718	0.717	0, 732%	0.705	0, 697	0, 732	0.721	0, 686	0.709	0, 70.1	0.686	0, 70:3
Ŧ	CURVE	418.2	421.2	424.	425. 2	435.2	444, 2	473.2	2 .08¢	506. 3	512, 2	520, 2	527. 2	5:11, 7	532 2	21 11 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	549.2	554, 2	557. 2	561, 2	500.3	5×2, 2	53.8	592, 2	504. 1	5) 9) 10 10 10 10 10 10 10 10 10 10 10 10 10	603, 2	607.7	698, Q	613, 2	619. 2	625, 2	6.14.3	6330, 8	649, 2	649. 7	629.3	666, 2	669, 2	67:1, 2	675, 7	678 2
æ	E 11	B. 95×	6, x16	2 3 3 3	6, 523	0, 678	0,673	0, 686	0, 673	0 G78	¥(1) 0	0 607	0, 640	0, 640	0,640	0,640	0,640		E 12	1	1. 63	1, 63	1. 63	1.63	1, 695	1, 795	1, 72	1, 725	- Sec. 1	1.0v5	987	1.35	1. 35	1, 405	1.407	7. 1	1.41		E 13	1	0,848	9,854
۲	CURVE 11	403, 2	60.	51 × 13	450, 2	461, 2	5 T 5	473, 2	472.2	472.3	481, 2	521, 2	541.2	541.2	2.649	549, 2	549, 2		CURVE 12	 	296.4	258, 0	7 000	3.501	140, 2	5 GHC	361.3	363, 7	010,0	326.3	21 8.50	379, 7	60 G 60 K 61 K 61 K 61 K 61 K 61 K 61 K 61 K 61	21, 804	5,814	428, 0	413, 2		CURVE 13		40 I. 7	410, 7
غد	(cont.)	45, 460	14, 230	10, 000	32, 450	25 650	24, 040	15, 450	14, 420	11, 540		0		25. 410	34, 629	17, 500	40, 400	42, 310	43, 650	41, 150	600 30	336, 7310	313, 650	29, 810	24, 230		; <u>1</u> e	1	0, 925	100 p	6, 519	9, 302	0, 519	0.510	. 19:3	195	5::1	9, 500	615.0	0, 519	0.519	. 206.
i -	CLARVE S (cont.)	5: 32	5, 92	S. S.	0- 1-	96 %	5. E	11, 35	10, 27	15, 54		CURVED		2, 2:1	69 ii	21 ::	:: :-:	4, 35	5, 65	6, 03	6. 50	6, 92	5.46	E 8	9, 63		CURVE 10		407.2	4340, 2	445, 3	450, 2	453, 2	456, 2	456. 2	451.2	457.2	2,354	7.09	460, 2	460, 2	462. 2
4	(cont.)	4, 673	384	1, 486	12.4	1, 445	44.7	1, 316	1 354	1, 285	1.316	1, 293		(- Ed	ļ	31, 140	0211-02	24, 0.36	20,000	11, 530	13, 650	11 300	5,332	1, 376	6, 502	4, 800	0.0.4	1120	1, 516	1, 4:17	1, 452	1.356	1. 400	1. 445		x u	1	34, 810	5.0	11.640	45, 000	46, 150
÷	CURVE 6 (cont.	17 27 27	27 03	150 X	30.55	00.75	90 00	95 US	111, 40	81, IS	42, 24	95, 90		CURVE		5, 25	85	, v.	10 S	12, 76	E. 67	1	16. 1+	11 11	19, 00	77.	17	8	5. T.	59, 20	61, 70	82, 05	89, 350	95, 69		CURVES	į Į	51 5	52.	2,85	5. 5. 5. 7.	ια Σ
¥	#] 교	1, 130	1, 128	1, 127	508 o	0,855	0,850	0,851	0, 853	0, S.17	17.5° 0	0,819	0.807	0, 799		10	1	1.686	1 333	1.506	1.426	i i	1.276	1, 205	1.172	1.402	1000	1.213	1, 130		9		9, 5,44	11. 030	12, 360	13. 240	13, 690	0.01	999 6	3, 355	7, 452	5, 703
н	CORVE	357, 9	361, 4	364, 7	:: :::	0.080	388. 1	30% 3	411.5		4.19.0	50 807	100, 5	01 (05.4)		CURVE 5		¥		7.	- E	× 1	22.0	25	223	1 21	188	3773	243		CURVE 6		4, 72	5.63	7.01	**	96. 7	3 5	1 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(F +1	85. 91	19, 43
ž	(F. 1	0, 852	U. H40	0,851	0, X5X	0,802	0, 824	6, 77.3	0.750	247.0	0.7.52	0, 702	0.693	0.674	200	0 649	0 640	860 0		7F. 2.	1	0.50	70	0.790	2	£ 5	12.0	121 0	0.670	0.66		/E ::		11.040	1.326	286	7	505				
÷	CURVE	374.4	405, 0	419. 1	427.3	1.56.1	189	546. 1	9775	615 6	640.3	1.601	137. 9	7.59.1	51.73	832 0	3			CLIRVE		9 254	455 0	508.9	540 7		0 1 1 T) E	4 692	1076		CURVE		279. 0	4 760	1 0 0 0		190	:			

¥	CURVE 22 (cont.)	0.585	0.540*	0.498	0.460		/E 23*		91876	7.58	J. 711	999.0	0.631	0.630	0.573	0.549		/E 24		1.236																										
۴	CURVE	1033	1144	1255	1366		CURVE		473.2	573.3	673.2	773.3	873.2	973.2	1073.2	1173.2		CURVE		328																										
.	CURVE 17 (cont.)"	0.000405	0.000429	0.000459	0.000492			CURVE 18*		0.000497	0.000430	0.000422	0.000438	0.000464	0.000495		VE 19*		0.000609	0.000529	0.000499	0.000439	0.000516		VE 20		0.000612	0.000556	0.000535	0.000541	*		0.000485	0.000545	0.000593	0.000628	0.000658		∵E 22	1	0.883	0.860		0. 732	0.680	0.629
۲	CURVE	1200	1300	1400	1500			CUR		1000	1100	1200	1300	1400	1500		CURVE		1100	1200	1300	1400	1500		CURVE		1200	1300	1400	1500	(CORVE	800	906	1080	1100	1200		U		437	478	589	300	813	922
±	CURVE 14 (cont.)	0, 7113	0.665	0, 628	0, 590	0.561	0, 540		VE 15		1.180	1, 224	0.860	0, 836	808.0	0, 790	0, 783	0, 780		0.748		0.676	0.662	0.632								0.520	CURVE 16"		0.000358	0.000341	0.000360	0.000391	0.000422	0.000455	0.000489		CURVE 17*		0.000436	0.000394
۲	CURVE	673.2	113, 2	873.2		1073, 2	1153, 2		CURVE		363	358	378	£13	458	518	583	588	658	099	101	748	783	838	883	928	958	066	1000	1046	1363	1103	CUE		906	1000	1100	1200	1300	1400	1500		CUL	}	1000	1100

Not shown on plot

and the basis had a

The recommended values are for high-purity sodium with residual electrical resistivity $\rho_0 = 0.00147 \, \mu \Omega$ cm (characterization by ρ_0 becomes important at temperatures below about 100 Ky. The values below 1.5 Tm are calculated to fit the experimental data by using n = 2.00, o' = 3.50 x 10⁻⁴, and $\beta = 0.0600$. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 10% at other temperatures.

T1 in K, k, in Watt cm-1 K-1, T2 in F, and k2 in Btu hr-1 ft-1 F-1. * Vah

* Values in parentheses are extrapolated or estimated.

MANA THE STORY OF STREET

SPECIFICATION TABLE NO. 54 THERMAL CONDUCTIVITY OF TANTALLY

(Impurity $\cdot^*0.20\%$ each; total impurities $\cdot^*0.50\%)$

[For Inta Reported in Figure and Table No. -54°

Composition (weight percent). Specifications and Remarks	Imparits: pre-test), 0.052 N, traces of Ca, Cu, and Mg; imparities fafter test); 0.12 O, 0.044 N, 0.0061 H, traces of Al, Ca, Cu, Fe, and Mg; sintered; density 16,48 g cm ⁻³ .	Pure: 0, 0/75 cm dia x 28, 14 cm long; specific gravity 16, 67; electrical resistivity reported as 14, 452 and 19, 175 jabhm cm at 0 and 100 C, respectively.	Pure; filament.	0, 0036 O, 0, 0018 N, 0, 00009 H, and 0, 00005 C; 1, 9062 cm dia x 0, 2273 cm thick; machined from a 1 in. rod supplied by Fansteel Metailurgical Corp; average grain size 1, 86 mm, density 16, 60 g cm ⁻³ ; thermal conductivity derived from the temp distribution on the flat surface of the cylindrical disc heated in vacuum by induction.	99. 9 pure; polycrystalline; superconducting transition point 4, 38 K; measured in a magnetic field; in normal state.	The above specimen in superconducting state.	99. 98 pure; polycrystalline; specimen 0. 225 cm in dia, 3 cm long; Johnson Mathbey!s unannealed rod; electrical resistivity ratio pd.293K//pd.0K) = 19.7; electrical resistivity ratio pd.293K//pd.0K) = 19.7; electrical resistivity reported as 0.62. 0.63, 0.67, 0.90, 1.05, 1.46, 2.07, 2.35, 3.04, and 3.51 pohn cm at 11.3, 16.1, 20.5, 32.2, 37.2, 46.9, 59.6, 65.1, 78.4, and 89.4 K, respectively; superconducting transition temp 4.38 K; measured in a magnetic field; in normal state.	Very pure; in superconducting state.	Very pure; measured in a magnetic field; in normal state.	49, Nei Ta, U. Galdo No., U. 0140 C., U. 0200 W., C. 0200 C., C., C. 200 C., C., and V. 0. 0010 each of Pb., Sn., and Zr. 0. 0020 each of Co., Sr., and V. 0. 0010 each of Ag and Ti. 0. 0003 each of B., Mn., Si., of Al., Ra., Bi, Cr., Fe, and Ni, 0. 0005 each of Ag and Ti. 0. 0003 each of B., Mn., Si., and Na., 0. 0002 Re., and 0. 0001 each of Ca., Cu., and Mg. spectrom bar machined from a real outsined from Eansteel Metallurgical Corp.; data taken from smoothed curve.	4.02 Si, 0.065 Fe, 0.003 Mo, 0.0008 C, and 0.052 others; prepared by pressing and sintering tantalum powder, then bot and cold rolled.	0.0032-0.005 O, 0.0035 Nb, 0.0023 Fe, 0.0016 C, <0.001 N, and 0.0175 others; cast in vacuum, cold rolled, swaged, and cold drawn.	99.98 pure; 1-2 mm dia x 5 cm long; obtained from Johnson Matthey Co.; measured in a magnetic field; in normal state.	The above specimen in superconducting state.	Single crystal; specimen dia 6.1 mm; rathool length to cross sectional area to o cm. obtained by floating zone melting polycrystalline rod in a vacuum; electrical resistivity ratio p(298K)/p ₀ = 47.0.
Name and Specimen Designation				S. S.	Hilger 8017, Tal	Hilger 8017, Tal	JM3804; Tal				•	8	JM3804; Tel	Ta 1	ТаП
Reported Error, %	ıo				m	r	. m	2-5	2-2	အ			2-3	£-3	က
Temp. Range, K	842-1820	290, 373	1700-2100	1665-2671	1.7-4.2	6.5.7	2, 0-92	2.6-4.2	2, 6-7, 9	373-773	2343-3148	2326-3071	2.3-21	2.3-3.9	0. 23-1. 2
Year	1956	1914	1914	1966	1950	9561	1825	1950	1930	1959	1960	1960	1952	1952	1962
Method Used	-1	ند	ia	ı ·	J		: <u> </u>	ı.i	_	.4	ш	ш	ı	د	-1
Ref.	#	3C		2 2 2	ť	ī	± 81	8	ક્ર	142	255	255	93	1.6	705
Cun e	-	61	÷	? प	ភេ	,	<i>⊃</i> 1~	20	. m	10	17	21	ET	14	15

SPECIFICATION TABLE NO. 54 (continued)

rks	eld; in superconducting		y Funsteel Metallurgy vity reported as 0.0032,	03, 3. 55, 4. 6, 5. 6, 15, 20, 25, 30, 40, 50, 3, and 295 K, respec-		specimen oblahed by rity ratio p(298K)/p ₀ =		N, and 0, 00045 H; measured in a magnetic berg in 1955 (curve 7).	•	16.4 g cm ~; electrical 9.8 µohm cm al 297,	Matthey and Co.; about as 14.5, 15.45,	, 73, 89, and 109 µohm cm	her elements; 0.040 in. 1; average grain size ty values calculated from data of Kubaschewald, O. n, Pergamon, 1956).	lained from Fansteel 7, 18 µohm cm at 77, 33, 273, 2, m lig.
Composition (weight percent), Specifications and Remarks	99.98 pare; polycrystalline; effected by "frozen in" magnetic field; in superconducting	Separate run of the above specimen; in superconducting state.	99.9 pure; specimen consisted of four 1.5 mm wires supplied by Fansteel Metallurgy Corp. annealed in vacuum at 2500 C; ideal electrical resistivity reported as 0.0032,	0.017, 0.051, 0.12, 0.23, 0.54, 0.95, 1.43, 1.96, 2.50, 3.03, 3.55, 4.6, 5.6, 6.65, 7.65, 8.6, 9.6, 11.0, 12.1, and 13.1 poten cm at 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 250, 273, and 295 K, respectively; electrical resistivity ratio $\rho(295K)/\rho_0 = 62.1$.	99.98 pure; polycrystallinc; in superconducting state.	0.005 Fc., 0.003 Si., 0.0003 O, and 0.00025 H; single crystal; specimen obtained by floating-zone melting polycrystalline rod; electrical resistivity ratio $\rho(298K)/\rho_0 = 63$; measured in a magnetic field; in normal state.	The above specimen in superconducting state.	0.1 Nb, 0.01 C, 0.01 Fe. 0.01 Mo, 0.01 W, 0.001 O, 0.00075 N, and 0.00045 H; polycrystalline; electrical resistivity ratio $\rho(298K)/\rho_0=31$; measured in a magnetic field; in normal state; specimen same as that used by Rosenberg in 1955 (curve 1).	The above specimen in superconducting state.	99.9 pure; obtained from Fansteel Metallurgical Corp; density 16.4 g cm ⁻² ; electrical resistivity reported as 15, 1, 34, 3, 35, 0, 41, 3, 48, 2, and 48, 8 µphm cm at 297, 670, 685, 840, 980, and 1000 K, respectively.	Spectrographically standardized tantalum; obtained from John Matthey and Co.; about 4.5 mm in dia and 10 cm long; electrical resistivity reported as 14.5, 15.45, 17.72, 22.25, and 24.4 µohm cm at 293, 323, 373, 473, and 523 K, respectively; Armoo iron used as the comparative material.	I mm in dia, 30 mm long: clectrical resistivity reported as 50, 73, 89, and 109 pohm cm at 900, 1500, 2000, and 2500 C, respectively.	~99.89 Ta (by difference), <6.1 Nh, <0.01 C, and traces of other elements; 0.040 in. thick sheet; obtained from Murex Co.; vacuum beam melted; average grain size after testing 140 µ; density 16.6 g cm ⁻¹ ; thermal conductivity values calculated from measured data of thermal diffusivity using the specific heat data of Kubaschewald, O. and Evans, L. Ll., (Metallurgical Thermochemistry, London, Pergamon, 1956).	99.9 pure; wire 0.01 in. in dia and ~15.7 in. long (40 cm); obtained from Fansicel Corp; electrical resistivity reported as 2.46, 12.41, and 17.18 uphm cm at 77.33,273.2, and 373.4 K, respectively; measured in a vacuum of 10 4 mm ilg.
Name and Socimen Designation	Ta 1	Ta 1	Ta 3		JM3804					No. 9	JM 618			
Reported Frence %													\$5 #I	10-90
Temp	0. 60-0. 86	0. 79-1. 0	4, 4-114		0. 42-1. 2	0, 95-4, 3	0.954.4	0.92-4.0	1.0-4.3	299-1000	323-523	1233-2793	1460-2829	273, 373
Year	15.53	1953	1959		1955	1961	1961	1961	1961	1961	1961	1962	1965	1943
Method	nged T	<u></u>	۱ .		٦	ב	ن	i -1	.,	ы	L. C	ш	a	ы
Ref.	oz 06	8	\$ °\$		4:2	201	9	201	9	288	652	402	2	2
Curve	. No.	,	18		61	50	16	: ង	2	ន	Şî	26	2	28

SPECIFICATION TABLE NO. 54 (continued)

 Composition (weight percent), Specifications and Remarks	0.0019 C. 0.0017 H. 0.0017 N. and 0.0017 O; specimen 2.4892 cm in dia and 0.3927 cm thick; awg. grain size 0.26 mm; density 16.65 g cm ⁻³ ; thermal conductivity derived	in the temp distribution on the first surface of the cylindrical disc specimen heated in high vacuum (10° mm Hg) by high frequency induction. 0. 0655 O. 0. 0137 C. 0. 0015 M. and 0. 00027 H; machined from the same bar as the above specimen: 2. 2232 cm in disc send 0. 2025 cm.	measuring method same as above. 0. 0114 O. 0. 0016 N. 6. 003 C. and 3. 00027 H; machined from the same bar as the above specimen: 2. 2722 cm in dia and 3. 2010 C. 2. 272 cm in dia and 3. 2. 272 cm in dia and 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	density 16, 62 g cm. 4, measuring method same as above. 0.0036 O, 0.0018 N. 0.0009 H, and 0.00005 C; machined from the same bar as the	density 16, 63 g cm ⁻³ ; measuring method same as above. No details given for the specimen; thermal conductivity measured by the "small area contact method".
Name and Specimen Designation	No. 1	No. 2	Жо. з	No. 4	
Reported Error, %					
Temp. Range, K	1578-2007	1700-2398	1660-2490	1563-2142	300-995
Year	1966	9967	1966	1966	1962
Metbod Used	1	Ť	1	1	H
Ref.	849	849	849	2	313
Curve No.	82	0 5	33	35	ន

DATA TABLE NO. 54 THERMAL CONDUCTIVITY OF TANTALUM

(Impurity < 0.20% each; total impurities < 0.50%)

[Temperature, T, K; Thermal Conductivity, k, Watt $\,\mathrm{cm}^{-1}K^{-1}$]

¥	CURVE 17	0.0015	0.00152	0.00168	0.00175	0.00190	0.00210	0.00232	0.00245	0,0025		CURVE 18		0, 435	0,632	0,743	0.862	0.947	50 .	1.24			‡ :	1.45	1.41	1,28	1, 16	1, 03	0.919	0.848	0.646	0.583	0.605	609	205	200	9.00	0.587		CURVE 19		0 00183			0.0034			
۲	COU	0.79	0,825	0.85	0.865	0.90	0.925	0.952	0.98	0,995		Ca		4.41	5.64	6.65	7.71	8.62	6 57	. :	7.7	ָרָים ביים		18.4	22.0	25.9	30.0	88. 6	37.7	42.2	59.4	70.7	9.00	9	3 3	9.0	£ .	114.1		CO	1	0.49	2	0, 303	0, 57	0.58	0,605	
×	CURVE 15 (cont.)	0.0016	0,0085	0.0104	0,0095	0.0114	0.0151	0,0132	0.0146	0.021	0.0215	0.029	0.0235	0.029	0.038	0.037	0.049	0.068	180 0	1000	000.0	0.088	0.091	0. 104	0. 10	0.108	ن. 11	960 (1	0.080		CIIRVE 16		0 00035	0.00030	70000	0.00240	0.00260	0.00270	0.00282	0.00294	0.00315	0 00342	9,000	0,0000	0.00395			
۲	CURVE	0.38	0,395	0.40	0.41	0, 43	0.45	0.47	0.485	0.50	0,52	0,54	0.55	0.60	0.61	0.63	0.68	0.20		2 5	? ;	0.78	3 .0	3	0.94	0.95	1,04	1.08	1 15	:	SIL		07 0	3	700	0.65	99.0	0.68	0,71	0.725	0.75	, a		2 · 62	0. Kg			
*	(cont.)	0.146	0.157	0.162	0.176	0, 227	0.248	0.264	0, 352	090	0.432	0, 635	0, 63		E 14	1	0.0426	0.0453	5.0	0.0414	C. 52.	0.0518	0, 0567	0, 066:3	0,0765	0,0862	0.0952	0. 107	116	521.0	22.0			CURVE 13		0.0018	0.00254	0.00273	0.0034	0 0037	90.0	3000	0.000.0	0.0051	0.0066	0.00 82	0.000	
۲	CURVE 13 (cent.)	38.5	4, 12	4.23	4.51	6.25	6,35	7 15	9 20	a d	11.03	20.5	20.8		CURVE 14		96 6	4 .	6.33	2.37	7. 39.	2.47	2.56	2, 72	2.90	3, 07	3.2		2	 	: :	o				0. 2:32	0.246	0.263	0.220	200	2.0	0.0	9.33	0.34	0, 36	0.37	0.375	•
¥	CURVE 10 (cont.)	97.5	262	1990	0 563	0.563	0.563	563		11 .32.01.0		0.533	0 602	0.543	645	200	25.0	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.450	0.452	0.450		CURVE 12		0.649	0.538	0.530	5.00		0.410	0.40	:	CURVE LS	,	0.0916	0.0886	0.030	901 0	971.0	2	6,119	C71 '0	0. 131	0, 125	0, 1:13			;
۲	CURVE	47.5	593.9	6 2.20	6 2 2 3	200	793. 9		1 1			7.F2.6	7437	1 K 1 C	6716	1 0	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22.53	2860	::09:3	2712		CUR		2326	9563	7630	6 6 6 6	1107	2844	3071		3		2.26	2,27	2.58	8	3 8	3 :	3.17	3,35	3.43	3,46	3.54	3,60	69 6	;
¥	CURVE 7 (cont.)	050.0	0.239	445.0		525	0000	6.00	0.655	200	0.633	620.0	585	586	, 60 to		0.061	;	CURVE 9		0.065	0,095	01.10	0 134	0 160	951.0	0.13	0, 543		CURVE 9		0, 146	0.162	0, 174	0.192	0.210	0.925	0.53	3 4 6	0.2.0	2.0	0,345		CURVE 10		0.551		,
۲	CURVE	t	26°		50.01	70.00	16.50	0.00	20.20	2.5. 15	£ 55.55	30.00	40.63	65.50	3 6	27.62	92. 40		CO		2,55	2, 70	, K	1.	2		9	¢. I3	į	5		2.57	2.94	3, 10	3,56	8	4 20	A	9		S. 60	7.94		00	31	27.3 9	7.00	463, 4
¥	(cont.)		0.0450		0.020	í	اه إد		0.0066	0.0080	0.0094	0.0102	0.0132	0.0170	0.0221	0.020	0.0300	0.0330	0.0370	0.0410	0.0440		. 4	-	200	100.0	0.081	0.00	0.0925	0, 0955	0. 102	0. 103	0, 105	0.108	0.111	8110			0. 12.	0.135	0, 139	0, 147	0, 150	0 155	0 162	777	F 1 1 0	0. 219
۲	CURVE 5 (cont.)	;	æ 8	3 :	4. 18		CURVE	į	1. 70	1.88	1.98	2.07	5.5 3.5	7. 25	2.70	26	3. 10	3,28	3,46	3,65	Š.	3	TUGUE		8	2.00	2. 13	35	۰: 1	5. S	2, 65	2.74	80	2.90	. 03	 	2 2	S. 5	3, 57	3 	3, 64	ь Ж	3 92	: •			4.	ສ ທີ
¥	VE 1		0.676	0,713	0.746	0.786	o. 785		(VE 2		0.544	0,540		. 3A.		0.730	0.780	0. 830		CITRUT 4		100	700.0	0.630	0. 616	6. 59	0.615	0.610	0.597	0.605	0.616		CURVE 5		0.016.0	2000	0.01/2	0.013	0.0193	0.0220	0,0238	0,0260	1000		11:00.0	0.0340	0.0.06	0,6425
۰	CURVE		841.5	1101.5	1378.7	1688.7	1819.8		CURVE		290.2	373.2		CURVE		1700	1900	2100		717			COST	1816	1923	5 07 3	216:3	5260	2468	2524	2671			; 	-	* ª	. 33	1.97	2.08	2, 16	2, 52	2 60	3	7	* 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	;;;	: - :	09 %

(continued)
3
Š
B1,E
TAB
ATA

T k CURVE 33 (cont.)	0, 613 0, 643 0, 652			
T	248 248 398 399			
r k	CURVE 28 1, 2 0, 36 1, 4 0, 19 CURVE 29	0.617 0.584 0.590 0.590 0.606	CURVE 31 0.683 0.673 0.673 0.673 0.673 0.673 0.703 0.703 0.703 0.569 0.680 0.680 0.567	0.603 0.640 0.640 0.621 0.621 0.621 0.613 0.707 CURVE 33 0.493
<u>ب</u>	273, 2 373, 4	1578 1746 1941 1942 2007	1700 1759 1869 1869 1869 1879 1878 2043 2043 2043 2043 2043 2043 2043 2043	1563 1585 1712 17112 17114 1811 1907 2020 2142 2142 2142 2142 2142 670 670
A Second	CURVE 25 2 0,582 2 0,585 2 0,585 2 0,585	2 0.444 2 0.444 2 0.487 2 0.462 2 0.418 2 0.452	2 0,444 2 0,444 2 0,444 2 0,439 2 0,356 2 0,356 2 0,319 2 0,310 2 0,310 2 0,310 2 0,310 2 0,310 2 0,310 2 0,310 2 0,310 2 0,310 2 0,331	0. 630 0. 637 0. 653 0. 655 0. 665 0. 667 0. 688 0. 698 0. 710 0. 717
1	323, 2 373, 2 473, 2 523, 2	CU 1233, 2 1293, 2 1323, 2 1433, 2 1433, 2 1513, 3	1633.2 1738.2 1893.2 1893.2 2003.2 2003.2 2273.2 2273.2 2443.2 2493.2 2688.2 2688.2 2688.2	1500 1600 1700 1700 1900 2000 2000 2400 2500 2500 2500 2500
	CURVE 21 (cont.) 3, 51 0.240 3, 72 0.270 3, 84 0.283 4, 12 0.330	00 0.350 10 0.368 CURVE 22 22 0.0370 22 0.0450 23 0.0450 24 0.0450	CURVE 23 CURVE 23 CURVE 23 COURVE 23 0 0.110 0 0.212 0 0.110 0 0.0110 0 0.0217 0 0.025 0 0.025 0 0.025 0 0.0331 0 0.0410 0 0.0562 0 0.0562 0 0.0562 0 0.0563	130 0, 122 150 0, 152 150 0, 150 14 0, 174 151 0, 174 152 0, 154 153 0, 651 154 0, 651 155 0, 680 157 0, 680 158 0, 728
(-	3.51 3.72 3.84 4.12	* # # - 0,11 4.8 8 6 - 0,11 4.8 20 8 8 8 8 8	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2.28 4.05 4.05 4.16 4.16 4.16 6.70 6.70 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.8
	CURVE 19 (coet.) 0. 665 0. 00405 0. 670 0. 0051 0. 705 0. 00505 0. 710 0. 0052	10 0.0055 96 0.0061 0 0.00645 3 0.0066 1 0.00895 6 0.0130	0 0.0783 0 0.0995 1 0.129 6 0.129 6 0.143 0 143 0 0.162 0 0.207 0 0.227 2 0.227 2 0.227 2 0.227 1 0.300 1 0.328 6 0.357 CURVE 21	0, 102 0, 0628 0, 0628 0, 0581 0, 0500 0, 0440 0, 0535 0, 0783 0, 111 0, 112 0, 168 0, 168
۳	0.655 0.670 0.705 0.710	0, 710 0, 796 0, 80 0, 91 1, 16	0.95 1.20 1.58 1.58 1.76 1.76 2.20 2.20 2.20 2.30 3.40 4.01 4.01 4.01	0.095 0.011111111111111111111111111111111111

FIGURE AND TABLE NO. SAR RECOMMENDED THERMAL CONDUCTIVITY OF TANTALUM

T. F. F. F. F. F. F. F. F. F. F. F. F. F.				æ	RECOMMENDED VALUES*	DED VALU	JES*		
1		T,	ĸ,	k 3	f.	ũ	Ą.	ጁ	T,
10.0115	8	0		٥	459.7	8	0.582	33.6	44 0.
2 0.330 13.3 -155.1 700 0.559 34.1 700 0.559 34.1 700 0.559 34.5 7			.115	6.64	457.9	909	0.586	8.8	620.
10 10 10 10 10 10 10 10			245	13.3	ž Ž	2 2 3	0.590	7.7	9
S	2		459	13.3 26.5	452.5	8 8	0. 598	. 9. 7. 9. 1. 9.	1160
10 10 10 10 10 10 10 10			571	33.0	450.7	1000	0.602	34.8	1340
1			681	39.3	148.9	8	0.606	35.0	1520
10 1.06 62.4 441.5 1300 0.614 35.5 10 1.06 62.4 441.7 1400 0.618 35.7 11 1.16 67.0 441.7 1500 0.622 36.2 12 1.30 71.6 441.7 1500 0.622 36.2 13 1.30 71.6 441.7 1500 0.622 36.2 14 1.36 71.6 441.7 1400 0.630 36.4 15 1.40 80.9 442.7 1200 0.647 37.4 16 1.41 84.9 442.7 2000 0.647 37.4 17 1.41 84.9 442.7 2000 0.647 37.4 18 1.47 84.9 427.7 2000 0.653 38.1 19 1.36 71.6 71.6 71.6 71.6 71.6 10 1.47 84.9 427.7 2000 0.653 38.1 11 1.16 67.0 405.7 3000 0.653 38.1 12 1.30 1.16 67.0 405.7 3000 0.666 38.5 13 1.16 67.0 405.7 3000 0.666 38.5 14 1.36 71.6 71.6 71.6 71.6 15 1.40 80.9 57.2 -396.7 3000 0.666 38.5 16 1.47 84.9 427.7 3200 0.666 38.5 17 1.16 71.7 71.6 71.6 71.6 71.6 18 1.47 84.9 427.7 3200 0.666 38.5 19 10 2 3 4 5 8 10^2 2 3 4 8 3 10 2 3 4 5 8 10^2 2 3 4 8 3 10 2 3 4 5 8 10^2 2 3 4 8 3 10 2 3 4 5 8 10^2 3 4 8 3 10 2 3 4 5 8 10^2 3 4 8 3 10 2 3 4 5 8 10^2 3 4 8 3 10 2 3 4 5 8 10^2 3 4 8 3 10 2 3 4 5 8 10^2 3 4 8 10 2 3 4 5 8 10^2 3 4 8 3 11 1 1 1 1 1 1 1 1			. 788	45, 5	47.1	1200	0.610	35. 2	1700
9 0.589 57.1 -443.5 1400 0.618 35.7 1 1 1.0 1.06 62.4 -441.7 1500 0.622 35.9 1 1 1 1.2 1.24 11.7 1500 0.622 35.9 1 1 1 1.2 1.24 11.7 1500 0.622 35.9 1 1 1 1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2			. 691	51.5	446.3	1300	0.614	35. 5	1880
10 1.08 62.4 441.7 1500 0.622 35.9 11 1.16 67.0 439.7 1600 0.628 36.2 11 1.16 67.0 439.7 1600 0.639 36.4 11 1.16 67.0 439.7 1600 0.639 36.4 11 1.16 67.0 439.7 1600 0.639 36.4 11 1.16 67.0 436.3 1800 0.637 36.8 11 1.10 1.10 1.10 1.10 1.10 1.10 1.10	9		. 989	57.1	443.5	1400	0.618	35.7	2060
11 1.16 67.0 -439.7 1600 0.626 36.2 12.2 17.1 1.2 1.24 17.1 1.24 17.1 1.24 17.1 1.24	2		80	62.4	41.7	1500	0.622	35, 9	2240
12 1.24 71.6 438.1 1700 0.630 36.4 13 1.30 75.1 434.5 1900 0.634 36.6 14 1.36 78.6 436.7 2000 0.647 37.4 15 1.40 80.9 422.7 2000 0.647 37.4 16 1.40 80.9 422.7 2000 0.647 37.4 18 1.41 84.9 422.7 2000 0.643 37.7 18 1.47 84.9 422.7 2000 0.663 38.3 19 1.10 1.10 1.10 1.10 1.10 1.10 1.10 19 1.10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 11 1.10 1.			. 16	67.0	-439.7	1600	0.626	36.2	2420
13 1.30 75.1 -446.3 1800 0.634 36.6 14 1.36 75.1 -446.3 1800 0.634 36.6 15 1.40 80.9 -432.7 2000 0.647 37.4 16 1.44 83.2 -432.7 2000 0.647 37.4 18 1.47 84.9 -422.7 2000 0.647 37.4 20 1.47 84.9 -427.3 2400 0.653 37.7 20 1.16 67.0 -405.7 3000 0.665 38.4 21 1.16 67.0 -405.7 3000 0.665 38.4 22 1.26 -387.7 3000 0.665 38.4 23 1.2 2 3 4 5 6 8 10³ 2 3 4 5 90 0.592 34.4 -227.7 24 0.651 37.6 -385.7 25 0.651 37.6 -385.7 26 0.651 37.6 -385.7 27 100 0.592 34.4 -227.7 28 0.653 34.4 -227.7 29 0.653 34.4 -227.7 20 0.653 34.4 -227.7 20 0.653 34.4 -227.7 20 0.653 34.4 -227.7 20 0.655 33.2 -99.7 20 0.674 (33.2) -99.7 20 0.674 (33.2) -99.7 20 0.674 (33.2) -90.7 20 0.674 (33.2) -90.7 20 0.675 (33.2) -90.7 20 0.674 (33.2) -90.7 20 0.675 (33.2) -90.7 20 0.674 (33.2) -90.7 20 0.675 (33.2) -90.7 20 0.677 (33.2) -90.7 20 0.707 (33.2)	3		2	71.6	438.1	1200	0.630	36.4	2600
14 1.36 79.6 444.5 1900 0.637 36.8 1.4 1.36 79.6 444.5 1900 0.637 36.8 1.4 1.4 1.36 73.0 1.4 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4			30	75, 1	136.3	1800	0.634	36.6	2780
15 1.40 80.9 -432.7 2000 0.640 37.0 16 1.44 83.2 -430.9 2200 0.640 37.4 18 1.47 84.9 -427.3 2200 0.647 37.4 18 1.47 84.9 -427.3 2200 0.645 38.7 1.47 84.9 -427.3 2200 0.665 38.7 1.47 84.9 -427.3 2200 0.665 38.7 1.47 84.9 -427.7 2600 0.665 38.4 1.47 2600 0.665 38.4 1.47 2600 0.665 38.4 1.47 2600 0.665 38.4 1.47 2600 0.665 38.4 1.47 2600 0.665 38.4 1.47 2600 0.665 38.4 1.47 2600 0.666 38.5 1.20 0.87 1.20 0.89 1.16 67.0 -405.7 3000 0.665 38.4 1.47 2600 0.666 38.5 1.20 0.89 1.16 67.0 -405.7 3200 (0.666) (38.5) 1.20 0.89 1.16 67.0 -405.7 3200 (0.666) (38.5) 1.20 0.89 1.16 35.6 -351.7 1.20 0.665 34.4 -2297.7 1.20 0.665 34.4 -2297.7 1.20 0.665 34.4 -2297.7 1.20 0.665 34.4 -2297.7 1.20 0.675 (0.675) (33.2) -96.7 1.20 0.675 (0.675) (33.2) -96.7 1.20 0.675 (0.675) (33.2) -96.7 1.20 0.675 33.2 1.20 1.20 0.675 33.3 170.3 1.70 3.2 1.20 0.675 33.3 170.3 1.70 3.			. 36	78.6	434.5	1900	0.637	86.8	2360
16 1.44 83.2 -430.9 2200 0.647 37.4 18 1.47 84.9 -427.3 2800 0.653 37.7 20 1.47 84.9 -427.3 2800 0.653 37.7 21 1.47 84.9 -427.7 2800 0.653 38.4 22 1.86 67.0 -405.7 3000 0.665 38.4 23 1.16 67.0 -405.7 3000 0.665 38.4 24 0.99 57.2 -386.7 3200 (0.665) (38.5) 25 0.99 57.2 -386.7 3200 (0.665) (38.5) 26 0.65 34.4 -2897.7 27 0.65 34.4 -2897.7 28 0.65 34.4 -2897.7 29 0.65 34.4 -2897.7 20 0.675 (33.2) -99.7 273.2 (0.575) (33.2) -99.7 273.2 (0.575) (33.2) -99.7 273.2 (0.575) (33.2) -90.7 274.6 59.8 59.3 170.3 275.6 59.8 59.3 170.3 276.7 59.8 59.7 100.3 277.7 59.7 100.3 277.7 59.7 100.3 277.7 100.3			. 40	80.9	-432, 7	2000	0. 840	37.0	3140
18 1.47 84.9 -427.3 2200 0.653 37.7 200 0.654 38.0 1.36 78.6 1.36			1	83, 2	4 30.9	2200	0.647	37.4	3200
20 1.47 84.9 423.7 2600 0.658 38.0 25 1.36 78.6 -414.7 2600 0.658 38.0 0.653 38.3 30.0 0.653 38.3 30.0 0.653 38.3 30.0 0.653 38.3 30.0 0.653 38.4 30.0 0.653 38.4 30.0 0.655 38.4 30.0 0.655 38.4 30.0 0.655 38.4 30.0 0.655 38.4 30.0 0.655 38.4 30.0 0.655 37.2 380.7 3200 (0.666) (38.5) 38.5 38.5 38.7 3200 (0.666) (38.5) 315.6 315.7 3200 (0.666) (38.5) 315.6 315.7 3200 (0.667) 315.7 3200 (0.675) 315.7 3200 (0.675) 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2			.47	84. 9	-427.3	2400	0.653	37. 7	3860
1.36			. 5	84.9	. ii	2606	0.658	⇒ ′	4220
30 1.16 67.0 -405.7 3000 0.665 38.4 -36.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.666) (38.5) -405.7 3200 (0.676) (33.2) -905.7 32.0 32.0 32.0 32.0 32.0 33.2 32.0 32.0			æ.	78.6	-414.7	2800	79 20 3	30.5	1000
85 0.39 57.2 -396.7 3200 (0.666) (38.5) 40 0.87 50.3 -396.7 3200 (0.666) (38.5) 41 0.72 41.6 -369.7 42 0.73 4.6 -387.7 43 0.72 41.6 -369.7 44 0.72 41.6 -369.7 45 0.72 41.6 -369.7 46 0.85 50.3 -387.7 47 0.65 33.7 48 0.72 13.5 48 10 ³ 2 3 4 5 6 8 10 ³ 2 3 4 5 90 0.603 34.8 48 -297.7 49 0.603 34.8 -297.7 40 0.875 (33.2) -99.7 40 0.875 (33.2) -99.7 40 0.875 (33.2) -99.7 40 0.876 (33.2) -90.7 40 0.876 (33.2) -90.7 40 0.876 (33.2) -90.7 41 0.666) (38.5)			91.	67.0	-405.7	3000	0.665	38.4	4940
HE, K RE, K 19.7% pure tantalum with residual electrical above and at terminaratives helper 45 0.87 45.1 50 0.78 45.1 50 0.78 45.1 50 0.651 37.6 60 0.651 37.6 60 0.653 34.8 100 0.592 34.2 100 0.592 34.2 100 0.592 34.2 100 0.592 34.2 100 0.592 34.2 100 0.592 34.2 100 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2) 200 0.575 (33.2)			66.	57.2	-396.7	3200	(0.886)	(38.5)	230
E 8 10 ² 2 3 4 5 f 8 10 ³ 2 3 4 5 90 0.575 41.6 5.6 8 10 ³ 2 3 4 5 90 0.586 34.4 100 0.586 34.4 100 0.586 34.4 100 0.586 34.4 100 0.586 34.4 100 0.586 34.4 100 0.586 34.4 100 0.586 34.4 100 0.580 34.8 100 0.580 33.8 100 0.580 33			. 87	56.3 45.3	-387.7				
E 8 10 ² 2 3 4 5 f 8 10 ³ 2 3 4 5 90 0.651 37.6 0.656 95.6 0.656			22	41.6	369.7				
E 8 10 ² 2 3 4 5 6 8 10 ³ 2 3 4 5 90 0.616 35.6 5.5 8.7 8 90 0.603 34.8 5.6 8 10 ³ 2 3 4 5 90 0.603 34.8 5.6 8 10 ³ 2 3 4 5 90 0.506 34.8 5.6 8 10 ³ 2 3 4 5 90 0.506 34.8 5.6 8 10 ³ 2 3 4 5 90 0.506 34.2 5.6 90 0.506 34.2	T. P. (8.0.) 4.483 K		651	3 6E	-351.7				
E # 10 ² 2 3 4 5 6 8 10 ³ 2 3 4 5 90 0.603 34.8 RE, K RE, K 200 (0.592 34.2 150 (0.598) # (33.2) 200 (0.575) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.574) (33.2) 213.2 (0.575) (0.576) (0			616	35.6	-333.7				
RE, K RE, K 100 0.596 34.4 100 0.592 34.2 100 0.592 34.2 150 0.591 34.2 150 0.575 (33.2) 250 (0.574) (33.2) 273.2 (0.574) (33.2) 273.2 (0.574) (33.2) 273.2 (0.574) (33.2) 273.2 (0.574) (33.2) 274.4 275.2 (0.575) 275.2 (0.574) (33.2) 275.2 (0.574) (33.2) 275.2 (0.574) (33.2) 275.3 (0.575) 275.3 (0.576) 275			. 603	34.8	-315.7				
RE, K 100 0.592 34,23 120 (0.580)	3456810 2 3456810 2 3456610 4 34		. 596	34. 4	-297.7				
NE. N. 150 (0.580)* (33.5) 120 (0.575) (33.2) 250 (0.574) (33.2) 250 (0.574) (33.2) 250 (0.574) (33.2) 277 (0.577) (33.2) 277 (0.577) (0.577			. 592	7.	-279.7				
200 (0.575) (33.2) – 250 (0.574) (33.2) – 250 (0.574) (33.2) – 273.2 (0.574) (33.2) – 275 pure tantalum with residual electrical 350 0.576 33.3) hoomes imported at temperatures helps	TEMPERATORE, N	_	. 580) *	(33. 5)	-189.7				
250 (0.514) (33.2) = 273.2 (0.514) (33.2) = 273.2 (0.514) (33.2) (. 575)	(33.2)	- 99.7				
273.2 (1.51%)			(24)	(33. z)	ب م ا				
. 9*% pure tantalum with residual electrical 350 0.576 33.3	CMARKS	7	575	(25.5) 23.2)	36.08 30.08				
A horse importent at temperatures helps 400 0.578 53.4			576	e e	170.3				
			578	53.4	260,3				

resistivity $p_s = 0.212 \, \mu \Omega$ cm (characterization by p_s becomes important at temperatures below about 150 K). The values below 1.5 $T_{\rm m}$ are calculated to fit the experimental data by using n = 2.10, $cr^4 = 4.52 \times 10^{-4}$ and $\beta = 5.69$. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature, and 5 to 10% at other temperatures.

T, ln K, k, ln Watt cm - K-, T, in F, and k, in Bu hr - R- F-1.

*Values in parentheses are extrapolated or interpolated.

مكامه الملاهمة ويقفوه مصيحة المطاهمة أمطانهم فيقط المطالعة والمراجعة المشطارة والملامحة محدد ويدواه ومداداته حدد

continue a state of the continue of

, e 14 (

SPECIFICATION TABLE NO. 85 THERMAL CONDUCTIVITY OF TECHNETIUM

(Impurity <0. 20% each; total impurities <0. 50%)

[For Data Reported in Figure and Table No. 55]

Swerifications and Remarks		Total impurities ~0. 0150; specimen ~0. 12 cm trick and 2.3 cm in use, properties reduced metal recovered from fission product wasters; the material melted in an reduced metal recovered from fission product wasters; the material melted in an electron beam evaporator, heated to 1540 C by induction, press forged, and ground to final shape; thermal conductivity values calculated from measured data of thermit diffusivity, the measured density (11.492 g cm ⁻³), and the heat capacity data taken from Stuli, D.R. and Sinke, G.C. (Thermodynamic Properties of the Elements, American Chemical Soc., Washington, D.C., pp. 198-9, 1956).
	Reported Name and Error, % Specimen Designation	
	Error, %	
	Temp. Range, K	238-838
	Year	1965
	Method Used	۵.
	Curve Ref. 1	88 88
	Curve	~

AND BURE

A STATE OF THE PARTY OF THE PAR

CURVE

0.000 0.000

5 % W. A.

The state of the s

SPECIFICATION TABLE NO. 36 THERMAL CONDUCTIVITY OF TELLURIUM

(Impurity \cdot 0, 20% each; total impurities \cdot 0, 50%)

[For Data Reported in Figure and Table No. 56]

Curs o	Ret.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	297		1957	285-763	1-5		Spectrally pure; polycrystalline; bar specimen prepared by triple fractional distillation in a vacuum of 10 ⁻⁴ mm Hg, cold pressing under 4000 kg cm ⁻² , and hot pressing at 673 K under 380 kg cm ⁻² for 6 hrs; melting point 452 C; measured in both solid and liquid states.
হা	366	C,	1916	318.5			Material supplied by Eimer and Amend; melted and cast in a hydrogen atmosphere; density 6, 25 g cm ⁻² ; Dermal conductivity value calculated from measured thermal diffusivity using specific heat value taken from literatur
m	367	1	1933	90-298			4.0.01 impurities, single crystal; electrical resistivity reported as 0, 021 and 0, 035 ohm cm at 90 and 298 K, respectively; heat flow parallel to crystal axis.
7	367	.1	1933	90-299			<0.01 impurities; polycrystalline; cast; electrical resistivity 0.030 ohm cm at 296 K.
ιņ	367	u	1933	90-296			< 0.01 impurities; polycrystalline; cast; electrical resistivity 0, 200 ohm cm at 296 K.
9	368	т.с	1954	298. 2	0, 2-3		15 mm dia disk; electrical resistivity reported as 0, 235 ohm cm at 298 K; concentration of current carriers = 3, 46 \times 10 16 cm $^{-3}$
٠	369		1959	118-462		4	Single crystal; tempered in vacuum for 24 hrs at 673 K; heat flow parallel to principal crystal axis.
œ	369		1959	122-622		2	Single crystal; heat flow parallel to principal crystal axis.
6	369		1959	115-622		m	Single crystal; heat flow perpendicular to principal crystal axis.
07	370	-	1957	2.0-78		Te 1	~99.5 pare; polycrystalline; 5 mm dia, 1.5 cm long; broken from a longer rod; supplied by Messrs. A.D. MacKay, Inc.
Ξ	370	J	1957	2.0-92		Te 2	99. 99 pure; polycrystalline; individual crystals 1 or 2 mm wide and up to 1 cm long; specimen 3 mm in dia, ~5 cm long, fabricated from pure crystalline lump supplied by Messrs. A. D. MacKay, Inc., zone refined, etched, melted under vacuum in Pyrex tabe and allowed to recrystallize.
12	370	Т	1957	2.0-74		Te 3	Similar to above but the specimen composed of only 5 or 6 crystals of larger size.
27	376	ı	1957	3, 0-82		Te 5	The above specimen annealed for about 5 days at a temp just below the melting point, then cooled slowly for 24 hrs to produce a single crystal; crystallographic axis at about 80° to the axis of cylindrical specimen.
7	371	1	1959	85-472		-	Single crystal; 0, 72 x 1, 06 x 1, 95 cm; hole concentration 1 x 10 ¹⁶ cm ⁻² ; heat flow in direction of main crystallographic axis.
15	371	ı	1959	83-471		=	Single crystal; 0.48 x 0.84 x 1.67 cm; prepared by recrystallization of Te distilled two or three times, slow cooling in a scaled evacuated ampule made of high meltingpoint glass; hole concentration 9 x 10 % cm ⁻³ ; heat flow in direction of main crystallographic axis.
16	371	J	1959	80-373		П	Sb-doped; single crystal, 0.77 x 0.80 x 2.03 cm; prepared in same manner as the above specimen, except some antimony added to the twice-distilled tellurium; hole concentration 5 x 10^{45} cm ⁻³ .

SPECIFICATION TABLE NO. 56 (con inued)

Ser e		Ref. Method No. Used	Year	Year Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
17	801	1	1962	2.6-35		No. 1	Single crystal; 28 x 0.31 x 0.3 cm; specimen axis along principal crystal axis; prepared by zone melting; annealed for 70 hrs at 593 K, etched in SR-4; carrier concentration 3 x 10 H cm ⁻² at 77 K.
16	801	-1	1962	2.4-20		No. 2	Single crystal; 17 x 0.36 x 0.33 cm; specimen axis along principal crystal axis; prepared by zone melling; etched in HNO; carrier concentration 7 x 10 ⁴⁴ cm ⁻³ at 77 K.
19	802	t	1962	092-969			Pure; liquid specimen contained in a sealed Pyrex glass vessel; electrical resistivity reported as 0.77, 0.68, 0.58, 0.49, 0.48, 0.45, 0.44, and 0.41 milliohm cm at 394, 404, 433, 469, 472, 496, 502, and 528 C, respectively; data corrected for conduction of heat through the current lead.
0.7	803	J	1963	84 -280	8-8	No. 1	Single crystal; specimen cut from single crystal ingot obtained by slow cooling of molten tellurium in a sealed evacuated ampoule; annealed in sealed ampoule for 90 hrs at 613 K; bole concentration $\sim 2 \times 10^{18}$ cm $^{-3}$ at 80 K; measured under aim. of argon, with heat flow along the c-axis.
23	803	ပ	1963	320-660	5-8	No. 1	The above specimen measured by a comparative method using fused quartz as compara- tive material.
73	7 08	o	1961	100-485			99. 6 pure; polycrystalline; spectmen 0, 3 cm long and 0.5 cm in dia; hole concentration 3 x 10 m cm 3 las calculated from Hall effect); brass (38.5 Zn, 61.5 Cu) used as comparative material; data taken from smoothed curve of 4 measurements.
23	914	4 4	1966 1967	743-823			99. 995 pure; molten specimen contained in a abort cylindrical cell. Single crystal; specimen 2.09 mm² in cross section and 1.45 mm long; heat flow perallet to the c-axis; fadditional information and the tabulated data obtained from author).
25	961	H	1967	1.7-101			Single crystal; specimen 2,418 mm² in cross section and 1,55 mm long; heat flow perper dicular to the c-axis; (additional information and the tabulated data obtained from au

DATA TABLE NO. 56 THERMAL CONDUCTIVITY OF TELLURUM

(Impurity < 0.20% each; total impurities < 0.50%)

0, 145 0, 125 1, 115, 0 0, 0485 0, 125 1, 126, 0 0, 0444 0, 0946 1, 14, 0 0, 0947 0, 0841 0, 0841 0, 0844 0, 0	CURVE 9 115.0 0.0485 2. 125. 128.0 0.0444 2. 136.0 0.0444 2. 136.0 0.0444 2. 136.0 0.0444 2. 136.0 0.0383 3. 156.0 0.0383 3. 187.0 0.0372 6. 2214.0 0.0272 6. 2214.0 0.0272 8. 2230.0 0.0272 8. 2230.0 0.0272 8. 2230.0 0.0270 12. 285.0 0.0184 18. 268.0 0.0184 18. 273.0 0.0184 18. 273.0 0.0184 18. 274.0 0.0184 28. 275.0 0.0184 28. 276.0 0.0184 28. 277.0 0.0184 28. 278.0 0.0184 28.	0.0485 0.0439 0.0444 0.0397 0.0397 0.0301 0.0301 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0348 0.0348 0.03448 0.03448	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		CURVE CURVE CURVE CURVE CURVE CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VE 11		K CURVE 13 6 9.0 9.0 9.0 9.7.3 85 2.85 85 2.85 87 2.85 90 0.7 0 0.7 0 0.19 0 0.19 0 0.108 0 0.983 0 0.0983	CUR 88 88 89 92 92 100 100 107.5 195 291 291 291 346 350 350 385 385 385 385 385 385 385 385 385 385	CURVE 15 0.0837 0.0738 0.0728 0.0659 0.0657 0.0659 0.0657 0.0639 0.0341 0.0272 0.0272 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278	CURVE 16 (co 293 0.0 297.5 0.0 297.5 0.0 302.5 0.0 332.5 0.0 332.5 0.0 332.5 0.0 340 0.0 340 0.0 345 0.0 345 0.0 345 0.0 345 0.0 346 0.0 346 0.0 346 0.0 3472.5 0.0 372.5 0.0 372.5 0.0 372.5 0.0 372.5 0.0	CURVE 16 (cort.) CURVE 16 (cort.) 293 0.0239 297.5 0.0239 297.5 0.0228 332.5 0.0213 332.5 0.0213 337.5 0.0213 337.5 0.0207 340 0.0207 340 0.0207 340 2.00199 372.5 3.00187
90.00 0.0219 90.00 0.0167 298.00 0.0167 298.00 0.0182 90.00 0.0222 390.00 0.0345 298.00 0.0148 298.00 0.0230 296.00 0.0230 296.00 0.0230 296.00 0.0230 296.00 0.016	212.0 22.8.0 22.8.0 22.9.0 20.0 20.0 20.0 20.0 20.0 20.0	0.0531 0.0531 0.0418 0.0410 0.0343 0.0335 0.0285 0.0285 0.0284 0.0251 0.0272 0.0272 0.02730 0.0243	460.0 503.0 514.0 514.0 515.0 515.0 619.0 622.0 622.0 622.0 622.0 622.0 622.0 622.0 622.0 622.0 622.0 622.0 622.0 622.0	0 0 0146 0 0 0146 0 0 0138 0 0 0151 0 0 0151 0 0 0151 0 0 0151 0 0 0138 CURVE 10 0 0 0000 0 0 0000 1 0 0 0000 1 0 0 0000 1 0 0 0000 1 0 0 0000 1 0 0 0000 1 0 0 0 0	54.0 65.0 65.0 65.0 65.0 60.0	CURVE 12 CURVE 12 CURVE 12 CON 0. 185 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103 CON 0. 103	92.5 105 116 116 117 205 205 205 305 305 305 305 305 305 305 305 305 3	0.0529 0.0529 0.0761, 0.07761, 0.0749 0.0469 0.0469 0.0469 0.0339 0.0394 0.0389 0.0372 0.0254 0.0252	385 386 413 418 425 425 425 447.5 447.5 447.5 470 471 471 471 471 471 471 471 471 471 471	0,0236 0,0236 0,0228 0,0228 0,0229 0,0209 0,0209 0,0189 0,0189 0,0189 0,0189 0,0189 0,0189 0,0189 0,0189 0,0189 0,0189	CC ON S S S S S S S S S S S S S S S S S S	CURVE 18 CURVE

*	24 (cont.)	0.133	0.119	£11.0	c	2 23	918			1.45	9.	٠.			3.55	ŗ,	67.73	3,05	2.65	2.55	2. 22	1.63	٠				0.480	0,405	0.295	0.235	0.245	0.178	0.153	0, 123	0.055	0.073	0.062		0.057							
۲	CURVE	79.9	90.8	98.3	9	CORVE	1.66	1 82	1.99	2.28	8.5 2.5		3.25	3.38	3.75	•					•							20.3	24.1	28.2	28.2	34.3	39.1		52.5	70.3	84.9	95.0	101.0							
¥	E 23	0.056	0.000 0.000	0.072		0.076	F 24	1	1.42	1.82	2,38	3, 10	3,64			٠		5.12		5.02	•	4.79	4.51	4.14	3.62	2.88	2.25	1.81	1.48	1.26	1.16	0.93	6.78	0.65		2	0.445	0.337	0.31	0.287	0.255	0.225	0.216	0,196	0.177	_
(-	CURVE	743	793	833	892	923	CIRVE		1,78	1.98	2,27	.5 58	2.97	3, 40	3.75	4.20	4.60	4.89	5.10	5.25	6.02	6.09	6.52	7,12	8, 10	9.04	10.8	12.1	13.6	15.1	16.2	_	20.8	22.5	22.8	25.3	28.5	34.3	36.6	39.3	42.8	47.1	49.3	52.5		
.	E 19	0.340	0.2150	0.200	0.295	0.215	0.180		20	0.105		0.0837	0.0805	0.0721	0.0598	0.0440	0.0427	0.0380		Æ 21		0.0322	0.0305	0.0279	0.0262	0.0249	0.0226	0.0218	0.0215	0.0215	0.0218		VE 22		6.0251	0.0213	0.0169	0.0153	0.0167	0.0192	0.0226		0,0359			
H	CURVE	696.2	710.2	723.2	723.2	728.2	750.2		COKAF	a V	÷	100	104	120	142	200	215	230		CURVE		320	340	390	420	440	480	520	580	919	099	3	CURVE		100	S:	500	95.	300	350	100	450	500	2		

7770 850

RECOMMENDED THERMAL CONDUCTIVITY OF TELLURIUM FIGURE AND TABLE NO. SGR

1. 動物のである

*Values in pareatheses are extrapolated or estimated. Tin K, k, in Watt cm "K", Tjin F, and k, in Btu hr "it" F".

below the correspondir temperature of its maximum is highly sensitive to small physical and chemical

variations of the specimens, and the values below 10 K are intended as typical values for indicating the

ceneral trend.

《中文》等的是由

SPECIFICATION TABLE NO. 57 THERMAL CONDUCTIVITY OF TERBUM

(Impurity < 0, 20% each; total impurities < 0, 56%)

[For Data Reported in Figure and Table No. 57]

Composition (weight percent). Specifications and Remarks	fligh purity; polycrystalline; specimes v. 25 in. in dia and 0. 25 in. long; supplied by Johnson Matthey Co.; electrical resistivity reported as 119 polymer at about 18 C; monel metal used as comparative material; measurement; made using 2 different they met comparators.	0. 08 O., 0. 06 Y. 9. 01 Cu. 0. 01 Sl, and 0. 003 Mg; polycrystalline; specimen 0.476 cm in dia and 6 cm long; supplied by Research Chemicals; arc-melted for 12 min, machined, swaged, heated in vacuum of 10 ⁻⁸ mm Hg at 790 K for 40 brs and coeled to room temp in about 3 brs; measured in vacuum of 6 x 10 ⁻⁸ mm Hg; electrical resistivity reported as 4. 851, 5. 006, 5. 843, 7. 441, 11. 186, 14. 998, 18. 637, 23. 504, 28. 815, 41. 320, 57. 922, 85, 109, 105. 708, 112. 480, 116. 077, 117. 000, 119. 308, 122. 32, 23, 23, 23, 23, 23, 23, 23, 23, 23,	99. 9 pare; specimen 0.25 mm in dia; baked for 1.5 hrs at 650 C; measured in belium atmosphere; electrical resistivity 4.13 john cm at 4.2 K; electrical resistivity; ratio p(293K)/p(4.2K) = 30; data taken from smoothed curve.	99. 9 pure; specimen 0.25 mm in dia; baked for 1.5 brs at 650 C; measured in helium atmosphere; electrical resistivity 7.90 pohm cm at 4.2 K; electrical resistivity ratio p(293K)/p(4.2K) = 15.6; data taken from smoothed curve.
Name and Specimen Designation			£ 1	4
Reported Error, %	± 3. 0			
Temp. Range, K	291.2	6. 0 - 300	2.0-99	2. 0-99
Year	1965	1964	9961	1966
Ref. Method No. Used	υ	a		
Ref.	777	916	814	814
Curre	-	N	m	•

DATA TABLE NO. 37 THERMAL CONDUCTIVITY OF TERBUM

[Temperature, T. K. Thermid Conductivity, k, Watt cm⁻¹K⁻¹]

¥	CURVE 3 (cont.)			.0 0.017			CURVE 4		2.e 0.nxx						=	÷.	÷.		=	~		0,087				0,0175	0.013	0.0105														
ب	5	69, 5	O. Cife	91.0	99.4				ci	**	÷	کی:	r-	S)	୍ର ଆ	9	17.0	20.0	51	či	95	8	ŧ	G	Ê	Z	X.	S														
z	CURVE 2 (cont.)	0, 105	0, 105	0, 107		0, 112	0, 113	0. 115	0, 115	a, 118	121	0, 123		0, 129	_	o. 134	0, 137	0, 139		CURVE ::		0,0565	0.030	0.046	0.047	0,051	0,058	0. 14 0	0,230	0,250	0,253	0,255	0, 237		9, 253	0,250	07.0	a, 119	0, 10	0,0825	0,0575	1, 6425
H	CURVE	235.2	2:36, 0	240.3	245.1	250, 1	251.0	255.0	255.7	260,6	265, 6	27.0.3	275, 5	주. 도.	286,3	6,000	295. 1	300,0		CUR		= ?i	4.5	ت. ت	e. 9	17	o,	10, 5	12,7	14°3	15.0	15, 5	9.91	17.6	18,2	0.01	24, 5	0.08:	3.5	o . 98:	€. ∓	÷. ਲ
¥	CURVE 2 (cont.)	0, 11%		0, 113	0, 112	0, 111	0. 109		0, 108		0, 163	. 105	0.104	0, 103	0, 102	0, 131	101	0, 100	0.100	0,099 F	0.0994	0, 0998°	0.0997	1,0994	0,0397	+669 °c	0.0995	9680 u	0,0999	0.100	0, 100	0,0999	0.100	0, 100	0, 100	001.0	0.100	0, 100	0, 101	o. 100	0, 101	0, 102
۴	CURVE	79.7	8.58	91.0	97.7	103, 5	109.0	111.6	114.5	120.6	126.6	131.9	138.2	- - +	149.7	1.901	162.3	165.2	174.0	<u>4</u> .65.	181.9	183.1	5. 1.	135.7	187.4	194.0	198.5	206.3	s :च ट	213.7	214.0	215.2	217.5	219.2	220.9	222.7	223.1	224.4	225. 1	226. 1	228.6	7.25
æ	VE 1	0, 102	0. 10	;	21	0,0854	0.0900	0.0912	0.0949	0, 101	0, 103	0, 106	0. 197	0, 114	0.119	0, 124	o, 125	7, 1:17	0, 145	0, 153	9, 159	0, 169	3, 173	0, 177	0.182	0. 183	0, 189	0, 193	0.200	0,203	0, 205	0.300	0.185		0, 158	ს. 150	0, 141	0, 1:17	c. 133		0, 125	0. 122
1	CURVE	291.2	291.2		CCHVE	6,02	6.28	6,48	6,68	7, 11	7,25	7.56	7.66	8.03	8,36	8,79	9.26	(2)	10.6	11.3	12.1	13.2	13.7	14.2	14.8	15, 1	15,9	16.7	18.0	20, 1	22.9	26. b	32,4	38, 3	45.2	48.0	2.5 3.	96.0	59.3	£.1	67.3	71.2

FIGURE AND TABLE NO. 57R RECOMMENDED THERMAL CONDUCTIVITY OF TERBIUM

REMARKS
The recommended values are for well-annealed 99, 84% pure terbium with residual electrical resistivity. The recommended values are for well-annealed 99, 84% pure terbium with residual electrical resistivity $\rho_0 = 4.85 \, \mu$ G cm (characterization by ρ_0 becomes important at temperatures below about 200 K). The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures.

T, in K, k, in Wutt cm-1 K-1, T2.n F, and k, in Bu, hr-1 ft-1 F-1,

A STATE THE PARTY OF THE PARTY

377

SPECIFICATION TABLE NO. 58 THERMAL CONDUCTIVITY OF THALLIUM

A COMPANY OF THE PROPERTY OF T

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reparted in Figure and Table No. 58]

Composition (weight percent), Specifications and Remarks	Pure thallium (electrolytic); electrical conductivity reported as 27.8 and 6.73 x 10 ⁴ ohm cm at 80 and 273 K respectively.	Cylindrical specimen 1, 5 cm in dia and 12 cm long; melting point 302 C.	99. 99 pure; polycrystalline; 2. 99 cm long and 0. 16 cm in dia; supplied by Johnson Mathey and Co.; annealed in vacuo for several hra and coated with celluloid varnish to prevent oxidation; measured in a magnetic field; in normal state.	The above specimen in superconducting state.	99. 99 pure; polycrystalline; 5 cm long and ~0. 2 cm in dis; supplied by Johnson Matthey and Co.; measured in a transverse magnetic field of 0.34 kOc.	The above specimen measured in a longitudinal magnetic field of 0.34 kOc.	The above specimen measured in a transverse magnetic field of 0.51 kOe.	The above specimen measured in a transverse magnetic field of 0.71 kOe.	The above specimen measured in a longitudinal magnetic field of 0.71 kOe.	The above specimen measured in a transverse magnetic field of 1.09 kOe.	The above specimen measured in a longitudinal magnetic field of 1.09 kOe.	The above specimen measured in a transverse magnetic field of 1.42 kOe.	The above specimen measured in a longitudinal magnetic field of 1, 42 kOe.	The above specimen measured in a transverse magnetic field of 1.79 kOe.	The above specimen measured in a longitudinal magnetic field of 1, 79 kOe.	The above specimen measured in a transverse magnetic field of 2, 14 kOe.	The above specimen measured in a longitudinal magnetic field of 2. 14 kOe.	The above specimen measured in a transverse magnetic field of 2.5 kOe.	The above specimen measured in a longitudinal magnetic field of 2, 5 kOe.	The above specimen messured in a transverse magnetic field of 2,85 kOe.	The above spectmen measured in a longitudinal magnetic field of 2, 85 kOe.	The above specimen measured in a transverse magnetic field of 3, 22 kOc.	The above specimen measured in a longitudinal magnetic field of 3, 22 kOe.	The above specimen measured in a transverse magnetic field of 3.59 kOe.	The above specimen measured in a longitudinal magnetic field of 3, 59 kOe.	The above specimen measured in a longitudinal magnetic field of 3, 70 kOe	The above specimen measured in a transverse magnetic field of 3.79 kOe.
Name and Specimen Designation			JM 2544; TII	JM 2544; T11	JM 2544; T11	TI 3	TI 1	T1 1	TI 1	TI 1	111	T) 1	T1 1	T1 1	Ti 1	111	111	Tl 1	T1 1	TI 1	111	T1 1	T1 1	T1 1	111	T1 1	111
Reported Error, %																											
Temp. Range, K	80, 273	318-422	2, 1-31	2.0-2.3	2,8-4,4	3.4,4.4	4.4	4.4	4.4	2, 8-4, 4	3.4,4.4	4.4	† †	2, 8-4, 4	3.4.4.4	4,4	4.	2.8-4.4	3. 4, 4. 4	4.4	4.4	2.8-4.4	3.4,4.4	4.4	4.4	3.4	Ş
Year	1927	1923	1955	1955	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	. 6367	1953	1953	1953	1953
Method Used	ı,	ı	ų	-1	ı.	1	-1	-1	1	-1	J	,	ı	ı	_1	J		u	-1	1	ı	ı	1	1	٦,	⊷	a
Ref.	ಕ	19	122	122	342	342	342	342	342	342	342	342	342	342	342	342	342	342	342	343	342	345	342	342	342	342	342
Curve	-	м	က	4	v	9	7	70	6	10	11	12	51	7	15	91	11	18	19	2	21	23	ដ	ន	25	×	23

SPECIFICATION TABLE NO. 58 (continued)

e i	Ref.	Ref. Method No. Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
_	342	1	1953	3.4		T111	The above specimen measured in a transverse magnetic field of 3, 82 kOe.
53	342	H	1958	8.8		. T1 1	The above specimen measured in a transverse magnetic field of 3, 91 kOe.
30	400	a.	556 1	0, 29-0, 63		T1 1	The above specimen measured at low temperatures; in superconducting state; preliminary results reported.
31	412	-i	1955	0, 26-0.84	¥ 2	T1 1	More complete results from the same thallium batch (JM 2544) as the above specimen; in superconducting state.
32	230	J	1925	333			Specimen 1.9 cm in dia, 10 cm long; made from pure thallium from Eimer and Amend electrical conductivity 5.82 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
33	712	ï	1961	0.41-4.2		T1-3	Pure; specimen I mm in dia; made from single crystal; specimen axis at 20 degrees with the crystal hexagonal axis; residual electrical resistivity 0.0026 µohm cm.
34	712	٦	1661	0, 19-5, 2		7.7	Pure; specimen i, I mm in dia; made from single crystal; specimen axis at 80 degrees with the crystal hexagonal axis; residual electrical resistivity 0.0050 µohm cm.
35	712	7	1961	0, 21-5, 6		T1-7	Pure; specimen 1.6 mm in dia; specimen axis at 30 degrees with the crystal hexagonal axis; residual electrical resistivity 0.00024 ± 0.00003 µohm cm.
36	712	ı	1961	1961 0.34-5.3		T1-8	 9 mm in dia; obtained by etching the above specimen; residual electrical resistivity 0,00045 µohm cm.

A Company of the Comp

DATA TABLE NO. 58 THERMAL CONDUCTIVITY OF THALLIUM

(Impurity < 0.20% each; total impurities < 0.50%)

{Temperature, T, K, Thermal Conductivity, k, Watt $cm^{-1}K^{-1}$ }

æ	(cont.)	13.5 7.60		0.00.00	0.044 0.270	1.00	09.60	15.7	1.0	24.0			27.5	0.0	16.0	11.5	7.50																				
T	CURVE 35(cont.)	5.6	COR		0. 50 0. 50		3 -				0.6		3.0			· s	5.3																				
*	CURVE 34	0.00034° 0.00046° 0.00102	0.00430	0.0095	9.042 0,110	0.415	1.02	3, 10	4.5	ຕິດ		0 X	0 · 2	6.5				CURVE 35	*	0,00065	0.0016	0.00.0	0.0000	0,0143	0.036	1.22	5.8	12.0	0.61	26.5	33.0	39.0	46.0	34.0	23, 5	17.5	
۲	CUR	0.185 0.20 0.25	0.35	0.40	0, 50 0, 60	0.80	0.1	4 4	1.6	8 c) c	, c	, c,	0	. A.	5, 16		CUR		0.205	0.25	05.0	0.323	000	9.0							.	2.0) o	3,5		
ĸ	CURVE 31*	0.00110 0.00135 0.00248	0,00570	0.0075	0. 0108 0. 0127	0.0154	0.0202	0, 0205	0.0285	0.0320	0.0340	0.0433	; }	CURVE 32		f. 439		CURVE 33		0.014	0.060	0.190	0.010	01.7	5.90 5.90	7.70	9.20	10.2	12.0	12.0	11.0	ກ່ວ	o.				
۲	CUR	0.255 0.275 0.330	0.402	0.425	0, 495	0.507	96 6 0	0,605	0.645	0. 70	t. 0	. 3	;	CUR		333. 0		CUR	:	. 4	ر د د	9.0	8 -) ·	2.4	1.6	8.7	2.0	2.5	3.0	e	0.4.	4. 13				
¥	E 23*	5,58 4,86	47	3.45	E 25.		4.80	E 26		5.40	200	F. 2.1	3 34	:	F 28		3.06	6	E 29	6	2.39	,	3	2	0.0013	0.00154	0.0017	0.00265	0 0033	0.0048	0.0063	0.010	0.033	0.10	0,18	0.215	
۰	CURVE 23	સ. વ. વ. વ.	CORVE 24	4.	CURVE 25		य य	CURVE 26		3. 4.	20 313110	200	4	•	CHRVE 28		3.4		CURVE 29		2.8	300. 1110110	200	0	0.230	0, 323	0, 340	0, 363	0.382	0.390	0, 408	0.466	0.484	0.583	0,603	0.625	
¥	CURVE 14	4, 55 5, 09 4, 92	CURVE 15		5.88	. —	CURVE 16	4. 47		CURVE 17	9	co a.	CIRVE 18		3 +1	3, 99	4.21	». :	CURVE 19	-;	61.15	24.32	- 0	CORVE. 20	8	:	CURVE 21		5. ⊕ 3		CURVE 22	t	 5 .	3 25	ł ·		
۲	COL	ण ए.स. अ.स.स.	CUB		ਨੂੰ ਪੰ		CC	4.4		틹	•	ř	CITA		æ ev	i e	4.4	(5		4.	4.4	Č	5	4	•	CUB	1	4.4		CGB	6	y c	. 4	;		
*	CURVE 5	11.0 9.82 7.16	CURVE 6	:	10.2 7.72	. 42	CURVE 7	7.03		CURVE 8	1	ñ . c	CURVE 9*		7 03		CURVE 10		6.69	6.92	5.92	11 0110	CORVE, 11	6	0.00 0.00	;	CURVE 12		5,32	4	CURVE 13	•	6.23				
۳		दिस्स पंटिस			ਆ ਥ ਅੰਥੀ			4.		티	•	ř	no	3	4	•	CO	•	2.8	۳. ۲.	4.	į	3]		কুৰ কুৰ	:	CO		4.4		티		4.				
×	CURVE 1	0 0,635	NVE 2	0.391	0.400	0,401	0.408	0.388		CURVE 3	13 3	4.4	13.9	14.4	_	_					16.91		1.06	9 6	0, 730	0,699	0.649	0.568		CURVE 4	-		1 2				Not shown on plot
۲	리	80.0	31	318.2	361,2	363.2	3.00	422.2		<u>၁</u>	9 13	2 73	30.0	3, 18	3,50	3, 60	4, 02	4, 4 80 5, 5	9	6.43	65.7	9.5	2 2	9 (20.8	22. 4	9.12	31.0		밁	-	 	2.25	;			Not sh

RECOMMENDED THERMAL CONDUCTIVITY OF THALLIUM FIGURE AND TABLE NO. 58R

REMARKS

The recommended values are for well-annealed high-purity thallium with residual electrical resistivity $\rho_{\rm s} = 0.00289$ µJ cm (characterization by $\rho_{\rm s}$ becomes important at temperatures below about 60 K). The values below 1.5 Tm are calculated to fit the experimental data by using n = 2.25, or n = 2.27, x 10^{-3} , and n = 0.0092. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 10% at other temperatures.

Tin K, kin Watt cm - 1 K - 1, Tin F, and kin Bun hr - 1 (t - 1 F - 1,

*Values in parentheses are extrapolated or interpolated.

to the property of

SPECIFICATION TABLE NO. 59 THERMAL CONDUCTIVITY OF THORIUM

(Impurity < 0, 20% each, total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 59]

Composition (weight percent), Specifications and Remarks	Specimen but rolled at 733 C and air cooled; density 11.6 g cmr ³ ; melting point 1680 ± 25 C; data determined in an atmosphere of purified argon.	99.85 pure; specimen 0.125 in. in dia, ~50 cm long; thermal conductivity values calculated from measured data of thermal diffusivity using density 11.558 g cm ⁻³ , and specific heat of 0.1148 joules g ¹ C ⁻¹ (from C.F. Miller).	Specimen made from Ames extruded thorium.	Pure: specimen 1.618 cm long, cross sectional area 5.042 cm².	Specting ~6 cm long, 1 cm in dia, manufactured by Westinghouse Lamp Co.; x-ray analysis after test showed the presence of thorium oxide (probably formed during the test); electrical resistivity reported as 27,5 and 32 µ ohm cm at 20 and 100 C, respectively; Lorenz function 2.76 and 2.68 x 10 ⁻⁸ Vf K ⁻² at 20 and 100 C, respectively.	Cylindrical specimen 4 mm in dia and 30 mm long; supplied by Dr. J.A. Lee, A.E.R. E. Harwell: machined from an ingot or argon-arc-melted van Arkel metal of high purity: electrical resistivity ratio \(\rho(273 K)/\rho(4.2 K) = 20.49; electrical resistivity reported as 0.75, 0.91, 1.26, 1.82, 2.33, 2.97, 4.06, 5.15, 147, and 15.3 \(\rho\) ubm cm at 10, 20, 30, 40, 50, 60, 80, 100, 273, 15, and 258, K, respectively; residual electrical resistivity 0.72 \(\rho\) ohm cm, Lorenz function reported as 2.85, 2.67, 2.45, 2.28, 2.24, 2.49, 2.82, and 3.02 x 10° V2 K-² at 5, 15, 18, 25, 30, 50, 75, and 100 K, respectively; thermal conductivity data averaged from the results of several separate runs.
Name and Specimen Designation	Ames thorium					
Reported Error, %						v
Temp. Range, K	373-923	301-697	338-623	335-367	293-573	5, 3-94
Year	1981	1981	1945	1944	S F6 1	1965
Method Used		۵		7		ے
Ref.	266.94	130. 778	422.	235,	42:3	935
Curve No.	-	e1	es	4	ဟ	ဖ

inder Anderson State Sta

DATA TABLE NO. 59 THEHMAL CONDUCTIVITY OF THORIUM

(Impurity 10, 20% each; total impurities 10, 50%)

[Temperature, T, K; Thermal Conductivity, k, Watt em-1 K-1]

¥	CURVE 6 (cont.)		0. 564	0.530 0		0.534																																					
T	CURVE	738. 1		3.8	#2. ft	34.0																																					
×	CURVE 6				c. 303	0.349	0,383	0.403	0.459	0.434	0.493	0. 49.3	6, 502	0, 523	0, 513	0.530	0, 538	0. SZ ?	ф 4			0.539			9, 538	0, 542			0. 5.51	0.87		0.529	0.020										0, 553
۲	SO								12.6	13,8	1.3. 9	15. 5	16.1	17.5	13.4	18.4	21.3	21.3			25. 2				32, 5	34.0	35.9	37.4	.55.	40.8	2.7	44.0	, t) ÷	۶. د د د	20.0	52		. 9. 9			66.7	69.0
¥	IVE 1			0.402	0.41×	0.431		0.452		VE 2		0.412	0.416		0.450		VE 3			0.314	0.326	0, 331	0.336	0,340		9.350		VE +	:			60.	3.5		<u>, </u>	9, 2 <u>1,</u>		VE 5		J. 293	0.314	0.335	950.0
٠	CURVE		473, 2	573, 2	673.2	773.2	873, 2	923 2		CURVE		301.2	510.7		697.0		CURVE		338, 2	356. 7	373.2	423.2	473.2	523, 2		623.2		CURVE		334.5	0.1 1.2 2.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	345.3	0.155	1.707	30%	3.995		CT.RVE		203.2	373.2	473.2	573.2

FIGURE AND TABLE NO. 59R RECOMMENDED THERMAL CONDUCTIVITY OF THORIUM

F. 0-10 24 00 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	K ₁ 0394) 118) 118) 118) 1197) (237 237 237 314 419 4419 449	k2 0 0 0 0 0 0 (2.238) (6.6.82) (9.13) 13.4 113.4 113.4 113.9 22.2 22.2 22.2 22.2 22.3 22.3 22.3 2	13. 14. 17. 14. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	T ₁ 500 600 700 700 900 1000 (6		k ₂
01224 836 83 01224 96838	*	0 6 4 6 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	458-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	_		
	*	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44.5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	_		9
1224 00-224 0025		4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	445.55.55.55.55.55.55.55.55.55.55.55.55.	_		٠ د د
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	455.53 447.1 447.1 447.3	_		n .
		. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	445.3 444.1 445.3 443.5 443.5 438.9 438.3 438.3	_		
N 9 C 8 9 0 - 2 E 4 0 9 8 9 8	-	. U.S. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	450.7 448.9 445.3 443.5 443.5 443.6 439.9 438.3 436.3			÷ 45
	-		450.7 448.9 447.1 447.1 441.7 439.9 436.1 436.3			,
			445. 3 445. 3 445. 3 443. 5 443. 5 439. 9 436. 3		(0.515) (25	29.89
x 3 0 1 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			445.3 445.3 443.5 443.9 438.1 438.1 436.3			
. 3 0 = 2 = 4 0 9 8 9 8		−က ရာလထလလလ ဆဟာရ ဆိုတို့ လုံ့လုံးလုံ့ သိတ်နှ	44.7 44.7 44.3 436.3 434.5			
		ည်း ရှင်းလုံး ကို သိတ်နေ သော နာဝါထားလက သာဟာရော	43.5 434.5 434.5			
		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	439.9 438.1 436.3 434.5			
2 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		လောင်းသည် သည်။ ကောင်းသည် သည်။ ကောင်းသည် သည်။	438.1 436.3 434.5			
12 13 14 16 16 18 18 18 18 18		8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	436.3 436.3 436.3			
15.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	436.3 434.5			
16 18 18 18 18 18 18 18 18 18 18 18 18 18		ရေး ဆက္ခ ဆိုဆိုဆိုတိုင္	43.5			
16 18 20 25		ာ ဆေးဟာ ရ ကြော်တို့ရှိ	2			
16 8 6 5 20 8 8 6 5 20 8 8 6 5		ဆုတ် တွေတိုင် ကြောင်				
20 20 20 20 20 20	51.	က်မှ	432.7			
20 20 25		7 02	430.9			
0 2 2 2 2			427.3			
	0. 538	31.1	423.7			
		31. 7	414.7			
		31.6	-405.7			
350	0.542	31.3	-386.7			-
		31.0	-387.7			
			7 322			
1.1.1.C. CD. C. C. JIANA 125 K7	502	. 6	-369.7			
8. c.) 1.353 K	•					
09		29.8	-351.7			
		29. 1	-333.7			-
2 4 4 6 4 10 9 2 4 5 6 8 10 9 9 4 5 C 8 107 9 2 4 7 40 80	0.497	28.7	-315.7			
		6.00	231. 1			
001	_	(7.87)	-213.			
_	0. 436 (Z	(78.1)	-709.			
500	0.488) (2	28.2)	- 99. 7			
_	_	28.3)	- 9.7			
2	_	38.3)	32.0			
300		28.4	80.3			
The recommended values are for well-annealed high-aurity therium with residual electrical		28, 5	170.3			
4110		9.0	260.3			

T, in K, k, in Watt cm-1 K-1, T, in F, and k, in Btu hr -1 ft -1 F-1.

ANGLESCO SECUL

And the second second of the s

 $^{\sharp}$ /alues in parentheses are extrapolated or estimated.

SPECIFICATION TABLE NO. 60 THERMAL CONDUCTIVITY OF THULLEM

(Impurity $\le 0.20\%$ each; total impurities $\le 0.50\%$)

[For Data Reported in Figure and Table No. 69]

	eam of d 79 gohmem at 53 K;	31 c.n; Kerent	1. 0050 Fe, 70, 70, 70, 71.22 mm, 500mb, 4. cred oomb, 4. cred oor 2. ars in persture 30, 1.754, 2.7, 4.2, 2.7, 4.2, 7.0, 3, 70, 9, 4.78,	1. 4050 Fe, 1. Yb, 1. Yb, 1. Yb, 1. Yb, 1. Yb, 1. Yb, 1. Yb, 1. 19. 37, 18. 21, 16. 0, 20. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Composition (weight percent), Specifications and Remarks	99.99 pure; polycrystalline; strip specimen 0.25 mm thick; anneated in a stream of helium vapor at 650 C for 3 hrs; electrical reastivity reported as 12.7 and 79 nohmem at 4.2 and 293 K, respectively; antiferromagnetic-paramagnetic transition at 53 K; Lorenz function reported as 7,30 x 10 ⁻³ V ² K ⁻² in the residual resistance region.	<0.1 rare earth metal and ~0.01 base metals; polycrystalline; 1.2 x 1.2 x 6.31 cm; electrical resistivity 72 polym cm at 291 K; measurements made using 2 different thermal comparators.	 6.0.0200 Ho, <0.0200 Lu, <0.0200 Y, 0.0061 O, <0.0060 Al, <0.0060 Sl, <0.0060 Fe, <0.0050 Nl, <0.0050 Lu, <0.0020 Ca, <0.0020 Cr, <0.0010 Mg, <0.0015 To, <0.0020 Ca, <0.0020 Cr, <0.0010 Mg, <0.0015 To, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0010 Mg, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To, <0.0015 To,	70.00**** 5, ~0.0200 Lu, ~0.0200 Y, 0.0100 O, ~0.0060 Al, <0.0060 Si, <0.0450 Fe, <0.0020 Ca, <0.0020 Cr, <0.0010 Mg. <0.0010 Mg. <0.0010 Yb, <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Yb, <0.010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 Mg. <0.0010 M
Name and Specimen Designation				
Reported Error, %		4	1	
 T min. Runge.	2, 2-100	162	7 00 - 4 00 00 00 00 00 00 00 00 00 00 00 00 0	5. 4 - 29
Year	1965	1966	7967	2962
Method Used*	1	ပ	.i	n n
Ref.	3,	256	*	*
C C C	~	61	m	•

Edwards, D. W. and Legvold, S., "Transport Properties of Thulium Single Crystal," to be published in Physical Review; also USAEC IS-T-173, 1967.

DATA TABLE NO. 60 THERMAL CONDUCTIVITY OF THIS LIUM

(Impurity < 0.20% each; total impurities < 0.50%;

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

																																٠.											
×	(cont.)	0.211	0.220	0.226	0.231	0.232	0.239	0.239	0.240		0.241																							, .	-								
٠	CURVE	121.0	140.7		180.9	201.0	221.1	240.9	261.0	280.8	298.6																					•										•	
4	VE 4	0.132	0.181	0.195	0.203	0.209	0.207	0.206		٠.			0.136	0.132	0.128	9.123	0.118	0.116	0.110	0.107	0.107	0.105	0.105	0.104	0.103		0.103	0.104	0.107	0.112	0.121	0.132	¥5.	0, 163	0.163	0.160	0.165	0.170	0.176	0.184	0.19E	0.202	
۴	CURVE	5.4	7.6	æ.æ	9.1	10.7	;; ::	12.6	13.7	15.7	17.8	19.4	21.5	21.7	23.6	24.7	25.5	26.8	28.5	30.0	31.4	32.4	33.2	34.2	36.1	37.9	39.7	41.7	44.4	£7.3	20.0	9 -	2.00.	58.5	59.6	61.0	62.4	9.99	70.5	80.8	£0.7	100.1	
	3 (conf.)	0.238	0.245	0.247	0.246	0.242	0.230	0.221	0.299	0.204	0.192	0.134	0.181	0.180	0.165	0.146	0.136	0.127	0.121	0.113	0.108	0.108	0.100	0.095	0.092	0.090	0.092	0.091	0.092	0.097	960.0	301.0	61.1	0.115	0.121	0.128	0.132	0.133	0.136	0.137	0.138	0.141	0.143
۰	CURVE	10.0	11.1	12.2	13.4	14.7	16.1	17.6	18.6	19.€	20.9	21.5	22.7	23.6	25.5	28.4	30.7	33.4	35.7	37.5	40.1	43.3	47.1	50.6	53.5	55.8	56.5	57.8	59.5	62.8	8.99	0.5	101.2	120.9	141.1	161.1	181.1	200.9	220.8	240.9	260.8	280.8	298.2
.	VE 1	0.6085	0.022	0.039	0.052	0.083	960.0	0.153	0.158	0.162	0.164	0.170	0.172	0.168	0.163	 	0.147	0.139	0.118	0.109	960.0	6.085	0.072	e.064	0.057	0.055	0.0345	0.0530	0.0540	0.0620	0.90.0		72	0.140	0.141		VE 3		0.133	0.195	0.209	0.223	
i -	CURVE	61	4 .0	۶.	8.0	9.3	10.3	16.0	17.9	17.5	18.0	19.5	20.3	22.0	23.0	24.0	24.5	25.0	25.8	26.0	27.5	39.0	34.0	37.0	41.0	45.0	48.0	8.3	58.3	91.0	100.0	Č	CUNTE	291	291		CURVE		5.1	7.5	8.0	9.1	

FIGURE AND TABLE NO. 60R. RECOMMENDED THERMAL CONDUCTIVITY OF THULIUM

				٠.			1.			
					- - 		<u>_</u>			
									:	
		,	•				- 1	· =_		
				-	-5*	-	` 	- A.		
			•				<u>.</u>			
				:	. ,		-, ·, *		,	88
	FIGURE AND TABLE NO. 60H RECOMMUND	A THE	NA L LONG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	or motor	s .	•		· · · · · · · · · · · · · · · · · · ·	
					RECOMMENDED VALUES.	ED VALUI	•\$2	#		
2				Single Crystal	vstal		Polycrystalline	Alline .	 	-
<u>.</u>				;						
، ،			(// to c-axis)	nxis)	(I to c-axis)	(8)	<i>i</i>		•	
ر. در م		T,	k,	7.	k,	نجد	×	ż	£	
•	→	c	•	•			0	_	65	,
67		0 01	;	>	.		(0. 0308)	(3.70)	3	
64							0.0532	3.42	4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	
		, _					2560 0	3		
		13.5	271 0	2	651.0	ō	0, 1 27 0, 155	۲- « چ ک	7.50.7	
]ı -	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	- ۱ -	0.141	n 9		, 4	178		-147.1	
<u>*</u>	1	· ·		10.7	0.255	· : x	0. 198	11.4	445.3	
، ي		ъ.		11.4	0.223	a,	0. 214	. + 21	443.5	
 		21	0, 206	11.9	0.236	33.6	0. 226	13.0		==.
, ,		::	305.0	12. 1				13.3	439.9	
<u>.</u> L	. lot	# :		12.0	0.246	21.0	0. 232		438.1	
	/	<u> </u>	503	- 6	0.240		0. 430	12.0		
		<u> </u>		7 T	0.540	,	0. 22.0	19. 1		-
	9000	27	0,135	10.7	0, 238	13.8	0.229	12.7	432.7	_
يا ڇ		= :	5 C	- F	0.232	, (:	194	11.2	427.3	
.	<u> </u>	202	•	3 (2) 3 (2)) t-	0.179	10.3	4 23.7	
، و	* * * * * * * * * * * * * * * * * * *	25	0.120	6.95	0, 167	ព្រ	0. 149	8. 61	414.7	
		8	0, 10 ₆	6.13	0, 141	15	ū. 127	7.34	405.7	
		::	0.105	6.07	0. 123		0.116	6. 70	-396. 7	
<u>.</u>		40		6.07	6, 110	36	0. 108	6.24	-387, 7	
~	┽╌┽ <u>┈┽</u> — ╌╌┽┄┱┊┼┈┽╶┾┈╌╴┼┈┼┼╶┑┼┼	4. 4. 2. 0.	0.100	00.30	0. 102	5. 39	0.10	6.01	-378.7	
듸	T. P. (Pern' Antiterromagnetic) 22 K Neel Jemp. 33 F Mark 1813 K T. P. (Pern' Antiterromagnetic) 22 K T. P. (P. 1814 K Mark 1814 K		51.		0 0048		103	5	7 608-	
		3 23	0.113	6, 00 1,50 1,50	0.0912		0. 107	6.13	-360, 7	
] : :		89		9.24	0.0911	5. 26		6.41	-355, 3	~
-	2 3 4 5 5 9 10 2 3 4 5 6 8 10 ² 2 3 4 5 6 8 10 ³ 2 3 4	5 60	0. 164	9,48	0.0920	32	0.113	6.53	-351.7	
	TEMPERATURE, K	70			0.0977		0. 120	6.93	-333.7	
		₹ 8				20	0. 126	7.28	-515.7	
٥	240	B 8	0.200	7 11 2	0.108	6. 43	0. 135 0. 135	. 2.	-279.7	
ř.	Calcardo	3	***	: :	135		631.0	2	7 651	
F	The recommended values are for well-annealed 99.9 % pure thulium with residual	200		13.6	0.126		0. 162	 		
5	electrical resistivity $\rho_0 = 3.5$ and 1.7 μ 3 cm along the directions parallel and	092 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0.138		0. 167	9.65	- 9.7	
ፈ ‹	perpendicular to the classis of the single crystal, respectively (characterization by business imported at temperature helps about 200 K). The recommended values	273.2	0.242	14.0	0.140		0.168	2.5	32.0	
T	at are supported by experimental thermal conductivity data are thought to be	30°	0, 242	14 . 0	0. 141		0.1.3	7	96.	
iš	accurate to within 3% of the true values near room temperature and 5 to 15% at other									
3	temperatures.									

THERMAL CONDUCTIVITY, WALL UM -1 K-1

T in K, k_1 in Watt cm⁻¹ K⁻¹, T₂ in F, and k_2 in Btu hr 1 ft⁻¹ F⁻¹.

*Values in parentheses are extrapolated.

SPECIFICATION TABLE NO. 61 THERMAL CONDUCTIVITY OF TIN

(Impurity < 0, 20% each; total impurities < 0, 50%)

[For Data Reported in Figure and Table No. 61]

Curv. No.	Ref.	Method	Year	Temp. Range. K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
	S.	_;	1919	381-771			Pure; in both solid and liquid states.
	117	-	1949	1.4-3.7		Sn I	99.992* pure; single crystal; 2.3 mm dia; made of Chempur tin (99.992 pure) purified further by several times melting in vacuo. crystalising and etching; measured with heat flow at 85 degrees to the tetragonal axis; in superconducting state.
	117	ت	1949	3.8-4.1		Sn 1	The above specimen in normal state,
	11.	ı,	1949	1.3-3.6		Sn II	Single crystal: 0.8 mm dia x 70 mm long; made of Chempur tin purified further by several times melting in vacuo, crystalizing and etching; electrical resistivity ratio o (27.3K)/pd4.2K) = 16700; measured with heat flow at 85 degrees to the tetragonal axis; in superconducting state.
	117	٦	1949	1.5-3.7		Sn II	The above specimen measured in a magnetic field of strength 510 Oe; in normal state.
	61	٦	1923	323-620			Specimen in both solid and liquid states; 12 cm long and 1.5 cm in dia; melting point $2^{13}\mathrm{C}$.
	æ.	٦	1908	99~343			Pure, from Kahlbaum, density 7.28 g cm ⁻³ at 21 C; electrical resistivity reported as 3.00 and 10.65 μohm cm at -170.4 and 11.6 C, respectively.
	22	1	1955	2.3~3 6	m	Sn 1	99.997 pure; single crystal; 2.95 cm long, 0.389 cm in dia; supplied by Johnson, Matthey Co. Ltd.; measured in a magnetic field; in normal state.
	122	ت	1955	2.3-3.6	ဇ	Sn t	The above specimen in superconducting state.
	457	'n	1949	1.84.1	m	Sn 2	99.997 Sn (by difference). 0.003 imparities; polycrystalline; measured in a longitudinal magnetic field; in normal state.
	457	1	1943	1.8-3.5	89	Sn 2	The above specimen in superconducting state.
	ب ان ان	ı	1949	1.8-4.4	ю	Sn 3	99.967 Sn (by difference), 0.033 Hg; polycrystalline; measured in a longitudinal magnetic field; in normal state.
	f: [-	٦	1949	1.8-3.4	es	Sn 3	The above specimen in superconducting state.
	270	c.	1915	308.2			Specimen 25 cm long, 0.25 cm in dia; thermal conductivity value calculated from measured thermal diffusivity using the values of density and specific heat taken from the Tabellen of Landolt and Bornstein,
	2	- :	1953	च. च		Sn I	99.987 pure; single crystal; supplied by Johnson. Matthey Co. Ltd.; measured in trunsverse magnetic fields with strength H ranging from 0.19 to 3.57 kDe.
	2 1	7	1953	o ::		Sn 1	The above specimen measured in transverse magnetic fields with strength H ranging from 0.29 to 3.57kOe.
	342	٠.	1953	٠, ,		Sn 1	The above specimen measured in transverse magnetic fields with strength H ranging from 0.35 to 3.75kOe.

SPECIFICATION TABLE NO. 61 (continued)

342 L 1953 2.4 Sn 1 Th 342 L 1953 3.0 Sn 1 Th 342 L 1950 4.4 Sn 1 Th 74 L 1950 4.29 3 Sn 2 99. 74 L 1950 2.42 3 Sn 2 1Th 74 L 1950 2.42 3 Sn 3 99. 412 L 1955 0.25-0.80 3 Sn 3 99. 412 L 1955 0.25-0.80 3 Sn 3 99. 460 L 1955 0.24-2 2-4 JM 4600; Sn 2 99. 452 L 1955 0.17-3.5 2-4 JM 4600; Sn 2 7h 452 L 1955 0.40-0.64 2.4 JM 4600; Sn 2 7h 452 L 1955 0.24-0.71 2-4 JM 4600; Sn 2 7h 452 L 19	Cerve	Ref.	Method	Year	Temp. Range, K	Reported Error, ₹	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
342 L 1953 3.0 Sn I Th 342 L 1953 4.4 Sn I Th 74 L 1950 4.29 3 Sn 2 99. 74 L 1950 2.42 3 Sn 3 1Th 412 L 1955 0.25-0.65 3 Sn 3 99. 412 L 1955 0.25-0.60 3 Sn 3 99. 460 L 1955 0.25-0.60 3 Sn 3 99. 460 L 1955 0.25-0.60 3 Sn 3 99. 452 L 1955 0.24-2.2 2-4 JM 4600; Sn 2 10.1 452 L 1955 0.40-0.64 2.4 JM 4600; Sn 2 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn 3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn 3 Pu 290 <td>22</td> <td>342</td> <td><u>,,,</u></td> <td>1953</td> <td>7.8</td> <td></td> <td>Sn 1</td> <td>The above specimen measured in longitudinal magnetic fields with strength H ranging from 0.29 to 3.75 kDe.</td>	22	342	<u>,,,</u>	1953	7.8		Sn 1	The above specimen measured in longitudinal magnetic fields with strength H ranging from 0.29 to 3.75 kDe.
342 L 1953 4.4 Sn 1 Th 74 L 1950 2.21 3 Sn 2 99 74 L 1950 2.42 3 Sn 3 99 74 L 1955 0.39-0.65 3 Sn 3 99 412 L 1955 0.25-0.80 3 Eig 99 460 L 1955 0.24-2 3 Sn 3 99 452 L 1955 0.2-4.2 2-4 JM 4600; Sn 2 90 452 L 1955 0.40-0.64 2.4 JM 4600; Sn 2 Sir 452 L 1955 0.24-0.2 2-4 JM 4600; Sn 3 Sir 452 L 1955 0.20-0.1 2-4 JM 4600; Sn 3 Sir 452 L 1955 0.20-0.1 2-4 JM 4600; Sn 3 Sir 290 L 1955 0.20-0.1 2-4 JM 4600; Sn 3 Sir	13	342	נ	1953	÷.		Sn 1	The above specimen measured in longitudinal magnetic fields with strength H ranging from 0.35 to 3.66 kOe.
74 L 1950 4.29 3 Sn 2 99 74 L 1950 4.29 3 Sn 3 FTh 74 L 1950 2.42 3 Sn 3 99 412 L 1955 0.25-0.80 373.2 89 99 460 L 1955 0.24-2 2-4 JM 4600.Sn2 89 450 L 1955 0.24-2 2-4 JM 4600.Sn2 8p 452 L 1955 0.40-0.64 2.4 JM 4600.Sn3 8ir 452 L 1955 0.34-0.71 2-4 JM 4600.Sn4 8ir 452 L 1955 0.24-1.2 2-4 JM 4600.Sn4 8ir 452 L 1955 0.24-1.2 2-4 JM 4600.Sn4 8ir 290 L 1955 0.24-1.2 2-4 JM 4600.Sn5 Pu	20	342	J	1953	4.		Sn 1	The above specimen measured in longitudinal magnetic fields with strength H ranging from 0.35 to 3.75 kOe.
74 L 1950 4.29 3 Sn 2 Th 412 L 1950 2.42 3 Sn 3 99 412 L 1955 0.39-0.65 7 99 412 L 1955 0.25-0.80 7 99 460 L 1955 373.2 89 230 L 1925 327 89 452 L 1955 0.2-4.2 2-4 JM 4600; Sn2 8p 452 L 1955 0.40-0.64 2.4 JM 4600; Sn2 8p 452 L 1955 0.34-0.71 2-4 JM 4600; Sn3 8p 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 8p 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 8p 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 8p 452 L 1955 0.24-1.2 <td< td=""><td>21</td><td>45</td><td>٦</td><td>1950</td><td>2.21</td><td>m</td><td>Sn 2</td><td>99.996 pure; homogenous solid solution with few large crystals; superconducting transition point 3.71 K; measured in magnetic fields with strength H ranging from 62 to 1453 gauss.</td></td<>	21	45	٦	1950	2.21	m	Sn 2	99.996 pure; homogenous solid solution with few large crystals; superconducting transition point 3.71 K; measured in magnetic fields with strength H ranging from 62 to 1453 gauss.
74 L 1950 2,42 3 Sn 3 99. 412 L 1955 0,39-0,65 3 59. 460 L 1957 373.2 59. 230 L 1955 0,24.2 2-4 JM 4600; Sn2 99. 452 L 1955 0,24.2 2-4 JM 4600; Sn2 Th 452 L 1955 0,40-0.64 2.4 JM 4600; Sn2 Th 452 L 1955 0,24-0.71 2-4 JM 4600; Sn2 Sir 452 L 1955 0,24-0.71 2-4 JM 4600; Sn3 Sir 452 L 1955 0,24-0.71 2-4 JM 4600; Sn3 Pu 290 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Pu	22	· ,	-1	1950	4.29	m	Sn 2	The above specimen measured in magnetic fields with strength H ranging from 62 to 1453 gauss.
412 L 1955 0.39-0.65 90 412 L 1955 0.25-0.80 90 99 460 1957 373.2 E14 E14 230 L 1925 227 0.1 452 L 1955 0.2-4.2 2-4 JM 4600; Sn2 Fp 452 L 1955 0.40-0.64 2.4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Pu 290 L 1952 1.59 Sn II 99	23	<u>*</u>	1	1950	한 한	m	Sn 3	99,967 pure; homogeneous solid solution with few large crystals; superconducting transition point 3.68 K; measured in magnetic fields with strength H ranging from 123 to 1213 gauss.
412 L 1955 0.25-0.80 990 460 1957 373.2 Eigen 230 L 1925 227 0.1 452 L 1955 0.2-4.2 2-4 JM 4600; Sn2 Fp. 452 L 1955 0.40-0.64 2.4 JM 4600; Sn3 Sir 452 L 1955 0.24-0.71 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Fin 290 L 1952 1.59 Sn II 99	54	412	ı	1955	0.39-0.65			99.997 pure; single crystal; supplied by Johnson, Matthey Co. Ltd.; in superconducting state (same specimen as used for curve No. 8).
460 1957 373.2 Fill 230 L 1925 227 0.1 452 L 1955 0.2-4.2 2-4 JM 4600; Sn2 5p 452 L 1955 0.40-0.64 2.4 JM 4600; Sn2 Th 452 L 1955 0.34-0.71 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 290 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Pu	25	412	ដ	1955	0.25-0.80			99.997 pure; polycrystalline; supplied by Johnson, Matthey Co. Ltd.; in superconducting state.
330 L 1925 227 0.1 452 L 1955 0.2-4.2 2-4 JM 4600; Sn2 Spanned 452 L 1955 0.40-0.64 2.4 JM 4600; Sn3 Sir 452 L 1955 0.24-0.71 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 290 L 1952 1.59 Sn II 99	36	460		1957	373.2			Electrical conductivity 6.6 x 104 ohm-1 cm-1 at 100 C.
452 L 1955 0.2-4.2 2-4 JM 4600; Sn2 Sp 452 L 1955 1.7-3.5 2-4 JM 4600; Sn2 Th 452 L 1955 0.40-0.64 2.4 JM 4600; Sn3 Sir 452 L 1955 0.24-0.71 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn3 Sir 290 L 1952 1.59 Sn II 99	27	330	-1	1925	327			0.03 total impurities; specimen 10 cm long and 1.9 cm in dia; electrical conductivity 8.95 x 104 ohm-1 cm-1 at 22 C.
452 L 1955 0.40-0.64 2.4 JM 4600; Sn2 Th 452 L 1955 0.34-0.71 2-4 JM 4600; Sn3 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn4 Sir 452 L 1955 1.59 Sn II 999	85 85	452	a	5561	0.24.2	% ₹	JM 4600; Sn2	Spectroscopically pure; single crystal with tetragonal axis parallel to rod axis; 2,530 mm dia rod supplied by Johnson, Matthey Co. Ltd.; cast and recrystallized; superconducting state.
452 L 1955 0.40-0.64 2.4 JM 4600; Sn3 Sir 452 L 1955 0.34-0.71 2-4 JM 4600; Sn4 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn5 Pu 290 L 1952 1.59 Sn II 999	29	452	-1	1955	1.7-3.5	7 ~	JM 4600; Sn2	The above specimen measured in a longitudinal field of 400 gauss; in normal state; data corrected for magneto-conductivity.
452 L 1955 0.34-0.71 2-4 JM 4600; Sn4 Sir 452 L 1955 0.24-1.2 2-4 JM 4600; Sn5 Pu 290 L 1952 1.59 Sn II 99	33	452	-1	1955	0.40-0.64	2.4	JM 4600; Sn3	Similar to the above specimen but the dia 5.11 mm; in superconducting state.
452 L 1955 0.24-1.2 2-4 JM 4600; Sn5 Pu 290 L 1952 1.59 Sn [7 99	31	452	1	1955	0.34-0.71	4	JM 4600; Sn4	Similar to the above specimen but with tetragonal axis at 88° to the rod axis, and rod dia 2.135 mm; in superconducting state.
290 L 1952 1.59 Sn II 99	33	452	7	1955	0.24-1.2	2-4	JM 4600; Sn5	Pure: polycrystalline; specimen dla 2.315 mm; cust, recrystalized, and strained grain size 0.50 mm; in superconducting state.
	33	290	-1	1952	1.59		Sn 17	99, 996 pure; polycrystal with several large crystals; 4.1 mm dia rod; prepared from Johnson-Matthey tin, J. M. Lab No. 2356; electrical resistivity ratio $\rho(273K)/\rho(4.2K)$ * 8000; measured in increasing transverse magnetic fields with strength H ranging from zero to 303 gauss.

SPECIFICATION TABLE NO. 61 (continued)

Ref.	Method Used	Year	Temp.	Reported	Name and	
,			w	Error, %	Specimen Designation	Composition (weight percent), Specifications and Remarks
	J)		2.17.7	*1	Sn 🗓	Similar to the above specimen but with a dia de de
	7	1950	2.18	7	II uS	transition temperature. The above specimen measured is the second of th
	_	1950	3.19	7	Sn II	from zero to 455, 2 gruss. The above surviness magnification of the above surviness magnification of the above surviness magnification.
	د	1950	3.32	7	ПuS	from zero 1984, 7 gauss. The above succious measured in longitudinal magnetic fields with etrength H ranging.
	í,	1950	3.77	7	II us	from vero to 1761. It sausted to longitudinal magnetic fields with strength H ranging. The above specimen measured is leaven.
	٦	1950	4.3%	,	Sn 🛭	from zero to 375.2 gauss. The above specimen measured is longitudinal magnetic fields with strength H ranging.
	ب	1950	5.02	7	II us	from zero to spanse integrated in longitudinal magnetic fields with strength H ranging. The above specifical magnetic fields with strength H ranging.
	نــ	1930	2.2-3.7	**	l us	from zero to 434.5 gauss. The above specimen successions.
	U	1923	313.2	c		field, in normal state,
	w	1941	350-460	•		Pure: specimen 3 cm long and 3 cm in dia; zinc used as comparative material.
	ن	1991	7 7	ני	-	and 18, 94 at ohm em at 300, 2, 404, 4, 412, 0, 439, 5, 145, 30, 17, 55, 18,03 b. 197 Bi; 4 mm dia rod; annealed for several months; electrical resistivity renorded as 0,0721 and 11,69,05, 0,000, 0,
	ï	1958	2.1-4.0	()	S	field of 560 gauss; in normal state,
	<u>-</u>	195×	9,14-1.3		Sa 2	99.9 pure, monocrystalline; 1. 89 mm dia rod; politihed; in superconducting state, 99.908 pure; monocrystalling, 3 m, 4.
		300	t- 	æ	Sn 2	specimen axis and [001] direction 30% in superconducting state. The above specimen in nerves even
	- 		0,12-1,4 0,11-0,93	ia ia	Sn ::	99, 998 pare; monecrystalline; 1, 40 nm dia rod with rough surface; angle between specimen axis and fund direction. 70% in superconducting state.
	_	192	0, 17-0, 61		Sn g	Specimen axis and (1001) direction - 45°; in superconducting state, 99°, 997 pure; polycrystalline; effected by "frazen in" mannate catal.
			02.0475.0		Sn 2	State, 19 Out many material and a state of the state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out many materials and state of the superconducting (9) Out materials and state of the superconducting (9)
	_		0,014-0,340		Su 2	99, 997 mires simila consider

SPECIFICATION TABLE NO. 61 (continued)

		cm ⁻¹ at 14 C; value calculated	ds at 85° to the and electro-	ice roughness	conducting	ing set of o	Smmmda,	e roughness	3.15 mm fn	4	in etched to stivity	cast; surface uperconducting		ng state. Is of the	ţ	acuo in thin- ler casting; elow transition		
	arks	ity 7.31 g o	ecimen ax ystallized,	state. mes; surfa	s; in super	perconduct	88 and 4, 7	nes; surfac	ness sand	to to to to to to	, then aga trical rest	ystals; as n n cm; in su	•	erconducti of crystal	hicitan etch	cast in vediately af		
	Specifications and Remarks	t and turned; densi 3.5 C; thermal cor	nm dia rod with sp.	superconducting a	Burface roughness	e roughness: In an	n surface roughnes	sposure to HCl fur	ı in surface rough	ronomeas in sur	annealed at 220 C	isted of 3 large critivity 0.0014 u ohn		m dia rod made up	nm: h smercad	t and ~50 mm long on took place imm 0; in superconduct		
D. 61 (continued)	Composition (weight percent), Speci	Chemically pure; specimen in ring form; cast and turned; density 7.31 g cm ⁻³ at 14 C; electrical resistivity 11.82 u ohm cm at 13.5 C; thermal conductivity value calculated from measured data of thermal diffusivity and specific heat	Spectroscopically pure; single crystal; 4.91 mm dia rod with specimen axis at 85° to the tetrad axis; provided by Johnson Matthey Co. Lid.; cast, crystallized, and electronalished to 0.5. in a configuration.	The above specimen 50% clouding etched by exposure to HCl fumes; surface roughness 0.3 µ; in superconducting state.	The above specimen lightly etched to 0.7μ in surface roughness; in superconducting state.	The above specimen eiched to 1.1 u in surface roughness: in superconducting evote	The above specimen electro-polished 0.05μ in surface roughness and $4.75\mathrm{mm}$ in superconducting state.	The above specimen 25° clouding etched by exposure to HCl fumes; surface roughness $0.12~\mu$. In superconducting state.	The above specimen electro-polished to 0.10 μ in surface roughness and 3.15 mm in distin superconducting state	The above specimen etched to 1.0 u in surface roughness: in surface the	The above specimen electro-polished, etched, annealed at 220 C, then again etched to 1.0 u in surface roughness and 1.96 mm in dia; residual electrical resistivity 0.00377 u ohm cm; in superconducting state.	Spectroscopically pure; 2.82 mm dia rod consisted of 3 large crystals; as cast; surface roughness 0.10 μ ; residual electrical resistivity 0.0014 μ ohm cm; in superconducting state.	The above specimen etched to 0.7 to success	Spectroscopically polycrafulling; 1.3 mm dis rod made up of crystals of the order of the diar part in this in successful and in this in successful and in this in successful and in the diar part in this in successful and the diar part in this in successful and the diar part in this in successful and the diar part in this in successful and the diar part in this in successful and the diar part in this in this in successful and the diar part in this in this in the diar part in this in this in the diar part in this in this in the diar part in this in the diar part in this in the diar part in this in the diar part in	Similar to the above specimen but with dis 0.7 mm. in superconduction state	0.002 impurity; single crystal; 0.175 cm in dia and ~50 mm long; cast in vacuo in thinwalled glass capillary in which crystallization took place immediately after casting; electrical resistivity ratio \(\rho(293K)/\rho_0 = 6250;\) in superconducting state below transition point.	In molten state: melling point 22: 9.	99.94 pure; in both solid and liquid states.
SPECIFICATION TABLE NO.	Name and Specimen Designation		Ε0	<u>П</u>	E 2	F 3	д	ខ	9 3	E 7	£ 10	D 0	D 1	Sn 🛭	Sn III			
8	Reported Error, %		N	2	ស	٥٦	N N	cı	61	62	~	8	62	10-25	10-25			2-5
	Temp. Range, K	286.7	0.21-0.52	0.21-0.52	0.26-0.51	0.25 - 0.53	0.21-0.47	0.21-0.47	0.25-0.52	0.24-0.53	0.27-0.65	0.24-0.66	0.26-0.63	0.18-0.67	0.23-0.90	0.134.0	570-833	337-610
	Year	1905	1958 8561	1958	1958	1958	1958	19 58	3861	1958	1958	1958	1958	1953	1953	1960	1959	1961
	Method Used	c.	- 1	ï	<u>.</u>	7	4	-	-1	J	J	-1	1	្ន	<u>.</u>		L.	
	Ref.	459	*	454	4 5 7	# :	454	70	4. 4.	454	454	4. 5.	3	455	45 5	289	265	597, 708
1,	CLT.	3	69	5	:	75	E ;	7 ;	Ç	3. 2.	i=	x :	13	£	18	82 80	83	25 45 (0

SPECIFICATION TABLE NO. 61 (continued)

Name and Composition (weight percent), Specifications and Remarks Specimen Designation	Specimen made from NBS freezing-point tin No. 42b (freezing point 231.9 C); 0.500 in. dia x 0.500 in. long; electrolytically deposited pure copper used as comparative material; reference data of copper taken from international Critical Tables (Vol. 5, McGraw Hill Book Co., New York, p. 221, 1929).	Specimen with radius of 0.7 cm furnished by the manufacturer Erba; measured in atmospheric pressure.	Rectangular plate 1.9 x 1.9 x 0.306 cm; supplied by Armoo; thermal conductivity value calculated from measured thermal diffusivity using values of density and specific heat taken from Smithsonian Physical Tables (9th ed., 1954).	High purity, single crystal; 2.6 mm in dia; specimen axis in the [001] orientation; residual electrical resistivity $\rho_{\rm e}(1\pm0.5) \times 10^4\mu$ ohm cm; superconducting transition point 3.72 K; measured in a longitudinal magnetic field; in normal state; data corrected to zero field.	The above specimen in superconducting state.	Similar to the above specimen but 1.1 mm dir and residual electrical resistivity $\rho_0(1.65\pm0.2)\times10^4\mu$ ohm cm; measured in a longitudinal magnetic field; in normal state; data corrected to zero field.	The above specimen in superconducting state.	Similar to the above specimen but 1.5 mm in dia and residual electrical resissivity $\rho_0 = 1 \times 10^{-4} \mu$ ohm cm; measured in a longitudinal magnetic field; in normal state; data corrected to zero field.	The above specimen in auperconducting state.	High purity; single crystal; 2.1 mm in dia; specimen axis in the (110) orientation; residual electrical resistivity $\rho_{\overline{\nu}}(1.2\pm0.5)$ x $10^4\mu$ ohm cm; measured in a longitudinal magnetic field.	The above specimen in superconducting state.	Density 7.27 g cm ⁻² ; electrical conductivity reported as 9.346 and 5.524 x 10° ohm cm ⁻¹ at 0 and 100 C, respectively.	High purity; single crystal; rod spectmen about 14 cm long made from 2 mm dia extruded wire; nominal orientation (001); rod along the tetrad axis; specimen crystallized by slow cooling, etched in concentrated HCl; electrical resistivity ratio ρ (293K)/ ρ_0 = 80000; measured in a magnetic field; in normal state.	Similar to the above specimen but made from 5 parts of Johnson, Matthey Specpure and 8 parts of high purity tin from Vulcan De-timing Co.; electrical resistivity ratio p (293K)/ ρ_0 = 23000; measured in a magnetic field; in normal state.
Reported Error, % Spe	£.		ra +											
Temp.		298.0	295.2	2.94.6	1.9~3.7	2.6-4.4	0.6-3.7	2.34.7	2.0-3.7	2.84.5	2.5-3.7	273,373	3.7-4.3	8.5 4.3
Year	361	8:01	1961	1961	1961	1961	1961	1961	1961	1961	1961	1881	1961	1961
Method	3 J	u	Þ	1	-	נונ	_	ı 山	-	. . 1	,_;	ום	ب	ה
Ref.	209	511	504	712	611	712	217	712	213	112	712	902	739	739
Curve	85	98	87	88	á	6 OF	5	26	63	g 2	Š	96	97	86

SPECIFICATION TABLE NO. 61 (continued)

Composition (weight percent). Specifications and Remarks	Similar to the above specimen but made from equal parts of Johnson, Matthey Specture and Vulcan De-tinning Co. high purity thi, electrical resistivity ratio ρ (293K)/ ρ_0 = 4500; measured in a magnetic field; in normal state.	99.99 $^+$ pure; single crystal; specimen 2.2 mm in dia and 100 mm long; residual electrical resistivity $\rho(4.2K) = 1.7 \times 10^{10}$ ohm cm in superconducting state.	The above specimen measured in a longitudinal magnetic field of 500 oersteds; in normal state.	The above specimen measured in a transverse magnetic field of 500 oersteds; in normal state.	0.05 mm tin foil produced by rolling tin having the same purity as the above specimen; in superconducting state.	The above specimen measured in a longitudinal magnetic field of 330 oersteds; in normal state.	Similar to the above specimen but the foil had been preliminarily etched; in superconducting state.	The above specimen measured in a longitudinal magnetic field of 330 oersteds; in normal state.	Molten specimen filled in the space between 2 coaxial tantalum tubes of dia 23.8 and 8 mm, each tube 0.12 mm thick; thermal conductivity values calculated from measured data of thermal diffusivity and specific heat using data of density taken from M.P. Slavinskii, (Physicochemical Properties of Fiements (Russian) 1952).	Molten specimen filled in the space between two coaxial thin-walled tantalum tubes of 24 and 8 mm dia, respectively; thermal conductivity values calculated from measured data of thermal diffusivity and specific heat.	Molten specimen placed in a hole of 21 mm in dia drilled in an asbestos cement cylinder of 30 mm height; IKhikN9T steel used as comparative material.	99, 909 pure; supplied by Johnson-Matthey; extruded into 1.5 mm dia wire; electrical resistivity reported as 0.00213 and 13.06 g ohm cm at 4.2 and 273 K, respectively; superconducting transition temperature 3.720 K; below the transition temperature, a longitudinal magnetic field was applied to the specimen; in normal state.	The above specimen measured with the magnetic field removed; in superconducting state.	0.019 Pb; prepared by vacuum-melting appropriate amounts of Johnson-Natthey 99.999 pure \$n and Pb, extruding into 1.5 mm dia wire; annealed at ~200 C for several days; electrical resistivity reported as 0.00564 and 12.71 µ ohm cm at 4.2 and 273 K, respectively; superconducting transition point 3.716 K; measured in a longitudinal magnetic field; in normal state.
Name and Specimen Designation	Sn 4											Sn t	Sn 1	Pb 1
Reported Error, %		v 10	. 10	~ 10	< 10	< 10	~ 10	< 10 <	6-8	7		-	-	-
Temp. Range, K	2.74.2	0.34-1.3	0.48-1.3	0.45-1.2	0.39-1.5	0.42-2.0	0.36-1.7	0.43-1.4	870-1230	465-1365	429-773	 4	1.6-3.6	1.6-4.5
Year	1961	1965	1965	1965	1965	1965	1965	1965	1965	1366	1966	1967	1961	1967
Method Used	נו	J		-1	ר	-1	J	٦	c.	۵	U	L)	7	٦
Ref. No.	7.19	240	140	740	011	7.10	740	740	735, 839	744	838	837	837	837
Curve No.	66	1 00	101	102	103	104	105	106	107	108	109	110	111	112

SPECIFICATION TABLE NO. 61 (continued)

Composition (weight percent), Specifications and Remarks	The above specimen measured without the magnetic field; in superconducting state.	θ. 174 Pb; prepared by :actum-melting appropriate amounts of Johnson-Matthey 99. 999 pure Sn and Pb, extruding into 1.5 mm dia wire; annealed at ~200 C for several days; electrical resistivity reported as 0.0500 and 13.19 μ ohm cm at 4.2 and 273 K, respectively; superconducting transition point 3.713 K; measured in longitudinal magnetic field; in normal state.	The above specimen measured without the magnetic field; in superconducting state.	o. 612 Bi; prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99. 999 pure Sn and Bi. extruding into 1.5 mm dia wire; amecaled at ~200 C for several days; electrical resistivity; reported as 0.00578 and 12.61 µ ohm cm at 4.2 and 273 K, respectively; superconducting transition point 3.725 K; measured in a longitudinal magnetic field, in normal state.	The above specimen measured without the magnetic field; in superconducting state.	n. 140 Bi; prepared by vacuum-melting apprepriate amounts of Johnson-Matthey 99, 999 pure Sn and Bi, extruding into 1.5 mm dia wire; amonical at ~200 c for several days; electrical resistivity, reported as 0,0721 and 11,91 µ ohm cm at 4.2 and 273 K, respectively, superconducting transition point 3,709 K; measured in a longitudinal magnetic field; in normal state.	The above specimen measured without the magnetic field; in superconducting state.	0.018 Hg. prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99,999 pure Sn and Hg. extruding into 1.5 mm dia wire; annealed at ~200 C for several days; electrical resistivity reported as 0.0203 and 12.97 µ ohm cm at 4.2 and 273 K, respectively; superconducting transition point 3.718 K; measured in a longitudinal magnetic field: in normal state.	The above specimen measured without the magnetic field; in superconducting state.	9. 168 Hg, prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99, 899 pure Sn and Hg, extruding into 1.5 mm dia wire; annealed at ~200 C for several days; electrical resistivity reported as 0,113 and 11,28 µ ohm cm at 4,2 and 273 K, respectively; sujectedualeting u insition point 3,686 K; measured in a longitudinal magnetic field, in normal state.	The above specimen measured without the magnetic field; in superconducting state.	0,047 Hg; prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99,999 pure Sh and Hg, easting into 1 mm dia x 12 cm iong wire in a pyrex capillary; Pesidue, electrical resistivity 0,014 u ohm cm; measured in a magnetic field; in normal state,	The above specimen measured without the magnetic field; in superconducting state.
Name and Specimen Designation	1 44	Pb 2	51 \$2.	1.20	Bi 1	Bi 2	Bi 2	Нд 1	11g 1	Нқ 2	Hg 2	o o	c:
Reported Error, T	-		-	-	_	-	-	-	-	-	-	© − ₹	4 15
Temp. Range, K	9 2 2	1.6-4.6	1 2 2		1.4-3.7	1,4-4.4	2, 2-3, 7	1.6-4.7	1,7-3,7	1.4-4.0	1,4-3,6	1.6.	1.6-4.3
Year	2341	1967	1967	£961	1961	1961	1961	1967	1967	1967	1967	8061	KS 6.1
Method		ن ن	-	: 4	-	. <u>.</u>	نـ) <u> </u>	_	د یا	_	: =	<u>-</u> :
Ref.		25. 25. 71. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	i c	832	(.) (.)	707	!: 7	. .	(<u>;</u>	i.e.	i :	÷ ÷	ĝ
Curve No.		<u> </u>	:	911	1.	= =	611	5	=	3	-	: <u>-</u> :	2

SPECIFICATION TABLE NO. 61 (continued)

. 1			99, 999 • residua l al state.	ite.	. 99. 999 ; rus idua l al state.	ıte.	st below) = om 72	times	10 cm ity ratio h	imes at
	, 61 (continued)	Composition (weight percent), Specifications and Remarks	6.049 Bi; prepared by vacuum-meiting appropriate amounts of Johnson-Matthey 99, 999 pure Sn and Bi, cristing into t mm dia x 12 cm long wire in a pyrex capitliary; festidual electrical resistivity 0.020 μ ohm cm; measured in a magnetic field; in normal state.	The above specimen measured without the magnetic field, in superconducting state.	0.040 Pb; prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99.999 pure Sn and Pb, casting into 1 mm dia x 12 cm long wire in a pyrex capillary; residual electrical resistivity 0.010 u ohm cm; measured in a magnetic field; in normal state.	The above specimen measured without the magnetic field, in superconducting state.	Polyerystallune, 2,25 mm dia x 10 cm tong; supplied by Johnson-Matthey and Co.; specimen recrystallized in an alumina packing; annealed at a temperature just below the melting point for several hrs; electrical resistivity ratio ρ (290K)/ ρ (4,2K) = 5000; mensured in a transverse static magnetic field with strength ranging from 72 to 277 gauss.	The above specimen measured with the field rotated about the specimen axis 10 times at 5 sec rev ⁻¹ between points of measurement.	Single crystal with tetrad axis at 3 degrees to the specimen axis; 2.15 mm dia x 10 cm long; some preparation procedure as the above specimen; electrical resistivity ratio ρ (290K)/ ρ (4, 2K) = 47060; measured in a transverse static magnetic field with strength ranging from 76 to 227 gauss.	The above specimen measured with the field related about the specimen axis 5 times at 8 sec rev'l between points of measurement.
	SPECIFICATION TABLE NO.	Name and Specimen Designation	vo	က	3r	9;	84 5.0	Sn 5.0	Sn 47	Sr. 47
,	S.	Reported Error, %	4-5	17- 7	4-5	4-5	₹* .47	++ +1	# #i	प र का
· · · · · · · · · · · · · · · · · · ·		Temp. Runge, K	1.64.8	1.5-2.8	1.64.9	1.6-2.8	1.65	1.65	1.80	1.80
<u>.</u>		Year	1954	1958	8561	8561	1966	1966	9961	1966
		Method Used	د		7	ت	i.	7	J	د.
<u>1</u> 1		Ref. No.	98%	836	836	836	835	835	835	835
:		Curve No.	126	121	128	129	130	131	132	133

DATA TABLE NO. 61 THERMAL CONDUCTIVITY OF TIN

(Impurity < 0, 20% each: total impurities < 0, 50%)

cm-1K-1,
Watt
ź
Conductivity,
Thermal
ž
Ŀ.
[Temperature,

Cumny Cumn	i diagram														
Column C								2011	1.1 3.	3/10.10	(1000) 3	and	· 61 3/1	CHRVE	21 (cont.)
Color Colo	OKVE 1	CUR	<u>*</u>		(cont.)	CURVE	0 (conf.)	2	2 2	1 () () () () () () () () () (0 K)		3.0K)	1	= 2. 21K)
6.285 1.44 16.1 16.1 29.1.2 0.657 3.70 56.39 1.10 10.0 0.99 19.4 0.099 1.59 1.40 10.0 0.99 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50		1, 32	13, 5	273.2	0.670	3,36	53, 30	.: :2:	20.	(kilooerste	ds)	(kilooerstee	ls)	(Suns)	
0.399 1.55 19.5 30.12 0.649 1.99 55.21 1.21 2.27 0.649 1.99 55.21 1.22 0.27 0.249 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.5		1,43	16. 1	291.2	0. 637	3, 70 10	55, 20	1. 30	1.00	9, 1	2	32	4 91	607	29.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1, 55 	ი . ი .	303.2	0.643	8 8	200	6	2, 220	7	3,70	0.73	16.7	727	28.2
National Color		98. 1.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Valle		R 9	54.5	; ; ;	2,570	₹.	7.25	1, 10	15, 1	: 779	26.4
Name		5. c	90.0			4	04.60	2.70	3,200	2. 16	6, 13	1,44	7	Ç	25.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6.00	3.5	9.14	17 49	i :	:	% €	11,430	5 5 6 7	5,24	1 . 80	13, 4	1-1.	24.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7. c) i	, v.	20.15	VALID	E 11	2, 95	3, 72.3	2, 36	4.61	2.16	12. "	1213	23.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$; ; ;	6.4.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	24.73		:	: 6 3	3, 927	3, 23	4.12	2, 53	11. '	1335	22.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3.5	0.69	4. 12	24.80	1. 82	17,08	3, 10	4, 290	3.57	3 76	2. 56	11.2		21.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		333	76.5	4.38	25, 05	1, 90	21, 24	3, 22	630		!	3, 23	10.6	7	1000
CURVE 5 CURVE 5 St. 18		3,55	80.5	4, 56	24, 33	2.00	23, 43	3,38	4. 950	XI)	VE 17	3.66	10.0		25 27
Curre 1 Curre 2 Curre 1 Curr		3, 62	81, 5	6.18	20, 90	2.10	26, 30			1	(L)		* 6		11107
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				8, 25	13, 01	2. 16	28, 03	31	1				20	63	21.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CUR	VE 5	10,00	s. 70	2,35	33,43	200	0.650	9 y	19.23	. 1 = 4	. 4 K)	113	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				11, 55	6.67	2.55	38.18	1.00		3 (5	11.1	0.35	24.2	981	48.6
1.		1.45	42.5	14, 12	ा च	2, 63	39, 34	2	4	5	06 4	17.0	21.5	244	46.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.95	52.5	17. 17	5 i	2.5	42.04	•	ŧ	1, 10	8. 10 1. 10	1 10	6.61	305	45.3
1. 1. 1. 1. 1. 1. 1. 1.		2 (:i:	0 ' 6	21,55	3 5	 		CURV	E 15	1.45	7,09	1,44	18.6	366	44.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7 9	0 to	25,30	: : : -	 	44.00	T = 4	. 4 K	1.80	5.78	08.1	17.2	487	41.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		90.5	0.01		: - : -	3.5		kilooersteds		2, 16	4,85	2.16	15.6	209	39.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ומווט	9 45	37.75	; -	9	54, 10	91	0 66	2, 53	4.17	2,53	14.9	734	36.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		400	-	35 60	2 5	3	: :	0.0	2.1.5	ž.	3, 64	2, 86	14.0	851	35.1
61.5 375.2 0. 587 CURVE 19 1.75 2. 670 0. 773 17.7 3. 75 2. 94 3. 57 13. 2 13. 1 62. 5 18. 2 18. 2 18. 2 18. 2 18. 2 18. 2 18. 3 19. 0 1. 1.75 2. 670 0. 1.77 17. 17. 14. 12. 14. 12. 3 18. 10. 1.90 1.		323.2	0,597	;	<u>.</u>	CHRV	E 12		0.12	3, 23	:1, 22	3, 23	13.6	696	43,4
61. 5 420.2 0.582 -1.75 2.630 0.73 17.7 3.75 2.80 3.75 13.1 -1.75 2.630 0.73 17.7 3.75 2.80 3.75 13.1 -1.75 62. 5 433.2 0.572 2.28 10.00 1.90 2.890 1.10 14.0 -1.4 12.3 -1.24 14. 12.3 -1.24 11. 12. 14. 12.3 -1.24 11. 12. 14. 12.3 -1.24 11. 12. 14. 12.3 -1.24 11. 12. 14. 12.3 -1.24 11. 12. 14. 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 12.3 -1.44 13.4 -1.44 13.4 -1.44		375.2	0.587	CURV			: :	9	0.01	3, 57	2, 94	3,57	13.2	1001	32.2
62. 5 433.2 0.572 2.28 10.00 1.90 2.890 1.10 14.0 CURVE 18		420.2	0,582			1, 75	2, 630	3 2	17.7	3, 75	2, 80	3,75	13.1	1213	31.1
63.5 492.2 0.543 2.36 11.02 2.12 3.080 1.44 12.3 CURVE 18 CURVE 217 66.0 557.2 0.341 2.72 14.78 2.24 3.390 1.80 10.4 T.2.4K) (T.2.4K) (T.2.4K) (T.2.2.1K) 75.5 620.2 0.351 2.72 14.78 2.24 3.390 1.80 10.4 (T.2.4K) (T.2.4K) (T.2.2.1K) 75.5 620.2 0.351 2.73 2.70 4.100 2.86 7.19 0.29 16.8 62 2.8.35 75.5 620.2 0.351 2.70 4.100 2.86 7.19 0.56 15.5 122 28.35 75.5 620.2 0.351 1.0 4.657 3.23 6.58 0.56 15.5 180 2.8.35 79.5 99.2 0.824 7.19 4.657 3.23 6.58 0.71 11.11 20.41 2.8.35 79.5 13.2 <		433.2	0,572	2,28	10.00	1 90	2, 890	<u> </u>	0 71				;	1.5.55	2,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		482.2	0.543	2,36	11, 02	2, 12	3,080		12.3	SUR	VE 18	CCR	VE 21"	1453	5. 5. S
70.0 564.2 0.315 2.82 16.57 2.42 3.650 2.16 11.2 0.29 16.8 Genus 75.5 620.2 0.321 3.35 20.73 2.70 4.100 2.53 8.06 0.29 16.8 62 2.835 75.5 620.2 0.321 3.35 20.73 2.95 4.100 2.53 8.06 0.35 16.8 62 2.835 75.5 620.2 0.35 4.100 2.53 8.06 0.35 16.8 62 2.835 79.5 99.2 0.824 2.25 2.250 3.10 4.657 3.23 6.88 0.73 14.8 204 28.35 79.5 133.2 4.820 3.57 6.02 1.10 13.7 206 29.85 VE.3 132.2 2.83 6.06 3.70 5.400 7.33 1.80 11.8 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.5<		537.2	0.34	2. 72	14, 78	2, 24	3,390	8	10.4	- L)	2,4K)	(T = 2	. 21 K)	915	100 37
75.5 620.2 0.321 3.35 20.73 2.70 4.100 2.53 8.06 0.29 16.6 2.835 2.835 75.5 CURVE 7 3.52 22.05 2.95 4.320 2.86 7.19 0.56 15.6 122 2.8.35 79.5 99.2 0.824 CURVE 10 3.37 5.000 3.57 6.02 1.10 13.7 206 2.8.35 79.5 133.2 0.903 CURVE 10 3.37 5.000 (1.10) 13.7 206 2.8.35 79.5 133.2 0.791 1.82 36.06 3.70 5.400 (1.13) 2.53 9.71 244 34.3 79.5 148.2 0.761 2.0 3.87 5.255 CURVE 16* 2.55 8.13 244 34.3 78.0 173.2 0.70 3.87 5.75 17.8 3.75 8.13 244 34.3 78.0 193.2 2.83 50.73		564.2	0,315	2,82	16.57	2, 42	3,650	2, 16	11.2	ć		(SSnE		10 ×	49 K
74. 0 CURVE 7 3. 42 22. 05 2. 95 4. 320 2. 86 7. 19 0. 36 15. 0 122 28. 35 75. 5 CURVE 7 3. 55 22. 50 3. 10 4. 657 3. 23 6. 58 0. 56 15. 5 160 2. 8. 35 79. 5 13. 2 4. 820 3. 57 6. 02 1. 10 13. 7 204 28. 35 VE 3 13. 2 0. 803 1. 82 36. 06 3. 70 5. 400 (T $\times 3.$ 6K) 1. 10 13. 7 204 29. 85 78. 0 1.73. 2 0. 761 1. 82 36. 06 3. 70 5. 400 (T $\times 3.$ 6K) 1. 20 29. 85 78. 0 1.73. 2 0. 761 2. 0 38. 70 5. 400 (T $\times 3.$ 6K) 3. 75 8. 13 292 35. 8 78. 0 1.73. 2 2. 765 0. 29 17. 8 3. 75 8. 13 36. 75. 0 2. 83 50. 73 4. 35 6. 100 0. 56 15. 1		620.2	0.321	3, 35	20, 73	2, 70	4, 100	2.53	8.06	0.23		62	28,35	1	12.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3, 42	22. 05	2, 95	4, 320	2, 86	7, 19	9 S	e . 0 !	122	28,35	193	95.6
79.5 99.2 0.00 3.57 6.02 0.01 14.7 204 28.35 VE 3 13.2 0.824 CURVE 10 3.37 5.000 1.10 13.7 204 28.35 VE 3 13.2 0.833 2.37 5.000 (T : 3.0K) 1.10 13.7 206 29.85 79.5 13.2 0.791 1.82 36.06 3.70 5.400 (T : 3.0K) 2.53 9.71 244 34.3 79.5 148.2 0.751 2.20 38.70 3.85 5.75 0.29 17.8 3.75 8.13 244 34.3 78.0 173.2 0.756 0.736 2.23 42.20 3.95 5.755 0.73 17.0 3.75 8.13 292 35.8 75.0 248.2 0.73 4.15 5.25 0.73 4.35 6.100 0.56 17.0 36.73 487 31.9 75.0 248.2 0.73 13.3		CUR	VE 7	3,55	22, 50	3, 10	4, 657	3, 23	6.58	0.00 0.00	o :	081	2H, 35	16.6	3 6
VE 3 99.2 0.824 CURVE 10 3.37 5.000 CURVE 16* 1.10 13.1 206 29.85 13.2 0.903 3.52 5.225 CURVE 16* 1.80 11.1 217 32.1 79.5 148.2 0.761 2.06 3.70 5.400 T.80 2.53 8.55 2.43 244 34.3 78.0 173.2 0.761 2.03 3.87 5.75 8.13 270 35.6 78.0 193.2 2.765 0.29 17.8 3.75 8.13 270 35.8 78.0 193.2 5.925 0.35 17.0 36.1 34.7 76.5 223.2 0.703 4.35 6.100 0.56 15.1 467 31.9 75.0 248.2 0.686 3.15 52.63 0.73 13.3 467 31.9	£.		1			3, 22	4, 820	3, 57	6, 02		- c	204	28, 35	120	
VE.3 113.2 0.903 3.52 5.225 CURVE 16° 1.70 11.1 217 32.1 79.5 123.2 0.791 1.82 36.06 3.70 5.400 $(T \cdot 3.0 K)$ 3.23 8.71 244 34.3 79.5 1.48.2 0.761 2.03 3.87 8.55 270 35.6 78.0 1.73.2 0.736 2.23 42.20 3.95 0.35 17.0 3.75 8.13 29.2 35.8 78.0 193.2 0.761 2.56 47.90 4.15 5.925 0.35 17.0 364 37.7 76.5 223.2 0.703 2.83 50.73 4.35 6.100 0.56 15.1 467 31.9 75.0 248,2 0.686 3.15 52.63 0.73 13.3 3.3 47		99.2	0.824	CURV	E 10	3, 37	5, 000			2 ? 	13.	200	29.85	321	5 6
123.2 0.791 1.82 36.06 3.70 5.400 (T : 3.0 K) 2.33 3.71 244 34.3 79.5 148.2 0.761 2.00 38.70 3.85 5.575 3.75 8.13 270 35.6 78.0 173.2 0.736 2.21 42.20 3.95 0.29 17.0 3.75 8.13 29.2 35.8 76.5 2.23.2 0.720 2.56 47.90 4.15 5.925 0.35 17.0 36.1 34.7 76.5 2.23.2 0.703 2.83 50.73 4.35 6.100 0.56 15.1 467 31.9 75.0 248,2 0.686 3.15 52.63 0.73 13.3 6.100 0.73 13.3	URVE 3	113.2	0. 903			3, 52	5, 225	CURV	/E 16°	2 :	11.1	217	32. 1	185	3.5
79.5 148.2 0.761 2.00 38.70 3.85 5.575 3.75 8.13 292 35.6 78.0 173.2 0.736 2.23 42.20 3.95 5.765 0.29 17.8 3.75 8.13 292 35.8 76.5 193.2 0.736 2.56 47.90 4.15 5.925 0.35 17.0 36.1 34.7 76.5 223.2 0.703 2.83 50.73 4.35 6.100 0.56 15.1 467 31.9 75.0 248,2 0.686 3.15 52.63 0.73 13.3 6.73 13.3		123.2	0. 791	1.82	36.06	3, 70	5, 400	۳	.0 K)	 	1 0	244	34.3	198	3 66
78.0 173.2 0.736 2.23 42.20 3.95 5.765 0.29 17.8 3.77 2.92 35.8 78.0 193.2 0.770 2.56 47.40 4.15 5.925 0.56 17.0 364 34.7 76.5 223.2 0.703 2.83 50.73 4.35 6.100 0.56 15.1 37.3 75.0 248.2 0.686 3.15 52.63 0.73 13.3		148.2	0. 761	5 . 0 0	38, 70	86 π'	5, 575			; ; ;		270	35.6	242	3.66
73,0 195,2 0.720 2.56 47.90 4.15 5.925 0.35 17.0 366: 34.7 76,5 223,2 0.703 2.83 50.73 4.35 6.100 0.56 15.1 487 31.9 75,0 248,2 0.686 3.15 52.63 0.73 13.3		173.2	0. 736	2.23	42. 20	3, 95	5, 765	0.29	17.8	÷.	0.4.0	292	35.8	367	3,66
76.5 223.2 0.703 2.83 50.73 4.35 6.100 0.56 15.1 487 31.9 75.0 248,2 0.686 3.15 52.63 0.73 13.3		198.2	0. 720	2,56	47.8	+ 1S	5, 925	0.35	17.0			364	34.7	492	3.66
75.0 248,2 0.686 3.15 52.63 0.73 13.3		223.2	0.703	8	50, 73	4,35	6. 100	0.56	12.1			487	31.9	740	3,66
		248.2	0.686	3, 15	52, 63			0.73	13,3						

	*	CURVE 42*	7 8 F	43.9	41.3	40.7	40.0	40.5 0.05	4.0.4 0.04	42.4	44.8	4. 8. 3	8.4	e,	E 43*	62K)		6, 10	6, 13	6. 10	 3 E	6. 13	90.9	5, 99	5, 99	6.06 1.0	6.13	6.21	6, 13	6, 13	6. 10 6. 10	5, 92		E 44	27 K)	0 133	0, 133	0. 133	0. 133	0. 133	0, 133° 9, 136	
<u></u> .	. E	CURVE 42*	(semed)	115	102	96	X S	¥ ¥	6 62	09	20	8	20	=	CURV	(T = 3.62K)		0	330	010	230	830	950	1070	1110	1210	1440	1575	1700	1875	23.80	2629		CURVE 44	(T = 1.27 K)	-	, æ	102	112	122	128 138	
	¥	CURVE 40	(L = Z. 16K) (gauss)	33,4	26.5	25.4	25. 1	80 G	24.8	27.0	28.7	31.5	31.9	.52. 1	32.4	32,4		CURVE 41.	(T = 2.86K)		40° 1.	2.0	45.7	45.2	44.8	45.2	45.6	42.7	41.7	41.3	40°	39.2	40.0	41.2	43.1		41.7	40.7	39, 4	39.2	38.6 37.6	
	×		(ssnuž)	181	163	155	150	143	9.7	601	101	\$	30 9	2 3	8 6	•		COLE	(T = 2	(<u>ب</u>	2 5	24	27	ဦး	¥. 5	2 5	3 5	65	28	- o	95	102	107	110	120	136	150	163	177	190 204	
	¥	CURVE 38" (cont.)	ć. 25 P.)	38, 6 6	42.9	42.9	* 5	CURVE 39	7. 10V)	33.1	32.9	æ :	32. x	3. S.	32.8	32.8	32.8	32.3	28.2	95.7	25.0	24.4	24.0	23.7	23,4	23.4	9.96	29.9	33,7	33.7	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	33.0	32.6	32.3	31.5	30.3	29.7					
	I	CURVE	_ (ssnໝ)	88	61	0			 	0	43		99	2 4	83	S K	92	66	102	91	122	128	136	142	150	155	170	177	184	186	351	204	211	218	231	258	272					
(continued)	¥	CURVE 36"	(W. 7.7.	30,3	35, 0	29.4	27.5	26. 3 26. 3	27.0	28.7	30.3	30.5	31, 1	CHRVE 37	(T 2.53K)	8	44.6	45.0	43.7	41.5	39.5	37.7	27.5	37.5	37.5	38.0	39, 7	الم الم	40.4	45.7	4 .	43,7	36.6		VE 38*	T = 2.53K)	16.3	40.1	41.5	38.8	37.3	
61 (con	Ŧ	CUR'	(85m gg)	255	183	164	143	227	105	98	덪	ę c	>	2	L	5	, 36 (7)	. 5	89	.	3 3 3	S 5	8 4	8 2	110	131	1:.7	345	155	163	171	189	240	3	CUR	(T=2)	146	143	128	116	100	
	. x	CURVE 33 P	2	14.5 14.5	14, 5	12.2	10.4	10, 2	10, 4	24. 4	24.4	7.77	SO. 8	CITRVE 34°	59 K)	23	15.2	11.1	10.6	11.0	12. 4	* 100	21.2	(WIZ	33, 2	33, 1	32. 9	32.5	24.4	28.7	26.7	25.0		27.0	29.9	33, 3	33.0	0 m	33.1	31.8	30.4	
DATA TABLE NO.	=	CURVE 33	(gansa)	0 001	114	127	3 :	<u> </u>	203	233	246	297	30.5	CITR	(T = 1.59K)	246	203	190	149	135	120	,	(T = 2 21K)	i !	0	11	88	3 3	e ±	100	110	122	<u> </u>	32	171	175	<u>8</u> 8	20.	222	240	273	
a	×	CURVE 30	0.0185	0,0285	0.03°	0.043	0. 100		CURVE 31	3500	0.0077	0.0097	0.0115	0.0144	0.0161	0.0330	0,0435	0,053	0.063	0.082	0, 107	0. 135	CHRVF 39	3	0.00115	0,00255	0,0034	0.0049	0.000	0,0149	0.0194	0.0231	0.0365	0, 195	0.400	0.640						
	٢	CUR	0.40	0.4 6.45	0.52	0.57	0.64		CUB	76	0.36	0.36	0.41	0,43	0.45	0.51	0.55	0.58	09.0	O. 62	99.0	0.71	2112		0.24	0.32	0.36	3 3 5 5	0.42	0.53	0.56	80.0 63	90.0	8.0		1.2						
	*	VE 28	0.00245	0.0059	0.0072	0.00%	0.0165	0.0255	0.032	0.030	0, 110	0, 140	0. 195	0.285	0.345	000	1, 25	1,55	1.90	2.5	2.5	2.65	. 4 . 4	4	5.4	6.7	6.7	2.7	12.6	14.2	17.0	21.5		CURVE 29		10.0	16.1	26.3	17.1	17.0	18.7 20.0	
	۲	CURVE	0.23	8 8 6 6	0.36	÷ 4		0.53	0.57	9.0	0.73	3 6	8 8	0.95	o -	· -	1.	1.5	1.7	8.	e			. 2				2 c		3,1		ກ່ 4		CUR	}		, c	2.5	61	. 8 8	ຕ ຕ ເ	
	• ′	(cont.)	-	3. 6 5	3	¥	÷ * *	1	0.0044	0.0050	c. 9070	0.0087	0.010	0,0115	0.0202	0.000	0.0495	0.0680	0.100	•	25.	0100	0.003	0,0050	0,00715	9,0079	0.0100	0.0110	0.0220	0,0230	0.0335	0.0420	0.033	;	26	5	0.327	2.7		0, 632		
	I	CURVE 23	(Sansa)	970	1	۲	CURVE :		0.39	0. 405	0 47	0, 47	0.50	0.51	0,55	65.0	0, 605	0.612	0, 65		CURVE	9	0.252	0.262	0, 310	0.330	0.400	0.408	0.528	0, 552	0, 590	0.690	9.0	;	CURVE	8	3(3, 6	CURVE		327		*

	¥	CURVE 61						0.00275		2 0.00520					2 0.0122 0 0.0175			_				0 0.125 5 0.140				0 0.336			1,95					12.50			17.00			22,00			26. 90 26. 80
· ·	(-	O1	0.175	0, 202	0, 218	C. 22	0.236	0,240	0.230	0.302	0, 325	0.34	0,365	0.392	0.412	0.468	0.500	0.524	0.570	0,620	0.64	0.750	0,71	0.76	0.800	0,820	1.00	9.1	1, 10	1.35	1.67	1.75	1.90	2.53	7.6.6	77.7	2 56	2.68		3,01	3.20	3,30	3.45
	*	CURVE 58	0.799	0,766	0.745	0.741	0.728	03 20 20 20	NYE 33		0			0.010		1 210						1.400		1,380		20 111	HVE 00		2,09				4.00				CHRVE 61						
	H	밍	390, 3	412.0	439, 5	447.6	460, 2	į	3	2, 44	2, 69	2, 69	2, 90	×.	3.23	i n	3,6	3,74	3.86	3.91	3. 95	4. 03	4, 20	4, 20	4, 28	į	3	2 07	2,2	2,58	2.6	2.95	3,21	3.40	30.0	ň .:	CI	31	0.14	0.164			
(continued)	.	CURVE $53*$ $(T = 3,77K)$		47.4	46. 5	44. 8	41.9	40.5	33.0	VE 54*	(T = 4.38K)		46.9	4 8	4. 4. 0. c.	43.5	40.7	39,3	36, 6		CURVE 55	5. 02)	45.1	43.9	43.1	42.3	الم د . م	, c		¥	VE S6		22.5	 	44.6	45.7	46.5	47.1		VE 57		0, 669	
61	Ħ) BB	0	S.5.	160.0	275.0	343.0	3.015	CUR	(T =		0	8.5	165.2	304 3	349.6	422.0	532.0			(T)	0	110.9	164.8	221.0	326.0	134.5		Ļ	TILVE		2, 19	2, 32 9, 45	66.0	27.5	2 65	3.6		CURVE :		313.2	
DATA TABLE NO.	¥	CURVE 50* (cont.)		28.						26.7		25.2		, ;	CURVE SI	1961 .c.	41.9	4	41.		2	44.0			39.2		CURVE 32			43, 8			45,0							37.0			
DA'	r	CURV	(ssne3)	231.7			277.0		0.16.0				455.				٠		52.2	_	66.5	71.7	165.2	221.7	25 5, 7	į	ΣĮĘ	-		0	30, 2	37.0	43,5		110.0	100.9	204.0	310.0	364.5	376. 1			
	×	CURVE 49	21.7		•					9 6 6							44.73					9.84			47.3		2	٠ ١	CURVE 50	(T = 2.18 K)	-	21.5	21,9	21.1					29.5	29.8	4.62 8 86	29, 8	
	۲	_	2.14	2.4	2.5	2.7	2.78	86 (86 (5 č	, e.	: m	3.2	3.2		er e	i d	i m	3.6	3, 75	3, 7,	ຫ ເກົ	3.99	4, 25	4, 44	4.61	4.71	:	ε	Οĺ	1)	(Kanss)	c	93.9	134, 0	165.2	182. 6	188.3	191, 3	194.0	205.0	205.0	219.0	,
	*	CURVE 46 (cont.		39.9	43.9	45.6	46.0	45.9	45.6	. 4	43.0	42.1	39.4	. !	CURVE 47	7. 3 N.	46.5	45.2	41.2	38.8	37.9	38.9	42.9	43.4		*		CONVE 40					42.5				200					7-1	
	Ξ	CURVE 46	(seared)	136.2	143.5	150	152.9	157	163.2	17.0	190.6	205.0	238.2	i	킰	:: -	149 7	142.6	129.7	115.6	102.3	88.2	61.2	0		Ļ	į	31	2.70	2,92	2.96	3.00	3, 16	3.22			3,30		4 67	5.02	5,09	5, 11	9, 60
	æ	CURVE 44 (cont.)	ì	0.142	0, 152	0.157	0.162	0.168	0.185	0.200	0,262	0.408	0.526	0.535	0, 535	DITE AC	T - 1 STK	· · · ·	0.455	0.279	0.228	0.208	0, 148	0, 132	0, 131	0, 131	0. 129	0. 151	CURVE 46"	- 2.5 K)		44.4	44.4	2.5	- v 2 2	7.65	2 6	4.7	27.	¥ '98	¥ '91.	e (1 1
	Ŧ	CURVE 44 ((gamas)	145	153	162	170	179	£ 5	8 8	221	237	257	230	308	į	غاد	:	237	221:	20%	196	155	136	130	103	æ °	>	5	Įμ		0	13 (9. 5. 6. 5.	; ;;	2 3	7, 13	1.5 5 5	201	100.4	116.2	122, 9	7 00.

.	CURVE 77	0.00216	0.00285						-	0.0148					0.0101	Transfer 74	PAE 10	0,00375	0.00425			0.0000	0.0102						0.0380	0.0505	0.0840	0,0955	0.102		CURVE 79"								0.00075
E	밁	0.265	0, 292	0,310	0.380	0,360	0,392	0.413	0.446	0.470	0.530	0.565	0.600	0.620	0.645	Č	31	0,24	0.255	0.28	0.298	0.32	0.34	0.377	0, 422	0.422	0.445	0.47	6, 50	0, 527	0.605	0, 627	0.655		CC		0.26	0.273	0.315	0.349	0.36	0.372	0.39
*	CURVE 74* (cont.)	0,0195	0.0265	0.0316	0.0360	0.0420	0.049 _b	0.00	CORVE	500000	0.00880	0.00948	0.0125	0.0133	0.0190	0, 0233	0.0310	0.0490	0.0560	0.0630	#	CURVE 76	0 00005	0.00233	0.00472	0.00495	0.00290	6.00.9	0.0089	0,012	0.0123	0.0147	0.0153	0.0190	0.0184	0.0237	0.0285	0.0335	0.0450	0.090.0			
1	CURVE	0.350	C, 385	0, 405	0.4:10	0,450	0.470			0.950	0.275	0,277	0,310	07:20	0,355	0.374	0.463	0.437	0,512	0, 523		SUBS	0.041	0.258	0.276	0.286	0.300	0, 345	0, 350	0,380	0.392	0, 410	0,420	0.420	0, 435	0, 452	0,452	0,459	0.510	0.530			
¥	E 72	0.00455	0,000	0.0070	0.00795	9400.0	0.00955	0.0109	0.0112	0.0140	0.01%	0,0192	0.0222	0.030g	0, 0385	0,049×	6,010	E 73		0,0053	0.0059	0.00%02	0.0144	0.0154	0.0184	0.020	0.024	0.028	0.030	0.0335	0.0388	0.0473	0.0550	4	E 74	1	0.00426	0.00498	0.00548	0.00750	0.0102	0,0158	2300 0
←	CURVE 72	0,252	0,270	0, 290	0.305	0, 315	0, 328	000.0	0, 300	0,572	0.400	0, 420		0, 465	0.500	0,515	0.50	CURVE 73		0.214	0.223	0.244	0.291	0.303	0,330	0, 335	0,350	0.372	0.372	0,382	0.400	0,448	0, 466		CURVE 74		0, 212	0.250	0. 230	0.256	0, 291	0.327	000.0
¥	9 (cont.)	0.0285	0,0560	0.070	0.090		CURVE 70%	2000	0.00383	0.0050	0.0056	0.00876	0.00925	0.0120	0.0140	0,0220	0.0230	0,0305	0.0350	0,0415	0.0540	0.0655	010 40410		0,0055	0,0082	0,00895	9,000.0	0.0108	0.0150	0.020	0,021	0.027	0.030	0.037	0.040	0.0515						
۲	CURVE 69 (cont.	0.428	0.472	0.500	0.515		CURV	ć	0.21	0,23:	25.25	0.27	0.275	0.308	0.325	0.350	0.00	0, 425	0,450	0.410		0,515	2417		0.262	0.30	0.31	0.32	0 . %	0.37	 	0.415	0.45	0.46	0.48	0. 50	0.51						
×	(cont.)	0,0250	0,0290	0.0297	0,0315	0.0320	, and a	00 1	9000	0.0203	0.0240	0,025	0.026	0.0294	0.035	0.032	£ 67		0.00105	0.0012	0.00125	0.0017	0.0020	0.0025	0,00305	0,00506	0.00875	0.0188		S)	0.596		E 69	}	0.0049	0.0071	0,0092	0.0109	0.0128	0.0148	0.0149	0.0168	01.00
۲	CURVE 65 (cont.)	0.58	0,60	19.0	0,623	0.64	*33 3/10110		0	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	0.590	0.610	0.620	0,625	0.665	0.705	3/10/1/	100	0.327	0.342	0.368	0, 422	0.431	0.479	0.530	0.554	0.595	0.799		CURVE 68	7 386 7		CURVE 69		0.201	0.235	0.254	•	0.285	0.293	0.315	0.354	082.0
×	CURVE 63 (cont.)	0.110	0,160	0.210	0.300	0,360	0.395	2 6	0.030	98	0, 830	0.980	1, 410	1.55	2.45	4 . €	77.	5	0.00245	0.00235	0.00330	0,00395	0.00410	0.00000	0.0113	0.0170	0.0215	0.0025	0.0680	0, 125	0.205	0,265	0.530	0.800	1,350	!	VE 65	•	0.0148	0.0149	0.0208	0.0215	2660 0
٢	CURVE	0.680	0, 755	0, 770	0.805	0.840	0.860	38.	080.0	0.920	0.980	1.05	1, 10	1. 12	1.25	1.40	CITETA	200				0, 170	0. 183	0.260	0,330	0, 395	0.419	0.450	0.515	0.575	0.910	0, 665	0,730	0.300	0.920		CURVE	!	0.47	0.48	0,545	0.555	65.0
אר	E 62	19.8	23.5	26.7	29.4		E 63	00000	0,00029	0.00034	0 00130	6,00145	0.00150	0.00200	0,00205	0.00270	0,00303	0.00320	0.00440	0.00460	0.00540		0.00730	0.0102	0,0102	0,0125	0.0155	0.0160	0.0179	0.0230	0.0245*	0.0230	0.0265*	0.0320	0.0320¢	0.0410	0.0410	0.0460	0.0520	0.0600	0.0740	0.0800	0.000
۴	CURVE	2,32	2.74	3, 12	3,65		CURVE	,	0.120	0.155	0.1.0	0.230	0.235	0.263	0.279	0.282	0.293	0,310	0.330	0.350	0.360	0.385	0.400 400 400	0.430	0.450	0.455	0.480	0.480	0.490	0.510	0.530	0.540	0.540	9.540	0,565	0.570	0,595	0.600	0.604	0.630	0.630	0.665	555

Junto na karodine i allisti sasa a

	×	CURVE 95 (cont.)	202.0%	208.0*		CURVE 96 *	0,639	0,595	5	/E 3/	# t	6 267	183.6	175,6	169.2	162.4	159, 1	153.27	147.27	141.3	131.3	129.73	125. 2	123.0	117.2	1.4.1	CURVE 98.	<u> </u>	9. 2.	76.9	76.6	75.4	74.4	72.9	71.9	7.G. U	63.5	9.99	65.9				
	F	CURVE 9	3. 60 3. 60	3, 65	1	COR	273.2	373, 2		COHAE	i	2 6	3.03	3, 16	3, 30	3, 41	3, 50	3.60	3. cx	57. % 87. %		4.02	4.07	4, 12	4.22	c 7.7.	CUR		2.76	2.35	33	3, 47	3, 61	3,68	3.81	3, 92	7.07	4, 16	4. 22				
	¥	VE 93	39.0	31.0	34.0	37.0	2.4	47.0	50.0	53. U	3. G	0.09	63, 5	68.0	6H. 2	70.0	70.53		VE 34	0.456		323.0	295.0	316,0	249.0	243.0	218,5	208.5	202.0	175.8		CURVE 95		154.0	182.0	204.5	0.112	224.0	219.0	221.04	216.0	213.0*	
	۲	CURVE	2.06	2. 12	2, 22	2.29	2. 2.	2.48	2.62	2,73	2, 20 2, 20	3.02	3, 14	3, 26	3,38	3, 55	3,68	Ē	CORVE	ž	3, 07	3, 23	3,24	3, 32	ა. გ.	3 3	3,71	3, 96	4, 14	4.29	? :	CUR		2.46	2.54	2.73		. c.	3, 25	3,34	3, 47	3	
	*	CURVE 91	1.00 1.50	2.00	4. 90.	5 6 6	21.0	39.0	98,0	0.00	80°.08	116.0	124.0	136.0	143.0	155.0	146.0	154,0	162.0	155.0	147.0	155.0	154.0	157.0°	00.72	CURVE 92	77.7	76.0	79.8	٠ ا ا	. S	75.3	76.8*	75.0	73.27	74.8	0 0	70.7	65.7	58,3			
(continued)	Ļ	CUR	0.62	0,74	Z	0.98	1.27	1,46	1, 86	1.92	2.00	2.24	2.41	2.59	2.64	2.89	2.92	e: 6	3.14	3.24	 	3,59	3.68	3.69		5	2.29	2.47	2.87	3.04		3,43	3.61	3,69	ب ع	3.85	96.0	. 10 . 10	4.42	4.72			
19	ᅶ	8(cont.)	160.4	157.0	142.5	132. 1	25.5 2.5 2.5	119.7	10 8, 3	:	2 2	8.4	0.0	96.0	99.2	113, 5	123.0	139,0	159.0	155.0	149.2	150, 0	150.0	142.0	149.0	ρ. Ος		247.6	211.1	20.41.2	208.3	167. 1	171.9	166.2	154.0	141.1	130.	130.0	122.8	118.5	116.3		
DATA TABLE NO.	T	CURVE 88 (cont.)	3,69	3.80	3, 92	4.07	25	4.37	4, 59		CURVE	**************************************	1.97	2.06	2.18	2.38	2.60	2.83	3.06	2.20	7.5	3,46	3, 56	3,60	3.71	CURVE 30		7.60	2.83	3.11	3.27	3,46	3,61	3,69	3, 85	3,95	4.02	4.06	4.26	4.35	4.42		
DAT/	×	83 (cont.)	0, 365 0, 366	0.371		VE &	619	0,615	0,611	0, 577	0.586	0.586	0.590	0,582	0,577	0, 552	9.318	0.318	0.276	0,289	201	CURVE 85		0.640	0.632	0.603		CURVE 86		0.668	CHRVE 87		0,669		CURVE 88	0	2.613	2.14.0	199, 4	183.2	168.9	177.2	·
	۲	CURVE	788.2 806.2	83.2		CURVE	337. 2	370.0	374.5	3.46. 3.4. c	401.9	C (-)	6.027	476,2	487.6	49.1, 7	514.9	5,55	926.9	7 S		CUR		306.4	330.5	377.7	:	CUR		238.0	CITR		295.2		CUR							3.58	
	æ	KZ (cont.)	0,000900	0.00050	0.00750	0, 0130	0.030	0,230	0.950	0£. 6	12.03	23.00	35.06	44.00	45.00	45, 70	20.06		VE &	300	. 255.0	0,337	0,335	0.321	0.337	0.323	9396	0,351°	0,332	0.343	0.55.0	0,345	0,346	0.335°	0,349*	0.357	0,546	0.348	0.351*	0,356	0.358*	0.349°	
	٠	CURVE	0, 190	0.300	0.390	0, 465	0, 600	0.850	1, 05	1. 70	26 S	, c	? ; c	; r;	3.50	3, 75	4.00		CURVE	0 020	1 S	615.2		632.2	641.2	5.88.2	658.2	663.2	671.2	687.2	695.7	703.2	707.2	713.2	718.2	722.7	75.5	739.2	7.44.7	757.2	766.2	771.2	
	¥	CURVE 79 (cont.)	0,0122	0, 0212	0.0:128	0,0505	0.0827		VE 80		0,000428	0.000000	6 00.10	0.00243	0,0278	0, 0320		CURVE 81	:	0.00134	8 60 0	0,00156	0,00184	0.00210	0.00285	0.00363	0.00610	0,00870	0.0120	0.0150	0.0130	0,0355	0.0490	0.0780		0, 172	90 564	VE 92	0.000330	0,000350	0,000550	0, 000720	
	۲	CURVI	0.42	0.472	0.518	0.552	0.37	,	CURVE		0.176	0.210	0.230	0.470	9,650	0.670		SUR		0.230	0.320	0.370	0.385	0.410	0.470	0.470	0.510	0.550	0.570	0,50	0.330	0.670	0.730	0.790	9,840	0. 900	(CORVE	0, 130	0, 133	0.155	0. 170	1,

	×	112	6.91	7. 29 2. 29	Ĩ	9. 12	9, 77	10.68	5. 2. ?	11.07	12, 08	12, 24	12, 59	12, 95	13, 30	14, 39	14,65	15, 08	15, 17	15.42	15, 36°	15, 35	15, 66	113		4.67	5, 52	6, 17	, t.	7.85	8, 24	10. 23	10, 19	10.60	11.46	13, 3h	711		0.945	x x x	1.050	1, 178	1, 189	1, 261
	T	CURVE 112	1, 583	1.654	2, 055	2, 138	2, 315	2. SHG	2,635	2, 6,46 2,746	2, 953	3, 053	3, 132	3, 250	3, 420	3, 821	3, 872	4, 208	4, 252	4, 301		4.468	4.512	CURVE 113		2, 167	2, 295	2. 3H2	2. 558 2. 633	2,665	2. 728	3, 010	3, 059	3, 101	3, 187	3, 572	PIL TABLE		1.606		1,59	1.993	2, 088	2, 126
	¥	CURVE 109 (cont.)	0.3140	0, 3223	E 110	,	15.3	15.8	16. 1	n	20.3	21. 1	23.0	24. 6	25. U	4.75	28.4	128, 5	28. 7	30.3		31.4 11.4		31.5 ₂ -	31. 2	30, 5		CURVE III	0	1 0	ා ් ශ්	6. 1	10. 1	10. 7	2 2	16.3	2 · · ·		25.5	1 2 2	25.0	12 to 1	27.1	28.4
	۲	CURVE	722. 2	7 773, 2	CURVE 110		1, 570	1, 615	1,649	201.1	2, 057	2, 161	2.476	000 i	N. 63.9	2, 24.5	3, 102	3, 197	3,415	3, 863	χ. : 	4, 255	957	4.463	4. 453	4, 511		CURV	100	1.635	1, 687	1 50 T	2, 0:10	.5. UKO	2. 190	×6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +	5, 565 5, 565 5, 565	5,000	2.963	900 i	900 C	3, 203	3, 414	3, 572
	.	£ 106	2.85		3.10	3, 20	4,30	5, 20	5, 00 5, 00	5, 40	8, 00 8, 00		E 107		0.00 0.00 0.00 0.00	0, 295	0, 297	0, 297	0,299	0,300	0.301	00	CHOVE 104:		0,552	0,542	0, 293	0.293 293	# F	0.295	0, 295	0, 296	0, 296	0.297	0.297	7	100	0 0	0000		2 E E	0, 3140	0,3056	
(continued)	Ļ	CURVE 106	0, 425	0.46	0,585	0.620	0.080	0.770	97.0	2 g	1, 40		CURVE 107	į	0.00	920	1000	1050	1100	1150	1200	12:30	CHEVI		465	505	505	200	99		0001	1100	1200	1:300	1365		CCRVE 103		0 6 7 7 T	1 : 5	100.2	2.55	615.2	! :
LE NO. 61	×	E 104	2,20	2.60 2.80	3, 20	3, 20	3, 60	3, 10	5, 10	0 (5 6 (8 6 (8	7,50	8, 30	10,00	. 00° .01	1.5, (1)	E 105	.	0, 60051	0,00055	0. 00060	0, 60063	0.00008	0.000.3	0.0010	0,00105	0,00135	0.00125	0.00165	0.0022	0.0034	0,0052	0, 00KS	0.0160	0.0260	0.0420	0.0725	0.136	70,00	0.420	1 (c)	5 c c c	 	2, 90	9
DATA TABLE NO.	۲	CURVE 101	0.43	0.465	9. e	0.65	0.68	٠, ١٠	0.88 0.88	0.92	1, 23	1, 40	1.60	1, 79	2.00	CURVE 105		98'0	0.37	0.38	50°0	÷ ÷	0.415	0,440	0, 455	0,48	0,49	() () ()	0,02 0,03 0,040	0.56	0,09	6.63	0.67	0,71	0.76	O. F2	ကြူ ဗေါင်	6 6 6 -	: : : : : : :		5 o	× +	1,65	1.30
	×	CURVE 102 (cont.)	6, 50	7, 00	7.10	8, 50	ъ. 00	8,75	8. 6 0	9,25	00.01 10.02	10, 15	10, 20	10, 30	9 : 2 :	10, 4.5	CURVE 103		0.00103	0,0011	0, 0013	0.0015	0.0016	0.0018	0,00225	0.00245	6, 0031	0, 0034	0,0046	0.00613	210.0	0, 6225	0, 025	0,035	0.054	0, 0625	0, 100	0, 120	0,210	0.0	Ç:			
	T	CURVE	0,635	0.65	0 0	0,72	0,745	0.78	0.78	Z !	2 6	1, 00	1,03	1.08	1. 15 51 .	1, 2::	CURV		0.385	e. 39	0.41	0, 425	÷ • •	0.0	0, 495	00.500	0.52	0,535	0,565	0.00	200	0, 69	0.71	0,72	0.76	0, 50	및 () ()	2 .	3 -		· ·			
	¥	CURVE 100 (cont.)	0.400	0,500	0.000	1,01	1, 10	1,60	2, 90	5, x0	00 11	26.0	;	E 101		55	1 F.	1 07	-	38	7	4	97 ;	နှင့်	57	90	62, 5	7.0	13 :	≅	501 3		4, 40	4, 50	5, 10	9,00	5. 10	 	- - - - - - - -	9 5	9 8 ທ່າ	ဥ ဟု ကို မ) (S	ž.
	۲	CURVE	0.6%	0.690	- (- - (-	0,76	0,77	0,81	0.89	0.99	1, 175	1,325	•	CURVE 101		9.4	0.430	0000	0,545	0.55	6, 595	0.625	0.640	0.680	0.0	08.0	0.5	1, 0:	9 1.	66. -	CITRATE 109		0, 45	0.46	9, 465	0,43	0, 495	605.0	0.010	6 . 6 .	: : :	. / 		· .
	×	66.3	19, 1	6.61	- 0.00 - 0.00 - 0.00	21.4	22. 4	22.6	22.7	22.7	6- 3 6- 3 6- 3		23.0	23,0	24. 1	24.3	23.1	22.1		100	1	0, 9057	0, 0063	0,0070	0.0038	0, 909:1	0, 0130	0.0170	0,0196	0.0200	0.020	0, 034	0, 035	0.046	0, 055	0,065	0, 080	0.033	0, 100	<u></u>	0, 160	0,200	0.5.0	0, 349
	H	CURVE	2. î.1	2 2	9 9 5 7	62.5	3,61	12.	3,75	:: 1s	당 () =: : :	6 6	26.5	86 °E	₹0. ∓	4.07	: :- :-	. . .	<u>.</u>	CURVE 100		0.34	0.35	9 E	× × × ×	0.395	0.430	0,455	0,455	0.465 615	9.4.0	0.500	0,505	0.515	0.525	0, 535	0, 55	0.56	0,565	2000	0.600	0. 620	0.0	0.650

DATA TABLE NO. 51 (continued)

×	126	0.80	0.85	 	1 E	55.	1.61		. X.	1.97	3, 25	%	₩ ₩	3, 95	4. 0:5	€ 8	4,66	4.63	4.72	5.05	5. 10	5.01	4. 95	5.45	5,63	5.79	6. 19	5, 93	6, 38	64		:2:	1	2, 08	 - 4.	2.14	2. 42	25.5	2, 76	3	3. 32	2.97	2. 33	3.91	3, 89	4. 93	4. 16	4. 21
Ŀ	CURVE 126	1, 584	1, 634	1, 706 1, 206	1 404	1.974	2.023	2, 00::	2 140	2, 240	2,413	2.47	2, 595	2, 725	2, 435	3. 650	3, 201	3, 321	3, 306	3.53	7.5.	3, 7.86	3, 755	3, 957	4, 159	4.159	4.307	4.4.4	4, 675	. A. Y.15		CURVE 12		1, 534	1. 76.5	1.597	I. 655	1.717	. 948	1, 992	2. 021	2. 060	2, 139	2, 35%	2, 465	5.53	2.644	2.771
*	124	1, 17	9. ; 1	4. % 4. %	2. 43	() ()	2, 9.	3, 25	3.	4.00	4,33	4, 35	5 02	5. 16	5, 65	5. AG	6. 53		7. O.T	11-11-11	5.95	¥, 4,5	62 63	5, 26	11, 54	12, 29	12, 30		125	1	3, 51	3, 46	3, 46	: C	4.5.	क्र चं		4, 60	rī.	(0)	5.46	90	Ę	<u>*</u> 당	6, 02	6.73 1.73	7.35	11.47
۲	CURVE 124	1,640	97.1 T	20 X	27 5	2, 220	2. ::21	2, 1109	2,588	2.670	2.742	91.5	2 531	2.586	0.40	3, 112	3, 220	3.33	3. 370	3, 349	3,652	3, 419	3, 927	3, 9965	4, 305,	4:54	4.627		CURVE 125		1, 568	1.600	1, 636	1, 666	2,082	2, 130	2. 187	2, 269	2. 333	2 633	2. 716	2. (43	2, 832	3, 058	3, 101	3, 200	3.315	4, 207
æ	(cont.)	, KO . F	जूर जूर	7 .	122	1	<u>;</u> ;	\ <u>\</u>	968 :	6.425	4,4500	47.4	0, 528	0, 561	0, 607	980	0,663	0, 706	6, 712	0, 744 0	0, 773	10, <01	CER O	0.835	0, 901	0, 521	6, 957		123	<u> </u>	90: 106	0, 124	0. 151	0, 243	0, 250	0, 325	5 to 10	0.420	0. 515	9.53	0.630	. D. Y. C.	0. ?30 0	0, 791	0. 79k	0, A62°		
۴	CURVE 121 (cont.	35, 1274	7. 100	5, 50.5	CURVE 122		1, 355	53.3	1, 66%	: - 7	7.36.7	1: 5534	<u> </u>	ii. H	ii N	12 24 24	0.75	7 44 H	1. 020	3, 160	. 4 SE E	3, 301	3, 699	3, 730	3, 789	2, 580	4. 003		CURVE 123	} }	1, 399	1, 566	1. 530	2. E4 1	2, 168	S : 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2	200 S	2.5	2, 749	2, 885	T. 7.	. 13x	3, 303	3, 444	3, 450	3.648		
אב	130,	2, 17	Si s	2 2	36.51	3, 2%	3, 55	3, 63	3, <u>4</u>	3.97	4. 16	÷. 2×	4. 2x	7. T	4, 79	T.	4.91	5 Y	£. 11	5. 10	5, 32	4.	j. +(0.43		130	ن. دن .ن	5, 66	ig G	D. XC	5, 85		131		0.45	60	. c.	, ; , ;		. ÷) - -	7.7.	2.5	2. 71	# # #	: : : : :	95.50 55.50 56.50	# **
F•	CHRVE 120	1,617	1,626	5 065 965	- 9. - 9.	2, 336	2, 593	2, 606	2,802	3 6	3, 077	3, 140	3, 215	3, 3,85		2, 646	3, 715	3, 736	51 X 25	3, 910	4, 127	4, 127	4, 205	4, 227	4.274	4, 335	4, 375	4, 469	4, 631	4,641	4, 674		CURVE 121		1, 658	1, 124	7. Text	1. 502	2. 13.	2, 207	Z. 343	2, 650	2, 685	2, 765	3, 003	3, 035	3, 105	3, 201
. x	113	0, 515	800 600 600 600 600 600 600 600 600 600	6 6 6 6 6 6 6 6 6	0, 674	0, 726	0, 855	0, 865	0, 526	1, 023	1. 106	1, 183	1, 216	1, 243*	1, 265	1.365	7.357	1, 417	1, 438	1, 454	1, 513	1, 551	1, 625	1, 637	1, 644	1,666	1,690		115	}	0, 426	0, 523	0, 576	o. 63 J	0. ×02	0.350	0.500	1.00.1	ŝ	1.0%	1, 150	202.1	1.296	1.366				
←	CURVE 118	1, 393	3.46.8 1.46.8	1,663	1, 766	1.914	2, 258	23.284	2, 465	2,685	2, 936	:: ::	0.730	3, 279	ત્ર જ સં	3.620	3,687	3. 335	F. 81x	3, 924	3, 991	4, 056	4, 255	4,330	4,359	4.400	4, 435		CURVE 119		3	2, 343	×17.7	2, 504	2, 779	Z. 320	2. 530	D : 0 : 1	2 T-2	2 :	277	000	1.491	3, 657				
ı.	5 (cont.)	2,07h	2, 092	116	1	3, 39	3, 80	4, 11	4, 25	98.7	, 0¥	5. 24	5, 5,	6, 40	6, 73	7, 39	ج د د	7, 95	8.21	8.31	5,61	(- x . x)	9, 16	9.33	9, 42	9.45	£0.5	5, 67		117	}	02	1 36 '0	1. 13	1. 45	3.5	, n.	, i	0 2 3	2. 5.	4.	4. 2n	4.40	4.76	6. U.	e. 78	5 0.5	r.
۰	CURVE 115 (cont.)	3, 632	3, 684	CHRVE 116		1.311	1.462	1.611	1,683	1.899	2, 936	2. 073	2, 267	2.627	2, 776	3, 095	3, 236	3, 429	3, 574	3,640	3, 885	4.018	4. 080	4, 235	4, 255	4.302	4, 376	4, 503		CURVE 117		1,421	1, 537	ار ور الرائح	7.4.		3 -	2. 0.12	2, 092	2, 217	50 Si	2, 572	2,616	2, 690	1. 077	7.	500 H	k r =
×	4 (cont.)	1, 309	2.4.5	2963 1. 563	1.620	1.641	1, 695	1, 750	1. 790	1.842	F. 857	1. 900	2. 140	2, 149	2, 207	. 25 1	2, 351	2.467	2, 422	2. 44:16	2, 503	2. 524°	2, 551	2.651		115		0. 16.0	0, 246	0.244	0.369	0.45%	0. 575	0.643	0 . 705	U. 36.5	0. 325	1. U.yb	0°0 .		1, 213	1. 1 03	#25 T	· ·		27.1	1. 110	
7	CURVE 114 (cont.	2, 223	2.385	2,675	2, 773	2.810	2. 922	3, 050	3, 107	3, 172	3, 222	3, 274	3, 676	3, 762	3. 500	3, 396	4, 073	4. 211	4, 238	4, 283	4, 329	4, 372	4, 456	4, 623		CURVE 115		1.365	1, 579	1.614	1. 1.	1. 502	2, 0:34	2. 144	2. 21x	22.	25.5	20.52	2, 1, 12	÷ ;	· · · · · · · · · · · · · · · · · · ·	7. 9.72	1.7	216	T-0:		.p	

Note: bown on plot

DATA TABLE NO. 61 (continued)

אר	CURVE 133 (cont.)*	15.9	17.0	19.0	21.8	28.5	φ. 35.	26.2	56. 2																																						
H (gause)	CURVE	159	150	621	1:30	121	111	103	æ																																						
*	CURVE 132 (cont.)	35.0	35. 25	22. 22.	9 %	x :	1.9	15. H	15. 9.	16. 4°	18.2	19.9	22. 6	27, 4	42.6	52. 9	. T.		CURVE 133	30 K		33, 0	25, 9	21. 9	19. 1	17. 2	15, 6	14. 5	13, 7	13.1	1: 1:	12. 8	14.5	27. 9	33, 7	33, 2	32, 1	33, 2	33, 9	32. 5	2:3. 4	r 6	17.5	16, 1	15. 2	15.0	15.4
H (games)	CURVE 1	210	207	204	26T	261	136	177	168	154	149	140	130	121	111	104	96		CURVI	1. 1.		119	126	1:34	141	143	159	167	177	185	195	201	205	211	215	221	225	219	21:3	310	205	201	198	193	186	177	191
ᅶ	31 (cont.)	9, 99	10. 1	10. 5	10.7	11.7	13, 6	27. 5	30.9	31. 5	31. 2	28. î	18, 6	14.6	11.0	10.4	10. 3	10.0	10. 1	10.7	10.8	10. 8		132	는 자		55. 9	56. 2	56, 2,	56, 2	36. 1	24. 8*	21.8	19.6	18.0	16.6	15, 5	14.7	14.3	14, 2*	14.7	19, 1	29. 9	34.1	31.9	33. 2	34.6
H (gauss)	CURVE 131 (cont.)	156	169	177	185	¥.	204	264	231	267	240	22:3	214	506	186	176	171	159	146	120	6	73		CURVE	T - 1.50 K		16	95	111	116	119	126	134	142	149	158	167	176	146	195	202	210	213	217	227	222	213
*	9 (cont.)*	7.41	7. 11	-	¥		130	5 K		10.6	10.6	10.5	10.4	10. 2	10.1	10.1	10.3	10.7	11.2	12.3	13.5	16, 3	29, 4	27, 9	28. 4	29. 2	29.6	24. 2	18.9	16, 2	14. 2	12. 9	12.0	11.3	10. 3	10.5	10.2	10.2	10.3	10.3		131,	55 K		10. 8	10. 7	10.3
Ļ	CURVE 129 (cont.)*	2, 7.33	2, 528	. :	H (gauss)		CURVE 130	T = 1.6		72	06	ī 1	119	128	139	147	159	175	3	195	204	213	225	244	277	261	231	222	212	507	194	185	175	991	157	148	137	126	102	Ī		CURVE 131*	T = 1.6		85	110	132
¥	CURVE 128*	1. 59	1.38	3 : -1 :				:: :::		3	<u>₹</u>	5, 55	6.31	સ .ં	6.00	7.05	6.91	8.38	3.00	8, 71	9, 03	50.6	9.6	10, 60	10.93	11.09	9.42	9.46	11.92	11, 78	12 01		CUR VE 129*		4.86	4.51	4. 63	4 44	4, 53	4. 92	5, 35	5, 75	5, 35	5.63	7.64	7, 02	<u>;</u>
L	CURV	1,616	1.675	1, 733	1.810		2 0H6	2, 115		2, 220	300 i		2, 605	2, 687	2, 769	2. 864	3, 059	3, 145	3, 265	3, 353	5, 499	3, 365	3, 690	3, 823	3, 915	4.084		4, 470	4, 589		4.855		CURV		1, 592	1.615	1.643	1,685	1.720	2, 019	2.061	2.080	2, 142	2, 212	2. 534	2.656))

The recommended values are for well-annealed 99, 999.78 pure white tin with residual electrical values that are supported by experimental thermal conductivity data are bought to be accurate to within 3% of the true values near room temperature and 3 to 15% at other temperatures. along directions perpendicular and parallel to the c-axis and for polycrystalline tin (characterization by ρ_0 becomes important at temperatures below about 150 K). The recommended resistivity $ho_0\approx 0.000120$, 0.000172, and 0.000133 $\mu\Omega$ cm, respectively, for single crystal

40.0

693

500 505. **06**

 † Values in parentheses are extrapolated, interpolated, or estimated

T, in K, k₁ in Watt cm⁻¹ K⁻¹, T₂ in F, and k₂ in 8th hr -1 ft -1 F-1

 T_1 in K, k_1 in Watt cm $^{-1}$ K $^{-1}$, T_2 in F, and k_2 in Btu hr $^{-1}$ ft $^{-1}$ F $^{-1}$. † Values in parentheses are extrapolated.

فاستأط بالرائح واستميح بمراجاتها الالقاط شياحه ويستميها أساساسة أماساها وستمط أطراف وستمط أطراف وستماعا بمساعا بمساعاتها فعم

SPECIFICATION TABLE NO. 62 THERMAL CONDUCTIVITY OF THANKIN

語。 正明 田間 田 1 5 5 元

(Impurity 0.20% each; total impurities 0.50%)

For Data Reported in Figure and Table No. 62

- 1 3 + L2	1112						
	ب ا		3861	2,6-99	S-10	T1 3	99.99 pure: single crystal.
		_	1952	2 2	7	1 1 1	Laboratories,
	i,	ند	1952	2.3-3.4	75	Ę	99.39 pure; polycer stalling; same supplier as above; annealed.
	=		1001	312-799	m	Iodide Titanıum	99.9 pare; unnealed in vacuum at 700 C for 5 hrs; electrical resistivity reported as 53.8, 50.3, 67.2, 79.0, 90.0, 100.2, and 115.0 uohm cm at 38.9, 116.0, 196.0, 196.0, 269.3, 445.7, and 526.0 C, respectively.
	4 4 1		1957	315-732			Forged titunium specimen 99.6 pure; annealed in vacuum at 700 C for 5 hrs; electrical resistivity reported as 65, 8, 58, 8, 73, 5, 84, 0, 98, 2, and 107, 5 gohn cm at 41, 5, 116, 6, 201, 6, 278, 3, 376, 6, and 459, 0 C, respectively.
6 1	131	U	1.953	323-973	01		0.1 Mn. 0.04 Fc. 0.035 C. and 0.01 Mg; annealed at 700 C; Advance (55 Cu-45 NJ) used as comparative material.
(-	231.	Ü	1958	311-811	40 7	A-55 (RC-55)	Commercially pure; in a mill-annealed condition; electrical resistivity reported as 52, 63, 72, 83, 92, 161, 110, 118, 125, and 132 pohm cm at 311, 366, 422, 477, 533, 589, 644, 700, 755, and 811 K, respectively; measured in a vacuum of 5 x 10 ⁻⁵ mm Hg.
τ- -	€4 च १-	ш	1964	388-923			99.6 pure (Russian commercial titanium); obtained from the Central Boiler and Turbine Institute; specimen 5 mm in dia and 100 mm long; experiment carried out in vacuum (10.4 - 10.5 mm Hg); electrical resistivity reported as 47, 64, 82, 99, 117, 133, 143 and 145 gohm cm at 0, 100, 200, 300, 400, 500, 600 and 650 C, respectively.
6	340	ų	1956	332-915	10	T1 75 A(1)	Commercially pure; 0,75 in. dia rod.
	340	J	1956	383-858	10	T; 75 A(2)	99,75 Ti, 0.131 C, 0.07 Fe, 0.06 C, 0.048 N, and 0.0068 H; 0.75 in. dia rod.
	340	ы	1956	375-838	0.1	PC-55	99.64 Ti, 0.123 O, and 0.12 Fe, 0.0073 H, 0.08 C, and 0.028 N; 0.75 in. dia rod.
	401	ن	1959	7.3-150		T. 3	99. 99 pure; specimen cross section 3.1 x 1.6 mm; supplied by Winckard; annealed in vacuum for 60 hrs at 800 C; ideal electrical refistivity reported as 0.002, 0.075, 0.20, 0.65, 1.4, 2.5, 3.5, 4.85, 6.35, 7, 9.11.2, 14.8, 18.5, 22.1, 25.7, 29.3, 34.8, 39.0, and 43.1 µohn cm at 20, 25.30, 40.50, 60.70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 259, and 295 K, respectively; electrical resistivity ratio Physik/On - 21.9; Lower faction 2.74 × 105 VK ² Act O K.
13	401	'n	1959	11-78		Ti 4	99.99 pure; as rolled; electrical resistivity ratio ρ ₂₉₅ Κ/ρ ₀ · 16.4; ideal electrical resistivity 43.8 μοhm cm at 295 K; Loranz function 2.81 κ 10 8 V ² Κ ² Λεαν Ο Κ.
14	401	1	1 959	7.0-147		Tis	99.99 pare; annealed in vacuum for 60 hrs at 800 C; electrical resistivity ratio P _{33K} /Ω ₀ · 18.3; ideal electrical resistivity 43.2 μολm cm at 295 K; Lorentz function 3.14 κ ω ⁴ P _{33K} /Ω ₀ · 18.3; ideal electrical resistivity 43.2 μολm cm at 295 K; Lorentz machine 3.4 κ ω ⁴
15	672	<u>م</u> 4	1964	9-70			99. 9 pure; data taken from smoothed curve.

SPECIFICATION TABLE NO. 62 (continued)

Composition (weight percent). Specifications and Remarks	Single crystal.	Normal commercial grade; electrical resistivity reported as 56.0, 65.0, 73.5, 82.5, 90.5 and 98.5 µohm cm at 50, 100, 150, 200, 250, and 300 C, respectively; energy flow measured both calorimetrically and by using Armoo iron as a comparative material.	High purity grade; electrical resistivity reported as \$1.8, 60.8, 70.0, 79.2, 88.4, and 97.5 uohm cm at 50, 100,150, 200, 250, and 300 C, respectively, one rgy flow measured both calorimetrically and by using Armen iron as a comparative material.	Very high purity grade; DPN (Diamond Pyramid Hardness Number) 58-62; electrical resistivity 42.7 µhm cm at 20 C; energy flow measured both calorimetrically and by using Armco Iron as a comparative material.
eported Name and rror, % Specimen Designation		Sample A	Sample B	Sample C
Reported Error, %				
Temp. Range, K	0.3-0.9	323-573	323-573	293.2
Year	1963	1961	1961	1961
Surve Ref. Method	ı	L,C	L,C	L,C
Ref.	83	869	698	869
Curve] 9[11	60 #4	19

A STATE OF THE PROPERTY OF THE

DATA TABLE NO. 62 THERMAL CONDUCTIVITY OF TITAMUM

(Impurity <0, 20% each; total impurities <0, 50%)

[Temperature, T. K. Thermal Conductivity, k., Watt. cm-1K-1]

				,	er ein peranai e.	<u>.</u>				•			
۲	×	۲	ж.	۴	*	۲	. 2 2	(-	×	۲	: 4	۲	×
CURVE	VE 1	CURVE 3	(conf.)	CURVE 7 (cont.)	(cont.)	CURVE	CURVE 9 (cont.)	CURVE 11 (cont.	11 (cont.)	CCR	CURYE 14	CURVE	CURVE 17 (cont.)
2	0.0293	20.90	0, 124	. :	0.180	596. 2	0.225	504, 6	0, 173	7.0	0, 085	423.2	0, 1865
	0.036	26.60	0, 130	2 58 2 58 2 58	0.178	9,59	0.219	4 6 6 7 8 8 8 8	9 5	e, ⊒ ພ ພ	0, 120	473.2	0. 186 0. 185
7.01	0.680	29, 12		#	0,178	715.4	0,222	540, 7	0, 195	20.0	0, 257	573.2	0.184
11, 17	0. 125	31, 60		100	0.178	826. 2	0,225	546,2	0, 187	26.0	0,308		· ·
æ :	0. 167	34, 40	0. 201	33.	0.182	915.1	0.221	555, 6	0, 166	33.0	0.347	CUR	CURVE 18
15, 20	0.205	37, 70	0.225	811	o. 183		;	559, 6	0. 185	38.0	0, 351		
21.56	0.245					SON	CURVE 10	609, 6	0, 177	26. 0	0, 333	323.2	0, 205
79. 65	0.266	CURVE	VE 4	CURVE 8	VE &			616.5	o. 177	65.0	0.320	373.2	0. 201
26.75	0.293			;		383, 13	0,213	69°, 2	0.166	78.5	0.310	423.2	0, 197
30. 10	0.317	312.1		388. 2	0.178	385. 5.40.	761 °0	2.07	0, 170	91.0	0, 299	473.2	0, 1925
32.20	0.333	389, 2	0.247	108.2	0. 177	420.7	0.200	712.3	0, 168	117.0	0.300	523.2	0, 189
35, 70	0.345	469. 2		456.2	0, 183	120.7	0, 191	710.7	0, 161	147.0	0. 2HI	573.2	0, 1855
39.50	0.356	537. 2		558.2	0.178	440.1	c. 190	724.0	0. 170				
57, 70	0.361	632.5	0.217	693. 2	C. 178	442.9	0.206	521.2	0, 176	CCR	CURVE 15	CUR	CURVE 19
3 2 '56 '	100	5 × 1 ×		138.2	2	4.0.	0.202	7.07	871.0				
98.70	J. 358	799, 2		868.2	0, 193	475.7	0, 193	8.77.8	0, 164	6	0, 035	293.2	0, 220
				870.2	0.188	540, 1	0.200			90	0, 04		
CURVE	VE 2	CURVE	VES	923.2	0, 202	547, 1	0, 196	CUR	CURVE 12	20	O, 0HS		
						547. 1	o. 200			25	0, 123		
2.30	ი. 0083	314.7				547. 1	0.204	ກ.່.	0, 105	유	0, 153		
3.41	0.0109	389.8	0.227			579.0	0,204	11, 5	0, 163	S	0. 17		
4.51	0.0150	474.8		CURVE 9	/E 9	581.2	0.200	15, 3	0, 225	09	9, 175		
5.61	0.0188	551.5	0. 229		١.	648.4	0.188	20.0	0.277	70	»1.		
7, 03	0.0250	649. 8		332, 3	0.240	653, 4	0, 192	24.5	0,310				
9 10	0.0326	732.2		356.2	0, 231	655, 4	0, 183	25.0	0,315	CURVI	، ا		
11.85	0.0386			369, 3	6, 217	709, 0	9, 193	31,0	0,378		į		
14. 40	0.0475	CURVE	VE 6	370.7	0.236	717,3	0, 193	39,0	0,390	0.378	0.000970		
	0.0571	•	1	374.8	0.229	858.2	0.188	56.0	0,345	0.398	0, 00105		
21 21	0.0695	323, 2		417.3	0.228	858.2	0, 195	63,0	0,338	0.410	0.00111		
	0 0774	373,2		423.4	0.219			71.3	0, 335	0.442	0.00122		
		473.2		427.6	0.235	CUR	CURVE 11	79, 0	0.320	0.478	0.00139		
CURVE	VE 3	573.2	0, 144	431, 8	0.244			91, 7	0, 335	0.535	0.00160		
		673.2		432.3	9. 186	374.8	0.169	150,0	0.276	0.580	0.00168		
2.31	0.0136	773.2		447.1	0, 221	412.9	0, 190			0.620	0, 00173		
3, 41	0.0202	873.2	0, 133	478.4	0.240	412.9	0, 197	CUR	CURVE 13	0.680	0.00186		
4, 40	0.0259	973.2		515.1	0.225	422, 9	0.186	İ		0.730	0.00202		
6. 8	0, 0362			316,5	0, 2:14	426.2	0, 177	11.0	0, 124	0.780	0.00222		
7. 32	0.0421	CURVE	VE 7	523.4	0, 234	445.1	0.169	20.0	0,215	0.830	0.00263		
S. 58	0.0533		•	567.9	0, 215	445, 7	0, 185	25, 5	0,255				
11.32	0.0639	311		570.7	90.208	458.2	0,178	30, 7	0,280	CUR	CURVE 17		
13.9H	0.0815	366	0.185	576.2	0, 225	482.3	0, 193	38.3	0,305	İ	}		
17.27	0. 100	422	0.182	585.1	0,233	491, 5	0, 193	59,6	0, 290	323.2	0.1885		
		1						ار در در	0.2 52	373.2	0.1875		
Not St	shown on plot												

s nationalizations and some of the contraction of t

RECOMMENDED THERMAL CONDUCTIVITY OF TITANIUM FIGURE AND TABLE NO. 62R

The recommended values are for well-annealed 99.99% pure thanium with residual electrical resistivity $\rho_s = 1.70 \, \mu\Omega$ cm (characterization by ρ_s becomes important below room temperature). The values below 1.5 Tm are calculated to fit the experimental data by using n = 2.6, $\alpha' = 4.22 \times 10^{-4}$, and $\beta = 69.5$. The recommended values that are supported by experimental thermal conflucivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures.

0.219 0.210 0.204

or estimated. * Values in parentheses are extrapolated, interpolated,

Tin K, k, in Watt cm 4 K4, T2 in F, and k2 in Bu hr 1 R-1 F4.

SPECIFICATION TABLE NO. 63 THERMAL CONDUCTIVITY OF TUNGSTEN

(Impurity <0. 20% each; total impurities < 0. 50%)

[For Data Reported in Figure and Table No. 63]

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
-	150	ı	1957	1.8-119		w 1b	0.01 Mo, traces of Fe, Si and Cu; 4 mm dia rod; annealed in vacuum at 1350 C; electrical resistivity ratio $\rho(295K)/\rho_0$ = 169; residual electrical resistivity 0.0315 μ ohm cm.
81	51	7	1927	21, 83		W 1	High purity; single crystal; electrical resistivity reported as 0.00589 and 0.681 pohm cm at -252 and -190 C, respectively.
က	57	1	1927	21,83		W 2	Less pure than the above specimen; single crystal; electrical resistivity reported as 0,266, 1,024, and 5,29 pohm cm at -252, -190, and 0 C, respectively.
4	18	ı	1936	16-22			Very pure; electrical resistivity ratio $\rho(273K)/\rho_0 = 2.18 \times 10^3$.
S	∞	ĹΨ	1914	290, 373		Pladuram	Pure; 0.0600 cm dia x 28.5 cm long; electrical resistivity reported as 5,206 and 7,562 polymer at 0 and 100 C, respectively.
9	\$	ш	1943	77-373		2	High purity; 0.0250 cm dia x 40.85 cm long; drawn; aged at 2400 and 2600 C; electrical resistivity reported as 0.6736, 0.9132, 3.18, 5.034, and 7.392 pohm cm at 77.4.90.2, 193, 273.2, and 372.8 K, respectively.
t-	2 2	ы	1943	77-373		œ	High purity; 0.0250 cm dia x 40.00 cm long; drawn; aged at 2300 C; electrical resistivity reported as 0.6135, 0.8558, 5.035, and 7.429 pohm cm at 77.36, 90.2, 273.2, and 373.1 K, respectively.
20	8	ω	1936	78-273			Commercially pure; 0, 00254 cm dia x 14.8 cm long; aged at white heat for several hrs in vacuum, etched; Lorenz function reported as 2.12, 2.68, and 3.48 V^2 K- 2 at 78, 194, and 273 K, respectively; measured in a vacuum of <10 4 mm Hg.
o	83	(a)	1936	240-600			Pure; 0, 00499 cm dia wire; annealed at 2400 K; data taken from smoothed curve.
01	38	យ	1931	276-280	N		Commercially pure; 0, 1022 cm dia x 17, 63 cm long; supplied by General Electric Co.; annealed at 220 C; electrical conductivity 16.7 x 10° ohm ⁻¹ cm ⁻¹ at 273 K; measured in a vacuum of < 10 ⁻⁴ mm Hg.
11	28	ш	1931	276-286	84		Commercially pure; 0, 1022 cm dia x 19.96 cm long; supplied by General Electric Co.; annealed at 1300 C; electrical conductivity 17.7 x 104 ohm 4 at 273 K; measured in a vacuum of <10.4 mm Hg.
12	153	u	1914	1500-2500			Pure; 0.0209 cm dia filament; data taken from smoothed curve.
E T	97	٦	1952	2.8-43	2-3	JM2260; W1	99. 99 pure; polycrystalline; annealed.
=	106	ω	1941	1100-2000			Traces of metallic impurities; aged at 2700 K for 2 hrs; electrical resistivity reported as 30.0, 35.5, 42.3, 49.4, 58.2, and 66.6 µmbm cm at 1180, 1350, 1570, 1800, 2050, and 2300 K, respectively; data taken from smoothed curve.
15	79	ы	1933	90-373			99.96*W, traces of Si, Ta and V; single crystal; 7.846 cm x 0.01053 cm ² ; electrical resistivity reported as 0.832, 3.22, 4.98, and 7.35 john cm at -183.00, -78.50, 0, and 100 C, respectively; heat flow parallel to crystal axis.

SPECIFICATION TABLE NO. 63 (continued)

Composition (weight percent), Specifications and Remarks	.v 7 940 cm x 0. 01022 cm²; electrical	99, 96* W, traces of Si. Ta and V; single crystal. 7.29 upim cm at -183,00, -78.50, resistivity reported as 0,843, 3.17, 4.94, and 7.29 upim cm at -183,00, -78.50, and 100 C, respectively; heat flow at 45 degrees to the crystal and 0, and 100 C, respectively; heat flow at 45.413 diseases.	High purity; single crystal; specimen axis in [111] uniccuts, 0.3230, 0.3475, 0.3565, reported as 0.00236, 0.00315, 0.00417, 0.00422, 0.1425, 0.3230, 0.3406, and 0.8070 0.3945, 0.4420, 0.4490, 0.5110, 0.5595, 0.6065, 0.7040, and 0.8070 0.3945, 0.4420, 0.0490, 0.5110, 0.5565, 53.50, 65.20, 65.80, 68.20, 69.80, pohm can at 14.14, 17.55, 20.36, 20.42, 50.55, 53.50, 65.20, 65.80, 68.20, 63.50, 0.74, 0.74, 0.74, 0.74, 0.70, 0.70, 0.74, 0.7	Pure; density 19, 3 g cm ⁻³ at room temp; electrical resistivity reported as 5, 64, 9, 90, 13, 54, 19, 47, 25, 70, 32, 02, 38, 52, 45, 22, 52, 68, 59, 10, 66, 25, 73, 55, 81.0, 13, 54, 19, 47, 25, 70, 32, 02, 38, 55, 52, 52, 62, 60, 600, 600, 800, 1000, 1200, 88, 5, 96, 2, 103, 8, 111.7, and 115.7 µohm cm at 300, 400, 600, 800, and 3500 K, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, and 3500 K, respectively.	Pure single crystal; specimen axis in [100] direction; electrical tension at 14, 50, as 0.0123, 0.0141, 0.2155, 0.3551, 0.4297, 0.5087, and 0.5921 hohm cm at 14, 50, as 0.0123, 0.0141, 0.2155, 0.3551, 0.4297, and 77.35 K, respectively; heat flow parallel 20, 42, 55, 35, 63, 95, 68, 51, 72, 97, and 77, 35 K, respectively; heat flow parallel to $(\pm 5^{\circ})$ the crystal axis.	0.04 Mo, 0.006 O, 0.005 Ti, u.005 Ni. 0.004 re, and considering pressing and sintering metal powder; bot-worked. pressing and sintering and sintering pressing and sintering	99.95 W. U. 44 Mg. v. cocked. metal powder; hel-worked. metal powder; electrical registivity	fligh purity; single crypt. 10, 236, and 0.187 polms cm at 14, 20, 20, 20, 231, 0, 236, and 0.187 polms cm at 14. 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	As above but measured in a field of 26, 39 kilooersteds; electrical resistivity reported. As above but measured in a field of 26, 39 kilooersteds; electrical resistivity reported 15, 96, 17, 02, 18, 06, 19, 11, and 20, 48 K, respectively.	As above but measured in a treat of 2. 317, 2. 099, 1. 882, and 1. 594 john cm at 14. 20, 13. 07, 2. 341, 08, and 20. 51 K, respectively. 15. 98, 17. 02, 18. 04, 19. 08, and 20. 51 K, respectively.	As above but measured in a field of 30. 11 moora of at 14. 21, 15. 07, 15. 99, 18. 05, as 3. 572. 3. 347, 3. 106, 2. 565, and 1. 967 pohm cm at 14. 21, 15. 07, 15. 99, 18. 05, as 3. 572. 3. 347, 3. 106, 2. 565, and 1. 967 pohm cm at 14. 21, 13. direction; measured in a mod 20. 45 K, respectively.	High purity; single cityern, or 25, 85 kilogauss perpendicular to specimental attransverse magnetic field of 21, 83 kilogauss. The above specimen measured in a transverse magnetic field of 21, 83 kilogauss.	The above specimen measured in a transverse magnetic field of 10, 30 and 10 and
Name and	Specimen Dr signation	W2			1-38	~	61						
	Keponed Error, %												
	Temp. Range, K	90-373	15-88	1500-2500	3.4-76	2400-3194	2344-3451	15-20	15-20	15-20	15-20	15-20	15-20
	Year	1933	1938	1925	1957	1960	1960	1949	12	1949	1949	1938	1938
ļ	Method	<u>я</u>	ı.	ப	נו	យ	ш	ı	'n	د	1		7 7
	Fet.	5 S	29 '	‡	272	255	255	398	398	398	398	62	62
	Curve	8 91 91	11	18	19	20	ដ	22	ន	*	82	82	28

SPECIFICATION TABLE NO. 63 (continued)

62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1939 1600-2700 448 L 1937 22-91 W1 448 L 1937 22.8 W1	Cure	No.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 62 L 1937 22-91 648 L 1937 21.8	29	62	1	1938	15-20			The above specimen measured in a transverse magnetic field of 16.69 kdlogauss.
62 L 1938 15-20 62 L 1938 15-20 62 L 1938 15-20 253 E 1959 1600-2700 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1	30	62	,,	1938	15-20			The above specimen measured in a transverse magnetic field of 13.82 kilogauss.
62 L 1938 15-20 62 L 1938 15-20 253 E 1959 1600-2700 448 L 1937 21.7 W.1 448 L 1937 21.7 W.1 448 L 1937 21.7 W.1 448 L 1937 21.7 W.1 448 L 1937 21.7 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1 448 L 1937 21.8 W.1	33	62	H	1938	15-20			The above specimen measured in a transverse magnetic field of 11. 44 kilogauss.
62 L 1938 15-20 62 L 1938 15-20 225 E 1959 1600-2700 448 L 1937 22-91 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1	35	62	_ _	1938	15-20			The above specimen measured in a transverse magnetic field of 8.18 kilogauss.
62 L 1938 15-20 255 E 1959 1600-2700 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1	33	62	卢	1938	15-20			The above specimen measured in a transverse magnetic field of 5, 22 kilogauss.
253 E 1959 1600-2700 448 L 1937 22-91 W 1 448 L 1937 21.7 W 1 448 L 1937 21.7 W 1 448 L 1937 21.7 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.6 W 1 448 L 1937 21.5 W 1 448 L 1937	34	62	-1	1938	15-20			The above specimen measured in a transverse magnetic field of 2, 61 kilogauss.
448 L 1937 22-91 W1 448 L 1937 27.8 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.6 W1 448 L 1937	38	253	ш	1959	1600-2700			Spectrographically pure; 0.010 in. dia; electrical resistivity reported as 46.4, 53.3, 63.3, 71.4, and 83.7 µohm cm at 1622, 1925, 2230, 2471, and 2965 K, respectively.
448 L 1937 21.7 W1 448 L 1937 21.8 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.5 W1 448 L 1937	36	\$	J	1937	22-91		r w	7 cm x 0.106 cm ² ; specimen axis at 8 degrees to the [110] direction; measured in a vacuum of 10 ⁻⁴ -10 ⁻⁶ mm Hg.
448 L 1937 27.8 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937	37	4	J	1937	7.12		W 1	Measured at H (the transverse magnetic field strength) = 4850 cersteds and θ (the angle between the magnetic field direction and a line perpendicular to the rod axis) = -90° at which H parallel to [111] direction.
448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937	38	#		1937	27.8		W 1	The above specimen measured at H = 6730 oersteds and θ = -90°.
448 L 1937 21.7 W1 448 L 1937 21.7 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937	39	#	u	1537	21.8		W 1	The above specimen measured at H = 6100 cersteds and θ = -90°.
448 L 1937 21.7 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.7 W I 448 L 1937 21.6 W I 448 L 1937 21.6 W I 448 L 1937 21.5 W I	\$	#	1	1937	21.7		w 1	11
448 L 1937 21.7 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.8 W I 448 L 1937 21.6 W I 448 L 1937 21.6 W I 448 L 1937 21.5 W I 448 L 1937 21.5 W I	4	‡	-1	1937	21.7		W 1	ti
448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.8 W 1 448 L 1937 21.6 W 1 448 L 1937 21.6 W 1 448 L 1937 21.6 W 1 448 L 1937 21.5 W 1	42	#	ı	1937	21.7		W 1	The above specimen measured at H = 6100 cersteds and $\theta = -40^{\circ}$.
448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.8 W1 448 L 1937 21.7 W1 448 L 1937 21.6 W1 448 L 1937 21.6 W1 448 L 1937 21.5 W1	3	448	-1	1937	8.13		W 1	The above specimen measured at H = 6100 censteds and θ = -20°.
448 L 1937 21.8 W I The above specimen measured at H = 6100 oersteds and θ and θ above specimen measured at H = 6100 oersteds and θ and θ and θ and θ and β	1	#	J	1937	21.8		w 1	The above specimen measured at H = 6100 cersteds and θ = 0° at which H perpendicular [111] direction.
448 L 1937 21.8 W I The above specimen measured at H = 6100 oersteds and θ an	5	4	-1	1937	21.8		W 1	The above specimen measured at H = 6100 ocrateds and θ = +20°.
448 L 1937 21.8 W I The above specimen measured at H = 6100 oersteds and θ 448 L 1937 21.8 W I The above specimen measured at H = 6100 oersteds and θ 448 L 1937 21.8 W I The above specimen measured at H = 6100 oersteds and θ 448 L 1937 21.7 W I The above specimen measured at H = 6100 oersteds and θ 448 L 1937 21.6 W I The above specimen measured at H = 4850 oersteds and θ 448 L 1937 21.6 W I The above specimen measured at H = 2520 oersteds and θ 448 L 1937 21.5 W I The above specimen measured at H = 2520 oersteds and θ	46	4	-1	1937	21.8		W 1	The above specimen measured at $H=6100$ oersteds and $\theta \simeq +40^\circ$.
448 L 1937 21.8 W 1 The above specimen measured at H = 6100 oersteds and θ 448 L 1937 21.8 W 1 The above specimen measured at H = 6100 oersteds and θ 448 L 1937 21.7 W 1 The above specimen measured at H = 4850 oersteds and θ 448 L 1937 21.6 W 1 The above specimen measured at H = 2520 oersteds and θ 448 L 1937 21.5 W 1 The above specimen measured at H = 2520 oersteds and θ 448 L 1937 21.5 W 1 The above specimen measured at H = 2520 oersteds and θ	4.7	844	-	1937	21.8		W 1	The above specimen measured at H = 6100 oersteds and θ = +60°.
448 I. 1937 21.8 W I The above specimen measured at H = 6100 oersteds and θ 448 I. 1937 21.7 W I The above specimen measured at H = 6100 oersteds and θ 448 I. 1937 21.7 W I The above specimen measured at H = 4850 oersteds and θ 448 I. 1937 21.6 W I The above specimen measured at H = 2520 oersteds and θ 448 I. 1937 21.5 W I The above specimen measured at H = 2520 oersteds and θ	8	4	1	1937	8.13		W 1	The above specimen measured at H = 6100 oersteds and $\theta = +70^{\circ}$.
448 L 1937 21.7 W I The above specimen measured at H = 4850 oersteds and θ 448 L 1937 21.6 W I The above specimen measured at H = 2520 oersteds and θ 448 L 1937 21.5 W I The above specimen measured at H = 2520 oersteds and θ 448 L 1937 21.5 W I The above specimen with the magnetic field removed.	64	448	ĭ	1937	21.8		W 1	The above specimen measured at H = 6100 correcteds and $\theta = +80^{\circ}$.
448 L 1937 21.7 W1 448 L 1937 21.6 W1 448 L 1937 21.5 W1	20	4	7	1937	21.8		W 1	The above specimen measured at H = 6100 cersteds and θ = +90°.
448 L 1937 21.6 W I 448 L 1937 21.5 W I	21	#	4	1937	21.7		W 1	The above specimen measured at H = 4850 versteds and $\theta = +70^{\circ}$.
448 L 1937 21.5 W 1	25	4	-1	1937	21.6		W 1	The above specimen measured at H = 2520 oersteds and θ = +70°.
	ß	1	ı	1937	21.5		W 1	The above spectmen with the magnetic field removed.

SPECIFICATION TABLE NO. 63 (continued)

SPECIFICATION TABLE NO. 63 (continued)

Composition (weight percent). Specifications and Remarks	Composition of the control of the co	0.1 mm dia; tempered for 20 m/s at 1.2. 1 C. Lorenz function 2, 88 x 10-4 V ² X ⁻² at 1 C. 1 C. Lorenz function 2, 2 mm dia wires used as the test materials; shaped and pre-	Specifically smealed in a high vacuum at 1700 C to 1 m.; John cm at 900, 1000, 1200, immarily amealed in a high vacuum. as 29, 8, 33.1, 38.4, 45.3, 52.0, 59.5, 67.3, and 76.7 jubin cm at 900 a high vacuum. 1400, 1600, 1800, 2000, and 2200 C, respectively; measured in a high vacuum.	No details reported. 0.003 Fc, 0.0026 Si, 0.0020 O, 0.0010 S, 0.0010 P and Ni, Cu, H and Ni, apocimen 0.003 Fc, 0.0026 Si, 0.025 In. 1.D., and 0.75 in. long; arccast; maximum exponure 0.75 in. O.D., 0.25 in. 1.D., and 0.75 in. long; arccast; maximum exponure camp 2255 C; density 18.87 g cm ⁻³ (98.4% of theoretical).	The above specimen; 2nd run. Similar to the above specimen. Similar to the above specimen; the specimen melted at temp beyond 2255 C (grobably Similar to the above specimen; the specimen the carbon might come from furnace vapor). because of the carbon eutecite formation, the carbon might come from furnace vapor).	Pure wire. Spectrographically standardized tungsten; JM 740 of Johnson Matiney and Co.; about Spectrographically standardized tungsten; electrical resistivity reported as 5.45, 6.1, 7.3, 4 mm in dia and 10 cm in length; electrical resistivity reported as 5.45, 6.1, 7.3, 9.8, 12.45, 15.2, 18.1, 21.4, 24.6, 27.8, 30.9, 3.4,3, 37.7, 41.4, 45.1, 49.7, and 9.8, 12.45, 15.2, 18.1, 21.0, 200, 300, 400, 500, 600, 700, 800, 800, 1000, 1100, 51.8 pohm cm at 20, 50, 100, 200, 300, 400, 500, 600, 100, 800 somperative	Single crystal. Single crystal. Single crystal. Single crystal. 99. 5 pure; impurities: Fe. Mo and traces of other elements; 1.5 mm thick disc cut from a svaged rad; from General Electric Co. Ostram Lamp Works; average grain size a svaged rod; from General Electric Co. Ostram Lamp Works; average grain size from a svaged rod; from General Electric Co. Ostram conductivity values calculated from thermal diffusivity measurements using specific heat data of Kubaschewski, O. and thermal diffusivity measurements using specific heat data of Kubaschewski, O. and thermal diffusivity measurements using specific heat data of Kubaschewski, O. and thermal diffusivity measurements using specific heat data of Kubaschewski, O. and thermal diffusivity measurements.	Short rod; electrical resistivity reported as 33.0, 36.0, 39.0, 42.0, 39.2, 20.0 d. 30	< 0.1% impurities; cylindrical specimen, meriting measured heat flow and specific radiation loss. measured heat flow and specific radiation loss. Spectrographically pure; 0.10 in. dia; electrical resistivity reported as 40.0, 50.0, Spectrographically pure; 0.10 in. dia; electrical resistivity reported as 40.0, 50.0, specific and 2618 K, respectively;	56, 66, b, and over the man Hg. measured in a vacuum of <10-6 mm Hg.
	Name and Specimen Designation			3 5-0	C-55 C-85 C-86	JM 740				
	Reported Error, %		9 >	4	4 4 4					£10
	Temp. F Range, K	214.2	1173-2473	16-22 559-860	484-1287 1555-1872 1571-2939	1800-2800 323-673	645-1660 1300-2900	1283-3223		1615-2780
	Year	1917	1961	1936 1962	1962	1961	1963	1964	1963	1962
	Method	- L	ធ	7 æ	& & 1	z m O	щс	1	1	3
	Ref.	5 6 F	602	579	603	603 651 652	8. 2 .	699	989	667
	Curve	75 TS	16	77	79	81 82 83	88 4	98	18	æ

THE PROPERTY OF

SPECIFICATION TABLE NO. 62 (continued)

Fig. 166 E 1964 1900	Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
668 E 1964 1900 668 E 1964 1900 668 L 1964 317.2 5 LASL; set No. 1. 688 L 1964 323.2 5 LASL; set No. 1. 688 L 1964 326.2 5 LASL; set No. 1. 688 L 1964 311.2 5 LASL; set No. 1. 688 L 1964 311.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 319.2 5 LASL; set No. 1. 688 L 1964 319.2 5 LASL; set No. 1. 688 L 1966 1970-2933 ~15 Sample 1 775 - 1966 1970-2933 ~15	68	899	ж	1964	1900			Foil of $60~\mu$ thick; wire rider of $0.2~\mu m$ in dia placed on that part of the foil where temp was constant; circular diaphragms used in optical pyrometer system.
668 E 1964 1900 668 I 1964 317.2 5 LASL; sct No. 1. 688 L 1964 323.2 5 LASL; set No. 1. 688 L 1964 311.2 5 LASL; set No. 1. 688 L 1964 311.2 5 LASL; set No. 1. 688 L 1964 311.2 5 LASL; set No. 1. 688 L 1964 310.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 320.2 5 LASL; set No. 1. 688 L 1964 320.2 5 S LASL; set No. 1. 688 L 1966 1930-2933 ~15 S 1 775 - 1966 2006-2987 ~15 S 3 775 - 1966 2006-2987 ~15 S 3 775 - 1966 1906-2150 ~15 S 4	9	ž	į.	1964	1900			Foil of 60 μ thick; rider dia 0.3 mm, circular diaphragms in system.
688 L 1964 317.2 5 LASL; set No. 1, sample 1 688 L 1964 323.2 5 LASL; set No. 1, sample 2 688 L 1964 326.2 5 LASL; set No. 1, sample 2 688 L 1964 311.2 5 LASL; set No. 1, sample 3 688 L 1964 312.2 5 LASL; set No. 1, sample 7 688 L 1964 320.2 5 LASL; set No. 1, sample 17 775 - 1966 1930-2933 ~15 S1 775 - 1966 2006-2987 ~15 S1 775 - 1966 2006-2987 ~15 S1 775 - 1966 2006-2978 ~15 S3 775 - 1966 1906-2150 ~15 S4 P1	8 5	8 9 9) <u>(4</u>	1964	0061			Foil of 60 μ thick; rider dia 0.2 mm, slit diaphragms in system.
688 L 1964 323.2 5 1ASL; set No. 1, sample 1 688 L 1964 326.2 5 1ASL; set No. 1, sample 2 688 L 1964 311.2 5 1ASL; set No. 1, sample 6 688 L 1964 311.2 5 1ASL; set No. 1, sample 7 688 L 1964 310.2 5 1ASL; set No. 1, sample 1 688 L 1964 320.2 5 1ASL; set No. 1, sample 12 775 - 1966 2005-2983 ~15 Sample 2 775 - 1966 2005-2983 ~15 Sample 2 775 - 1966 2005-2983 ~15 Sample 2 775 - 1966 2006-2150 ~15 S4 775 - 1966 2006-2150 ~15 S4	1 6	9 9	1 5	1964	0061			Wire of 6,2 mm in dia; rider da 0,2 mm, slit diaphragms in system.
688 L 1964 326.2 5 LASL; set No. 1, sample 2 (688 L 1964 311.2 5 LASL; set No. 1, sample 3 (688 L 1964 311.2 5 LASL; set No. 1, sample 6 (688 L 1964 310.2 5 LASL; set No. 1, sample 11 (688 L 1964 320.2 5 LASL; set No. 1, sample 11 (688 L 1964 320.2 5 LASL; set No. 1, sample 11 (775 - 1966 1930-2933 ~15 S1 775 - 1966 2005-2983 ~15 S3 775 - 1966 2006-2983 ~15 S3 775 - 1966 2006-2150 ~15 S4 775 - 1966 1506-2150 ~15 P 1	5 E	89 9	a -1	1964	317.2	ശ	LASL; set No. 1. sample 1	An oxide layer on the surface and ~ 0,0050 oxide inside the specimen; porous right cylinder prepared from tungsten powder obtained from Powder Metallurgical Group of Los Alamos Scientific Lab; material hydrostatically pressed in a plastic sack with 30,000 psi initial pressure, machined and sintered at 1500 C for 2 brs in a hydrogen reducing atm; particle size 0.8 micron; 72,3% theo, density; electrical resistivity 16.4 pobm en at 20 C.
688 L 1964 31.2 5 LASL; set No. 1. sample 3 688 L 1964 31.2 5 LASL; set No. 1. sample 6 688 L 1964 31.2 5 LASL; set No. 1. sample 6 688 L 1964 320.2 5 LASL; set No. 1. sample 11 688 L 1964 320.2 5 LASL; set No. 1. sample 11 775 - 1966 1930-2933 ~15 S1 775 - 1966 2005-2983 ~15 S1 775 - 1966 2005-2983 ~15 S1 775 - 1966 2006-2983 ~15 S3 777 - 1966 2006-2983 ~15 S3 777 - 1966 2006-2978 ~15 S3 777 - 1966 2006-2150 ~15 S4	94	889	1	1964	323.2	ç	LASE; set No. 1, sample 2	Similar to the above specimen except 72.1% theo. density, and 10.6 µohm cm electrical resistivity at $20\mathrm{C}$.
688 L 1964 311.2 5 LASL; set No. 1, sample 6 688 L 1954 311.2 5 LASL; set No. 1, sample 7 688 L 1964 320.2 5 LASL; set No. 1, sample 11 688 L 1964 320.2 5 LASL; set No. 1, sample 11 688 L 1964 319.2 5 LASL; set No. 1, sample 12 775 - 1966 1930-2933 ~15 S1 775 - 1966 2005-2983 ~15 S2 775 - 1966 2138-2978 ~15 S3 775 - 1966 2005-2983 ~15 S3 775 - 1966 2006-2075 ~15 S4 775 - 1966 1506-2150 ~15 P1	95	989	ï	1964	326.2	လ	LASL; set No. 1, sample 3	Similar to the above specimen except 1350 C sintering temp, 63, 2% theo density, and 13, 3 pohm em electrical resistivity at 20 C.
688 L 1954 311.2 5 LASI; set No. 1. 688 L 1964 320.2 5 LASI; set No. 1, 688 L 1964 320.2 5 LASI; set No. 1, 688 L 1964 319.2 5 LASI; set No. 1 8ample 11 8ample 12 775 - 1966 1930-2933 ~15 775 - 1966 2005-2983 ~15 775 - 1966 2085-2978 ~15 775 - 1966 2086-2075 ~15 777 - 1966 2086-2075 ~15 777 - 1966 2086-2075 ~15 777 - 1966 2086-2075 ~15 8 4 777 - 1966 1506-2150 ~15	96	683	ı	1964	311.2	rs		Similar to the above specimen except 1575 C sintering temp, 78.1% theo. density, and 9.1 pohm cm electrical resistivity at 20 C.
688 L 1964 308.2 5 LASL; set No. 1, sample 11 688 L 1964 320.2 5 LASL; set No. 1 sample 12 688 L 1964 319.2 5 LASL; set No. 1 sample 2 775 - 1966 1930-2933 ~15 S1 775 - 1966 2005-2983 ~15 S2 775 - 1966 2138-2978 ~15 S3 775 - 1966 2086-3075 ~15 S4 775 - 1966 1506-2150 ~15 P1	97	688	1	1954	311.2	ß	LASI; set No. 1, sumple 7	Similar to the above specimen except 1625 C sintering temp, 83.6% theo. density, and 8.2 µrhm cm electrical resistivity at 20 C.
688 L 1964 320.2 5 LASL; set No. 1 sample 12 sample 12 sample 12 sample 12 sample 12 sample 2 T75 - 1966 1930-2933 ~15 S1 775 - 1966 2005-2983 ~15 S2 775 - 1966 2138-2978 ~15 S3 775 - 1966 2086-3075 ~15 S4 775 - 1966 1506-2150 ~15 P1	86	688	1	1964	308.2	ဟ	LASI; set No. 1, sample 11	Similar to the above specimen except sintered at 1700 C for 9 hrs. 95. 3% theo. density, 6.2 μ phn cm electrical resistivity at 20 C, and the ratio of isolated pores to total pores ≈ 0.9 .
688 L 1964 319.2 5 LASL: set No. II, sample 2 775 - 1966 1930-2933 ~15 S1 775 - 1966 2005-2983 ~15 S2 775 - 1966 2138-2978 ~15 S3 775 - 1966 2086-3075 ~15 S4 775 - 1966 1506-2150 ~15 P1	66	688		1964	320.2	S	LASL; set No. 1 sample 12	Similar to the above specimen except 95.5% theo. density, and 6.3 johm cm electrical resistivity at 20 C.
775 - 1966 1930-2933 ~15 S1 775 - 1966 2005-2983 ~15 S2 775 - 1966 2138-2978 ~15 S3 775 - 1966 2086-3075 ~15 S4 775 - 1966 1506-2150 ~15 P1	100	889	J	1964	319.2	Ŋ	LASL; set No. II, sumple 2	Similar to the above specimen except sintered at 1700 C for 3 hrs. particle size 2-4.5 microns, 74.4% theo. density, and 10.5 pohm cm electrical resistivity at 20 C.
775 - 1966 2005-2983 ~15 S 2 775 - 1966 2138-2978 ~15 S 3 775 - 1966 2006-2075 ~15 S 4 775 - 1966 1506-2150 ~15 P 1	101	775		1966	1930-2933	~15	S 1	99. 8° pure; cylindrical specimen 1.52 in. in dia, 0.502 in. thick; polished; thermal conductivity determined by equating the axial heat flux within the specimen to the radiation flux at the center of the top surface.
775 - 1966 2138-2978 ~15 S 3 775 - 1966 2086-3075 ~15 S 4 775 - 1966 1506-2150 ~15 P 1	102	775		1966	2005-2983	~15	S 2	Similar to above except dimensions 1.006 in. dia, 0.504 in. thick.
775 - 1966 2086-2075 ~15 S 4	103	775		1966	2138-2978	~15	S 3	Similar to above except dimensions 1.0066 in. dla, 0.356 in. thick.
775 - 1966 1506-2150 ~15 P 1	101	775		1966	2086-3075	~15		Similar to alvove except dimensions 0, 804 in. dia, 0, 284 in. thick.
	105	775		1966	1506-2150	~15	P 1	Unknown purity; cylindrical specimen; 1.52 in. dia, 0.538 in. thick; fabricated by gravity sintering tungsten particles 0.006 to 0.01 in. in size; fired for a long duration at > 2478 K; porosity 55%; thermal conductivity data determined by the same method as above.

SPECIFICATION TABLE NO. 6:1 (continued)

Composition (weight percent). Specifications and Remarks	thick and 45% porosity.	Similar to above except dimensions 1.43 m. ms, coor m. tack, and 46% compair.	Similar to above except dimensions 0, 373 in. day, 0, 313 th. mich, and 40% consists	Similar to above except dimensions 1, 03 in. dia, 0, 302 in. thick, and 42% porcent.	Similar to above except dimensions 0.80 in. dia, 0.25 in. mick, and 42% policisty.	I mm in da., 30 mm long; electrical resistivity reported as 0, 205, 0, 255, 40, 406, 1800, 1800, and 2200 C, respectively.	Foil strip; 2 mm x 60 µ x 20 mm.	Foil strip; 3 mm x 60 µ x 20 mm.	Specimen 0.3 mm in dia and 20 mm long.	Specimen 0.2 mm in dia and 20 mm long.	99, 99 W. O. 01 Mo, trace Si and Cu; O. 4 cm dia x 10 cm long; supplied by Johnson Matthey Co.; measured in the intermediate-lemp apparatus.	The above specimen measured in the high-temp apparatus; Armoo iron used us comparative material.	Similar to above.	99. 95 W and 0. 035 Mo; forged rod specimen 10 mm in dia and 80 mm long; oensity 19.17 g cm ⁻³ ; thermal conductivity values calculated from measured data of thermal diffusivity using specific heat data taken from Hoch, M. and Johnston, H. L. (J. Phys. Chem., 65, 855, 1961).	0, 026 O. 0, 010 Mo, <0.005 Si. 0, 001 each of Cu and Ag. <0.001 each of Al, Ca, Fe, Mg, Mn, and Ni, and <0.0005 Ni, tangsten sheets of <0.060 in. thick supplied by Fansteel Metallurgical Corp; specimen dimensions 1, 000 in. dia × 1, 250 in. long; squares cut from the sheets clamped together to form cubes, single welds perpendicular to the sheets made at opposite ends with an inert gas are welder, machined to size with the sheets parallel to the cylinder axis; thermocouple holes drilled at 75 degrees to the sheets, density 19, 21 g cm ⁻¹ at 26, 3 C; Armen inn used as comparative material; measured in a helium atm with diatomacoous insulation.	Second run of the above specimen with thermatomic carbon insulation.	Same as above, third run,	Prepared from the same material as the above specimen; consisted 01-35 outsing maduscs with 0.25 in, holes in their centers, the central 16 discs used as test specimen.	Second run of the above specimen.
Name and Specimen Designation		2 04	P 3	P 4	P 5		Sample No. 1	Sample No. 2	Sample No. 3	Sample No. 4	-		0		-	7	, 	2	87
Reported Error %		~15	~15	~15	~15										ာ #	ι 3	÷ 5	+	t-
Temp.	nange, n	1384-2569	1366-2894	1958-2366	1755-2753	1173-2473	1618-2081	1490-1779	1979-2999	1963-2384	313-664	451-751	405-992	1000-2000	285-500	549-972	823-1042	1266-1997	1451-2033
Year		1966	1966	1956	1966	1962	1965	1965	1965	1965	1961	1967	1967	1966	1966	1956	1966	1966	7960
Method	Used	1	ı	1	ī	ш	ம	ш	ш	ы	L	၁	ن	Δ,	ပ	U	ပ	~	æ
Ref	o No	775	775	775	775	109	905,	908.	90s, 906	905	906 841	841	841	904,	606	606	606	606	606
Curve	ć Z	106	107	108	601	110	111	112	113	114	115	911	11.7	118	119	120	121	122	123

A Comment of the Comm

SPECIFICATION TABLE NO. 63 (continued)

				e	1	Name and	
Curve No.	No.	Nethod	Year	Curve Ref. Method Year 1emp. No. No. Used Year Range, K	Error, %	Specimen Designation	Composition (weight percent). Specifications and Remarks
K1	849	,	1966	1966 1513-1930		No. 1	0, 0007 C, 7 0, 0005 each of N and O, and 7 0, 00005 H; specimen 2, 5339 cm in dia and 0, 27 cm long; density 18, 89 g cm ⁻² , thermal conductivity derived from the temp distribution on the flat surface of the cylindrical disc specimen heated in high vacuum (10 ⁻⁵ nm Hg) by high frequency induction.
125	849	t	1966	1572-1905		No. 2	Similar to the above specimen except specimen 2, 4785 cm in dia and 0, 2714 cmthick with density 19, 03 g cm ⁻³ .
126	849	ı	1966	1836-2608		No. 3	Similar to the above specimen except specimen 2,0801 cm in dia and 0,27 cm thick with ang grain size 0,035 mm dia and density 19,23 g cm ⁻³ .
127	966	a.	1967	87~377			Spectroscopically standardized, 4 mm dia x 10 cm long; supplied by Johnson Matthey Co.; electrical resistivity reported as 0, 24, 0, 83, 1, 08, 3, 32, 5, 61, and 733 µohm cm at 5, 79, 91, 195, 299, and 374 K, respectively. (Tabulated data received from author.)

DATA TABLE NO. 6:1 THERMAL CONDUCTIVITY OF TUNGSTEN (Impurity < 0.20% each; total impurities < 0.50%)

[Temperature, T, K. Thermal Conductivity, k, Watts ${\rm cm}^{-1}{\rm k}^{-1}$]

¥	CURVE 30	1. 65	2.51	3.6	3.39		CURVE 31		2.36	2. 60	2.97	3.37	3.97	4.35		CURVE 32		3.97	4. 33	4. 83	5. 52	6. 33	6.90		CURVE 33		7.87	8.47	9. 26	10.20	11. 64	12. 22		CURVE 34		18.02	18. 59	21, 32	22, 08	23, 20	23.64			
(-	CUR	15. 16	18.04	18.97	19.92		CON		15. 12	15.92	16.91	17.85	18.93	19.80		CUR	Ì	15.06	15.87	16. 72	17.80	18.90	19.82		CUR		15.01	15, 80	16, 67	17,76	18.93	19.83		CCR		15. 25	15.75	17.07	19.08	19. 18	20. 17			
×	CURVE 25(cont.)	0. 432	0.633	0.857	•	CURVE 26"	}	0.638	0. 709	0.822	1. 00	1. 22	1. 37		CURVE 27		0.834	0.945	0.968	1. 12	1. 34	1. 57	1.81		CURVE 28		1. 03	1. 16	1.35	1. 57	1. 83	2. 16		E 29		1. 27	1.31	1. 47	1. 66	1.97	2, 27	2. 58		
L	CURVE	15.85	18, 05	19.82		CUR		15. 13	16, 05	16.91	18.01	19.06	19, 95		CUR		15.03	15, 96	16. 12	17.06	18. 12	19. 03	19.98		CUR	į	15. 17	16.04	16.98	17.99	18.97	19.91		CURVE 29		15, 08	15, 28	16, 11	16.91	18. 02	18.94	19, 90		
ж	CURVE 20	1.590	I. 464	1. 339	1. 423		CURVE 21	!	1. 477	1.590	1.297	i. 423	1. 251		CURVE 22		2. 57	2.91	3, 43	4.24	4. 57		CURVE 23		0.629	0. 704	0. H29	0.973	1. 14	1.38		CURVE 24		0. 438	0. 500	0, 54,1	0.620	0.746	0.870	1.04		E 25	(}	0.384
+	CUR	2400	2600	2688	3194		CUR		2344	2562	2888	3185	3451		CUR	}	14.84	15, 74	16.84		19, 96		CUR		15.16	15.97	16.92	17.95	18.97	20.01		CUR		14. 93	15.81	16. 21	16.93	11.88	18.94	19.95		CURVE 25	į	14.94
¥	CURVE 17(cont.)	3.41	3, 38	2. 92	2.88	2.78	2. 66	2. 62	2.48	2. 44		CURVE 18		0.950	1. 020	1.040	1.070	1.090	1. 110	1. 130	1. 150	1.170	1. 190	1. 210		CURVE 19	j ì	9. 060	6, 580	6.620	7, 250	B. 000	22, 220	22, 120	21.930	3.260	2.674	2.620	2.481	2. 330	2, 364	2, 250		
-	CURVE	57.29	57.67	66. 35	67.88	10.98	75, 53	76. 14	83.72	88.38		CUR		1500	1600	1700	1800	0061	2000	2100	2200	2300	2400	2500		CUR	 	3.36	3, 58	3. 61	3.8	4. 09	18.16	18. 14	19.95	j8. 10	65, 77	67.50	76.40	71, 20	74, 42	13, 90		
×	CURVE 14	i. 170	1, 153	1. 138	1. 122	1. 106	1.089	1.073	1.058	1.042	1.026		CURVE 15		1.929	1. 695	1.669+	1.628		CURVE 16	l !	138	I. 778	1.695+	1. 632		CURVE 17	 	94.7	82.0	81.3	70. 9	74.6	68. J	67.6	66. 2	65.8	59. û	57. R	1.1.	54.6	51. 3	50.5	
1	CUR	1100	1200	1300	1400	1500	1600	1790	1800	1900	2000		CUR		90. 2	194. 7	273.2	373.2		CUR	: 	2 '06	194. 7	273.2	373.2		CUR	! !	15.33	15. 59	15. 75	16.68	16, 69	17. 24	17.27	17.69	17. 85	19, 03	19, 20	19, 55	19.87	26, 17	12.07	21. 38
×	URVE 10*	1.640	1.646	1. 635	1.647	,	CURVE 11		1. 655	1. 652	1.648	1. 639	1.640		CURVE 12	i	0.980	1.080	1. 180	1.280	1.380	1. 480		CURVE 13	· [0.462	0.642	0.832	1. 120	1, 354	1. 707	2. 120	2. 630	2.913	3, 315	3, 480	3.6+1	3, 652	3, 658		3, 506			
+	CUR	275.93	277. 32	278.02	280. 23		CUR	i	276.35	277.03	278.97	282. 72	286. 05		CUR		1500	1700	1900	2100	2300	2500		CUR	Ì	5.80	3. 57	4.95	6. 50	7. 91	9.90	12, 53	15, 50	18. 41	21. 71	24, 13	26, 69	36, 00	32, 75	35, 53	3*, 90	41.76	36.13	
- 4	CURVE 5	1.992	1.975		CURVE 6		1.860	1.820	1. 700	1. 730		VE 7		1. 930	1.870	1. 690	1.680		CURVE 8	ļ	2, 260	1.600	1. 380		CURVE 9	į	1.729	1. 70B*	1.688	1,669	1. 6634	1.651	1.633*	1.620	1. 617	1.601	747 1	1. 463	1. 432	1, 387	1 348	1 313		
۲	CUR	290	373		CUR	!	77 4	90. 2	273.2	372.8		CURVE 7		17, 36	90, 2	273.2	373. 1		CUR	, !	73	194	27:1		CUR		240	250	760	270	273	250	062	162	360	330	3.0	101	6.5	thirt.	di	6,10		
×	VE 1	1.515	1. 990	2. 525	2.929	3.687	5.065	6. 212	7, 475	8. 939	9.710	10.960	11.818	12. 121	11.970	11, 364	10, 455	9. 141	7.677	5.934	3, 182	2.878	2, 525	2, 405	2, 350	2, 17.2		78.3	!	34, 300	2, 320		V.F. 3		1. 400	1, 5.60				23. 310	22 7.39	614 92	2 r	
۲	CURVE 1	1.82	2.34	2.86	3.38	4, 16	5. 97	7.80	9. 22	10. 40	12. 21	15. 58	16.88	18.96	21.04	23.38	26.75	29.87	33, 77	38.44	55.32	63, 64	77, 90	90, 90	103. 10	115, 70		CURVE 2	<u>;</u>	21.2	33.2		CURVES		21.2	5 1 5		CURVE. 4	i	1	1.7	\$ *		

A STATE OF THE STA

DATA TABLE NO. 63 (continued)

	6 (cont.)	0.900	1.000	0.985	0.950	0,875	0.925	1.000	0.950	0,875	0.925	0, 900	0.975	0,875	:	67	*21 1	1. 10	, 08°	, * 1. 8.	1. 035	CTO .T	9.9	96 .0	0.935	60 70		0.837	0.858	19.0	0.761	0, 753	0.774	0. 732	758 0	0,000			
7	CURVE 86 (cont.)	2283.2	2303. 2	2363.2	2658.2	2713.2	2768.2	2788.2	2833.2	3082.2	3148.2	3178. 2	3223.2	3223.2		CURVE 87	1200	1400	1600	1800	2000	2200	2600	2800	3000	CURVE 88		1615	1700	1835	2000	2065	2135	2210	2633	6212	20.7		
٠,- بد	CURVE 84 (cont.)	1.26	1.08	1. 13	1. 16	7.06	1.05,	1. 00	20 37	COUNTY ST	1. 10"	1. 0z	0.98 0.959	0, 957	;	CURVE 86	1, 000	0.900	1.000	0.950	1. 000	J. 600	0.940	0.975	0.975	0.950	1. 600	0.925	0.925	0.00	1. 100	0.925	0.975	0. 950	900	0.950	0.950	0.900	
۳	CURVE	1075	1120	1200	1275	1400	1500	7660	Į.		1300	1800	0022 5000	2900	İ		1283, 2	1293. 2	1358, 2	1373, 2	1388.2	1408.2	1458.2	1473.2	1498.2	1548 2	1563. 2	1598. 2	1683. 2	1703.2	1723.2	1728.2	1788.2	1843.2	1933.2	1943.2	2138.2	2218.2	
¥	E 81	0.663	0, 711	0 0 0 0 0 0 0 0	2	0.493	0,470	0.519	0.526	0.510	0.599		0, 815	0, 837		F 82	1, 22,	1. 26	1. 29	1.31	1.33	1. 35 27.	1.39	1.41	1. 42	1.43	E 83		1. 78	1.68	386	1.32		F 85	90.	. F.	1. 10	1. 16	
H	CURVE		1844. 3	1844, 3	2263.7	2263, 7	2263, 7	2266, 5	2272, 1	2519, 3	2533, 2	2536.0	2761.0	2938, 7		CURVE 82	1800	1900	2000	2100	2200	2300	2500	2600	2700	2800	CURVE		323. 2	373.3	573.2	673.2		CURVE		بر د و	925 925	1020	
¥	6 (cont.)	0.912	0.964	21.3		23.8	22. 73	20.4	181	E 78		0.507	0.507	0.529	0.519	0. 41	0.490		E 79	1	0.669	0.616 0.633	0.591	0.482	0.505	0.518				0. 6.55	F 80		0.858	0. 537	0 725	0.573	0.712		
H	CURVE 76 (cont.	2373. 2	2473.2	CIRVE 77		15. 5	17. 1	18.6	21.3	CURVE 78		559, 3	1 11 1 842 6	847.6	851.0	851. 0	860.4		CURVE 79		483.7 F. 3	153.2	763.7	984.8	990.4	1380.9	1192.1	1196. 5	1285. 4	1287. 1	CIRVE 80		1555, 4	1555. 4	1558. 2	1866. 5	1872. 1		
,×	CURVE 67	20.97 5.02		CURVE 68	21, 06 4, 53	,	CURVE 69		21. 02 22. 2	CURVE 70°		20.80 16.4	CURVE 71		20.97 11.2	2000	CONVE 12	21, 14 6, 30		CURVE 73	•	21.02 4.67	CURVE 74		21.13 4.06	CIRVE 75		274.2 1.60		CURVE 76	1173 2 1, 15					1973, 2 0, 962	9 0	2273. 2 0, 929	
H	CURVE 55	21, 72 10, 5		CURVE 56	21.54 5.27		CURVE 57	ł	21.50 36.7	CURVE 58		21. 55 16. 6	CURVE 59"	1	21, 71 10, 0	93 4444.5	CURVE 60	21.79 8.2		CURVE 61		21, 78 3, 91	CURVE 62	:1	21, 02 22, 2	CHRVE 63		20, 84 16, 3		CURVE 64	20.99		CURVE 65		21, 36 6, 69		CURVE BO	21. 01 5. 14	
×	CURVE 43	21, 76 9, 21		CURVE 44	21.80 8.8		CURVE 45*		21, 73 9, 06	CURVE 46		21.75 9.2	CIBVE 47		21, 78 8.3	***************************************	COICVE: 48	21, 79 8, 2		CURVE 49		21.76 8.7	CIRVE 50		21, 75 9, 16	CIBVE 51		21, 71 9, 95		CURVE 52	9 1 25 16 6		CURVE 53		21. 5 36. 7		CUICAT: SE	21.5 36.7	
.¥	CURVE 35	1600 1.19		1800 1.24						2500 1.39	2700 1, 41		CURVE 36	,		79.7 2.32		CITRVE 37		21. 7 11. 9	ñ	CURVE 38	7 8 65 16		CURVE 39	70 02 10		CURVE 40		21.74 10.4	CHRVE 41	1 2 100	21, 72, 10, 3		CURVE 42		ZL. 74 9.7		

Not shown or plot

(continued)
83
TABLE NO.
DATA

 ¥	CURVE 117	405.2 1.657		494.2 1.531*	497.2 1.508"	' -	_		992.2 1.185	CURVE 118			1150 1.25	1375 1.19			2000 1.10*	CTIRVE 119*			284.1 1.83	293, 7 1.831		397.0 1.627	-	_	CURVE 120				943.7 1.292			CURVE 121 *	923 7 1 230	1042.0 1.083	
.×	CURVE 113*	1979 1.205 2060 1.116		2217 1.072		2471 1.035			2777 0.975		2939 0.999		CURVE 114	1963 1.113		23.54 1, 124		CURVE 115	313.2 1.799		_	337.2 1.678			_	_	592.2 1.353%		664.2 1.286		CURVE 116	451.2 1.507	5K3.2 1.364	658.2 1.275	261.2 1.233	•	
T k	CURVE 110 (cont.)	1218. 2 1. 125 1248. 2 1 118	, ,	2 1.	1348 2 1 079	, r		1493.2 1, 040	1523. 2 1, 036	-i -	_	1693, 2 1, 004		1783 2 0 392	2	ଧ	>		2113.2 0.94.3			o : o : o	2473, 2 0 508	CURVE 1113		-	1691 1.219	_	1863 1.224	_	1964 1.154	•	CURVE 112		1490 1.239	-	1779 1.161
+	CURVE 107 (cont.)	248H, 7 U, 166 2669, 3 U, 177			CURVE 108	1958. 2 0, 173	2041. 5 0, 170		2227. 6 0. 168	2366. 5 0, 185		CURVE 109		1855.4 0.163		9		1966, 5 0, 200 2020 1 6, 226				2181.5 0.202		2285.9 0.188			2391, 5 0, 230 2472, 1 0, 216				2558, 2 0, 196 2635, 0 0, 196			9	CORVE 110	1173. 2 1. 151	1198.2 1.140
4	CURVE 104 (cont.)*	2427, 6 0, 969 2452, 6 1, 099	-	2566, 5 1, 237	2677, 6 1, 350	2774.8 1.099	••	ن د	3022, 1 1, 064	-	CURVE 105		1505, 9 0, 0857	خ خ	o T:		CURVE 106	2000	1397, 1 0, 161	61	4	1552, 6 0, 144	0 0 0		<u>د</u>	=	2058. 2 0. 148 2191. 5 0. 142	j	ဘ အ	2647.1 0.138	2569, 4 0, 133	CITRVE 107		ភេទ	1635 9 0 166		2285, 9 0, 158
-	CURVE 13	1930, 4 . 191 2050, 9 1, 142	s		2447.1 1.056	o or	. ~		CURVE 102		2213, 7 1, 142		2644.3 1.160		CURVE 103°	i	2139, 7 1, 246	2144.3 1 246		6		2447. 1 1.317	دہ ت	•	4	-i :	2853, 7 1, 41i		2977. 6 0. 980	:	CURVE 104	2085. 9 1, 211			2305.4 1.355		2360, 9 1, 523
H H	CURVE 39	1900 1.21	CURVE 30°		1900 L. 17	CIRVE 91		1900 1.18		CORVE 32	1900		CURVE 93	317 9 1 046		CURVE 94		323. 2 1. 046	CURVE 95		326. 2 0. 795		CURVESO	311.2 1.172		CURVE 97	311.9 1.297		CURVE 98		308. 2 1, 590	01 TVE 46		320.2 1.590	מפר דיינהים	COUNT 100	319. 2 0, 962

Not shown on plot

ú	126	0.950	0.946	0.911	0.902	D. 866	0.905		127*		2.003	1.952	1.927	1.72 25.1	1.729	1.727	1.860	1.659	1.603	1.606		1.556				
H	CURVE 126	1836	1946	2206	2350	2463	2608		CURVE 127		89 69	95.7	9.66 80.6	199.5	201.7	204.3	278.2	281.5	334.7	337.8		377.3				
;£	E 132°	1.10	1.116	1.070	1.089	1.096	1.002	0.997	1.007	1.024	J. 005	G. 956	0.995	*****	- 1	1.096	1.093	1.112	1.086	0.982	1.028	0.975	0.979	1.002	0.997	0.991
H	CURVE 12	1266	1264	1264	1267	1613	1615	8291	1631	いま	1.3	1997	1997		CORVE	1451	1452	1453	35	2005	2002	2002	2005	2033	2033	2033

(continued)

DATA TABLE NO. 63

CURVE 124 * 1513 1.183 15.78 1.197 1.678 1.072 1.748 1.122 1.898 1.098 1.998 1.998 1.998 1.998

1571.5 1.182 1640 1.144 1675 1.084 1719.5 1.035 1745.5 1.036 1835.5 1.048 *Not shown on plot

The recommended values are for well-annealed 99.99 % pure tungsten with residual electrical resistivity $\rho_{\rm R}=0.00170~\mu{\rm R}$ cm (characterization by $\rho_{\rm R}$ becomes important at temperatures below about 200 K). The values below 1.5 T_m are calculated to fit the experimental data by using n = 2.40, cr = 2.06 x 10^{-5}, and β = 0.0696. The recommended values that are supported by experimental thermal conductivity data are thought to be accurate to within 3% of the true values near room temperature, and 3 to 5% at other temperatures.

800.3 980.3 1160

* Values in parentheses are extrapolated or estimated. Tin K, kin Watt cm -1 K-4, Tain F, and kain Btu br -1 ft -1 F-1.

alicensia sunder second and the second of the second secon

A. A.C.

SPECIFICATION TABLE NO. 64 THERMAL CONDUCTIVITY OF URANIUM

(Impurity <0, 20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 64]

Composition (weight percent), Specifications and Remarks		Mg-reduced.	Ca-reduced.	Pure; cylindrical disc specimen; rolled in the a-phase; as received; data taken from smoothed curve.	Pure; cylindrical disc specimen; rolled in the α -phase; heated to 750 C for 10 min in the β -phase, then water quenched; data taken from smoothed curve.	Approx 99. 8 pure; specimen in a rod form 0.5 in. in dia and 2.5 in. long; heated at 700 C in a lead bath for 10 min then quenched in water at 50 C; electrical resistivity reported as 4.07, 9.79, 10.4, 9.96, 9.72, 13.3, 13.4, 13.2, 21.6, 21.6, and 28.4 jubm cm at 21.14, 77.60, 77.61, 77.61, 77.61, 109.7, 109.7, 109.7, 194.5, 194.5, and 277.2 K, respectively; p(293K)/p(20K) = 10.6.	Pure: 1.445 in. dia x 2.008 in. long; supplied by Sylvan i Electric Products Corp; prepared by hot-pressing uranium powder; density 18.86 g cm -1, Armoo Iron used as comparative material.	Pure; rolled from 1.625 in. to 0.875 in. in dia at 500 C, heat treated at 725 C for 0.5 br. water quenched from 725 C, and α-phase anneated at 525 C for 1 hr; density 18.66 g cm ⁻³ . Armoo from used as comparative material.	Pure; 1.449 in. dia x 1.98 in. long; supplied by Sylvania Electric Products Corp; powder-compact prepared by decomposition of UH; under hot pressing; grain size 0.25-0.50 mm in dia; density 18.84 g cm -3; Armoo iron used as comparative material.	Pure; 1.445 in. dia x 2.06 in. long; supplied by Sylvania Electric Products Corp; powder-compact specimen prepared by decomposition of UH ₃ under hot pressing; fine grained; density 18, 905 g cm ⁻³ ; Armeo iron used as comparative material.	Highly pure; specimen 2.95 cm long and 0.203 cm in dis; supplied by Atomic Energy Research Establishment; electrical resistivity reported as 2.2, 2.4, 2.5, 2.7, 3.0, 4.2, 6.7, 9.4, and 11.1 µphm cm at 9.4, 13.5, 17.8, 20.5, 26.1, 35.1, 56.3, 79.5, and 90.0 K, respectively.	0.068 C, 0.004 Si, 0.0035 Fe, 0.002 Ni, 0.0009 N, 0.0002 Cr, 0.0002 Ag, and 0.00014 B; 1 in. dia x 10.75 in. long; extruded; thermal conductivity measured in the direction of extrusion; brass used as comparative material.	0.0720 C, 0.0150 Fe, 0.0100 Ag, 0.0028 N, 0.0020 Ni, 0.00175 Si, 0.0005 Cu, 0.0003 Cr, and 0.00012 B; 1 in. dia x 10.75 in. long; extruded; thermal conductivity measured in the direction of extrusion; brass used as comparative material.
Name and Specimen Designation							695	BMI	8 8 8	069		10	U2
Reported						H 5. 0					±3.0		
Temp.	11 '3 9mm	353, 873	423, 873	255-867	255-1033	23-278	313, 373	313, 373	313, 373	313, 373	2. 5-34	407-534	340-711
Year		1958	1558	1954	1954	1952	1952	1952	1952	1952	1955	1945	1945
Method	r aso			œ	œ	-J	υ	υ	O	υ	ŋ	ပ	v
Ref	ğ.	46	46	32	32	139	53	29	\$	53	122	98	28
Curve	ğ	-	2	ຕ	4	v.	φ	2	œ	on	70	11	12

SPECIFICATION TABLE NO. 64 (continued)

Composition (weight percent), Specifications and Remarks	Pure; 0. 86 cm dia x 14 cm long; density 18.6 g cm ⁻³ ; electrical resistivity reported as 39.6, 41.6, 41.8, 43.4, 43.9, 45.4, 46.3, 47.2, 48.8, 50.9, 51.2, 52.4, 54.1, 56.5, 50.1, 57.8, 58.2, 56.9, 57.8, 58.4, 57.9, 58.5, 59.3, 58.9, 57.7, 58.5, 56.0, 50.5, 50.4, 54.3, and 54.3 µohm cm at 97, 137, 137, 137, 138, 138, 192, 224, 236, 277, 316, 321, 353, 366, 432, 440, 458, 463, 466, 475, 532, 532, 532, 597, 623, 640, 645, 652, 696, 711, 720, 829, and 935 C, respectively; thermal conductivity data show no discontinuous change at the transition points, whereas the electrical resistivity data show sudden changes.	Pure; specimen 0.1875 x 0.1875 x 1.75 in.; density 18.8 g cm ⁻² ; Armoo iron used as comparative material.	From an "as rolled" rod, heated 2 hrs at 850 C and water quenched.	 0.03 C; supplied by Argonne National Laboratory; as-rolled; Armoo iron used as comparative material. 	0.0% C; supplied by Argome National Laboratory; as-rolled; Armoo iron used as comparative material.	High purity; supplied by Argonne National Laboratory; quenched from 1000 C; Armoo iron used as comparative material.	High purity; supplied by Argome National Latoratory; quenched from 900 C; Armoo iron used as comparative material.	Supplied by Argonne National Laboratory; prepared from hot-pressed UH ₃ ; Armoo iron used as comparative material.	0.1 Cr.; supplied by Argome National Laboratory; as-rolled; Armoo iron used as comparative material.	Supplied by Atomic Energy Research Establishment.	Bar specimen; cast.	The above specimen heated to 690 C, maintained for several hrs in the β -phase then cooled to room temp at a rate of 4.2 C per min to change from β to α phase.	Cylindrical bar spectmen; cast.	Cylindrical bar specimen; cast; irradiated to 190 M.W.D./Tonne at 300 C; "cooling time" > 1 yr.	Measured in vacuum; Zircaloy-2 was used as comparative material.	0.026 Si, 0.0188 Fe, 0.0036 Ni, 0.0030 Mn, 0.001 Cu, 0.0009 Cr, 0.0001 Co, and 0.00005 Ag; specimen approx 2.5 cm in dia and 8.0 cm in length; taken from a bar of metal refined in Canada, extruded in the y-phase at 800 C to 900 C by Bureau of Mines; heated at 250 C for an hr for tinning; measured in vacuum.
Name and Specimen Designation			C-241-7B	1 B 2	2 B 3	A -6	8- 8	35	£ ₹ 8	U 1	U 1	2 J				Canadian extruded No. 1
Reported Error, %	±5,0	3.0	2.0	13.0	13.0	₹3,0	±3.0	±3.0	13.0	2, 0 - 3, 0	±2.0	±2.0	± 5. 0	±5.0	< ±5.0	
Temp. Range, K	371-1105	343	304-339	343.2	343, 2	343, 2	343, 2	343.2	343. 2	2.1-21	373-923	373-993	311-548	323-458	293-1073	293-473
Year	1955	1953	1945	1955	1955	1955	1955	1955	1955	1952	1954	1954	1983	1953	1958	1949
Method Used	យ	ပ	J.	ပ	ပ	Ü	၁	ပ	ပ	-1	-1		ы	ធា	ပ	- 1
Ref. No.	품	276	245	2	394	394	394	394	395	ક્ર	414	414	415	415	395	416
Curve No.	13	*1	15	16	17	18	19	20	21	22	23	4.	25	92	8	56

SPECIFICATION TABLE NO. 61 (continued)

						-				•			sc:	nned					
Composition (weight percent), Specifications and Remarks	The above specimen measured in a hotter furnace with different temp gredient in guard sleeve.	The above specimen heated at 800 C for 0, 5 hr before measurement.	The above specimen heated to 400 C three times before measurement.	The above specimen heated to 500 C; measured by a new main heater.	The above specimen heated to 400 C for 40 min prior to measurement.	The above specimen tempered for 6 hrs at 600 C during the measurement.	The above specimen completely remounted and heated to 600 C to set bonds.	The above specimen heated to 600 C for 3 hrs and cooled down before measurement.	The above specimen heated for 1.5 hrs at 700 C.	The above specimen heated for 2 hrs at 700 C.	The above specimen heated for 2, 5 hrs at 600 C.	Natural uranium, 1 in, in dia; extruded; measured along the direction of extrusion; brass used as comparative material (assumed thermal conductivity 0, 2) cal sec om -1 C ·1).	Cast uranium; specimen heated from σ -phase to β -phase and cooled again to σ -phase; electrical resistivity reported as 44.7_1 , 46.2 , 54.2_+ , 56.3_+ , and 58.1 µohm cm at 202_296, 405_509, and 599_C, respectively.	Sinterrel, density 14, 79 g cm. 4 at about 25 C; the sintered aranium specimen contained possibly some uranium carbide.	Sintered and cold-pressed with 200 tons; density 17, 22 g cm ⁻³ at about 25 C; the sintered uranium specimen contained possibly some uranium carbide.	Pare; sintered; density 16, 29 g cm 3 at about 25 C.	Pare; sintered; density 15.72 g cm ⁻³ at about 25 C.	Fused; density 18, 06 g cm ⁻³ at about 25 C.	Fused; density 18, 52 g cm ⁻³ at about 25 C.
Name and Specimen Designation	Canadan extruded No. 1	Camidian extricket No. 1	Canadian extruded No. 1	Canadian extraded No. 1	Canadian extruded No. 1	Canadian extruded No. 1	Considian extruded No. 1	Cenadian extruded No. 1	Canadian extruded No. 1	Canadian extruded No. 1	Canadian extruded No. 1			Tuballoy	Tuballoy	Tulralloy	Tuballoy	Tuballoy	Tuballoy
Reported Error, %																			
Temp. Range, K	291 -422	470-1003	420, 667	470, 572	573. 9	574-872	304-878	477-877	299-878	477-878	475-878	323-573	489-884	жня. 2	333, 2	334, 2	334.3	3:16, 2	61 151 151 151
Year	1949	1949	1949	1949	1959	1949	1949	1949	1949	1949	1949	1913	1955	1942	1942	1942	1942	1823	1942
Method Used	1	-1	-1	7	J	٦.	-1	٦	٦	٦	J	ပ	<u>.</u> ;	7	1	1	ı	1	
Ref. No.	416	416	416	416	416	416	416	416	416	416	416	417. 701	413	418	418	418	418	418	418
Curve	53	30	31	32	33	%	35	36	37	38	39	40	‡	4.2	4	4	45	46	£ 4

SPECIFICATION TABLE NO. 64 (continued)

Composition (weight percent), Specifications and Remarks	Pure; measured in a vacuum of 10 6 mm llg; Armen iron used as comparative material.	6. 005 each of K. P. Ti and Zn. 0. 002 Si, * 0. 002 each of Ca and Mo. 0. 001-6. 002 C. 0. 0. 001 each of As and No. 0. 0003-0. 0005 Fe. * 0. 0005 each of Al, Be. Co. Ni, and Sn. 0. 0004 Sb. 0. 0003 Mg. 0. 0001 Cu. * 0. 0001 each of Ag, Bi, Cr. Li, and IN, and * 0. 00001 B; specimen 2 cm in dia and 15 cm long; machined from east ingot; Armeo iron used as comparative material.	Pure; y-extruded; measured in argon.	Average values for two specimens measured,	Hollow cylinder; extruded,	Specimen in the shape of a sphere; cast by Westinghouse Co.; thermal conductivity value calculated from measured thermal diffusivity using the specific heat value of 0.026 cal g^{-1} and the density 18, 6 g cm ⁻³ .	Specimen 2 in. in dia and 1, 31 in, long; cast by Westinghouse Co.; cold rolled iron used as comparative material (1 :ference value 0.000 cal cm ⁴ sec. ¹ C. ¹).	Porous specimen 2, 5 cm x 2, 05 cm; prepared from sintered metal powder by Metal Hydrides Corp; copper used as comparative material (reference value 0.91 cal cm ⁻¹ sec ⁻¹ C ⁻¹).	Pure; measured in a vacuum of about 1 x 10-6 mm Hg.	In or-phase; cast; electrical resistivity reported as 34.48, 38.62, 42.76, 46.90, 51.04, 55.18, 59.32, 61.39, and 56.74 µohm cm at 0, 100, 200, 300, 400, 500, 600, 650, and 690 C, respectively.	Specimen 9, 125 in, in dia; Ames uranium; thermal conductivity values calculated from measured data of thermal diffusivity.	0.026 St. 6.0188 Fe, 0.0036 Ni, 0.0030 Mn, 0.0010 Cu, 0.0009 Cr, 0.0001 Co, and 0.00005 Ag; prepared from a bar of metal refined in Canada and extruded in the Y-phase at a temp between 800 and 900 C by Bureau of Mines; specimen approx 2.5 cm in dia and 8.0 cm in length; ends placed with Ni and Cu, tinned to the main beater and the heat sink at approx 250 C for 1 hr, then cooled to room temp; heated to 600 C and held for 45 min for bonding; measured in vacuum.	The above specimen remounted and heated to 750 C for 15 min to set bonds.	The above specimen beated to 700 C and cooled to room tempprior to the measurement; measured with decreasing temp.	The above specimen heated to 300 C and cooled to room temp prior to the measurement.
Name and Specimen Designation		Casting No. 747										Canadian extruded No. 2	Canadian extruded No. 2	Canadian extruded No. 2	Canadian extruded No. 2
Reported Error, %	± 7, 0						10.0	10.0	9.0						
Temp. Range, K	407-932	423-1023	398-573	293-1173	357-514	323. 2	323.2	323. 2	293-973	334-873	323-1048	285-776	471.2	671-979	480-875
Year	1957	1961	1945	1954	1943	1955	1955	1955	1956	1954	1954	1956	1956	1956	1956
Method Used	၁	v			œ	۵.	O	r,c	1	L)	۵,	J	ᆸ	-1	ıı
Ref.	977	421	422	396	\$04	605	605	605	828	909	607	416	416	416	416
Cure No.	4	♣	8	51	25	3	\$	ស្ត	93	57	58	85	9	61	62

SPECIFICATION TABLE NO. 64 (continued)

Curve	Ref.	Method Used	Year	Terop. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
63	416	1	1956	293-781		Chalk River No. 1	Specimen approx 2. 5 cm in the and 8.0 cm in length; ends-plated with Ni and Cu, tinned to the math heater and heat sink at approx 250 C for 1 hr, then cooled to room temp: measured in vacuum.
64	416	1	1956	432-687		Chalk River No. 2	Similar to above.
9	416	1	1956	497-738		Chalk River No. 2	The above specimen remounted.
99	416	1	1956	298-683		Chalk River No. 3	Similar to the above specimen.
67	416	1	1956	474-726		Chalk River No. 3	The above specimen remounted.
89	730	1	1945	301-333	81	C-241-7A	Pure; prepared from a rolled rod; healed 2 hrs at 850 C and water quenched.
69	730	7	1945	304-333	7	C-245-1	Pure; prepared from a rolled rod,
20	800	၁	9961	422-819	5.0	13	Specimen 2, 5 cm in dia and 17,7 cm long; Springfield uranium; β -quenched and α -annealed; Armoo iron used as comparative material.
7.1	910	4	1953	37-588			Specimen 0.125 in. in dia and 30 cm long; swaged from a Hanford uranium slug and annealed; thermal conductivity values calculated from the measured data of thermal diffusivity using the density and specific heat data of Katz, J. J. and Rabinowitch, E. ("The Chemistry of Uranium", McGraw-Hill, pp. 144-8, 158).
22	013	d,	1953	481-693			Another run of the above specimen.
13	311	ပ	1965	333, 2			0. 05-0. 12 A1, 0. 1 C, 0. 02-0. 05 Fe, 0. 01 total of N, O and Si; Springfields standard adjusted uranium; specimen 2. 9 cm in dis and 7.5 cm long; cast; heat treated by traverse water quenching in the betz phase (666-760 C) followed by an anneal for 1 br at 550 C; Armoo iron used as comparative material.
74	911	ပ	1965	333.2			Similar to the above specimen.
75	911	ပ	1965	333, 2			Similar to the above specimen.
92	911	ပ	1965	333.2			Similar to the above specimen.
7.7	911	၁	1965	333.2			Similar to the above specimen.
78	911	ပ	1965	333.2			Similar to the above specimen.
.19	911	ပ	1965	333.2			Similar to the above specimen.
80	911	ပ	1965	333.2			Similar to the above specimen,
81	911	၁	1965	333.2			Similar to the above specimen except annealed at 450 C for 3000 brs.
83	116	ပ	1965	333.2			Similar to the above specimen,
83	911	ပ	1965	333.2			Similar to the above specimen.
œ.	116	ţ	1965	333.2			Similar to the above specimen except annealed at 450 C for 10000 hrs.

| And Andrews Andrew

SPECIFICATION TABLE NO. 64 (continued)

Curve No.	Ref. No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
85	911	υ	1965	333. 2			Similar to the above specimen.
98	116	၁	1965	333.2			Similar to the above specimen.
87	911	ပ	1965	333. 2			Similar to the above specimen.
70 80	911	O	1965	333. 2			0.05-0.12 Al. 0.1 C. 0.02-0.05 Fe, 0.0i total of N, O and Si; irradiated Springfields standard adjusted uranium; specimen 2.9 cm in dia and 7.5 cm long; cast; heat treated by traverse water quenching in the beta phase (66i-760 C) followed by an anneal for 1 in at 550 C; irradiated in the Calder Hall reactors at an estimated mean temp of 250 C with doses ranging from 1152 to 1932 MWD/te; Armeo iron used as comparative material.
68	911	O	1965	333. 2			Similar to the above specimens except irradiated at an estimated mean temp of 320 C with doses ranging from 3000 to 3298 MWD/tc.
90	911	ပ	1965	333. 2			Similar to the above specimen except irradiated at an estimated mean temp of 370 C with doses ranging from 659 to 1750 MWD/te.
91	911	ပ	1965	333. 2			Similar to the above specimens except irradiated at an estimated mean temp of 395 to 415 C with doses ranging from 55 to 4660 MWD/te.
95	911	U	1965	333. 2			Similar to the above specimens except irradiated at estimated mean temp 420 to 450 C with doses ranging from 965 to 3157 MWD/te.
66	843	1	1966	297. 1			6.05 Fe, 0.01 Mg, 0.008 Mo, 0.005 Si, <0.005 P, <0.005 K, <0.005 Ti, <0.005 Zn, <0.002 Ca, <0.001 As, <0.001 Na, 0.0005 Ni, <0.0005 Al, <0.0005 Co, <0.0005 Co, <0.0005 Sn, 0.0004 Mn, 0.0002 Cu, 0.0001 Pb, traces of Ag, Bl, Cr, Li, Sb, Be, and B; spherical powder obtained from National Lead Co,; contained in a 0.75 in, dia x 2 in, long stainless steel cylindrical cell; mesh size −15 ± 20; grain size 1000 µ; thermal conductivity measured to the transient line source method; measured in nitrogen at almospheric pressure.
ষ	843	t	1966	297-553			Same impurities, source, and measuring method as above; mesh size -70 + 80; grain size 190 µ; measured in nitrogen at atmospheric pressure.
92	843	t	1966	297-553			Same impurities, source, and measuring method as above; mest size -230 + 325; grain size 50 µ; measured in nitrogen at atmospheric pressure.
96	843	Ť	1966	298. 2			Same impurities, source. Indineasuring method as above; mesh size -16 + 20; average grain size 1000 µ; measured in nitrogen under pressures ranging from 2,85 x 10 ⁻⁵ to 8.71 x 10 ² mm Hg.
26	843	t	1966	298. 2			Same impurities, source, and measuring method as above; mesh size -40 + 50; average grain size 350 µ; measured in nitrogen under pressures ranging from 5,13 x 10 ⁻⁵ to 6,166 x 10 ³ mm Hg.
86	843	Ť	1966	298.2			Same impurities. source, and measuring method as above; mesh size -70 + 80; measured in nitrogen at 1 atm.
66	843	1	1966	298. 2			Similar to above; measured in nitrogen under pressures ranging from 10^{-2} to 5.495×10^3 mm Hg.

SPECIFICATION TABLE NO. 64 (continued)

Composition (weight percent). Specifications and Remarks	Similar to above; measured in helium under pressures ranging from 10-2 to 3.589 × 10 ³ mm Hg.	Similar to above: measured in methane under pressures ranging from 10-2 to 3.715 x 10 ³ mm Hg.	Similar to above; measured in argon under pressures ranging from 10^{-2} to 5, 370 x $_{10^3}$ mm Hg.	Similar to above; measured in nitrogen under pressures ranging from 2.92 x 10 ⁻⁶ to 5.188 x 10 ³ mm fig.	Same impurities, source, and measuring method as above; mesh size -176 + 200; average grain size 80 \(\mu\); measured in nitrogen under pressures ranging from 2, 34 x 10 -5 to 4,955 x 10 3 mm flg.	Same impurities, source, and measuring method as above; mesh size -230 + 375; average grain size 53 µ; measured in nitrogen under pressures ranging from 1,05 x 10-2 to 2,483 x 10 ³ mm Hg.	Same impurities, source, and measuring method as above; mesh size -230 + 325; measured in nitrogen at 1 atm.	Similar to above; measured in nitrogen under pressures ranging from 0.01 to 3890 mm He.	Specimen 0. 5 in. in dia and 5.625 in. long; unitradiated, unclad national uranium; measured in a vacuum of 2 x 10 4 mm Hg; Armoo Iron used as comparative material; data reported here are ten times lower than the original data, which are believed to be wrong as the results of troographical error.	Total impurity content < 0.03; metted and cast in an alumina—coated graphite crucible; cooled and machined to desired dimensions; grain size ~0.25 mm; electrical resistivity reported as 33.8, 38.3, 44.3, 48.9, 53.8, 55.9, 57.5, 58.2, 56.0, 56.0, and 54.5 µphm cm at 81, 156, 234, 339, 440, 526, 570, 630, 682, 724, and 786 C respectively; Lorenz function reported as 2.17, 1.93, 2.82, 3.44, 3.51, 3.24, 3.37, and 3.30 x 10.4 v? K-3 at 96, 251, 447, 668, 670, 768, 773, and 801 C, respectively; thermal conductivity values originally used by the authors when deriving these Lorenz function values had been calculated from their measured usat for specific heat and thermal diffusivity, present thermal conductivity values calculated (by TPRC) from reported electrical resistivity data and Lorenz function values.
Name and Specimen Designation										
Reported Error, %										
Temp. Range, K	298. 2	298. 2	298. 2	298.2	298. 2	298. 2	298. 2	298. 2	293-973	354-1059
Year	1966	1966	1966	1966	1966	1966	1966	1966	1959	1966
Method Used	1	1	1	7	1	T	1	t	υ	1
Ref.	843	843	8 4 3	8 4 3	843 5	2	843	843	912	26 6
Curve	100	101	102	F01	<u> </u>	105	106	107	S01	601

الأست- عالية جمه المقاد ومنا مدار استاسته وطيقاه الفلالة الأمام وبالملك كفالة للفائة وإلازاله فلتفلقا

DATA TABLE NO. 64 THERMAL CONDUCTIVITY OF URANHIM

fimpurity <0,20% each, total impurities <0,50%)

(Temperature, T. K. Thermal Conductivity, k. Wattem⁻¹K⁻¹;

. .	CURVE 37 (cont.)	0,316	0 0	0 0 0	0.382	0, 423	0.419	0.407	0.416	0.429	0, 428	e e	CURVE		0.300	0, 297	0.295	0, 299	0, 293	0.300	0.465	0.474	0, 474	0. 487	0, 451	0,438	0.447	•	CURVE 39		0, 303	6.3.0	0,320	0.309	0.312	0, 313	0.343	0, 391	0.436	0,486		
H	CURVE	4.0%	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	7 32	776.7	N 15	*76.3	×76.5	876.7	H77.2	878,3		S S	:	5.97	476.7	476.7	476. K	477.3	477.4	877.5	H77.5	×77.5	677.5	x7x, 1	×78.2	878.2		CUR	1	475.1	1 75, 5	475, 5	924	476.0	476.3	5.40, 4	0.085	778.3	853, 8		
	CURVE 31	0.271	0, 017	CHRVF 12		0,280	765.0		CURVE 33		008.70		CURVE ::		50.5	0. :: 16	0, 395		CURVE 35		0, 263	6, 285	0, 305	0, 3553	0, 3×1		CURVE 36		0.330	9,361	0.410		CURVE 37		0, 261	0.272	0, 290	0,259	0,249	0, 312		
F	CUR	426. 1	646.5	I BILL		470.4	572.3		CUR	1	57.1, 9		End S	į	573, 5	674, H	872.3		CUR		303, 7	4.x.1	570.5	679.4	#3#, #		CUR		477.3	782.2	877.3		CUR		299, 3	374.0	476.6	476.9	477.2	0.040	•	
¥	CURVE 26	0.243	6 , 259	100		CURVE 27		0,240	0,355	0.275	0.300	0, 325	0.35	0.330	6, 425	0,460		CURVE 28		0, 235	0, 2:17	0,241	0, 2.46	0.247	0,254	0,264	0, 264		CURVE 25		0, 2:14	0, 141	0.249	0,254		CURVE 30		0.275	0, 295	0.374	•	
⊣	CM	323, 2	358.2	2 4 2 2 4 4 5 4 5 4 6	N OF	CU	il I	290, 2	373, 2	17:1 2	57.1, 2	673, 2	77:1, 2	X73, 2	973, 2	1073, 2		COL	1	293, 1	332,6	1.44.	:70, 5	375, 1	422, 3	469, 4	4733, 2		5		290,9	24.4	399, 0	422, 1		CHI		469.9	567, 9	1002.6		
*	CURVE 22 (cont.)	0.044	0.047		0.033	0 125	0, 162		CURVE 23		0.291	0,31	0.172	0,352	0, 17.1	0, 393	0,403		CURVE 24		0.276	0.289	0.302	0.315	0,528	0,342	0,349		CURVE 25		0,255	0, 255	0,264	0.26н	0,285	0,301	0 :147					
-	CURVE	9%	ت با د	n n		· x	20, 9		Ē		37.3, 2	473, 2	57.3, 2	67.3, 2	773, 2	N73, 2	923, 2		CC		373, 2	473, 2	573, 2	67.3, 2	77.3, 2	£1	923, 2		[] []		311.2	318, 2	353, 2	383,2	398, 2	423.2	N 875					
×	CURVE 14	0, 146	31 3/10/17	3)	0.259	0.272	0.272	0.276	0.280		CURVE 16	!	¢. 293	!	CURVE 17	•	0, 293		CURVE 18	}	0, 297		CURVE 19		008: 0		CURVE 20		0.272		CURVE 21		0.270		CURVE 22		0.0285	0 0540	0.0265	0.0325		
۲	CURI	343, 2	, dir.	200	303. 8	310 3	319.7	328.7	039.1	,	COR	:	343, 2				343, 2		CUR		343, 2		CUR		343, 2		CUR		343, 2		CUR		343.2		CUB			4	 	: e:	; :	
. .	CURVE 11	0.243	\$ 15.5 5 15.5 5 15.5	9000	0.253	0.270	0.275	0.279		CURVE 12		0.258	0,259	0.264	0.270	0.251	0, 291	0.299	0,305	90:308	0.312	0.314	0.316	0, 320	0.324	0, 327	0, 3:11	0, 333		CURVE IS		0, 263	0,286	0.309	0.3311	0.354	221.0	0 400	0.423	0 446	<u>;</u>	
-	CUR	406.7	414.4	4.55.4	453.2	2 502	513.2	533, 7		CUR		340.2	348, 2	37:3, 2	39% 3	423.2	44x. 13	473, 2	49 h. 2	523, 2	548, 2	573, 2	598.2	623, 2	648.2	673.2	698, 2	711.2		CUR		373, 2	473, 2	573.2	67.3, 2	773 2	27.50	973.2	1073	1173 2		
2	(cont.)	0,254	286	0.232	CHRVE 6		0, 236	0,255		CURVE 7		0,249	0,262		CURVE A	1	9,234	0,250		CURVE 9		0,247	0,259		CURVE 10		0,0257	0.0336	0.0470	0.0743	0,0926	0.112	0, 128	0.152	0.164	0 168	61.175	201	0.252	0.276	2	
←	CURVE 5 (cont.)	197, 0	277.6	211.8	all		313	373		CUR		313	37:1		SCC		313	37.3		CUR		313	373		CUR		2, 45	2, 96	4, 60	6 75	8, 98.	12, 46	14, 70	17 75	21 75	26.10	i in	62.70	85.50	01 10		
٠.	- -	0,245	9.309	:	2 4	55%	11:10 p		/E 3]	0,214	0.224	0.244	0, 265	0,287	0.311	0, 236		/E 4		0, 226	0, 235	0.254	0.274	0, 293	0,312	0, 332	0.348	0, 359	0.369	0.379	0,389		Æ 5		0 124	22.0	92.	05.0	202.0	0.227	
├ ~	CURVE	323, 2	S13,19		CURVE	6 7.6.5	1 11	·	CURVE		255, 4	310.5	422, 1	533, 2	644.3	75.5.4	M66, 5		CURVE		255, 4	310.9	422. 1	533.2	2.	755, 4	866, 5	933, 2	949, 8	9,77,6	1005, 4	1033, 2		CIRVE		97. 19	20.00	45.53	56.59	BO 43	111 2	; ;

Not shown on plut

(continued)

DATA TABLE NO. 64

×	CURVE 75*	0, 267	CHRVE 767		0. 268	Ç	CURVE	986 0	0. 500	CURVE 78 ³		0.276	4	CURVE 79	1	0.211	CIDATE SO		0, 272	!	CURVE 81*		0.270	•	CURVE 82	,	0. 212	£00	CORVERS	0. 275	1	CURVE 84"	,	0, 2,6	200 200 200	IVE 33	0.277		CURVE 86"		0. 277	
L	S	333, 2	Sign		333, 2	į		220 0	33.5, 4	CUI	}	333, 2	į	50	0 1.00	.13.5. 2	2		333.2	1	CIT		333, 2		5		333.2	ţ	5	3.13, 2		5	;	333.2	Č		333.2		COL		333.2	
*	CURVE 68 'cort.)	0.280	0.2%3	CURVE 69		0,276	0.276	9 9	0.138	0.285		CURVE 70	,	0.303	0,308	0.353	0.361	0.773	0.401	0,397	0.414		CURVE 71		0, 275	0.281	0.281	0.31.6	0.323	CURVE 72°	<u> </u>	0, 304	0, 336	0.364	200	COHVE	983		CURVE 74*	1	0, 267	
۲	CURVE	326.2	4337. 4	CUR		303.5	304, 4	0 212	323.0	3.32. 6		CUR		402	526	414	0 1 4	0 to	812	823	818		CUR		336. 9	365. 9	380, 2	5,54	588.4	CUR	1	480.8	609.3	693. 2		HO3	6 1.22	* '	CUR		333. 2	
*	4"(cont.)	0.279	0,287	0,299	0,299	0,310	0, 323	0.333			0,290	0,302	0,309	0.325	653.0	0, 3.32	307 1		0 247	0.259	0.272	0,280	0,292	0,291	0.302	0,31x	0,333	;	E 67	0.283	0.310	0,335	0.347	0,351	0650		E E	0,276	0,272	0.270	0,2%5	
L	CURVE 64"(cont.)	436.2	490.4	535,4	535, 4	586, 4	6.36. 9	6.99.9 6.99.9	CIRVE 63		496. R	535, 9	084.2	634.4	2	5.6.7	CHUVE AS		2 266	363.7	426.3	465, 4	522, 2	525, 1	573, 0	624, 2	683,2		CURVE 67	474.9	599, 8	676, 2	723, 2	21 - 1 24 - 1 24 - 1	x .02.		CURVE 68	301, 4	307.0	313, 7	319, x	
*	6.60 E.60	0,292	[3		0,346	0.380	0, 409	0,459	9	3	0, 300	0,333	0.358	0.392	0, 423	1.5	اغ	0.033	2.24	0,246	0, 273	0,251	0.255	0,287	0, 263	0, 299	0,298	0,274	# 0 0 0	0,510	0, 322	0,305	01 :: 10	0, 323	153.	940	0,360		:	0.279	0.279	
۲	CURVE 60	471, 2	13 37417		677.4	776. 9	878, 13	979.3	CHRVIE 69		479, 5	587, 2	676, 3	778, 2	F15. 12	346015	100	2000	2004	365, 1	376.1	387.7	396, 7	432.1	433,2	485, 2	48H, 12	- 68	529, 7	567.0	577. 2	601, 7	630, 7	672.2	703.2	741.9	7.80.7	CINVE 64		431, 7	£34.8	
¥	E 57	0.277	2.25.0	0.249	0.294	0,300	0.324	6,323	127.0	0.347	0,347	0,356	•/-	ξ.	:	91776	22.50	2000	000	0,275	6.254	0,320	098: 0	0,380	0.415	0.420	0.430	0.440	0,460	÷ .	E .39		0.247	0,040	0.233	0.261	0.270	0.22	0.302	0.326	0, 364	
F	CURVE 57	334, 2	420.2	1 61 7 61	454, 2	491, 2	595, 2	663, 2	672.2 674.5	1 62 G	769, 2	873, 2		CURVE 58		223, 2	1 6 7 6 7	9 0 0 0 0	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	553, 6	610.2	665, 2	76A, 2	553, 2	927. 2	943, 2	943, 2	978.2	1018, 2	1048.2	CURVE 39		284, 6	310, 3	131.4	377. 5	426, 6	475.1	37.	676, 1	776.0	
×	VE 51	0.36	0, 27	0.33	0,33	0,36	0.39	÷.		30.0	VE 52		0,261	0.262	0, 263	0.275	0.278 0.278	0.287	, c.		0 947	:	VE 34		0,201		VE 36		0, 155	, ,,,		0,243	0.258	0.2N4	0.299	0,320	0.343	148.0				
۲	CURV	293, 2	373.2	57.1.2	673.2	77.3, 2	873, 2	973.2	1073.2	1111.5	CURV		357.2	400.2	419.2	456.2	476.2	514.2	0	CONVE	6 7.63.		CURV		323, 2		CURV		323, 2		100	293, 2	373, 2	473.2	573.2	673.2	773.2	873.2	i .			
×	CURVE 48	0, 291	9, 296	0.320	0,315	0,352	0 364	0,341	0.359	0 328	368	928 0	0, 356	0.400	0, 397	0, 406	0.398	0.342	5.397		CHRVF 19	:	0,285	0.293	0, 303	0,315	0, 323	0, 333	0.346	0.362	15.0	0.410	0, 439	0,469	•	CURVE 50		0,2560 0,985	807.0	0.317		
۲	CUR	407.0	540.7	0,580	737,0	795.5	7.94, 7	501.9	6.958 6.05	365. 6	0 X C X	2.145	t- Ž	907.0	907.0	916.5	916	926.	926.1	306.	CIVE		423.2	473.2	523, 2	573, 2	623, 2	673.3	723.3	773, 2	52.5.2	923.2	573, 2	1023,2		(I.B.	1	0.97, 1 0.00 0.00 0.00	10.00	1 21		
×	9 (cont.)	0,485	O. 4H2	0, 505	F 40°		0, 2:38	0.249	0,259	9 1569 9 15 15	0.273		E 41°		0,286	9, 325	6,344	0, 353	, ;	2	010 0	6 F 7 . 0	: - : - : -		6, 183		E 41	1	0, 152	,	<u>ا</u>	0 175	•	E 46	1	0, 191		E 47		505 V		
۴	CURVE 39 (cont.)	877.3	877.6	æ [-]	CHRVE 40		323, 2	373.2	423.2	473.2	2 676	1	CURVE 41		489.2	654.2	85H, 2	3. 2 .		CURVE 42	6 63.4	7.7.7.	CHRVE 43		1001,2		CURVE 44	[2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		C. L. KV E. +5	334.9	1	CURVE 46		25. 25.		CURVE 47	2	7 . CC		

Not shown on plot

p (mm Hg)	$\frac{\text{CURVE 107}^*}{\text{T} = 298.2 \text{ K}}$	0.0100 0.0000418 13.2 0.000632 120 0.00151 389 0.00202 881 0.00239 1905 0.00254		OKANE 2 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		S54.2 0.228 429.2 0.228 429.2 0.233 497.2 0.219 612.2 0.219 713.2 0.219 713.2 0.361 799.2 0.430 843.2 0.463 963.2 0.594 997.2 0.594 997.2 0.594	- F
(continued) k	CURVE 103* T = 298.2 K	0.0000292 0.0000348 0.000507 0.0000398 0.00646 0.0000941 0.0741 0.000244 0.724 0.000411 22.7 0.00136		JRVE 104*	0. 0000234 0. 0000238 0. 60102 0. 0000245 0. 00282 0. 0000310 0. 0€10 0. 0€10 0. 000153 10. 5 0. 000153 15.7 0. 0.00205	URVE 105 = 298. 2 K	298. 2 0. 00339
DATA TABIE NO. 64 (c.	Σ	298. Z 0. 00439 p (mm Hg) k CURVE 99* T = 209. 2 K	556 912 9	14:3 0.00246 794 0.00325* 3236 0.00340 5495 0.00344*	CURVE 100 T = 298.2 K 0, 010 0.000106* 0.813 0.000300* 1, 41 0.000404*	28.7 0.0026 155 0.00745 734 0.0119 1950 0.0129 $\frac{1}{1}$ 2.007 \times 0.012 $\frac{1}{1}$ = 298.2 K 0.010 0.0000866 1.43 0.000435 23.7 0.00203 148 0.00352 785 0.00382 7115 0.00720	T = 298.2 K 0. 010 0. 0000516 1. 53 0. 000373 30. 6 0. 00110 140 0. 00170 835 0. 00227 3055 0. 00252 5370 0. 00265
ivel	(MWD/te) k CURVE 92 (cent.)*	2801 0.249 3157 0.259 T k <u>CURVE 93</u>	297. 7 0. 00420 CURVE 94*	297. 3 0. 00319 423. 3 0. 00379 553. 1 0. 06443	CURVE 95* 297. 4 0. 00228 423. 1 0. 00293 553. 1 0. 00341	p (mm Hg) k CURVE 96* T = 29th. 2 K 0, 0000285 0, 0000766 0, 00275 0, 000150 0, 260 0, 000427 0, 260 0, 000799 11, 4 0, 00274 861 0, 00423 871 0, 00433 77 = 298. 2 K	
F +	RVE 87*	333. z 0. 279 Irradiation Level (MWD/tc) k CURVE .8* T = .333. 2 K		1163 0 . 1889 0.250 1932 0.230	CURVE 89* T = 333. 2 K 3006 0. 245 3060 0. 248 3298 0. 246	CURVE 90* T = 333. 2 K 659 680 0. 254 680 7.*. 1750 0. 251 1750 0. 251 1751 0. 257 1901 0. 257 3330 0. 257 3330 0. 257 4460	= 333.2 K

Not shown on plot

FIGURE AND TABLE NO. 64R RECOMPENDED THERMAL CONDUCTIVITY OF URANIUM

T; in K, k, in Watt cm - 1 K-1, T; in F, k, in Btu hr - 1 ft - 1 F-1. Value

* Values in parentheses are extrapolated.

SPECIFICATION TABLE NO. 65 THERMAL CONDUCTIVITY OF VANADIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 65]

Composition (weight percent), Specifications and Remarks	Polycrystalline; specimen 0.725 cm long, 0.0995 cm in dia; made from spectro-graphically standardized metal from Johnson, Matthey and Co.; in superconducting state.	The above specimen measured in a magnetic field; in normal state.	Approx. 99.9 pure; obtained from Electrometallurgical Co.; specimen 2.55 mm in dia; annealed in vacuo at 1300 C; residual electrical resistivity pp 4.83 µohm cm; ideal electrical resistivity reported as 0.014, 0.035, 0.14, 0.38, 0.74, 2.3, 4.25, 8.7, 12.95, 16.65, 18.3, and 19.9 µohm cm at 15, 20, 30, 40, 50, 75, 100, 150, 200, 250, 273, and 295 K, respectively.	Single crystal; in normal state.	The above specimen in superconducting state.	Single crystal; in normal state.	The above specimen in superconducting state.	Polycrystalline; in normal state.	The above specimen in superconducting state.	0.05 Fe, 0.01 Si, 0.005 Mo, 0.0005 Mn, and 0.0003 Cu; single crystal; speciment obtained by floating-zone melting of polycrystalline rods; measured in magnetic field of 6200 cereteds; in normal state.	The above specimen measured with the magnetic field removed; in superconducting state.	Specimen 0.50 in. in dia and 0.442 in. thick; heated in high vacuum (10 ⁻⁵ mm Hg) by high frequency induction to 1000-3000 C; localized heating within 0.003 in. of the surface at current frequency of 500000 cps; heat lost only by radiation, cylindrical surface assumed isothermal, and the temperature gradient along the radius analytically correlated to the thermal conductivity, run No. 1.	The above specimen, run No. 3.	The above specimen, run No. 4.	The above specimen, run No. 6.	The above specimen, run No. 7.	The above specimen, run No. 8.	99.74 V, 0.073 O, 0.048 Fe. 0.043 N, and 0.042 C; epecimen composed of 5 one-inch dia disks; hot rolled and annealed; density 6.05 g cm ⁻³ .
Name and Specimen Designation	V 1	V 1	*	۷ ا	١٨	ΠΛ	U V			II A	пл							
Reported Error, %	၉																	\$ >
Temp. Range, K	2.4-3.84	2.4-21	4.3-90	0.5-4.5	1.0-4.5	9.18-4.4	1.1-4.4	0.2-4.5	1.5-4.5	1.1-4.3	0.92-4.3	1840	1807.5	1801.5	1729	1707.5	1674.5	423-1876
Year	1955	1965	1957	1958	1958	1958	1958	1358	1968	1961	1361	1962	1962	1962	1962	1962	1962	1961
Method Used	H	نو	1 H	1		u	ы	1	.1	ר	ı	1	1	1	1	1	1	æ
	រុ	5	151	8	8	88	88	286	8	201	501	601	103	1 0	109	709	109	614
A S																		

SPECIFICATION TABLE NO. 65 (continue

Composition (weight percent), Specifications and Remarks	99.6' pure, calcium reduced vanadium from the Electrometallurgical Co.; Armoo Ivon used as comparative material	Single crystal; ~50 mm long, 4 mm in dia; prepared by 'floating zone' bechnique in superconducting state.	The above specimen irradiated to a dose of 10 ¹⁸ fast neutrons cm ² ; in superconducting state.	The above specimen measured hefore (rradiation in warms) state	The above specimen measured after irradiated to a dose of 10 ¹⁸ fast neutrons cm
Reported Name and Error, % Specimen Designation					
Reported Error, %	en				
Temp. Range, K	343	1.2-4.4	1.5-4.3	1.4-3.2	1.9-4.4
Year	1955	1960	1960	1960	1960
Ref. Method No. Used	ပ	H	1	-1	ı
Ref.	760	677	677	677	677
Curve No.	19	20	13	22	23

DATA TABLE NO. 65 THERMAL CONDUCTIVITY OF VANADIUM

(Impurity <0.20% each; total impurities <0.50%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-' K-1]

	_		100000000000000000000000000000000000000
¥	CURVE 23 (cont.)	0. 05.5 0. 06.2*	
H	CURV	ପ୍ରକ୍ରିକ	
×	CURVE 20 (cont.)	22 0. 0235 11 0. 04355 12 0. 03354 13 0. 04355 14 0. 04355 15 0. 063554 15 0. 063554 15 0. 063 16 0. 063 17 0. 043 18 0. 032 19 0. 022 19 0. 032 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 042 19 0. 044 19 0. 045 19 0. 045	0.033 0.042 0.046 0.051
ŧ-	CURVE	22.22.22.22.22.22.22.22.22.22.22.22.22.	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
,	E 15	0 232 0 227 E 16 0 227 E 17 0 324 0 340 0 340 0 340 0 346 0 346 0 346 0 346 0 404 0 414 0 414 0 452 0 452 0 452 0 455 0 655 0 655	
٠	CURVE 15	CURVE 16 CURVE 16 CURVE 17 CURVE 17 1674. 5 0. 2 CURVE 18 423. 2 0. 3 542. 1 0. 3 542. 1 0. 3 847. 1 0. 3 887. 1 0. 3 1162. 6 0. 4 1211. 5 0. 4 1392. 1 0. 4 1372. 8 0. 4 1372. 8 0. 4 1372. 8 0. 4 1372. 9 0. 4 1373. 8 0. 4 1375. 9 0. 4 1375. 9 0. 6 1. 2 0. 0 1. 2 0. 0	25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
¥	CURVE 10	25 0. 0.095 25 0. 0.025 26 0. 0.025 26 0. 0.025 27 0. 0.025 28 0. 0.025 28 0. 0.025 29 0. 0.025 20 0. 0.039 20 0. 0.051 20 0. 0.051 20 0. 0.055 20 0.	0.279 CURVE 14 5 0.260
H	COL	114 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1807. 5 CUR 1801. S
¥	CURVE 7	CURVE 8 0.0042 0.0042 0.0078 0.0078 0.0153 0.0153 0.0153 0.0245 0.0245 0.02248 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254	0.0123 0.0215 0.0316 0.0425 0.0526
H	CO	A CONTRACTOR OF TOTAL	4 44 44 50 50 50 50 50 50 50 50 50 50 50 50 50
м	4 (cont.)	CUITVE 5 0. 0346 0. 0346 0. 0346 0. 0346 0. 043 0. 0055 0. 00661 0. 00661 0. 00662 0. 00673 0. 0075 0. 031 0. 031 0. 031 0. 0326 0. 00226 0. 00226 0. 00236 0. 00226 0. 00236 0. 00236 0. 00226 0. 00236 0. 00236 0. 00236 0. 00236 0. 00236 0. 00236 0. 00236	
۳	CURVE	20 20 20 20 20 20 20 20 20 20 20 20 20 2	3. 3. 3. 3. 4. 4. 16 41 41
×	VE 1	0.0072 0.0024 0.0122 0.0138 0.0145 0.0244 0.0250 0.0428 0.0428 0.0438 0.0428 0.0438 0.0438 0.0448 0.0449 0.118 0.118 0.118 0.118 0.173 0.136 0.234 0.234	0. 009 0. 014 0. 019 0. 024
۲	CURVE		, i i i i i i

Not shown on plot

واللهافالأمانيوم ومياحل ومرسي يقديا فالمواليد للمائية المرتبة كأمانية والسائك لمترسون حوالأفاس بتسرة فلاسيد المسايات الموجعة

FIGURE AND LABLE NO. 65R RECOMMENDED THERMAL CONDUCTIVITY OF VANADIUM

*Values in parentheses are extrapolated or interpolated. and k2 in Btu hr -1 ft -1 F -1. Tin K, ki in Watt cm-1 K-1, Tr in F.

SPECIFICATION TABLE NO. 66 THERMAL CONDUCTIVITY OF YTTERBIUM

Ampurity 0.20% each; total impurities 0.50%.

[For Data Reported in Figure and Table No. 66]

Curve No.	Surve Ref. No. No.	Method Used	Year	Temp. Range, K	Reported Error, "	Reported Name and Error, " Specimen Designation	Composition (weight percent). Specifications and Remurks
_	994 820	د	1965	2, 1-79			99.99 pure; polycrystalline; strip specimen 0.25 mm thick; annealed in helium vapor at 450 C for 2.5 hrs; electrical resistivity reported as 5.56 and 27 µ ohm cm at 4.2 and 203 K, respectively; Lorenz function in the residual resistance region found to be 3.17 x 10.3V/K-2; data taken from smoothed curve.
61	256	1	1966	300			Predicted value-calculated from electrical resistivity value averaged from data of Spedding, F. H., et al. (Trans. AIME, 212, 379, 1954) and Curry, M. A., et al. (Phys. Rev., 117, 953, 1969), using the Lorenz number 3.36 x 10°4V/K ⁻² based on the smoothed curve of Lorenz number vs atomic number given by the authors.

DATA TABLE NO. 66 THERMAL CONDUCTIVITY OF YTTERBRUM

(Impurity $\leq 0.20\%$ each; total impurities $\leq 0.50\%$

[Temperature, T, K, Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

¥	CURVE 1 (cont.)	0.114	0.110 0.107	0.105		CURVE 2		0.35					
۲	CURV	40.0	52.5 60.0	78.8		II)		300					
¥	CURVE 1	9.005 0.03	0.123	0.140	0.143	0.143	0.142	0.140	0.135	0.130	0.125	0.120	0.117
Ħ	CUR	2.10	10.5	13.1	13.8	15.0	16.3	18.1	20.5	23.B	28.1	31.9	35.6

-459.7 -189.7 -9.7 -32.0 80.3 170.3 260.3 440.3

0 (22.3) (20.9) (20.9) (20.2) (19.9) (19.7)

0 . 423)* (0.423)* (0.354) (0.354) (0.354) (0.345) (0.345) (0.345) (0.341) (0.341)

0 150 200 250 273.2 350 400 500

Recommended Values^a

EMARKS

The recommended values are for high-purity ytterbium. The recommended values are obtained by estimation and their accuracy is uncertain.

* T₁ in K, k₁ in Watt cm⁻¹ K⁻¹, T₂ in F, and k₂ in Btu hr⁻¹ft⁻¹F⁻¹,

* Value:

* Values in parentheses are estimated.

SPECIFICATION TABLE NO. 67 THERMAL CONDUCTIVITY OF YTTRIUM

(Impurity 0.20% each; total impurities 0.50%)

[For Data Reported in Figure and Table No. 67]

Curve	Ref.	urve Ref. Method No. No. Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	761		1959	653-1153	3-5		No details reported.
8	762	٦	1965	1.8-5.9			99.99 nominal purity; polycrystalline; machined from zone-refined ingot; annealed at 1150 C for 75 hrs; residual electrical resistivity 5.10 pohm cm; electrical resistivity is 10 pohm cm; electrical resistivity ratio $\rho(293 \text{ K})/\rho(4, 2 \text{ K}) = 13.0$; Lorenz number $L_0 = 2.65 \times 10^{-6} \text{ V}^2 \text{ K}^2$.
က	162	د	1965	1.8-4.7			The above specimen measured in a magnetic field of 6600 gauss.
4	811		1954	301.2	10		No details given.
က	817 897		1965	2.0-21			Approx 99.9 pure: flat specimen 0.25 mm thick; electrical resistivity 80 μ ohm cm at 293 K; electrical resistivity ratio $\rho(293 \text{ K})/\rho$ (4.2 K) = 7.3; Lorenz number 3.00 x 10 ^T V/K ⁻² at 4.2 K.
ဖ	256	U	1966	162	4.		~ 0.1 Ta. < 0.1 other rare earth metal, and ~ 0.03 other base metals; polycrystalline; specimen 0.63 cm in dia 0.63 cm long; electrical resistivity 53 polym cm at 291 K; data derived by the authors from measurements by 2 different thermal comparators.

DATA TABLE NO. 67 THERMAL CONDUCTIVITY OF YITRUM

(Impurity<0, 20%; total impurities <0.50%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-14-1]

¥	CURVE 5 (cont.)	0.054 0.055 0.056	CURVE 6	0.159																																	
۲	CURV	19.7 26.0 20.5	톙	291.0																																	
¥	VE 3	0.0092 0.0107 0.0122	0.0140	0.0200	0.0200	0.0235	7		0.146		VE 5	0	0.00	300	0.010	0.012	0.013	0.014	0.016	0.019	0.022	0.026	0.029	0.031	1000	3	3 3	5.0	0.04 2.04	0.04 44.0	0.045	0.046	0.047	0.049	0.050		0.053
۴	CURVE	1.75 2.05 2.45	3.10	3.80	8.5	4.65	Citatic		301.2		CURVE		9 10	o =			4	5.0	5.7	6.7	8.0	8°.5	10.4	11.4	12.4	2.5	2.4.	14.0	15.4	15.7	16. 1	16.6	17.0	17.5	18.2	18.8	19.2
×	1 3	0.134 0.131* 0.134*	0.125	0.145	0.141	C. 141	0.142	0.145	0. 14 H	0.148	0.149	0.146	0.146	20.10	0.136	0.152	0.150	0.150	0.151	0.156		Æ 2		0.0095	0.0110	0.0125	0.0145	0.010	0.0175	0.0195	0.0213	0.0220	0.0243	0.0255	0.0365	0.0283	0.0305
←	CURVE	652.6 652.6 635.4	663.7	705.4	774.8	819.3	844.3	860.9 841.5	891.5	928.7	977.6	980.4	997.1	1058.2	1000	1083.2	1088 7	1102.6	1135.9	1152.6		CURVE		1.75	2.05	2.45	2.30	3.10	3.40	3.80	8.8	4.35	4.60	4.80	2.00	5.40	5.8

RECOMMENDED THERMAL CONDUCTIVITY OF YTTRIFF 671 FIGURE AND TABLE NO

Tin K, kg in Watt em 1 K-1, T2 in F, and kg in Bw 15-1 ft-1 F-1,

*Values in parentheses are extrapolated or interpolated.

MARKET COLUMN

SPECIFICATION TABLE NO. 64 THERMAL CONDUCTIVITY OF ZINC

(Impurity < 0, 20% each; total impurities < 9, 50%)

[For Data Reported in Figure and Table No. 68]

Curve	Ref.	Method	Year	Temp. Range, K	Reported Error. %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
-	230	.	1925	323			99.97 pure; Baker's analyzed metal; cylindrical specimen 10 cm long, 1.9 cm in dia; electrical conductivity at 22 C being 17.0 x 104 ohm-1 cm-4.
8	٠	н	1931	409-640			Pure redistified zine; cylindrical apecimen of 0. 585 cm dia; fracture crystalline with crystals radiating from axis of rod; density 7.10 g cm ⁻³ at 21 C; the same specimen used by Lees in 1908 (curve 6).
n	35	-1	1919	402-851			Measured in both solid and liquid states.
*	511	-1	1918	288.4			Specimen radius 0.685 cm; furnished by the manufacturer Erba.
w	7	ન	1925	361-562			99.8 pure; obtained from London Zine Mills; east from billets, rolled at 200 C, sawed into strips and drawn cold; density 7.13 g cm ⁻¹ at 21 C; electrical resistivity reported as 6.08, 8.09, 10.48, and 14.50 µohm cm at 35, 105, 200, and 350.2 C, respectively.
φ	88	ų	1908	262-56			Pure: turned from a cast stick of "pure redistilled zine"; fracture crystalline with crystals radiating from the axis of rod; cylinder about 7 cm long and 0.585 cm in dia; density 7.1 g cm ⁻³ at 21 C; electrical resistivity reported as 1.699, 1.36, 1.26, 3.69, 4.32, 5.36, 6.30, 6.39, 7.14, and 8.01 µohm cm at -180.3, -168.4, -116.3, -99.7, -70.1, -24.7, 16.7, 47.8, 54.3, and 90.3 C. respectively; first experiment.
7	80	.1	1908	104-300			Second experiment of the above specimen.
œ	13,	í4	1939	243-1003			Specimens 4-5 cm in dia, 20-25 cm long used to find data in the solid state; for the liquid state molten zinc contained in a graphite cylinder to form a specimen 25 cm long and 4 cm in dia.
ဘ	16	Ĺ .,	1929	37-382			99. 993 Zn. 0.005 Fe. and 0.0018 Cd; single crystal; obtained from the Bureau of Standards; melted in an evacuated glass tube, lowered from the furnace at the rate of 1 cm h^{-1} ; heat flow parallel to the basal plane.
10	16	Ĺ	1925	98-434		No. 2	Same compositions and supplier as the above specimen; polycrystalline; cast in vacuo in a graphite mold.
11	16	щ	1929	38-380		No. 1	Similar to above but cast in open air.
13	342	1	195.	લ		Zn 2	99. 997 pure; single crystal; 1-2 mm dia x 5 cm long; obtained from Imperial Smelting Corp; specimen axis at 80° with the hexagonal axis; measured in transverse magnetic fields with strength H ranging from 0.17 to 3.73 kilocersteds.
=	342	J	1953	4 .6		Zn 2	The above specimen measured in transverse magnetic fields with strength H ranging from 0.17 to 3.73 kiloversteds.
*	342	ы	1953	9 .		Zn 2	The above specimen measured in longitudinal magnetic fields with strength H ranging from 0.17 to 3.73 kilocersteds.
15	342	J	1953	2.5		Zn 4	Similar to the above specimen but rod axis at 13° with the hexagonal axis; measured in transverse magnetic fields with strength ranging from 0.36 to 3.59 kilocorsteds.
:	342	ı	1953	2, 5		Zn 4	The above specimen measured in longitudinal magnetic fields with strength ranging from 0.36 to 3.50 kilooersteds.

SPECIFICATION TABLE NO. 68 (continued)

Method Year Temp, Reported Name and Composition (weight percent), Specifications and Remarks Used Year Range, K Error, % Specimen Designation	L 1953 3.4 Zn 4 The above specimen measured in transverse magnetic fields with atrength ranging from 0.36 to 3.59 kilooersteds.	L 1953 3.4 Zn 4 The above specimen measured in longitudinal magnetic fields with strength ranging from 0.36 to 3.75 kilooersteds.	L 1953 4.5 Zn 4 The above specimen measured in transverse magnetic fields with strength ranging from 0.36 to 3.90 kilooersteds.	L 1953 4.5 Zn 4 The above specimen measured in longitudinal magnetic fields with strength ranging from 0.36 to 3.85 kiloocrsteds.	L 1952 3.0-23 2-3 Za 1 99.9995.pure; polycrystalline; 1-2 mm dia x 5 cm long; provided by Hilger H. S. brand (HS 8392); annealed in evacuated quartz tube for several hrs at two-thirds the melting point.	L 1952 1.8-41 2-3 Zn 2 99, 997 pure; single crystal; 1-2 mm dia x 5 cm long; provided by Imperial Smelting Corp; hevagonal axis at 80° to the specimen axis; annealed as the above specimen.	L 1952 3.0-40 2-3 Zn 3 Similar to the above specimen but hexagonal axis at 13° to the specimen axis.	1934	L 1934 330.2 < 0.8 Some of the above specimens strained by bending and straightening in both directions of the mudpoint; measured with cos² θ ranging from zero to 0.51.	L 1934 330.2 < 0.8 The above specimens anneaied at 380 C for 11 hrs.	1934 330.2	L 1934 330.2 < 0.8 The accoud one of the above specimens strained by bending and straightening.	330. 2		R 1951 330. 8 Powdered; apparent density 2, 443 g cm ⁻³ .		R 1951 331.1	
												1. 19	- 13					
Ref. M.	342	342	342	342	26	16		280	280	280	260	280	280	279	279	279	273	
Curve	17	18	19	20	21	22	2	24	25	26	8	23	33	8	ន	32	33	į

SPECIFICATION TABLE NO. 68 (continued)

SPECIFICATION TABLE NO. 64 (continued)

Constitutions and Remarks	Composition (weight percent).	99. 9* 2n. 0.04 Pb. and 6.02 Fe; 2 cm dia x 15 cm long; speciment prepared as	melting commercially pure zinc and casting in Figure Critical Table comparative material (reference value taken from International Critical Table comparative material (reference value taken from International Critical Table vol. 11: 0, 352 Watt cm ⁻¹ C ⁻¹ at 0 C).	Similar to the above specimen except commercial malleable nickel used as the number of similar to the above specimen except commercial malleable nickel used as the number of lead).	comparative material (pased on the care)	Similar to that of the data of lead). material (based on the data of lead).	99.97 Zn (by difference). 0.01 Cd. 0.01 re, and 3.01 cd. 1.805 cm in dia; density 1.18 cm. 3; electrical conductivity reported as 16.51 and 1.805 cm in dia; density 1.18 cm. 3; electrical conductivity reported as 16.51 and 1.805 cm. 1.8	Similar to the above specimen but electrical conductivity reported as 13, 30 and 12, 12, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10	Specimen in the form of a hollow cylinder.	Molten specimen placed in a hole 21 mm in dia drilled in an accompanion material.	of 30 mm height; Indiaonal second forms Kahlbaum in a quartz tube, then	prepared by metallic in cool water; electrical resistivity reported as 1.55., quickly solidified in cool water; electrical resistivity respectively. 7,827, and 10.36 pohm cm at 83.2, 273, 374, and 476 K, respectively.
	Name and Specimen Designation		ć.	v •	i	Z. S.	Zinc II	Zinc II, wdre			٠.	
	Reported Error, %		w	1	ເລ	ភ						
	Curve Ref. Method Year Banco K	namer:	1933 462-553		313-596	342-602	291, 373	291, 373		323, 673	576-874	83-476
	Year		1933		1933	1933	1900	1900	2	1926	1966	1929
	Method	Csed	ပ		ပ	ပ	, u		4	æ	ပ	٦
	Ref.	Š.	129		129	129	7	1	7	73	838	3
	Cure	Š.	99		ន	ç	53		3	55	26	ડ

DATA TABLE NO. 68 THERMAL CONDUCTIVITY OF ZINC

(Impurity < 0.20% each; total impurities < 0.50%)

[Temperature, T. K. Thermal Conductivity, k, Watt cm-1K-1]

	# (cont.)	ì	1.05	.04	2	1.03	1.02	1.01		CURVE 25*	(T = 330, 2 K)		1.04	1.02	1.01		CURVE 26	130.2 K)	•	1.06	1, 03	66 '0	•	VE 27	(T = 330,2 K)		1.06	1.01	1.05	1.05	*	CURVE 28	U. Z K.)		3.	*	CORVE 29	30, 2 K)		5 8	7. 10.			
ငတ်ဧ ² မှ	CURVE 24 (cont.)	•	0.26	0,34	9,515	0.715	0,815	066'0		CUR	Ţ		0	0.26	0.51		CUR	(F)	• ,	0	0.51	1.00		CUR	(T = 3	•	0, 13	0.91	0.93	0.935		CUR	(T = 33	;	0.31	(A CO	(L = 3	•	9, 13	. a.			
×	CURVE 22 (cont.)	3,1	2.7	2,5		CURVE 23		3.4	4.2	5.0	6.0	6.8	9.9	7.4	8.0	6.4	8.0	8.7	9.9	10,6	10.9	11.0	9.00	10.1	8.6	8.4	7.0	5.5	2.0	4.	ი ი	o . o	0.0	2.3	د	*	CORVE 24	30.2 K)	1, 07			1,05		
(-	CURVE	32.0	35.8	41.0		CU		3.0	3,5	4, 0	4, 75	5, 25	5.5	5, 75	5, 75	9,0	6.5	6, 75	7,75	8, 75	9, 75	10, 5	11,3	12.8	14, 0	16, 3	18.8	22.3	23.8	26.3	29.5	31.5	35.0	39. 5	,	A-900		* I	•	0 002	0.02	0,025	0, 175	
*	CURVE 20°	ì	5.38	5,35	5.21	88.4	4.81	4, 72		¥		/E 21		6.4	10.5	9 .3	13.7	15.0	15.4	12.6	12.2	11.4	8.7	5.9		/E 22		2.4	3.5	5.1	6.1	o :		ກ ກໍດ	D .	ж С	7.5	5.5	5.3	2.1	4.7		o. o	
F	CUR	(kilooersteds)	0, 36	1,08	1.80	2, 52	3.22	3.85		(- -		CURVE 21		3.0	3.25	3, 75	9.00	9.25	13, 5	15.3	15.3	16.3	18.3	22.5		CURVE 22		1.75	S	3.5	4.75	6.25	c). '		c :	14,5	17.25	21.0	21, 5	22.5	23.5	27.5	.9. 0.0	
**	CURVE 16°	8)	2.86	2.77	2.69	2.60	2.58	2.51		CURVE 17	. 4 K)		3.92	3.69	3.41	3, 11	2.86	2.75		CURVE 18	. 4 K		4.05	3.924	3.77	3.68	3, 55	3.48		CURVE 19	i. 5 K)	č	5.24	5.18	9.63	4.67	4.31	3,95	3.66					
×	CUR	(kilonersteds)	0.36	1.08	8	2, 52	3, 22	3, 50		CUR	(T = 3		0.36	1.08	8	2.52	3, 22	3, 59		CURI			0,36	1.08	3.80	2, 52	3, 22	3, 75		CUR	(T = 4	6	ું. જ		1. 08	€:	2, 52	3, 22	3, 90					
.	12 (cont.)		2.28	2.03	1.81	1.77		CURVE 13	.6K)		90.9	5, 99	5,65	5,35	4.88	4,57	4.25	4.03	3, 79	3.61	3,41	3,36		CURVE 14*	.6K)		6. 17	6, 10	5.99	5.49	5, 13	4.74	. 1	¥ (4)	CORVE 13	, 5 K)		2.88	2.74	2.50	2,29	8. 68 8. 68		
I	CURVE 12 (cont.	(kilooersteds)	2, 15	2.86	3, 57	3, 73		CUR	, = L)		0. 17	0.35	0. 70	1.08	1. 41	1.79	2, 15	2.50	2.86	3, 22	3, 57	3, 73		CUR	(T=4.6K)		0.17	0.35	0. 70	1. 41	2.15	2,36				Z= L)		0.36	1.08	1.80	2.52	3, 22	3.03	
×	(cont.)	1.07	966 .0	0.975	0.607	0.594	0,586	0, 577	0.565		E 9	1 52	; ;	1.4	35.	1.20	2	20		1 34	1. 1.	; <u>-</u>	9 • -	3 8	3	11	:	1 36	1.24	1, 12	1, 06	1.30		×		E 12	SK) (a	3, 47	3, 37	3, 26	2.88	2.66	
۲	CURVE 8 (cont.)	428.2	608.2	673.2	758.2	803.2	858.2	908.2	1003.2		CURVE 9	33.0	. 6	3.65	1000	7.60.	301.10	Votte	COUNT	6	270.2	365.9	3.50	2.00.4	404.10	CIRVE		38.2	108.2	213.2	283.2	380.2		z		CURV	(T = 2 S K)	(Filmersteds)	0.17	0,35	0,55	1,08	1.41	
¥	6 (cont.)	1, 15	1.14	1, 13	1.12	1. 11	1, 13	1.15	1, 13	1, 13	1. 14	1, 13	1, 11	1. 12	1, 11	1, 10		Æ 7		1.15	1, 14	1, 15	1, 11	1, 13	1, 12	1, 13	1 . 12	1.12	1.11	1.12	1, 14	7.13	* 1 .	1.14	3:	1.11	1.12		8 1 1		5.13	1.17	7: 7	;
۲	CURVE 6 (cont.)	129.2	139.2	149.2	158.2	166.2	186.2	204.2	214.2	234, 2	251.2	264.2	277.2	288.2	296.2	297. 2		CURVE		104.2	118.2	131.2	141.2	150.2	159.2	176.2	190.2	208.2	224.2	240.2	254.2	266.2	2.1.2	2.84.2	233.2	297. 2	300.2		CURVE 8	1	243, 2	268,2	343, 2	3.000
×	CURVE 1	1, 159		CURVE 2		1. 109	1,075	1.071	1.075	1.042	1. 021	1.008*	0.992	986.0		CURVE 3		1, 096	1.046	1.029	1. 008	0.975	0.920	0.586	0.577	0,573		CURVE 4	;	0.785	•	CURVES	•	6 6 6 7	5 6	.0.1	. e	936	1	CURVE 6	•	81.	1.13	-
(-	CUR	323		CUR		409.2	426.2	436.2	449.2	479.2	552.2	555,2	586.2	640.2		CUR		402.2	515.2	553.2	586.2	635.2	673.2	733.2	810.2	851.2		CUR		288.4		N COK	6	\$. 6 8 . 6 8 . 6	0.00	455.5	499.1	562.0			4	3.66	112.2	169.6

Not shown on plot

การกระแน่งใหม่ ม	E 53	1.11	* *5	1.07	1, 08	E 55 #	1, 11	0.900	E 56	0.9838*	0.9420	0.9252	0.5861	0, 5987	0.6154	0.6322	E 57*	1 256	1.252	1.248	1. 23												
· ··· •	CURVE	291.2	CURVE	291.2	373.2	CURVE	323.2	673.2	CURVE 56	576.2	667.2	692.2	713.2	786.2	832.2	8.4.2	CURVE 57*	83.9	273	374	0												
צ	46 (cont.)	6,000	8. 50¢	/E 47	18.0	10 40		8.3	/E 49	2.1	CURVE 50		1, 106	1, 065	1, 039	15 21	١,	1, 138	1.071	1, 050	1. 027	CURVE 52"	3 6	1, 130	1, 123	1. 096	1.096	1. 078	1.080	1, 039			
Fr	CURVE	0.800 0.900	0.975	CURVE	0.825	T. D. V.		0.825	CURVE	0.825	CUR		462.2	523.2	553,2	CHRVE		513.2	508.2	552.2	596.2	CUE	240.9	358.2	398,2	430.2	438.2	492.2	504.2	602.2			
€	45 (cont.)	e. 00475 0. 00750	0, 0180 0, 0750	0, 2000	0.700	1,050	1. 900	2.600	2.900	4. 500	CURVE 46		0.005	0.00e3	0.010	0.015 0.025	0.033	0.050	0.075	0.085	6. 100°	0.140	0.200	0,450	0,650	0.850	1.250	1.750	1.700	2.800	4.500	5.000 5.500	
(continued)	CURVE 4	0, 132	0.170	0.270	0.375	0.430	0.525	0.620	0.725	0.940	CUR		0.100	0, 115	0, 120	0.130	0, 145	0.170	0.185	0.185	0.200	0.220	0.230	0.260	0.290	0.330	0.350	0.400	0.440	0.550	0.625	6.675 0.750	
E NO. 68	42	6.04 6.02	6.04	275	172.	. 264	107	43	6. 22 6. 95	6.63	1, 306	1. 248	3	* *	8 (1. 77	. 68	4.64	59	• .	4.21	. 35	. 345	324	. 249	. 230	. 2:34	45	,	0.00100 0.00100	. 00110	0.00170 0.00325	
DATA TABLE NO. T k	CURVE	21.0		8 88	88.8	90.0		CURVE		21.9		292.8		CORVE	21.0	21.0		21.9			2, 4, 2, 4, 2, 4,		4.58	92.0	293.1	295.2	296.1	CURVE 45		0.100		0.120	
ע	39 (cont.)	0.30	3.4	8 9		0.75	0.91	E 40	0.016	0.028	0.059	0.13	0.17	0.27	0.45	0.48 59	0.72	0.70	\$ &	0.92	E 41		رن چ چ	S 4	3.86	3.76	3.49	1, 236	1, 229	1. 206 1. 196			
(-	CURVE 3	0,305	0,39	0.53	0.62	0.73	0.91	CURVE	0.22	0.26	0.305	0.37	0.43	0.57	0.67	0.76	0.93	1.00	1.03	1,30	CURVE		21.6	22.6	25.9	26.2	27.7	8.98 86.8	92.6	292.5			
צג	36 (cont.)	1,17	1, 15	. ~ ~	; £		Q .	81 38	0.0013		0.0039			0.016				0,093		81.0	0.0 2.2 4.2		6.43 6.43		09.0		0.88		Æ 39	0 18	0.27	0.30 0.27	
(-	CURVE	410.7	459.5	4.015.1952	er avang		7 .087	CURVE	0. 135	0.15	0. 16	0.19	0.21	0.24	0.24	0.25	0.28	0.29	33	0.38	0.0	0,46	0.56	63	0.72	0, 77	₹ 5 ci c		CURVE	0.18	0, 23	0. 26 0. 27	
ĸ	CURVE 30*	0.00436	CURVE 31	0.00412 5	CURVE 32	0.00502	CURVE 33	60,000	20.00	5	2.91	4.0 0.0	6.03	7.39	20 20 20 30 20 30	9. 72	10.20	10. 98 10. 98	9. 53	7. % 8. %	3 ;	CURVE 35	1. 41	1.38	1.36	1.28	1, 23	1.18	1. IZ	CURVE 36	1.21	1, 20 1, 18	Not shown on plot
(- -	CUR	331,4	E)	330, 8	CUR	331.0	CUR		331.1	CONVE	2.72	3,46	4, 4, 0, 0, 0, 0,	5,76	%, r	7,90	φ. <u>.</u>	11.9	14.1	21.2		SE SE SE SE SE SE SE SE SE SE SE SE SE S	394.2	406.0	417.0	461.5	6.984	512.0	220.2	CUR	371.0	384.3	Not sho

Tin K, k, in Wall cm - K-1, Tin F, and ky in Bbu hr -1 ft - F-1, *Values in

SPECIFICATION TABLE NO. 69 THERMAL CONDUCTIVITY OF ZIRCONIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 69]

1 68 L 1956 2.2-91 2r 13 1956 1.2-91 1956 1	Curve	Ref.	Method Used	Yesr	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
83 L 1956 3.3-90 Zr 1c Th 292 P 1954 298,873 Pr Th 27 C 1953 323-673 495 Pu 27 C 1953 323-673 495 Pu 101 L 1955 336-950 2.0 Pu No 555 C 1956 373.2 484-1925 5 Ha 441 L 1951 402-639 5.0 D-151 A6 441 L 1957 331-917 Iodide Zirconium 99		8		1956	2.2-91		Zr la	99.99 Zr; spectroanalysis shows Fe (all sensitive lines), Hf and Ni (all sensitive lines faintly. St and Ti (some sensitive lines), and Al, Cr, Cu, and Mg (faintly visible); JM5000 from Johnson, Matthey and Co.; 3 mm dia rod annealed at 950 C for 5 hrs in vacuum; electrical resistivity 48 jabim cm at 293 K, residual electrical resistivity. I. 98 john cm; mounted in the cryostat with a push fit into copper fitting; measured with the current lead (for the measurements of electrical resistivity) attached.
282 P 1954 298,873 Pr 27 C 1953 323-673 2682 A Pu 27 C 1953 323-673 495 Pu 27 C 1953 328-573 495 Pu 101 L 1955 336-950 2.0 No 555 C 1956 373.2 Ha 614 R 1961 484-1925 5.0 D-151 A6 441 1957 331-917 Iodide Zirconium 99 441 1957 332-879 5.0 D-151 A6		8	٦	1956	3.3-90		Zr 1b	The above specimen measured with the current lead removed.
296 P 1954 298, 873 Pr 27 C 1953 323-673 A Po 27 C 1953 323-673 A Po 101 L 1955 336-950 2.0 Po 555 C 1956 373.2 A 614 R 1961 484-1925 5.0 D-151 A6 441 1957 331-917 Iodide Zirconium 99. 441 1957 332-879 5.0 D-151 A6		88	1	1956	14-90		Zr 1c	The above specimen unintentionally strained by drilling and tapping to insert the connectors for re-mounting.
27 C 1953 323-673 A95 Pu 27 C 1953 323-673 495 Pu 101 L 1955 336-950 2.0 No 555 C 1956 373.2 A8 Ha 614 R 1961 402-639 5.0 D-151 A8 441 1957 331-917 Iodide Zirconium 99 441 1957 332-879 5.0 D-151 A8		292	Δ,	1954	298,873			Preliminary results.
Zr C 1953 323-673 495 Pu 101 L 1955 336-950 2.0 No 555 C 1956 373.2 5 Ha 614 R 1961 44-1925 5 99-99-99-99-99-99-99-99-99-99-99-99-99-		53	ပ	1953	323-673		2682 A	Pure; 2 cm dia x 15 cm long; are-melted from WAPD grade 1 crystal bar; Armeo iron used as comparative material; data taken from smoothed curve.
101 L 1955 336-950 2.0 No 555 C 1956 373.2 Ha 614 R 1961 484-1925 5 99- 194 L 1957 402-639 ± 5.0 D-151 As 441 1957 331-917 Iodide Zirconium 99- 441 1957 332-879 99-		72	ပ	1953	323-673		498	Pure; 2 cm dia x 15 cm long; are-melted from Bureau of Mines sponge Zr; Armoo iron used as comparative material; data taken from smoothed curve.
C 1956 373.2 R 1961 484-1925 5 P 1961 402-639 ±5.0 D-151 As 1957 331-917 Iodide Zirconium 99 1957 332-879		101	٦	1955	336-950	0.0		Nominally pure; cylindrical specimen 7,938 in long, 0,787 in, in dia; obtained from Westinghouse; prepared from Foote Grade I crystal bar ingot; the ingot melted in tungsten are jurnace, forged at 845 C in argun to the size 10 x 1 x 1 in., annealed in vacuum for 0.5 hr at 1000 C; machined to final shape.
H 1961 484-1925 5 59. L 1951 402-639 ±5.0 D-151 As 1957 331-917 Iodide Zirconium 99 1957 332-879 699		555	ပ	1956	373.2			Hafnium-containing crystal bar.
L 1951 402-639 ±5.0 D-151 As 1957 331-917 lodide Zirconium 99		6 14	æ	1361	484-1925	Ŋ		99.95 Zr. 0.029 Fe. 0.017 C, 0.0045 III, and <0.031 other elements; specimen consisted of 5 one-in. dia disks; density 6.49 g cm ⁻³ .
1957 331-917 Iodide Zirconium 99		18	u	1951	402-639	÷ 5. 0	D-151	Assumed to be pure; 0.626 in. dia crystal bar; lot No. D-151; obtained from Argonne National Laboratory.
1957 332-879 99		‡		1957	331-917		lodide Zirconium	99.9 pure; annealed in vacuum for 8 hrs at 700 C; electrical resistivity at 58.0, 124.1, 239.8, 321.0, 415.6, 490.6, 558.8, and 644.0 C being respectively, 36.1, 47.6, 66.6, 75.8, 87.0, 94.4, 100.0, and 106 pohm cm; Lorenz number reported at these temperatures were 3.38, 3.33, 3.18, 3.11, 3.08, 3.04, 3.03, and 2.92 x 10 ⁻⁸ VY: ⁻² , respectively.
		1		1957	332-879			99.78 Zr. 0.14 Hf. and 0.08 C; electrical resistivity reported as 53.76, 64.93, 78.74, 87.71, 95.25, 105.26, [11.11, 120.48, and 125.00 uohm em at 59.0, 117.0, 202.0, 262.0, 318.0, 402.0, 456.0, 548.0, and 606.0 C, respectively; Lorenz numbers reported at these temperatures were 3.46, 3.44, 3.54, 3.36, 3.37, 3.34, 3.37, 3.28 and 3.29 x 10 ⁻⁸ V ² K ⁻² , respectively.

SPECIFICATION TABLE NO. 69 (continued)

Composition (weight percent). Specifications and Remarks	Pure; 98-100% of theoretical density. 99-15 Zr. 0.0132 Hf, <0.0100 each of P and Zn, 0.0079 C, 0.0021-0.0050 O, 0.0003-0.0050 W, 0.0024 Fe, 0.0011 Ni, 0.0002-0.6007 each of Ca, Cr. H, Mo, and Si, and <0.0010 other elements; arc cast, annealed at 1100 C for 4 hrs. swaged at room temperature, annealed at 1000 C for 15 min and at 800 C in a vacuum of 1-2x10 ⁻⁶ mm Hg for 15 min, cut to four lengths and clamped together.	The above specimen unclamped and retightened. 0.04 Hf, 0.04 Fe, 0.02 Ni, 0.007 Ti, 0.001 Al, and 0.001 Sn; Westingbouse ingot D-216 forged at 950 C, and machined; electrical resistivity reported as 1.00 and 81.3 mbm cm at 298 and 533 K, respectively.	0.1 Fe, 0.07 Ta, 0.07 C, 0.02 Al, 0.007 Ti, and 0.0055 N; obtained from ANI.; annealed; electrical resistivity reported as 50.5, 68.2, and 85.1 uolim cm at 298, 415, and 533 K, respectively.	0.16 Ta, 0.10 Fe, 0.06 Al, 0.02 C, 0.015 N, and 0.005 Ti; obtained from ANL; electrical resistivity reported as 52.4, 70.1, and 86.6 wohm cm at 298, 415, and 533 K, respectively.	99.827 Zr (by difference), 0.110, 0.045 Fc, 0.01 C, and 0.008 N; as-extruded rol 10 cm long, 1.27 cm in dia, arc-meitod; electrical resistivity reported as 59.5 and 75 john cm at 323 and 423 K, respectively; Armco iron used as comparative material; energy flow also measured calcrimetrically.	99.5° pure; 14 mm dia x 65 mm long; vacuum annealed; density 6.45 g cm ⁻³ at room temperature.	Powder specimen contained in a 0.75 in. dia x 2 in. long cylindrical cell; average grain size 36.9µ; thermal conductivity measured by using the transier line source method, measured in nitrogen at limitum high pressure.	Similar to above except average grain size 48.0u.	Similar to above except average grain size 57.5µ.	Similar to above except average grain size 67.8 u.	Similar to above except average grain size 84.5µ.	Similar to above except average grain size 95. 3u.	Similar to above except average grain size 1374.	Similar to above except average grain size 164µ.	Similar to above except average grain size 199µ.
Name and Specimen Designation	Zr 4	2r 4a 2r 1	SA 1568; Zr 7	SA 1576; Zr 8	050	Iodide Zirconium									
Reported Error, %		+ 3.0	+3.0	+ 3.0	က +1										
Temp. Range, K	473-823	4.4-89	323-573	323-573	323,423	1160-2000	298.2	298.2	298.2	298.2	238.2	298.2	298.2	298.2	298.2
Year	1952	1959	1951	1951	1961	1965	1966	1966	1966	1966	1966	1966	1966	1966	1966
Method	L.R.C L	чÓ	ပ	ပ	r,c	-1	Ť	t	1	1	1	1	1	1	1
Ref.	401	401	442	442	715	741	2	3	2	8	24	24	843	3	3
Curve	13	15	11	o¢ ,=	19	20	ដ	22	23	24	25	56	27	28	59

SPECIFICATION TABLE NO. 69 (continued)

Curve	Ref.	Curve Ref. Method No. Used	Year	Year Range, K	Reported Error, %	Reported Name and Error, % Specimen Designation	Composition (weight percent), Specifications and Remarks
	:		900	9			Similar to above except average grain size 228 m.
30	2	1	1 300	7.067			Cimilar to above excent average grain size 318u.
31	843	1	1966	298.2			() The first through of the control
32	£	1	1966	298.2			Similar to above; mesh size 10 100, memora is nitrogen under pressure in the
33	24 3	1	1966	298.2			Similar to above; mesh size = 10 - 50; incasared in the stande 1, 06 x 10 - 2 ~ 3, 89 x 10 3 mm Hg.
34	843	Ť	1966	298.2			Similar to above; measured in helium under pressure in the range 1.00 x 10 $^{-2}\sim 3.467 \times 10^3$ mm Hg.
35	843	1	1966	298.2			Similar to above; measured in argon under pressure in the range 1.00 x 10 $^{-2}$ \sim 4. 28% x 10 3 mm He.

DATA TABLE NO. 69 THERMAL CONDUCTIVITY OF ZIRCONIUM

[Temperature, T,K; Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

.	E 283	0.00372		23	0.00397		E 30°	1	0.00:165		ا ا	0 00380		E 32:	1	6.00314		¥	1	ارغ ارغ	38. 2	0.000000		0.00181	0.00318	0.00356	0,00356		E 345	2.5	010000		0.000390	0.00161	0.00552	0.00854	0,0111	0.011					
۲	CURVE 283	298.2	•	CURVE 23	298.2	!	CURVE 30°		2.98, 2		CURVE 31	6 806		CURVE 32:		298.2		p(mm Hg)		CURVE 33	u —	9010	4	110	741	2818	1890		CURVE 348	T= 298.2	9	0.0100	1 78	19.7	129	724	2818	3467					
	CURVE 20 (cont.)	0.240	0.285	0.275	0,260	0.295	0, 295	0.270	0.280	0.305	0.320	225	0,345	0.310	0.330*		CURVE 21		0.00272		CURVE 22	a 2000 0		CURVE 23		0.00279		CURVE 24	•	0.90279	400	LURVE 23"	000000		CURVE 26	ļ	0,00334		CURVE 27*		0.00338		٠
T	CURVE	1486	1525	1540	1575	1620	1635	1635	1680	1715	1760	20.4	15.95	1895	2000		CUR		298.2	Č		6 806	3	CUR		298.2		CUK		298.2	Ċ	<u>الرا</u>	248.2		CUR		2.98.2		CUR		298.2		
ä	CURVE 17	0.188	. O.	0, 181	U. 178	0, 175	0, 174	0, 171	;	CURVE IS	231		0, 178	0.178	0, 175	0. 172	0. 171	0. 168		CURVE 19	321	0.175	•	CURVE 20		0,205	0.205	90.70	0, 190	0.215	0.220	0.700	0.245	0.220	0.200	0.255	0.230	0.220	0.260	0.230	0.270	0, 220)))
(-	CUR	323, 2	373, 2	4 15. 2 423. 2	47.3, 2	523, 2	5.33.2	573, 2	1		3.68	2.5.25	415.3	423.2	473.2	523, 2	533,2	573.2			* 666	2.525.		CUR		1160	1190	1225	12:30	1235	(77)	0801	0101	1320	1330	1350	1390	1390	1395	1400	1450	1450) : :
¥	CURVE 14 (cont.)	1.02	1.17	1 1	1.12	1. 10	1.01	0.970	0,845	0,655	0.010 0.010	0.375	0,365	0,350	0, 350	0,345	0, 325		CURVE 15	777	0.0	0.930	1.18	1, 12	0.000	0.835	0.705	0.615	0, 355	.5t 20005	10	906	0.202	0,200	0,200	0, 196	0, 192	0.191	0.187				
۲	CURVE	11,3		17.0	18.0	19, 5	22.5	23, 0	26.3 2.3	0.11	43. C	. 05	78,5	8.06 8.06	91.6	93.5	121.0		罰	•	+ = + =	9 6	15.6	19,0	22, 5	0.72	31.6	37,5	89.0	9115	500	6 3.61.	373.2	415.2	423.2	473, 2	52.8, 2	533, 2	573, 2				
×	CURVE 10(cont.)	0.228	0. 197	0.213	CURVE 11	{	0,311	0.266	0.246	0.246	0.243	0.252	0,257		CURVE 12		0.257	0.214	0, 205	97.0	117.0	0.2	0, 225	0.233		CURVE 13		0.184	0. 180	0.100	7.175	CHRVF 14		0.200	0.270	0, 335	0,426	0,595	099.0	0.845	0, 865	0.987	
۲	CURVE	555,4	5.53, 3	6.30.0	CUR		331, 2	397.3	513.0	2.5	1688.8 763.8	832 0	917, 2		CUR	1	332.2	390.2	475.2	5.63.2	531.2	724.2	821.2	879. 2		CUR		473.2	673.2	7.577	770	200		2.0	3.0	بى دى	4 .	6,0	7.5	x v	8.8	10.5	
×	7 (cont./	0,200	0.70	0, 155	0.205	0.200	0, 202	0.200	0.208	0.213	0.224	0.224		VE 8		0. 192	,	S	•	0,210	201.0	0.202	0, 215	0.224	0.253	0,268	0.283	0.287	0.301	0,300		VE 10		0,256	0.260	0.220	0.242	0.247	0.241	0.232	0.2:57	0.208	
Ļ	CURVE	615.2	5.1.2	689	685, 2	728.2	743.2	758.2	7.56.2	833.2	885.2	950.2	•	CURVI		373,2		CURV	t	3 625	6.55.4	134	812.1	917. 1	1112, 1	1255.4	1:387.6	1457.1	1647.6	1925.4		CURV		401, 5	405, 1	460.4	461.5	462.1	462.7	515, 4	516,6	552. 1	
¥	VE 5	0.209	0.202	0, 194	0, 190	0.188	0, 186	0.184	3	ا ۵	0.201	0, 196	0.192	0.189	0. 186	3 3	0 182	0. 181	1		0 211	0.208	0.210	0.214	0.214	0.205	0.208	0.202	0.210		203	0.203	0.205	0.199	0, 203	0, 1984	0.197	0.206	0, 199	0,206	0.194	0.135	
۲	CURVE	323.2	493.2	473.2	52.1.2	573, 2	623.2	673.2	į	כנימאַני	323 2	373,2	423, 2	473.2	523, 2	573.2	623.2	673, 2	OTF.	2 100	335 7	343.2	363.2	367.2	375, 2	378.2	383, 2	407.2	428.2	460.2	464.2	473.2	478.2	500.2	521.2	523, 2	533, 2	533, 2	575, 2	583, 2	598.2	605.2	
м		0.0244	0.000	0.0573	0.0745	0.119	0. 131	0.147	0, 151	001.0	0,243	0.258	0.274	0.246	6.238		0, 2.53		2	80.0	0.052	0,211	0.248	0.244	0, 2:34		~ 		0. 167	0.248	0.256	0, 225	0, 223	0,225	0.215		4		0.23	0.25			
←	CURVE	2, 15	70.7	. e.	5.34	8.60	9.31	10, 60	11.32	3 3	19.06	22, 93	29, 38	55, 90	E 50	76. 00	92.38 36.38		CORVE	er:	. 4	16, 4	20.7	59, 7	9.68		CORVE		13.75	22 64	31.81	56.88	67, 10	78.23	90.40		CURVE		298.2	873.2			

*Not shown on plot

CURVE 35* T = 298.7

T = 258.7 0.0100 0.0000469 1.36 0.000233 11.0 0.00187 724 0.00187 2818 0.00264 4786 0.00264

Not shown on plot

electrical resistivity $\rho_0=0.219$ µG cm (characterization by ρ_0 becomes important below room temperature). The values below 1.5 Tm are calculated to fit the experimental data by using n=2.5, of $n=7.45 \times 10^{-4}$, and $\rho=8.9$. The rocommended values that are approved by experimental thermal conductivity data are thought to be accurate to within 5% of the true values near room temperature and 5 to 15% at other temperatures. The recommended values are for well-annealed 99.95*% pure zirconium with residual

*Values in parentheses are extrapolated or interpolated. . Tite F, and by in Bon br 4 ft 4 F 4.

١

T, in K, k, to Wett cm-

467

SPECIFICATION TABLE NO. 70 THERMAL CONDUCTIVITY OF LALUNDSUM + ANTIHONY) ALLOYS

Al + Sb - 99, 50%; impurity - 0,20% each)

	Composition (continued), Specifications and Remarks	Approx composition, total impurity 16, all in each metal; specimen 1.9 cm in dia and 10 cm long; supplied by Baker; etectrical conductivity 24,1 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 23 C.	Similar to above specimen except electrical conductivity, 15.9 x 10' obas' cm2 at 23 C.	Similar to above specimen except electrical conductivity, 13, 3 x 10 ³ obm ² em ² at 23 C.	Similar to above specimen except electrical conductivity, 7,30 x 1rt ohm emil enil at 23 C.	Similar to above specimen except electrical conductivity, 5, 14 x 10 obustion at 23 C.
	Composition (weight percent) Al Sh	Id. n	e . e 2	e • u;	a • a •	50.11
	Composition (v	p. gr.	t	20.0	0°° n	50,0
	Name and Specimen Designation					
	Curse Ref. Method Year Tomp. Reported No. No. Used Year Runge, K. Error, C.					
	Temp. Runge, K	7 SE	325.2	325.3	335.0	325.2
	Year	2562	52.61	1923	1923	1925
	Method Used	نہ	٦	٠.	ب ـ	٦
ĺ	Ref.		ŝ	ê,	ą	ğ
	Curve No.	-	71	17	4	ស

DATA TABLE NO. 70 THERMAL CONDUCTIVITY OF (ALUMINUM + ANTIMONY) ALLOYS

(At + St. 99, 39%; imparite 0.20%; each)

! Temperature, T. K. Thermal Conductivity, k. Wattem 'K !!

4	CURVE 45	1.00.1	CURVE 3	6.40	
۲	CUR	325.2	CUR	325.3	
Ŀ	-	1,800	÷1	1,594	₩.,
۲	CURVE	325.0	CURVE	325.2	CURVE

No graphical presentation

325.2

FIGURE SHOWS ONLY II OF THE CURVES REPORTED IN TABLE

THERMAL CONDUCTIVITY OF ALLOYS

THERMAL CONDUCTIVITY, Wall

TEMPERATURE, K

471

SPECIFICATION TABLE NO. 71 THERMAL CONDUCTIVITY OF (ALLMINUM + COPPER) AT LOYS

 $\{A1+Cu\ge 99, 50\%;\ impurity \le 0,20\%\ each\}$

t For Dita Reported in Figure and Table No. 71 ?

	38 cm 473, 7, 69,	ical 1 K re- hm cm.	cast: 3, 623K m cm.	ical K re- im cm.	ical K re- ihm cio.	d at 87.	it 87,	d at 87, t		-uoo	÷	pre- n long: n cm i	×.
Composition (continued), Specifications and Remarks	Approx. composition: specimen 2.53 cm in diameter and 38 cm long: cast: electrical resistivity reported at 353, 423, 473, 523, 573, and 621 K respectively as 5,24, 6,25, 6,97,7,69, 8,40 and 9,14 μ ohm cm.	Specimen 2, 53 cm in diameter and 38 cm long; east; electrical resistivity reported at 353, 423, 473, 521, 573, and 623 K respectively as 5, 20, 5, 96, 6, 51, 7, 03, 7, 57 and 8, 11 μ obm cm.	Trace Fo: specimen 2,53 cm in diameter and 38 cm long; cast; electrical resistivity reported at 353, 423, 473, 523, 573, 623K respectively as 4,64, 5,61, 6,34, 7,12, 7,95, 8,82 pohm cm.	Specimen 2, 53 cm in diameter and 38 cm long; enal, electrical resistivity reported at 353, 423, 473, 523, 574 and 623 K respectively as 4, 06, 4, 77, 5, 40, 6, 16, 7, 03 and 8, 08 µohm cm.	Specimen 2, 53 cm in diameter and 38 cm long; cast; electrical resistivity reported at 353, 423, 473, 523, 573 and 623 K respectively as 4, 04, 4, 96, 5, 61, 6, 26, 3, 92 and 7, 58 μ ohm cm.	Approx. composition; cast; electrical conductivity reported at 87, 271, 373 and 476 K respectively as 65.1, 29.3, 20,2 and 14,6 x 104 ohm ⁻¹ cm ⁻¹ .	Approx. composition; cast; electrical conductivity reported at 87, 273, 373 and 476 K respectively as 65.1, 29.3, 20.2, and 14.6 x 104 ohm 3 cm ⁻¹ .	Approx. composition, east, electrical conductivity reported at 87, 273, 343 and 476 K respectively as 59.6, 22, 3, 16,0 and 14,2 x 10 ohm cm.	Approx. composition, caet.	Approx. composition; cast; density 2.95 g cm ⁻¹ ; electrical conductivity 0.16 x 106 ohm ⁻¹ cm ⁻¹ at 100 C.	Truce Si.	Approx, composition, total impurity <0.03 in each metal; pre- pared by fusing: specimen 1, 9 cm in diameter and 10 cm long; supplied by Baker; electrical conductivity 26.0 x 10 ohm 1 cm at 23 C.	Similar to the above specimen except electrical conductivity, 20.9 x 10 ⁴ onm ⁻¹ cm ⁻¹ at 23 C.
Composition (weight percent)	14.0	13. 0	. 12. 0	O.	es d	் க்	٠ <u>٠</u>	15 0	4.0	12.0	ر بر د. و	10.0	20.0
Composition (1	N6. 0	8. 0.	0 %# ?	92. 6	95. 3	y2. 0	92.0	85, 0	96.0	30 X X	\sim 92. 0	90.0	80.0
Name and Specimen Designation	No. 655	No. 671	No. 921	No. 2313	No. 2312								
Reported Error, %						Ÿ	3-4	4-1:	1.0				
Temp. Range, K	350-473	353-473	353-473	333-573	353-573	87-476	87-476	87-476	353-423	373.2	301, 346	326.2	326. 2
Year	1928	1928	1928	1928	4261	1931	1931	1931	1927	1927	1921	1925	1925
Method	4	‡	4	14	7	ני	נ	1	(e)	ıш		٦	_
% R.	12	13	12	13	12	3	3	8	ĩA	8 73	22	230	230
Cure No.	_	21	n	-1	17	ဖ	t-	on.	đ	9 9	11	22	13

SPECIFICATION TABLE NO. 71 (continued)

Curve No.	. S. S.	Method Used	Year	Method Year Runge, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent) A Cu	ht percent) Cu	Composition (continued), Specifications and Remarks
7	2:30	٦	1925	126, 2			70.0	30,0	Similar to above execpt electrical conductivity 18.5 x 10 ⁴ ohm ²¹
15	230	-	1923	126.2			56,0	50.0	Similar to above except electrical conductivity 15,3 v 10f ohm? em? at 23 C.
9:	9	¥	1933	81.270	1. 0		0.56	÷	Approx. composition: cast sheet; annealed at 510 C for 45 min. and quenched in recogner.
21	97.8 97.8		161	290, 473			9.7.8	0 :- 0	Density 3.0 g cm 2. Brinell hardness number 80.
<u>z</u>	æ G	-	1922	8220-828		V 651.A	© x	12. 0	Approx. composition: specimen 15 in, long and 1 in, in diameter; supplied by Metallurgical Dept. of National Physical Laborator; (England): chill cast.
91	Ş.	نب	1922	173-573		V 671 D	7 X X O	12.0	Approx. composition; commercially pure aluminum. specimen 15 ins. long and 1 in. in diameter: supplied by Metallurgical Dept. of National Physical Lab.; anneated at 450 C.
50	3 6	ا	1925	373-573		V 671 C	88, 0	0.5	Similar to above sixetimen exemt sand east

DATA TABLE NO. 71 THERMAL CONDUCTIVITY OF ALEMINEM - COPPER, ALLOYS

(A) - Ca | 99,50%; impurity | 0,20% each)

Temperature, T. K. Thermal Conductivity, k. Watt $\mbox{cm}^{-1} \mbox{K}^{-1},$

:4	CURVE 15	1.06	CURVE 16		1, 596	CURVE 17		1.67	CURVE 18	03.1	1.	1,69	CURVE 19	Ή	1, 51		_:	CURVE 20	1.42	1, 51	1, 35					
۲	팅	326,2	히	81.20	273,20	CEI		7 7 7 7 7	COI	1.24	£4 *	573	117		373	72.		<u></u>	17.1	17.3	573					
æ	CURVE 7	0, 895	2 2 2 8	i	CURVE	0.904		1, 67	CURVE 9	1 674	1.674	1.674		CURVE 10		1. 42	CURVE 11	986	1. 11.7		CIRVE 12	1, 61	CURVE 13	1.46	CURVE 14	1,30
-	빙	52	7 T S		5	87	27.3	373 476	COF	0 323	473,0	380,0	•	55		373, 2	CI	00.	345,80	•	팅	326, 2	CU	326, 2	<u> </u>	326, 2
æ	VE 1	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VE 3	1 550	1.6:12	1.674	 .: .:	1,737	1,715		VE (77	. XX	1, 7,45	. SS3		VE S	1. SN:		28. 1	1, 925	VE 6	0, 887	7 7 7 7	7. 32
۲	CURVE	90,555	00 7514	CURVE	00 85c	60° 624	475.00	CURVE	1631, 90	60 51	F	CURVE	8	423, 0 0	473.00		81.3	CURVE	3.73.00	423,00	473, 00	573.00	CURVE	£ 8	373	97#

Not shown on plot

TO THE PARTY

SPECIFICATION TABLE NO. 72 THERMAL CONDUCTIVITY OF (ALUMINUM + IRON) ALLOYS

(A) + Fe \geq 99, 50%; impurity \leq 0, 20% each)

[For Data Reported in Figure and Table No. 72]

Year Runge, K 1928 373-623 1925 302.2 1925 290.2		Reported Spe	Name and Specimen Designation AL AL	Composition (weight percent) Al Fc 99,57 99,354 99,354 99,354 0,509	1	Composition (continued), Specifications and Remarks 0.19 Si, trace Cu, specimen 12 in. long and 1 in. in diameter: annealed at 530 C for 5 hrs. before machining. 0.137 Si, specimen 5 mm thick and 29 cm long, chill-cast; specific gravity 2.70; specific resistance 0.354 x 10 ⁻⁵ ohm cm ⁻³ . 0.137 Si; the above specimen annealed at 450 C for 30 min.; specific resistance 0.331 x 10 ⁻⁵ ohm cm ⁻³ . 0.137 Si; specimen about 3 mm thick and 20 cm long; forged and cold-drawn; specific resistance 0.318 x 10 ⁻⁵ ohm cm ⁻³ .
364-6	69	< 0.5	AL	99, 354 99, 5	0.509	0. 137 Si; the above specimen annealed at 560 C for 30 min.; specific resistance 0.313 x 10 ⁻³ ohm cm ⁻³ . 0.07 Si, trace Cu; commercially pure Al; specimen 15.5 in. long and 0.75 in, in diameter; cast.
9	293-353 ±	± 1,0 1.0-5.0	DIN 712 AL-2	99, 5 99, 20	~0.32 0.67	0.019 Cu. 0.034 Zn. 0.019 Mg. 0.021 Mn. 0.012 Ti, 0.16 Si commercial pure aluminum; density 2.703 g cm ⁻³ at 20 C. 0.10 Si. 0.01 Cu. <0.01 Mn and Mg; specimen 25 cm long and
273.2	~	1.0	AL-2	99, 66	0.2	2. 5 cm in diameter. 0. 14 Si.
350-437				9.66	2.0	0.2 Si, single crystal: specimen 2.54 cm in diameter and 38 cm long, supplied by National Physical Lab.; specific resistivity 2.89 x 10 ⁻⁶ ohm cm ⁻¹ at 18 C.
373-673			-	99. 48	0,38	0, 14 St; trace Cu supplied by National Physical Lab.; chill-cast.
373-673			2	99, 48	0.38	0.14 Si, trace Cu; supplied by National Physical Lab.; chill-cast.
373-623			1	99, 48	0.38	0.14 St. trace Cu; supplied by National Physical Lab.; sand-cast.
373-623			2	99. 48	0.38	0.14 Si, trace Cu: supplied by National Physical Lab.; sand-cast.
2.98.2				92.4	7.6	Produced by powder metallurgical process; extruded rod 3/4 in. in diameter; heated at 800 F for 100 hrs.; density 2.88 g cm ⁻¹ .

DATA TABLE NO. 72 THERMAL CONDUCTIVITY OF (ALIMINUM + IRON) ALLOYS

(A1 + Fe 199, 50%; impurity 10, 20% each)

Temperature, T. K. Thermal Conductivity, k, Wattem ¹K ¹]

2	VE 15	1,63																								
Ţ	CURVE	29.2																								
*	VE x	2,090 1,910 1,730 1,530	VE 9	2, 259	VE 10	2, 305	2530	VE 11		2. 13 2. 18	VE 12	2, 13	# # 61 *	3 83 i si	VE 1.3	2, 09	2 3 3 3	2 i c	; i	CURVE 14	2 09	. S	2.09	2.09		
(CURVE	298.2 518.2 723.2 860.2	CURVE	273.2	CURVE	349.6 400.6	4.37.1	CURVE	373.2 473.2	573.2 673.2	CURVE	373, 2	473,2	673.2	CURVE	373.2	473.2	573, 2		CUR	373.2	473.2	573.2	623.2		
يد	VE 1		VE 2	ν. Ε. 32 Υ. Ε. 32	2. 000	۷۳ 4	2, 059	VES	2.011	VE 6	, 85 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	1.92	26 '8 26 '8	33.	1. 8. 1.	 . 8.	1.96	-i -		8.8		VE 7		2, 185	2,220	6.63.3
۳	CURVE	373,2 523,2 623,2	CURVE	CURVE	299.2	CURVE	301.2	CURVE 5	304.2	CURVE	364.2	375.2	423.7		438.2 438.7		485.2	512.7	565,2	594.2	000.	CURVE		290,2	323.2	2.000

Not shown on plot

THERMAL CONDUCTIVITY OF [ALUMINUM + MAGNESTUM] ALLOYS SPECIFICATION TABLE NO. 73

(Al + Mg = 99, 50%; impurity * 0, 20% each)

[For Data Reported in Figure and Table No. 73]

						-	
Composition (continued), Specifications and Remarks	Approx. composition: cast; electrical conductivity reported at 87, 273, 373 and 476 K respectively as 20, 02, 13, 21, 10, 5 and 8.8 x 10 ⁴ ohm ⁻¹ cm ⁻¹	Approx. composition: annealed; electrical conductivity reported at 87, 273, 373 and 476 K respectively as 24, 5, 15, 05, 12, 25 and 10, 25 x 10 ⁴ ohm ⁻¹ cm ⁻¹ .	Aprox. composition; cast; electrical conductivity reported at 87, 273, 373 and 476 K respectively as 19.6, 11, 95, 9.4, 7,85 x 104 ohm ⁻¹ cm ⁻¹ .	Approx. composition; annealed; electrical conductivity reported at 87, 273, 373 and 476 K respectively as 12, 7, 8, 96, 8, 05 and 7,6 x 10 4 ohm ⁻¹ cm ⁻¹	0. 10 Mn; annealed.	0. 10 Mn; annealed.	Approx. composition: specimen 15 mm in diameter and 72 mm lone: density 2.63 c cm 3
eight percent) Mg	о *	8.0	12. 0	14.0	2, 2-2, 8	3, 1-3, 9	7.0
Composition (we	92.0	92.0	88.0	86.0	97, 7-97, 1	96.8-96.0	93.0
Name and Specimen Designation					5052	5154	Magnalium
Reported Error, %	3.0-4.0	3.0-4.0	3.0-4.0	3.0-4.0			
Temp. Range, K	87-476	87-476	87-476	87-476	4.3-128	4.8-144	348.2
Year	1931	1931	1931	1931	1960	1960	1940
Method Used	<u> </u>	ᆈ	u	ם			
Ref.	93	8	ಜ	8	828	828	829
Curve No.	-	(V)	ო	4	'n	ç	۲-
	Ref. Method Year Temp. Reported Name and Composition (weight percent) No. Used Year Range, K Erroz, % Specimen Designation Al Mg	Ref. Method Year Temp. Reported Name and Composition (weight percent) No. Used Year Range, K Erroz, % Specimen Designation Al Mg 93 L 1931 97-476 3.0-4.0 Ap	Ref. Method Year Temp. Reported Name and No. Used Composition (weight percent) No. Used Year Error, % Specimen Designation Al Mg 93 L 1931 87-476 3.0-4.0 92.0 8.0 83 L 1931 87-476 3.0-4.0 8.0 8.0	Ref. Method No. Year Range, K Broz, % Specimen Designation Al MK Composition (weight percent) 93 L 1931 87-476 3.0-4.0 92.0 8.0 93 L 1931 87-476 3.0-4.0 92.0 8.0 83 L 1931 87-476 3.0-4.0 88.0 12.0	Ref. Method No. Year Range, K lange	Ref. Method No. Year Range, K Peror; % Reported Specimen Designation Name and All Might percent. 93 L 1931 87-476 3.0-4.0 92.0 8.0 83 L 1931 87-476 3.0-4.0 8.0 8.0 83 L 1931 87-476 3.0-4.0 88.0 12.0 83 L 1931 87-476 3.0-4.0 86.0 14.0 828 L 1931 87-476 3.0-4.0 86.0 14.0 828 L 1931 87-476 3.0-4.0 86.0 14.0	Ref. Method No. Year Range, K lange

DATA TABLE NO. 73 THERMAL CONDUCTIVITY OF (ALUMINUM + MAGNESIUM) ALLOYS

(A1 + Mg : 99, 50%; impurity : 0, 20% each)

(Temperature, T. K. Thermal Conductivity, k. Watt cm⁻¹ K⁻¹)

•	CURVE 6 (cont.)	22.1 0.228 33.2 0.327 60.4 0.571	88.7 0.779 144.3 0.935	CURVE 7	348.2 1.087																			
	CURVE 1	27.0 728 277.0 1,000 277.0 1,000	.	TURVE 2		475 1. 356	CURVE 3	0	575 L. 015 476 1. 184	CURVE 4	87 0. 435	o 0	476 1.042	CURVES	4, 28 0, 0462	o	22 1 0 265	io	60.9 0.675	ö	127.6 0,961	CURVE 6	6.50 0.0675	

SPECIFICATION TABLE NO. 74 THERMAL CONDUCTIVITY OF [ALUMINIM + SILICON] ALLOYS

(Al + Si \approx 99, 50%; impurity \leq 0, 20% each)

[For Data Reported in Figure and Table No. 74.]

Composition (continued), Specifications and Remarks		Nominal composition; fine structure cause by adding trace Na at high temp.; specimen 1 1/4 in. in diameter and 15 in. long; vertically sand cast; annealed at 450 C for 1 hr.; electrical resistivity reported at 333, 423, 423, 573 and 623 K respectively as 5,36, 6,48, 7,31, 9, 18, 9,07 and 10,0 μ ohm cm.	Nominal composition; as east; electrical conductivity reported at 87, 273, 373 and 476 K respectively as 41, 10, 17, 23, 13, 40 and 10, 6 x 10 ⁴ ohr. ¹ cm ⁻¹ ,	Approx. composition; as east, density 2,65 g cm ⁻³ .	No details reported.	0.2 Fe, single crystal; specimen 2.54 cm in diameter and 38 cm long; supplied by National Physical Lab.; specific resistivity 2.89 x 10°6 ohms cm ⁻³ at 18 C.
veight perecut)		13, 0	30.0	13.0	11, 0-14, 0	0.2
Composition (weight perecut)		£7. 0	80, 0	87.0	89, 0-86, 0	9.60
Name and	operation resignation	2.15k	Alusil	Alpax		
Reported	Error, 70		3.0-4.0	1.0		
Curve Ref. Method year Temp.	Kange, K	+L 1928 353-573	87-476	373-423	301,346	350-437
Year		1928	1931	1927	:921	1927
Method	Used		ᅯ	£		ר
Ref.	2	SS	50	83	25	æ
Curve	Z.		61	ຄ	77	ı ıs

THERMAL CONDUCTIVITY OF (ALUMINUM + SILLCON) ALLOYS ï DATA TABLE NO.

(A1 + Si > 99, 50%; impurity > 6, 2.7% each)

[Temperature, T. K. Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

CURVE 4 201.0 L 346.2

CURVE 3

97.0 273.0 373.0

373.0 393.0 423.0

CURVE 2

453.0 473.0 573.0 573.0

.0 1.632 2 1.703 CURVE 5

2,305 2,310 2,330

349.6 400.6 437.1

SPECIFICATION TABLE NO. 75 THERMAL CONDUCTIVITY OF (ALUMINUM + TIN) ALLGYS

(Al + Sn > 99, 50%; Impurity < 0, 20% each)

ķ		ty.	ţ,
Composition (continued), Specifications and Remarks	Approx composition; total impurity < 0.03 in each metal; specimen 1.9 cm in dia and 10 cm long; supplied by Baker; electrical anductivity, 28.9 x 10° ohm-lem ⁻¹ at 22 C.	Similar to above specimen except electrical conductivity, 22.8 x 10 ⁴ oim ⁻¹ cm ⁻¹ at 22 C.	Similar to above specimen except electrical conductivity, 19.1 x 10f ohm-tem-1 at 22 C.
Composition (weight percent)	10.0	30.0	50.0
Composition Al	90°08	70.0	30.0
Name and Specimen Designation			
Reported Error, %			
Temp. Range, K	324.2	334.2	324.2
urve Ref. Method Year	1925	1925	1925
Method Used	1	-	د
3 3	230	() ()	000
S S	~	61	က

DATA TABLE NO. 75 THERMAL CONDUCTIVITY OF (ALUMINUM + TIN) ALLOYS

(Al + Sn ' 99.50%; impurity < 0.20% each)

[Temperature, T,K; Thermal Conductivity, k, Watt em-1K-1]

T k

CURVE 1*

324.2 1.862

CURVE 2*

324.2 1.732

CURVE 3*

324.2 1.393

No graphical presentation

48

SPECIFICATION TABLE NO. 76 THERMAL CONDUCTIVITY OF (ALUMINUM + UTANIUM) ALLOYS

(Al + U $\approx 99,50\%;$ Impurity 1.0,20% each)

[For Data Reported in Figure and Table No. 76]

12.5 12.5	Cunve Ye.	. 8. 8. 	Method Used	l Year	Temp. Kange, K	Reported Error, %	Name and Specimen Designation	Comprisition (w	Composition (weight percent)	Composition (continued), Specifications and marks
C 1963 415-671 77.3 22.7 SL C 1963 426-625 99.5 99.5 99.5 80.5 80.5 C 1961 318.2 99.5 99.5 99.5 77 77 C 1963 318.2 93.03 6.97 77 76 C 1963 318.2 87.09 12.91 78 C 1963 338.2 87.09 12.91 77 C 1963 338.2 77.57 21.43 78 C 1963 338.2 77.57 21.43 79 C 1963 338.2 77.57 21.43 79 C 1963 318.2 77.57 21.43 70 C 1963 318.2 77.51 42.49 71 C 1963 318.2 32.34 71 C 1963 318.2 32.51 42.49 71	_	125	U	1955	424-671			o (18	12.5	Nominal composition; forged bar; annealed for 0,5 hr. at 370 C; pure lead used as standard.
C 1965 426-625 310.5 31	.,	125	ن	1955	415-671			77.3	22.7	Similar to the above specimen.
c 1967 338.2 0.5 No C 1961 138.2 0.5 Th C 1961 338.2 0.5 Th C 1963 338.2 87.09 12.91 Th C 1963 338.2 87.09 12.91 Th C 1963 338.2 76.57 21.43 Th C 1963 338.2 67.06 32.94 App C 1963 318.2 67.06 32.94 Th C 1963 318.2 67.06 32.94 Th C 1963 318.2 67.06 32.94 Th C 1963 318.2 67.51 42.49 Th C 1963 318.2 67.51 42.49 Th	**	125	ں	1955	426-625			59, 3	30.5	Statlar to the above specimen.
C 1963 3184.2 04.5 Th C 1963 3184.2 6.97 No C 1963 318.2 87.09 6.97 Th C 1963 338.2 87.09 12.91 Ca C 1963 338.2 76.57 21.43 Ca C 1963 338.2 76.57 21.43 Ca C 1963 338.2 77.57 21.43 Th C 1963 318.2 67.06 32.94 App C 1963 138.2 67.06 32.94 Th C 1963 138.2 67.51 42.49 Ca C 1963 138.2 67.51 42.49 Ca		391	ر	196.	338.2			34,5	S '0	Nominal composition; cast from reactor-grade uranium (99.5 pure) and aluminum (99.99 pure); spectmen 3 in. long, 0.500 in. diameter; measured in a vacuum of < 5 x 10 ⁴ mm Hg, copper used as standard.
C 1963 338.2 6.97 Th C 1963 338.2 87.09 12.91 Ca C 1963 338.2 87.09 12.91 Th C 1963 338.2 75.57 21.43 Th C 1963 338.2 75.57 21.43 Th C 1963 318.2 67.06 32.94 Ap C 1963 338.2 67.06 32.94 Th C 1963 338.2 67.06 32.94 Th C 1963 338.2 67.51 42.49 Ca	ır.	591	Ų	1963	13H, 2			96.5	0°.5	The above specimen heat treated 5 days at 620 C.
C 1963 33.82 6.97 Th C 1963 338.2 87.09 12.91 Ca C 1963 338.2 87.09 12.91 Th C 1963 338.2 76.57 21.43 Th C 1963 338.2 76.57 21.43 Th C 1963 338.2 77.61 72.43 App C 1963 338.2 77.61 42.49 75. C 1963 338.2 77.51 42.49 75. C 1963 338.2 75.51 42.49 75.		592	v	1961	3:18, 2			90,03	6.97	Nominal composition; cast from reactor-grade uranium (99, 5° pure) and aluminum (99, 99 pure); specimen 3 in, long, 0,500 in, dia.; measured in a vacuum of <5 x 10 ⁻⁴ mm Hg; copper used as standard.
C 1963 338.2 87.09 12.91 Ca C 1963 338.2 76.09 12.91 Th C 1963 338.2 76.57 21.43 Th C 1963 338.2 76.57 21.43 Th C 1963 338.2 77.06 32.94 Th C 1963 138.2 67.06 32.94 Th C 1963 138.2 67.51 42.49 Ca C 1963 138.2 77.51 42.49 Th		591	ပ	1963	338.2			93, 03	6.97	The above specimen heat treated 5 days at 620 C.
C 1963 338.2 FT.09 12.91 Th C 1963 338.2 75.57 21.43 Ca C 1963 338.2 75.57 21.43 Th C 1963 338.2 App App C 1963 338.2 42.49 Ca C 1963 338.2 42.49 Ca C 1963 338.2 42.49 Th		591	ပ		338,2			87.09	12. 91	Calculated composition; east from reactor-grade uranium (99.5° pure) and aluminum (99.99 pure); specimen 3 in, long. 0.500 ii., dia.; measured in a vacuum of <5 x 10°4 mm Hg; copper used as standard.
C 1363 338.2 76.57 21.43 Ca C 1763 338.2 76.57 21.43 7h C 1963 338.2 67.06 32.94 7h C 1963 138.2 67.06 32.94 7h C 1963 138.2 57.51 42.49 Ca C 1963 338.2 7h 7h		591	ن	1963	338.2			87.09	12.91	The above specimen heat treated 5 days at 620 C.
C 1763 338.2 75.57 21.43 Th C 1963 338.2 67.06 32.94 App C 1963 338.2 67.06 32.94 Th C 1963 338.2 67.51 42.49 Ca. C 1963 338.2 75.51 42.49 Th		591	U	1363	338, 2			78. 57	21, 43	Calculated composition; cast from reactor-grade uranium (99.5° pure) and aluminum (99.99 pure); 3 in. long, 0.500 in. dia.; measured in a vacuum of $< 5 \times 10^{-4}$ nm Hg; copper used as standard.
C 1963 338.2 67.06 32.94 Application of the street of the		551	ပ	1.163	338.2			78.57	21, 43	The above specimen heat treated for 5 days at 620 C.
C 1963 338.2 67.06 32.94 C 1963 338.2 57.51 42.49 C 1963 338.2 57.51 42.49		541	ပ	1963	338, 2			67.06	35. 94 35. 94	Approx. composition (impurities by spectrographic analysis: <0.10 Fc, <0.07 Si, <0.04 Ca; and <0.02 B); cast from reactor-grade uranium (99.5° pure) and aluminum (99.99 pure); 3 in. long, 0.500 in. dia.; measured in a vacuum of <5 x 10 ⁻⁴ mm Hg; copper used as standard.
C 1:463 :138.2 57.51 42.49 C 1963 :138.2 57.51 42.49		591	ပ	1963	338.2			67.06	32.94	The above specimen heat treated for 5 days at 620 C.
C 1963 336,2 57,51 42,49		291	U	1963	338, 2			57.51	42.49	Cast from reactor-grade uranium (99.5° pure) and aluminum (99.99 pure); specimen 3 in. long, 0.600 in. dia.; measured in a vacuum of <5 x 10.4 mm Hg; copper used as standard.
		591	ပ	1963	138.2			57.51	42.49	The above specimen heat treated for 5 days at 620 C.

DATA TABLE NO. 76 THERMAL CONDUCTIVITY OF JALUMINUM + URANIUMJ ALLOYS

(AI + U > 99, 50%; impurity > 0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watts cm⁻¹K⁻¹]

≠	CURVE 5	338. 2 2. 25,	2, 24	338.2 2.23		CURVER		338. 2 1. 99		C1196117		3.8.2 2.04	x 3VAIIC		335. 2 1. 83		CURVE 9	,	Job. 2 1. 90		CURVE 16		338. 2 L. 41		CURVE 11	338. 2 1. 71		CHOVE 13		J38. 2 1. 32	•	CURVE 13	'	138. 2 1. 31		CURVE 14	338. 2 1. 00		CUNVE 15	3.85 9 n 866	•
×	13:	1.88	1. 8.5	1.82	5. 30 1. 30	3 : :	F. 73	1. 78	1.85	1. 73	1.81	1. 76	2 <u>3</u>	1.69	1. 71	1.66		1.69	1.66		1. 62	1.63	3.	7	1. 59		VE 3	L. 49	1.55	1.50	1.46). 4 5	1. 50	1. 49	1. 48		4	5. 19	97 .i		
۲	CURVE		441. 7	462. 3	481.7	503.5	531. 4	0.0	5.3	- T		6.0.3	CURVE	415.0	8	455, 0	478.0	498.7	532.6	537.4	567.8	5,4,9	605.3		670.8		CURVE	425, 9	452.6	485.3	196.2	503. 5	537.4		624.7		CURVE	338.2	338. 2		

Not shown on plat

SPECIFICATION TABLE NO. 77 THERMAL CONDUCTIVITY OF (ALUMINUM + ZINC) ALLOYS

(Al + 2n > 99.50%; impurity < 0.20% each)

Composition (continued), Specificatione and Remarks	Approx composition; prepared by using aluminum and zinc, each containing < 0.03 total impurities; supplied by Baker; specimen 10 cm long, 1.9 cm dis; electrical conductivity 25.0 x 10 ⁴ ohm 'cm." at 23 C.	Similar to the above specimen except electrical conductivity, 19.6 x 10° ohm cm at 23 C.	Similar to the above specimen except electrical conductivity, 18.7 x 10° ohm-tem-1 at 23 C.
Composition (weight percent)	er	20	30
Compositi	06	G 8	7.0
Name and Specimen Designation			
Reported Prrof. "			
Temp. Range, K 1	323.2	323.2	323.2
car	1925	1925	1925
Method	ب	_	-1
wo. No.	95	330	230
o Ko	-	ده	

DATA TABLE NO. 77 THERMAL CONDUCTIVITY OF (ALUMINUM + ZINC) ALLOYS

 $(Al + 2n \ge 99, 50\%; \text{ impurity } \le 0.20\% \text{ each})$

[Temperature, T,K; Thermal Conductivity, k, Watt cm-1K-1]

T k

CURVE 1°

323 2 1.619

CURVE 2°

323.2 1.360

CURVE 3°

323.2 1.366

No graphical presentation

SPECIFICATION TABLE NO. 78 THERMAL CONDUCTIVITY OF | ANTINONY + ALUMINUM) ALLOYS

(Sb + Al > 99, 50%; impurity : 0,20% each)

	Composition (continued), Specifications and Remarks	Approx composition; prepared by fusing aluminum and antimony, each containing < 0.43 incourtities; supplied by Baker; it can long, 1.9 cm dia, electrical conductivity, 5.44 x 10 0km ⁻¹ cm ⁻¹ at 23 C.	Similar to the above specimen except electrical conductivity, 1,79 x 10° ohm-tem-1 at 23 C.	Similar to the above specimen except electrical conductivity, 0.74 x 10° ohm-icm-1 at 23 C.	Similar to the above specimen except electrical conductivity, 0.014 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.	Similar to the above specimen except electrical conductivity, 0,119 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.
	Composition (weight percent) Sb Al	95	40	30	20	92
	Composition Sb	20	09	10	80	06
	Name and Specimen Designation					
	eported rror, %					
	Ref. Method Year Temp. B	325.2	325.2	325.2	325.2	325.2
	Year	1925	1925	1925	1925	1925
	Method Used	ند	-	Ļ	ب	J
	₹ <u>₹</u>	23w	230	230	230	230
	Curve No.	1	8	r	4	S

DATA TABLE NO. 78 THERMAL CONDUCTIVITY OF | ANTIMONY + ALUMINUM | ALLOYS

(Sb + Al \approx 99, 50%; impurity $\leq 0.20\%$ each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

¥	CURVE 4º	0.219	CURVE ST	0.243	
+	CURI	325.2	CURI	325.2	
*	CURVE 1	8 0% °C	7 3.1	0.477	
+	CURI	325.2	CURVE	525.2	CURVE

325.2 0.41%

No graphical presentation

A CONTROL OF THE PROPERTY OF T

SPECIFICATION TABLE NO. 79 THERMAL CONDUCTIVITY OF [ANTIMONY + BISMUTH] ALLOYS

(Sb + Bi > 99, 50%; impurity \$ 0, 20% each)

[For Data Reported in Figure and Table No. 79]

Composition (continued), Specifications and Remarks	Approx. composition.	Approx. composition.
Composition (weight percent) Sb Si	50 A	30
Composition (20	70
Name and Specimen Designation		
Temp. Reported		
Temp. Range, f	83-373	83-373
Year	1913	1913
Method Used	٦	_
<u> </u>	49	49
Curve No.	1	8

DATA TABLE NO. 79 THERMAL CONDUCTIVITY OF [ANTIMONY + BISMUTH] ALLIOYS

(Sb + Bl > 99.50%; Impurity < 0.20% each)

[Temperature, T. K, Thermal Conductivity, k, Watt cm-1 K-1]

83.2 0.07. 196.2 0.07. 273.2 0.08. 373.2 6.098 83.2 0.086 196.2 0.097 273.2 0.097 373.2 0.118

Sample of the stat

THE PROPERTY OF SHAPE

SPECIFICATION TABLE NO. 80 THERMAL CONDUCTIVITY OF (ANTIMONY + CADMIUM) ALLOYS

(Sb + Cd + 99, 50%; Impurity = 0, 20% each)

[For Data Reported in Figure and Table No. 80]

ent) Composition (continued), Specifications and Remarks	Approx. composition; test specimens 2-3 cm in dia; electrical conductivity 0.588×10^3 , 0.795×10^3 , and 1.37×10^3 ohre cm ⁻¹ at $0, -79$, and -190 C respectively.	Calculated composition, electrical conductivity 19, 9, 31, 45 and 62, 6 ohm ⁻¹ cm ⁻¹ at 0, -79, and -190 C respectively.	Calculated composition: electrical conductivity 247, 272, and 202, 5 ohm ⁻¹ at 0, -79, and -190 C respectively.
ion (weight perce Cd	20	4 8. 3	33, 3
Composition (weight percent)	0 :5	51.7	2.09
Name and Specimen Designation			
Reported Error, %			
Curve Ref. Method Year Range, K	83-270	83-273	83-273
Year	1912	1912	2161
Method	'n	μì	교
Ref.	12	13	8
Curve No.	-	71	rs

THERMAL CONDUCTIVITY OF (ANTIMONY + CADMIUM) ALLOYS 0 DATA TABLE NO.

(Sh + Cd \geq 99, 50%; impurity $\stackrel{<}{\cdot}$ 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k, Watt $\mathsf{cm}^{-1}\,\mathsf{K}^{-1}$]

0.0250 0.0165 0.0125

K3.2 194.2 273.2

CURVE 3

0, 0369 0, 0205 0, 0132

83.2 194.2 273.2

CURVE 2

0.0530 0.0265 0.0217

83.3 194.2 273.2

CURVE 1

SPECIFICATION TABLE NO. 81 THERMAL CONDUCTIVITY OF | ANTIMONY + COPPEL | ALLOYS

(Sb + Cu = 99, 50%; impurity < 0, 26% each)

Composition (continued), Specifications and Remarks	Molten specimen contained in a thin-walled stainless steel evaluatrical crucible of dimensions 24 mm dia x 100 mm long: electrical registivity reported as 138 and 153 u.ohm cm at 700 and 800 C. respectively; thermal conductivity values calculated from the thermal diffusivity and the specific heat measurements using the density dia from Binnas, A. and Sauerwald, F., Z. anorg, chem., 41. 51, 1927.	Similar to the above specimen except electrical resistivity, reported as 16s, 119, and 132 pohm cm at 620, 700, and 800 C, respectively.	Similar to the above specimen except electrical resistivity, reported as 75.0, 85.0, and 95.3 uohm cm at 620, 700, and 800 C, respectively.	Similar to the above specimen except electrical resistivity, reported as 76.3, M.8, and 95.3 \$\mu\$ ohm cm at 620, 700, and 800 C, respectively.	Similar to the above specimen except electrical resistivity, reported as 80.2, 90.2, and 100 gohm cm at 620, 700, and 800 C, respectively.
Composition (weight percent) Sh	20	40	23,3	30	10
Composita Sb	95	60	76.7	80	96
Name and Specimen Designation					
Z &.	x	Œ	æ	œ	øc
Temp. Reporte	1673.2	1073.2	1073.2	1073.2	1073.2
	1966	1966	1966	1966	1966
Ref. Method Year No. Used	<u>a</u>	2,	24	۵	24
	320 320	319. 320	319, 320	319. 320	319.
Curve	-	31	m	4	13

DATA TABLE NO, 91 THERMAL CONDUCTIVITY OF LANTIMONY + COPPER] ALLOYS

(Sb + Cu > 99, 50%; impurity < 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K'1]

		-
4	URVE 5	ě.
-	CUR	1073.2 0.301
¥	CURVE 48	073.2 0.295
۲		1073.2
×	CURVE 3*	1073.2 0.288
<u>_</u>		1073.2
.	CURVE 2º	0.253
T		1073.2
¥	CURVE 10	073.2 0.236
į-		1073.2

No graphical presentation

and the second

SPECIFICATION TABLE NO. 82 THERMAL CONDUCTIVITY OF (ANTIMONY + LEAD) ALLOYS

(Sc + Pb > 99, 50%; imparity < 0, 20% each)

Composition (continued), Specifications and Remarks	Approx composition; prepared by using antimony and lead, each containing < 0.03 impurities; supplied by Baker; specimen 10 cm long, 1.9 cm dia; electrical conductivity, 2.44 x 10° ohm 'cm" at 22 C.	Similar to the above specimen except electrical conductivity, 2.29 x 10° ohm 'tem' at 22 C.	Similar to the above apecimen except electrical conductivity, 2.12 x 10^4 ohm 4 cm $^{-1}$ at 22 C.	Similar to the above specimen except electrical conductivity, 2.33 x 10° ohm 'em 'at 22 C.	Similar to the above specimen except electrical conductivity, 2.46 x 10° ohm tem" at 22 C.
Composition (co	Approx composition; prepared by each containing < 0.03 impurite appearing 10 cm long, 1.9 cm 2.44 x 10° ohm cm 1 at 22 C.	Similar to the above specimen ext 2.29 x 10° ohm 'cm ' at 22 C.	Similar to the above apecimen ext. 2.32 x 10° ohm cm ⁻¹ at 22 C.	Similar to the above apecimen exc 2.33 x 10° ohm em ten at 22 C.	Similar to the above specimen ex 2.46 x 10° ohm cm at 22 C.
Composition (weight percent)	10	61	30	40	20
Composition Sb	8	8	0.	09	র
Name and Specimen Designation					
1 1					
Temp. Reported Range, K Error, 5	Ĕ	327.2	327.2	357.2	#1.2
Year	1925	1925	1925	1925	1925
Method	ب	u	ı	٦	ب
	230	83	230	8	200
S. O.	н	4	ฅ	→	'n

DATA TABLE NO. R. THERMAL CONDUCTIVITY OF (ANTIMONY + LEAD) ALLOYS

(Sb + Pb : 99, 50%; impurity < 0,20% (- h)

[Temperature, T. K. Thermal Conductivity, k. Watt cm-1K-1]

24	CURVE 5	C. 201		
۴	CUR	327.2		
, M	CURVE 3	X7.2 0.197	CURVE 4	0.201
۲	S C C	¥7.7	CUR	H7.2
ж	CURVE 1	0.201	TORVE :	0.188
۴	CUR	12.12 12.13	COR	3E7.2

No graphical presentation

SPECIFICATION TABLE NO. (3) THERMAL CONDUCTIVITY OF (ANTIMONY + TIN) ALLOYS

(Sb + Sn > 99, 50%; impurity < 0, 20% each)

Composition (continued), Specifications and Remarks	Approx composition; prepared by fusing antimony and tin, each containing < 0.03 total impurity; supplied by Bater; specimen 10 cm long, 1.9 cm dia; electrical conductivity, 1.9) x 10f ohm cm long, 1.22 C.	Similar to the above appetimen except electrical subshuctivity, 1.93 x 10° ohm 'em-1 at 22 C.	Similar to the above apecimes except " ^ -'a! conductivity, 2.29 x 10* ohm**em** at 22 C.	Similar to the above specimen except FF.15.281 Conductivity, 2.71 x 10f chm^1 at 22 C.	Similar to the above specimen except electrical conductivity, $3.46 \times 10^4 \text{ ohm}^{-1} \text{ at } 22 \text{ C}$.
Composition (wright percent) Sb	92	20	ጽ	0.	50
Composite Sb	\$	æ	10	9	S
Name and Specimen Designation					
Ref. Method Year Temp. Reported No. Used Year Range, K Error, 5					
Temp. Range, K	330.2	330.2	330.2	330.2	330.2
Year	1325	1925	1925	1925	133
Method	1	-1	ب	د.	ب
	R.	83	230	230	230
ر و الم	-	*	n	•	'n

DATA TABLE NO. 83 THERMAL CONDUCTIVITY OF (ANTIMONY + TIN) ALLOYS

(Sb + Sa > 39, 50%; impurity < 0, 20% each)

[Temperature, T.K; Thermal Conductivity, k, Watt cm-1K-1]

ж	CURVE 4	0.213	CURVE 5	0.268		
۴	COR	330.2	CUR	330.2		
M	· 1	0.188	٠ ٢	0. 176	8	0.197
H	CURVE 1	330.2	CURVE 2	330.2	CURVE	3,0,2

No graphical presentation

THERMAL CONDUCTIVITY OF (BERYLLIUM + ALUMINUM) ALLOYS SPECIFICATION TABLE NO. 84

(Be + Al ≥ 99.50%; inpurity < 0.20% each)

A CONTRACTOR STORY OF THE STORY	Composition (continued), Specifications	Cylindrical specimen 2.542 cm long, 5.070 cm² cross sectional area.	Density 2.05 gm cm ⁻³ . Density 2.07 gm cm ⁻³ . Density 2.14 gm cm ⁻³ .
****	Composition (weight percent) Be Al	n	33 4 3 6
	Composit Be	97	64 64 57
	Name and Specimen Designation		
	Reported Error, %		
	Temp. Reported Range, K Error, %	303-338	297.1 297.1 297.1
	Year	¥ 5	1964 1964
	Method	1	
	F 5	335	918 918 918
	Curve Ref. Method Year	-	. N. W. 4

DATA TABLE NO. 84 THERMAL CONDUCTIVITY OF (BERYLLIUM + ALUMINUM) ALLOYS

(Be + Al > 99.50%; impurity < 0.20% cach)

[Temperature, T, K; Thermal Conductivity, k, Watt cin-1K-1]

¥	VE 4	1.55		
Ļ	CURVE	297.1		
ъ.	#1 1	1, 569 1, 548 1, 544 1, 527 1, 515 1, 515 1, 515	CURVE 2°	CURNE 36
۴	CURVE	303.0 313.7 319.0 324.7 328.0 330.3	CUR 297.1	CUR 297.1

No graphical presentation

SPECIFICATION TABLE NO. 35 THERMAL CONDUCTIVITY OF [BERYLLIUM + MAGNESIUM] ALLOYS

(Be + Mg > 99.50%; Impurity : 0 20% each)

[For Data Reported in Figure and Table No. 85]

1	, r
Composition (continued), Specifications and Remarks	Composition estimated from spectrographic analysis, trace of Fe; cylindrical specimen 5 mm dia.; sintered; supplied by Brush Co.; electrical resistivity of minimum) = 1.11 μ ohm cm and 0.295 N = 5.08 μ ohm cm
ught percent) Mg	83
Composition (weight percent) Be Mg	9 6
Name and Specimen Designation	
Reported Error,%	
Temp. Range, K	8, 7-132
Year	1965
Method Use 1	ר
Surve Ref. No. No.	355
Curve No.	-

THE STATE OF THE PARTY OF THE P

501

THERMAL CONDUCTIVITY OF (BERYLLIUM + MAGNESIUM) ALLOYS DATA TABLE NO. 85

(Be + Mg > 99, 50%; impurity | 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k. Wattem⁻¹ K ⁻¹,

CURVE 1

SPECIFICATION TABLE NO, No. THERMAL CONDICTIVITY OF BISMITH - ANTIMONY ALIOYS

(B) Sh 99, off, unpurity 9/30" each)

For Data Reported in Digare and Table No. 35

Composition (continued), Specifications and Remarks	Cast. electrical conductivity \$200, 7500, 6920, and 5210 ohm? cm / at -150 - 77, 0, and 100 C respectively.	Cast, glecta coi conductivity 5400, 6010–5410, and 4220 ohm 1 on 1 at -150 –77, 0, and 100 C respectively.	ss. Coetereal conductions 6570–6476, 6270, and 4570–56m $^{\rm t}$ cm $^{\rm t}$ at 190 $^{\rm t}$ 77–0 and 100 C respectively.	Cast, electrical conductrity 5410 –6461, 60 io and 4540 obj. 1 ca. 1 at -850, 477, 0 $_{\odot}$ and 100 C respectively.	Cast, electrocal condictivity 8050–6990–6900 and 4540 ohm 4 em $^2(\alpha+190)$ –77, $\alpha+100$ G respectively.	Prepared by pressing chemically pure Brand (re-powder for one by, at sum 8g em 3.	Similar to the abuve specimen: electrical confusions, 2000, 2800 and 400 cmm, etc., 34 (30), 0, and 100 C respectively.	smeller to the electric spectrum, constraint conductivity. 1806, 2000, and 2100 ohm fem for first electric and 100 C respectively.	Souther to the obore specimen, cherrical conductivity 2400, 2600 and 2500 obtained from any 2500 obtained from any 2500 obtained from any 2500 obtained from any 2500 obtained from a speciments.
Composition (weight pricent) En St	æ	:: ~	<i>::</i>	95	.÷	ŝ		î.	
Composition (weight prar	9.1	#. #	5	ğ.	0.5	ź	3	ž.	ç
Name and Specimer Designation		*							
Reported Error, 7									
Temp. Ruge, K	::::::	E + 2	825-32	11.15	<u> </u>	: 1:17	273-373	SE-12	<u> 6</u>
Year	1910	1312	:: 15.1	191	1911	:1:1	141.	13.1	1911
Method Used		_;		_	_	<u></u>	ت	-:	ت
ν. Υ	2	-	₽;	ŝ	<u> </u>	<u> </u>	1-	<u> -</u>	[- [-
Service No.	-	~1		4	13	ပ	t-	z.	s

DATA TABLE NO. 46 THERMAL CONDUCTIVITY OF [BISMUTH 4 ANTIMONY] ALLOYS

(Bi + Sb \geq 99, 30%; impurity \leq 0, 20% each)

[Temperature, T, K Thermal Conductivity, k, Watta cm $^{-1}K^{-1}$]

•	CUITVE 8	84.6	0.000	7	CURVE 9		273. 2 0.0879																										
2	1 1	6990.0	0.0602	0.0657	0.0711	1 2	9050.0	0.0448		0.0778	(E)	0.0552	0.0515	0.0632	0.0799	/E 4	0.0561		0.0636	0.0858	VE 5	0.9732	0.0745	0.0820	0.0958	VE 6	0.0582	0.0598	6990'0	VE 7	0.0485	0.0573	
-	CURVE	83.2	196.2	273.2	373.2	CURVE	83.2	196.2	273.2	373.2	CURVE	83.2	196.2	273.2	373.2	CURVE	6 50	2.50	273.2	273.2	CURVE	83.2	196.2	273.2	373.2	CURVE	83.2	273.2	373.2	CURVE	273.2	373.2	

SPECIFICATION TABLE M), 87 THERMAL CONDUCTIVITY OF BISMUTH CADMIUM ALLOYS

(B) < Cd < 99, 50%; impurity 0, 20% each)

. For Data Reported in Figure and Table No. 87.

Curve No.	No.	Method	Year	Temp. Runge, K	Reported Error, 7a	Name and Specimen Designation	Composition (weight percent)	ght percent) Cd	Composition (continued), Specifications and Bemarks
	088		1925	á			ž.	9,	Approximate composition, preparted from B: (0, 6) impurity supp. d by Bailer's and Cit (no details reported), specimen east and machined to 10 em long. L: 9 em dia.; electrical conductivity 5.51 x 105 ohm 'em' at 22 C.
:1	8	÷	1925	á			119	0.7	Similar to the above specimen except electrical conductivity, 25×10^4 ohm? cm 2 at 22
*1	530	٦	1925	52			Ę.	<u>.</u>	Similar to the above specimen except electrical conductivity, $2.13\times10^4~\text{ohm}^4~\text{cm}^3$ at $22~\text{C}_\odot$
7	05.5	-	Ş	4 10 10			£	50	Similar to the above specimen except electrical conductivity, 1,75 x 10 ⁴ ohm ² cm ² at 22 °C.
12	2330	<u></u>	5261	4 21 22			Ē	91	Similar to the above specimen except electrical conductivity, 1.36 x 105 ohm $^3\mathrm{cm}^{-3}$ at 22 C.
w	2		1308	4:m			955.6	* 5	Electrical conductivity ranging from 0, 891 to 0,438 x 16 ⁴ obm ⁻¹ cm ⁻¹ at 1.7 to 224.8 C respectively.
(-	<u>V.</u>		1998	310-383			60.2	, H	Electrical conductivity ranging from 3-49 to 2, 655 v. 10° ohm ⁴ cm ² at 36,4 to 125,9 C respectively.
i	ij		9544	.124-506			91.1	8 °O	Electrical conductivity ranging from 0,84440 0,458 x 10 ⁴ obm ⁻¹ cm ⁻¹ at 50,640 232,9 C respectively.
F	ÿ		9561	121-476			† (6	9.5	Flectrical conductivity ranging from 1, 010 to 0,541 x 10' ohm? cm² cm² at 47, x to 202,3 C respectively.
Ξ	7		1006	102 600			9.5.0	• =	Freetrand conductivity ranging from 1, 220 to 0, 907 x 104 ohin" cm." at 36 4 to 451, 0 C respectively.
	<u>;</u>		1976	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			e: ,;;	14, 7	Electrical conductivity ranging from 1, 64 to 1, 25 x 10^4 ohm 4 cm 4 at 37, 0.15 114.2 C respectively.
7	;;		1956	262 :002			1-1 (2)	13,3	Frettried conductivity ranging from 1,26 to 1,54 x 10 ⁴ ohm. Frettried conductivity ranging from 1,26 to 1,54 x 10 ⁴ ohm.

्या विकास विकास स्थापन

DATA TABLE NO. 57 THERMAL CONDUCTIVITY OF [BISMUTH + CADMIUM] ALLOYS $(Bi+Cd\geq 95,\,56\% + impurity + 0,\,20\% + cach)$

7		
-		
:		
:		
į		
:		
,		

<i>∡</i> ⊢	۳	×	⊢	*	
CUPAE.	CVINE S	s II :	CUR	CURVE 12	
328, U 0, 339	323.8	0, 1110	299.8	0, 220	
CTRVE 2	351.4	U. 1060	318.9	0, 207	
	283.4	0.0987	324, 9	0.203	
328. 0 0 251	0 (09) 0 (09)	0.0845	3.09.0	0. 185	
CURVE 3	473.0	0.0849		0.183	
328.0 0.209	508.1	0, 0967 0, 1010	388.2	0. 186 9. 197	
CURVE 4	ECKRYE 9	61 31			
3.28. 0 0. 163	321. 0	9. 106			
CURVE 5	368, 5	0, 0983 0, 0983 0, 0979			
328. 0 0. 130	1 % 0 1 % 0	0.0937			
CURVE 6	137.0	0, 07 74			
Ö	9 714	0, 0815			
327. 9 0. 1180 354 1 0. 1180	5.524	0, 0858			
	M 05	CURVE 10			
	! !	ļ			
407, 0 0, 0975	309. 3	0, 1548			
	332.0	0. 1415 1415			
446. 2 U. 0300	363.6	0, 1276			
	386. 2	0, 1247			
	394, 2	0, 1247			
CURVE ?	<u>cum</u>	CURVE II			
309. 6 0. 0346	310.2	0. 192			
	332. 2	0. 168			
	349.0	951.0			
351.0 0.300	366. 7	0 143			
خ خ	367.3	22.0			
Ċ					
397, 1 0, 320					

509

SPECIFICATION TABLE NO. 88 THERMAL CONDUCTIVITY OF UBISHUTH * LEAD, ALLOYS

(Bi + Pb + 99, 50%; impurity - 0, 20% each)

For Data Reported in Figure and Table No. 33

Curv.	No.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent)	eight percent) Ph	Composition (continued), Specifications and Remarks
1	126.	ir.	1953	298-373	1- V	6 B	99, 15	2 5	Specimen composed of a few large crystals, prepared by lusing granular Pb and Bi in a N-atmosphere, casting in Pyrex tubing, and Stowly conling, electrical conductivity, ranging from 4770 to 4450 ohm? on at 255,2 to 375,2 K respectively.
¢1	126. 324	(-	1955	293-373	ar. '	ध	9.8° 5	1.3	Simila: to the above specimen except electrical conductivity ranging from 3420 to 3666 ohm fem lat 293, 2 to 353, 2 K respectively.
n	126. 324	í.	1955	298-373	9 V	£2	97. 0	8 H	Similar to the above specimen except electrical conductivity ranging from 2830 to 3040 ohm [cm] at 293,2 to 373,2 K respectively.
भ	113	ပ	1957	423-773		Bi-Ph eutectic	6.00	€ ₩ ₩	Eutertic composition, prepared from 19 of 99, 465 purity and Brothigh purity, molton states contained in a castly 3,5 in, deep and 0,5 in, dist., Suniness steel used as standard and as container, electrical resistivity ranging from 113,5 to 126,6 µ ohm cm at 150 to 500 C respectively.
r)	£	٦	<u>8</u>	315-558		Bi-Ph eutectic	54.0	46. 0	Eutectic alloy, specimen 1.5 cm dia., 12 cm long, melting joint 40.1 K
9	248	ш	1956	295-443	f5 #1		977.0	1, 0	
1-	¥ ₹	ы	1956	308-466	:: #		6,78	· · · · ·	Annealed for 48 hr. at 120 C.
æ	89 C1	w	1936	300-446	e: "		9	8	Annealed for 72 hr. at 120 C.
6	24.8	ட	1956	300-376	**		66, 333	12 22 23 23	
10	248	w	1956	319-441	t! #		馬克	\$ to 10 to	
11	248	ម	1956	511-440	£ #		95, 18	71 X 7	
21	383		1936	307-511			9.46	e ti	Electrical conductivity ranging from 0,325 to 0,421 x 10f ohm 'em 'at 307,2 to 511,2 K respectively.
13	26.00	ت	1959	464-902		Bi-Ph eutectic	e e	(c) ## #	Molten state: contained in a cavity 14, 6 to 13, 5 nm dia, and 140 to 210 mm long; measured in a vacuum of ~4 x 10.4 mm Hg, melting point 123, 5 C, density ranging from 16, 570 to 9, 570 g cm. at 130 to 700 C respectively.

DATA TABLE NO, - 8 THERMAL COMPREHENTY OF BISMUTH - LEAD ALLOWS

(B) (39) (30) (40) (mign) (A) (40) (40)

Temperature, E. K. Thremal Conductivity, 8, Wattern ⁴ K. ¹

-4 -	CITRAE L. Count.		 -	•• •	i s	, ,	: :	10 To 10 To	: :		<u>-</u>	2' : !!!!	ε.		=	='	<u>.</u> '	=	<u>-</u> ,	=' =-	=		e'	=	='	= -	-					ے'	:	±'	 	21 Ca 1 C 106				
.d	CURVE 10							17.12		CLEAP II		5130 G 2 11:						157.0 0 0 UTV		CURVE 1:		1950 0 0,000			=	٠,	,			20 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C		_	æ	30Ha 'a 47000		550°0 0 11110	CLINE 1.		101 T	1. 0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
⊢	CURVE 6									56 PH 10			CLEANE :	1			11:5:1		67 B 10	D1.18.14.0			0,14.59	9,000		55 mess 0		CLINE	4		3.6				26	CURVE 9		\$ 11.0° 0	/ FI & . 6	560×.0
⊢	-1	D. 6945 2 2945, 2	į		· · · · · · · · · · · · · · · · · · ·		*4	91: .	į		: 	1140 '9		•••I	į.	#1515 CM - 150 #	£ (4)	: ·	9, Crim . 1661, 2	15		-	ı	P	<u> </u>		::		5 !	13. The second	<u>;</u>			\$			71.6		1770 900 o	1. 4Ch
۲	CTURVE	2,00.2		* 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5			CURVE	e 1			61.4			CLENE					11.00			CI.RVE				9.128 1.28	_					CURVE 5	11:1:					ri P	-	

AN ARMAI OF PION

SPECIFICATION TABLE NO. 39 THERMAL CONDUCTIVITY OF [BISMITH + TIN] ALLOYS

(Bi + Sn - 99, 50%; imperity : 0, 20% each)

[For Data Reported in Figure and Table No. 89.]

Composition (continued), Specifications and Remarks		No details reported.	No details reported.	No details reported.	No details reported.	No details reported.	No details reported.	No demits reported.	No details reported.	Specimen in liquid state at temperatures above 140 C.	
Commission (weight percent)	ISI Su	٠	5 05 05 05 05 05 05 05 05 05 05 05 05 05	49 14 0. SG	0.1.	ය : : : : : : : : : : : : : : : : : : :		52 52	1	09 09	
	Name and Specimen Designation		Hatchins' alloy								
	Ref. Method Year Dang K Fron S.		<1.0								9.5
İ	Temp.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	302. 2	41-114	373, 2	373.2	373, 2	373.2	373.2	373, 2	358-553 55.0
	Year		243	1957	1957	1957	1957	1957	1957	1957	1962
į	Method	Used	J								7
	E.	ż	357	460	460	460	460	460	460	460	\$15
	Curve	Ž	-	2	<u>ب</u>	7	'n	٩	[~	20	on.

and the second of a market of the fact of multiple manufacts.

Manager Man

DATA TABLE NO. 89 THERMAL CONDUCTIVITY OF [BISMUTH + TIN] ALLOYS

(Bi + Sn \geq 99, 50%; impurity \leq 0. 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 9 (cont.) 368.2 418.2 428.2 443.2 483.2 533.2 553.2 302.2 0.0685 373.2 0.0565 373.2 0.0649 373.2 0.0690 CURVE 5 CURVE 1 CURVE 6 CURVE 3 CURVE 2 CURVE 4

373, 2 0, 105

CURVE 7

373.2 0.126 CURVE 8 373.2 0.176 CURVE 9

11-11-11-11

SPECIFICATION TABLE NO. 90 THERMAL CONDUCTIVITY OF [CADMIUM + ANTIMONY] ALLOYS

(Cd + Sb $\approx 99.50\%$; impurity $\approx 0.20\%$ each)

[For Data Reported in Figure and Table No. 90]

	Composition (continued), Specifications and Remarks	Calculated composition; test specimen 2-3 cm in dia.;	electrical conductivity 2, 69 x 10 ³ , 3, 425 x 10 ³ , and 6, 38 x 10 ³ ohm ¹ cm ⁻¹ at 0, -79, and -190 C respectively.	Approx. composition; electrical conductivity 0,588 x 10 ³ 0,795 x 10 ⁴ and 1 37 x 10 ³ ohm ⁻¹ cm ⁻¹ at 0, -79, and -190 C respectively.
Composition (weight percent)	Sb	33,3	,	20
Composition	PΩ	66.7	:	a
Name and	specimen Designation			
Reported	rror.%			
Method Year Temp.	readige, n	83-273	83-273	} •
Year		1912	1912	!
Method	260	Œ	ш	•
Curve Ref.	<u>.</u>	35	స	
Curve	9		e s	

DATA TABLE NO. 90 THERMAL CONDUCTIVITY OF [CADMIUM + ANTIMONY] ALLOYS

(Cd + Sb ≥ 99, 50%; impurity < 0, 20% each)

[Temperature, T, K. Thermal Conductivity, k, Watt cm⁻¹ K⁻¹]

CURVE 1 63.2 0.140 194.2 0.116 273.2 0.112

83.2 0, 0530 134.2 0, 0265 273.2 0, 0217

THE PROPERTY OF THE PARTY OF TH

SPECIFICATION TABLE NO. 91 THERMAL CONDUCTIVITY OF (CADMIUM + BISMUTH) ALLOYS

(Cd + Bi < 99, 50%; impurity : 0, 20% each)

[For Data Reported in Figure and Table No. 91]

						- N	Commention (weight percent)	eht percent)	Composition (continued), Specifications and Remarks
Curve No.		Ref. Method Year No. Used	Year	Temp. Range, K	Reported Error. %	Specimen Designation	PO	Bi	
-	230		1925	328.2			90.0	0 01	Approx. composition: Bi metal contained · 0.03 of total impurity, supplied by Baker: specimen 1.9 cm in diameter and 10 cm long, electrical conductivity 8.92 x 10 ⁴ ohm ¹ cm ² 22 C.
c	930	ن.	1925	328.2			80.0	20.0	Similar to above specimen except electrical conductivity. 6,47 x 10° ohm ⁻¹ cm ⁻¹ at 22 C.
u e	95	سَد ا	1925	328.2			70.0	30,0	Similar to above specimen except electrical conductivity. 5.24 x 104 ohm ⁻¹ cm ⁻¹ at 22 C.
) 1	300		1925	328.2			66.0	40.0	Similar to above specimen except electrical conductivity. 3, 86 x 10° ohm ⁻¹ cm ⁻¹ at 22 C.
, .	92.7) -	1925	328,2			0.65	9.0	Similar to above specimen except electrical conductivity, 3, 51 x 10 ohm ⁻¹ cm ⁻¹ at 22 C.
. y	383	:	1956	363-394			50.6	49. 4	Approx. composition; electrical conductivity 4.84, 4.42. 4.25, 4.2, 4.04, 3.94, 3.96 and 3.82 x 104 ohm cm at 29, 3, 57, 4, 71, 7, 79, 9, 97, 9, 107, 9, 112, 2 and 120, 7
t ~	8		1956	304-396			67.7	32.3	C. respectively. Approx. composition; electrical conductivity 5, 8, 5, 68, 5, 47, 5, 24, 5, 15, 4, 85, 4, 77 and 4, 67 x 10 ⁴ ohm 1 cm 1 at 30, 7, 5, 24, 5, 15, 4, 78, 1, 103, 1, 113, 5 and 122, 9 C respect-
æ	383		1956	307-383			89. 8	10, 2	Approx. composition; electrical conductivity 8, 45, 7, 85, 7, 52, 7, 26, 6, 95, 6, 83 and 6, 81 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 33, 8, 57, 5, 72, 4, 85, 1, 94, 2, 106, 6, 109, 6 C respectively.
÷	2		9561	302-388			90'0	φ <u>.</u>	0.2 Pb. electrical conductivity 10. 8, 10.11, 9.74, 8.97, 8.44 and 8, 17 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 28, 8, 47, 7, 61, 4, 83.3, 105, 8 and 114, 9 C respectively.

DATA TABLE NO. 91 THERMAL CONDUCTIVITY OF [CADMIUM + BISMUTH] ALLOYS

(Cd + Bi $\approx 99, 50\%;$ impurity : 0, 20% each)

(Temperature, T, K, Thermal Conductivity, k, Watt cm⁻¹ K⁻¹)

×	CURVE 8	0.0	٠. د د	345, 6 0, 698 358, 3 0, 678	φ. •	ີດ 8	382,8 0,636	CURVE 5	302.0 1.08	. . .	356, 5 0, 941	· •																		
.	CURVE 1	328, 2 0, 729		CURVE 2	328, 2 0, 598		CURVE 3	328, 2 0, 490	CURVE 4	328, 2 0, 393		CORVES	328, 2 6, 339	CURVE 6	0.	.0	_	0	0.	.	393, 9 0, 504	CURVE 7	303.9 0.632	4	6	340,6 0.527	3 0.	3 0.	.	396, 1 0, 519

* Not shown on plot

SPECIFICATION TABLE NO. 92 THERMAL CONDUCTIVITY OF (CADMIUM + THALLIUM) ALLOYS

(Cd + Tl = 99.50%; impurity < 0.20% each)

Curve		Method		Temp.	Reported	Name and	Composition (weight percent)	ght percent)	Communition (continued) Specifications and Bemante
₩.		No. Used Year	rear	Range, K	Range, K Error, %	Specimen Designation	Cd	7.	Composition (Commerce), operations and remarks
1	230	7	1925	336,2			50.0	50.0	Specimen 5 or 6 cm long with a cross-section ~ 0.3 cm ² ; electrical conductivity 0.877 x 10° ohm ⁻¹ cm ⁻¹ at 2.3 C.
61	230	ı	1925	336.2			ე.09	40.0	Similar to above specimen except electrical conductivity, 0,926 x 10f ohm tem-1 at 23 C.
m	230	J	1925	336, 2			70.0	30.0	Similar to above specimen except electrical conductivity, 1.02 x 104 ohm 'cm" 1 23 C.
4	230	٦	1925	336, 2			80.0	20.0	Similar to above specimen except electrical conductivity, 1, 11 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 23 C.
ιs	230	1	1925	336.2			90.0	10.0	Similar to above specimen except electrical conductivity, 1.22 x 10 ohm tem" at 23 C.

DATA TABLE NO. 92 THERMAL CONDUCTIVITY OF [CADMIUM + THALILUM] ALLOYS

 $\{Cd + Ti \approx 99.50\%$; impurity $\approx 0.20\%$; each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

¥	CURVE 4*	0.739	CURVE 5	0.866		
4	CUR	336.2	CUR	336.2		
*	CURVE 1*	0,661	CURVE 2*	0.703	CURVE 3*	0.753
۲	CUR	336.2	CURY	336.2	CUR	336.2

No graphical presentation

SPECIFICATION TABLE NO. 93 THERMAL CONDUCTIVITY OF (CADMILM - TIN) ALLOYS

(Cd - Sn < 99, 50%; impunity > 0, 24% each)

[For Data Reported in Figure and Table No. 93.]

Composition (weight percent) Composition (continued), Specifications and Remarks Cd	90. 0 10. 0 Approx. composition; < 0.03 of total impurity in Baker's analyzed tin, specimen 1, 9 cm in diameter and 10 cm long, electrical conductivity 12, 7 x 104 ohm ⁻¹ cm ⁻¹ at 22 C.	80 0 20.0 Similar to above specimen except electrical conductivity. 12, 3 x 10f ohm? cm? at 22 C.	in β 30.0 Similar to above specimen except electrical conductivity, 11.4 x 10° ohm² em² at 22 C.	60, 0 40, 0 Similar to above specimen except electrical conductivity, 10, 0 x 10f ohm 1 cm 3 at 22 C.	50. 0 50. 0 Similar to above specimen except electrical conductivity. 9. 98 x 10° ohm²l cm²¹ at 22 C.	70 c 29.7 Sixeimen in liquid state at temperatures > 548 K.
Name and Gom Specimen Designation						
Reported Error, %						; ;
Temp. Range, K	526.2	326.2	326.2	326. 2	326. 2	
Year	1925	1925	5261	1925	1925	:
Ref. Method No. Used	د.	-1	٦	٦	٦	
Ref. 1	230	230	230	230	230	
Curve No.	-	C)	ಣ	7	ın	

DATA TABLE NO. 93 THERMAL CONDUCTIVITY OF [CADMIUM + TIN] ALLOYS

(Cd + Sn 299, 50%; impurity < 0, 20% each

[Temperature, T, K. Thermal Conductivity, k, Watt cm-1K-1]

326.2 0.875 CURVE 1

CURVE 2

326. 2 0.837

CURVE 3

326.2 0.782

CURVE 4

CURVE 5

326.2 0.753

326, 2 0, 699

CURVE 6

0,816 0,856 0,912 0,912 0,816 0,816 0,711 0,460 0,460 0,485 0,552 0,523 0,523

SPECIFICATION TABLE NO. 94 THERMAL CONDUCTIVITY OF I CADMIUM + ZINC! ALLOYS

أعادتنا إلااستهادي يحي

 $(Cd + Zn > 99.50^{c_{\gamma}} \text{ impurity } \le 0.20^{c_{\gamma}} \text{ each})$

Composition (continued), Specifications and Memarks	A STATE OF THE PROPERTY OF THE PARTY OF THE	Applox composition: <0.03 of total imputity in service analyzed Zn; specimen 1.5 cm in dia nad 10 cm long; electrical conductivity 13.91 x 10 ohm 'cm' at 22 C.	Similar to above specimen except electrical conductivity, 14.1 x 10° ohm 'cm' at 22°C.	Similar to above specimen except electrical conductivity, 14-4 x 10t ohn 'em" at 22 C.	Similar to above specimen except electrical conductivity, 14.7 x 10° ohm 'cm ' at 22° C.
Composition (weight percent)		10.0	20.7	30,4	0.04
Composition		÷.	8	70.0	0.03
Name and Specimen Designation					
Curre Rad. Method year Temp. Reported					
Temp.		326.2	326.2	, y	# 55 # 55 # 55
Year		1935	1915	***	1925
Mr.		,i	_	1 .	
ž.	ġ	Š.	۶	}	1 2 2 3
Cerre	į	"	•		n 4

DATA TABLE NO. 94 THERMAL CONDUCTIVITY OF I CADMIUM + ZINC! ALLOYS

(Cd + Zn > 39, Soft; imparity < 0,2 الله each

[Temperature, T. K: Thermal Conductivity, k., Wattemaik.1].

CURVE I

TEF. 2 0.954

TES. 2 0.557 CURVE 3

226.2 0.996

CURVE 4*

N. graphical presentation

SPECIFICATION TABLE NO. 95 THERMAL CONDUCTIVITY OF (CHROMIUM + NICKEL) ALLOYS

(Cr + Ni > 99.50%; imparity < 0.20% each)

Composition (continued), Specifications and Remarks	Approx composition; specimen ~ 5 cm long with cross-sects m u.3 cm² made from nickel 99.75 to 99.45 pure including cohols, trace Fe and Cu, supplied by International Nickel Co, of America, fused with Cr supplied by Eimer and America electrical conductivity 0.83 x 10 charten in 22 C.
Composition (weight percent) Cr	c. 22
Reported Name and France Reculting Designation	
Curve Ref. Method year Temp. Reported	38cq 1

DATA TABLE NO. 95 THERMAL CONDUCTIVITY OF (CHROMIUM + NICKEL) ALLOYS

(Cr + Ni > 99, 50%; inspurity < 0, 20%; each)

[Temperature, T.K. Thermal Conductivity, k. Watt cm-1K-1]

T E CURVE 14 329.2 0.117

No graphical presentation

SPECIFICATION TABLE NO. 96 THERMAL CONDUCTIVITY OF (COBALT + CARBON) ALLOYS

(Co + C = 99, 50%; impurity s 0, 20% each)

Curve No.	No. No.	Method	Year	Temp. Range, K	Reported Error, "	Name and Specimen Designation	Composition (weight percent)	cight percent)	Composition (continued), Specifications and Remarks
-	238	ш	1927	303.2			~99.46	0.22	0.20 Fe, 0.003 P, 0.934 S, 0.032 Si, 9.05 Al, trace Mn and Ni; Co supplied by Sugiboyasi & Co.; specimen 5 mm in dia and 20 cm long; cast and machined; heated 40 min at 800 C and slowly cooled.

DATA TABLE MO. 96 THERMAL CONDUCTIVITY OF (COBALT + CARBON) ALLOYS

(Co + C : 99, 50%; impurity < 0, 20% each)

(Temperature, T,K; Thermal Conductivity, k, Watt cm-1K-1,

¥

CURVE 1"

203.3

Ne graphical presentation

SPECIFICATION TABLE NO. 97 THERMAL CONDUCTIVITY OF [CORALT + CHROMIUM] ALLOYS

(Co + Cr > 99, 50%; impurity < 9,20% each)

	Composition (continued), Specifications and Remarks		Alloy made from Cr (pure and free from C. Tanta Co. 2021) a supplied by Finer and Amend; specimen ~ 5 cm long with a cross section of 0.3 cm?; electrical conductivity 1.78 x 10° ohn cm ⁻¹ at 22 C.	Similar to above specimen except electrical resistivity, 1,26 x 104 ohm 'em' at 22 C.	Similar to above specimen except electrical resistivity, 1,09 x 10° obastem at 22°C.
	Composition (weight percent)		10.0	30.0	40.0
	Composition (v		90.0	70.0	60.0
	Name and Specimen Designation				
	Temp. Reported Range, K. Error, C.				
	Temp.		332.2	332.2	332.2
	Curve Ref. Method year R.		1925	1925	1925
			د	د	٦
	Rei.	Ç.	338	330	230
	Curve	Š	-	٠	, 6

DATA TABLE NO. 97 THERMAL CONDUCTIVITY OF [COBLAT + CHROMIUM] ALLOYS

(Co + Cr > 99.50%; impurity < 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

T k

CURVE 1*

332.2 0.142

CURVE 2*

332.2 0.130

CURVE 3*

332.2 0.105

No graphical presentation

الفرافيالية كالفروجية بالزاروب يجوزون فالقافية القرافي العرافيان فيدوكك لأساريك المرافاتين بمواليا والمرافية والمرافية والمرافية والمرافقة والمراف

SPECIFICATION TABLE NO. 34 THERMAL CONDUCTIVITY OF (COBLAT + NICKEL) ALLOYS

(Co + Ni > 99, 50%; impurity < 0, 20% each)

No.	Ref.	Method Year Used	Year	Temp. Range, K	Reported Error, "	Name and Specimen Designation	Composition (weight percent)	eight percent) Ni	Composition (continued), Specifications and Remarks
~	23 ⁸	ω	1927	303.2			8	S	The alloy made from Ni (containing impurities 0.1 Fe, 0.037 C, 0.019 S, 0.006 Si, 0.013 Cu, trace P. Al and Mn) and Cobalt (containing 0.2 Fe, 0.22 C, 0.003 P, 0.034 Si, 0.038 Al, trace Ni, Mn and Cu); specimen 5 mm in dia and 20 cm long; cast and machined, then heated for 40 min at 800 C and slowly conled; electrical resistivity 1.373 x 10 5 ohm cm at 30 C.
61	238	W	1927	300,2			9	G . 1	The alloy made from the same materials as above; specimen similarly prepared; electrical resistivity 1.333 x 10 5 ohm cm at 30 C.
ဗ	238	ш	1927	303.2			0.5	æ	The alloy made from the same materials as above: specimen similarly prepared; electrical resistivity 1, 233 x 10 ⁻³ ohm cm at 30 C.
4	238	M	1927	303.2			75	35	The alloy made from the same materials as above; specimen similarly prepared; electrical resistivity 1, 162 x 10 5 ohm cm at 30 C.
'n	239	¥	1927	3103, 2			08	20	The alloy made from the same materials as above; specimen similarly prepared; electrical resistivity 1, 206 x 10^{-3} ohm cm at 70 C.
۵	238	ш	1927	303.2			បន	115	The alloy made from the same materials as above; specimen similarly prepared; electrical resistivity 1.38 x 10°6 ohm cm at 30 °C.
t-	238	E	1351	303.2			06	10	The alloy made from the same materials as above; specimen similarly prepared; electrical resistivity 1.331 x 10^{-5} ohm cm at 30 C.
æ	238	ω	1357	303.2			\$6,	ഗ	The alloy made from the same materials as above; specimen similarly prepared; electrical resistivity 1.294 x 10 ⁻⁵ ohm cm at 36 C.

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K 1]

CURVE I

303.2 0.506

CURVE 2

303.2 0.523

CURVE 3*

303.2 0.573

303.2 0.356 CURVE S

303.2 0. SZ7

303.2 0.510 CURVE 7

305.2 0.523 CURVE B

No graphical presentation

SPECIFICATION TABLE NO. 99 THERNAL CONDUCTIVITY OF (COPPER + ALUMINUM | ALLOYS

(Cu + Al + 99, 50%; impurity > 0, 20% each)

For Data Reported in Figure and Table No. 99]

Composition (continued), Specifications and Remarks	Approx. composition; specimen 2, 53 cm in diameter and 38 cm long; chill-cast and nonealed; electrical resistivity reported at 293, 348, 373, 423, 473 and 523 C respectively as 14, 7, 15, 6, 16, 0, 16, 7, 17, 5 and 18, 3 μ ohm cm.	0,01 Fe; specimen 0.75 in, in diameter and 8 in, long; rolled and annealed at 750 C for 2 hrs.; electrical conductivity reported at 20 and 200 C respectively as 41,93 x 10 ⁴ and 27,59 x 10 ⁴ ohm ⁻² cm ⁻¹ .	0. 02 Fe. similar to above specimen: electrical conductivity reported at 20 and 200 C respectively as 32, 10 x 10 ⁴ and 22, 91 x 10 ⁴ ohm ⁻¹ cm ⁻¹ .	0.09 Fe; similar to above specimen: electrical conductivity reported at 20 and 200 C respectively as 22:40 x 10* and 17;95 x 10* ohm ⁻¹ cm ⁻¹ .	0.03 Fe. similar to above specimen except annealed at 700 C; electrical conductivity reported at 20, 200 C respectively as 15, 91 x 104 and 13, 00 x 104 ohm ⁻¹ cm ⁻¹ .	0, 14 Fe; similar to above specimen; annealed at 700 C for 2 hrs.; electrical conductivity reported at 20, 200 C respectively as 10, 26, 8, 824 x 10 ⁴ ohm. ¹ cm ⁻¹ .	0, 13 Fe; specimen 0, 75 in, in diameter and 8 in. long, rolled and annealed at 750 C for 3 1/2 hrs.: slowly cooled in furnace; electrical conductivity reported at 20 and 200 C respectively as 8, 834 and 7, 65 x 10 ⁴ ohm ⁻¹ cm ⁻¹ .	0, 07 Fe; similar to the above specimen; annealed at 750 C for for 2 hrs. and very slowly cooled in furnace at 450 C for 18 hrs.; electrical conductivity reported at 20 and 200 C respectively as 8,24 and 7,056 x 10 ⁴ ohm ⁻¹ cm ⁻¹ .	0, 09 Fe; similar to the above sixcimen except electrical conductivity reported at 20 and 200 C respectively as 6.925 and 5,738 x 10 ⁴ ohm ⁻¹ cm ⁻¹ .	Specimen prepared from Al (containing 0.21 Fe. 0.29 St) and high grade Cu: cast in fron mould 7 in. long and 9/16 in. in diameter: specimen 6 1/2 in. long and 1/2 in. in diameter: annealed at 500 C.
reight percent)	10.0	0.22	0.47	0.71	1, 89	4.61	7.72	9. 37	12, 15	z. 1. 75
Composition (weight percent)	÷ S.	77. 68	99, 47	99, 20	94.08	95, 25	92, 15	90, 56	87.76	98. 25
Name and Specimen Designation	Aluminum bronze; 6	106	101	76	7.7	S .	3	102	130	
Reported Error, "										
Temp. Range, K	293-523	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	438.2
Year	* Si	1935	1935	1975	1935	1935	1935	1935	1935	1532
Method 1'sod	* # 1 1 +	ب	ب	J	-1	٦	۔	ü	7	7
13 .5 2.5	153	551	1:15	135	135	135	135	135	135	67
Curve	-	:•	::	7	ഗ	ø	1-	on.	on.	10

SPECIFICATION TABLE NO. 99 (continued)

							Commercial and an income of	rejobt percent)	Committee footimed Specifications and Remarks
Curve No.	Ref.	Ref. Method Year No. Used	Year	Temp. Reported Range, K Error, "	Reported Error, %	Name and Specimen Designation	Cu	Al	COMPOSITION (COMPOSITION)
							94,90	∞5, 10	Similar to the above specimen.
= :	<u>.</u>	. ب	2561	1.00.			91,55	≥ 8.45	Similar to the above specimen.
감	67	<u>۔</u>	2021	1 000			87.22	12.78	Similar to the above specimen.
2 7	6 7	ונ	1932 1925	438.2 326.2			96.0	50,0	Approx. composition: total impurity < 0.03 in each metal, specimen 1.9 cm in diameter and 10 cm long; supplied
									by Baker, electrical conductivity 15.3 x 10° ohm · cm · at 23 C.
21	230	ı	1925	326. 2			0.09	40.0	Similar to the above specimen; except electrical conductivity 10,6 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.
91	230	-	1925	326. 2			70.0	30.0	Similar to the above specimen; except electrical conductivity 9.76 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.
17	230	1	1925	326.2			80.0	20.0	Similar to the above specimen except electrical conductivity 3, 60 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.
18	230	٦	1925	326 2		Aluminum bronze	90.0	10.0	Similar to the above spectmen except electrical conductivity 9,98 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.

DATA TABLE NO. 99 THERMAL CONDUCTIVITY OF (COPPER + ALUMINUM), ALLOYS

untidediadam and memor

(Cu + Al : 99, 50%; impurity : 0, 20% each)

[Temperature, T, K, Thermal Conductivity, k, Watt cm -1K-1]

	CURVE 9	293, 2 0, 536 473, 2 0, 674	CURVE 10	438. 2 1. 695	CURVE 11	438, 2 1, 071	CURVE 12 438, 2 0, 916	RVE.	438.2 0.707	CURVE 14	326, 2 1, 059	CURVE 15	326. 2 0.753	CURVE 16	326, 2 0, 745	CURVE 17	326.2 0.293	CURVE 18	326, 2 0, 816	
il in	CURVE 1		5 5 5 51	473, 2 0, 633 523, 2 0, 695	CURVE 2	293.2 2.912	H.	293, 2 2, 347 473, 2 2, 607	CURVE 4	293, 2 1, 749		CURVE 5	293, 2 1, 226 473, 2 1, 544	CURVE 6	_	473.2 1.071	CURVE 7	293, 2 0, 724 473, 2 0, 937	CURVE H	293. 2 0, 653 473. 2 0, 837

SPECIFICATION TABLE NO. 100 THERMAL CONDUCTIVITY OF I COPPER + ANTIMONY! ALLOYS

(Cu+Sb>99.50%, Impurity < 0.20%, each)

Composition (continued), Specifications and Remarks	Molten specimen contained in a thin-walled stainless steel cylindrical crucible of dimensions 24 mm dia x 100 mm long; electrical reassivity reported as 138 and 153 uhm cm at 700 and 800 C, respectively; thermal conductivity values calculated from the thermal diffusivity and the specific heat measurements using the density data from Biennias, A and Sauerwald, E., Z. anorg, chem., 41, 51, 1927.
rcent)	X
(weight per	
Composition (weight percent)	Q.S
Name and Specimen Designation	
Reported Error, %	3 0
Temp. Range, K	1073.2
Year	1966
Curve Ref. Method Year 1	م
Ref.	320
Curve No.	-

DATA TABLE NO. 100 THERMAL CONDUCTIVITY OF (COPPER + ANTIMONY) ALLOYS

(Cu + Sb > 99.50%; impurity $\leq 0.20\%$ each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹K 1]

CURVE 1

1073.2 0.236

No graphical presentation

والمحالا المخال المحام والمحواف معالا الأفاق أمالا أطالا إلى الأفويان فالباس لكال الكاليات المافية الأسفاء ومدهات

SPECIFICATION TABLE VO., 101 THERMAL CONDICTIVITY OF COPPERS ARSENCA ALLOYS

(Cu. As 199, 30°C) imparity (0, 20°C) each)

For Data Reported in Figure and Table No. 1917

Composition (continued), Specifications and Remarks	High grade copper har with traces impurities; specimen 6.5 in, long and 0.5 in, in diameter; cast and machined; thermal conductivity data obtained from the mean value of 16 readings.	Similar to the above specimen.	0, 022 Ni. 0, 003 Sb. Nil Sn and Pb. specimen 15,5 in. long and 0,75 in. in diameter; supplied by Birmingham Battery and Metal Co.; rolled, drawn and annealed.	0, 05 P; specimen 3.35 mm in diameter and 8 cm long, drawn and then prolongedly anneated at $450~\rm C$	on the similar to above speciment drawn, prolongedly annualed at 450 C and then severely deformed to ristonally.	o, 65 P., the above specimen annealed in helium as temp, increased up to 175 C at a rate of 6 C per min.	o, 65.0, the above specimen again annealed in belium as temp, increased up to 275.C at a rate of 6.C per min.	0, 05 P. the above specimen again amended in helbum as temp.
ent	¥		<u>.</u>	ē ···	=	ė	Ġ	₽.€
weight pi re	0° '0	0.433	Ž Ž	;2 €	¥3 ≓	:2 ='	i: c	12 2
Composition (weight precent)	99, 638	905,303	76,789	186,38	39, 33	10,53	199, 35	3
Name and Specims a Designation				N.v. 0	No. 1	No. 2	No. ::	7
Reported S Error,"			9.77					
Temp, Reported Ringe, K. Error,	11 X C T	7 / · · · · · · · · · · · · · · · · · ·	#601-1098	b, 9-40	6, 9-91	6, 9-91	6.9.91	
Year	1. 1902	7.7.1		6961	1959	1.63	6961	
Ref. Method Year	-	-	ند:	-		<u></u>		•
	la la	Ų	ā	982	9	236	236	1
Curve No.	-	•	1 15	7	13	ن	1-	

THERMAL CONDUCTIVITY OF [COPPER + ARSENC] ALLOYS DATA TABLE NO. 101

(Cu + As ≥ 99, 50%; impurity ≤ 0, 20%, each)

×
7
Watts cm
on.
-
-
•
-2
_
×.
٠.
~
_
>
-
7.
duc
2
Q
ç
0
O
_
_
Œ
=
-
-
ė.
-
Therma
~
¥
_
Ľ
_
۸î
=
2
=
~
-
×
-
F
-
,=
-

CURVE 2 40.5 55.1 55.1 55.1 55.1 55.1 56.1 CURVE 3	142
VE 2 L. 222 VE 3	2. 142 2. 142 2. 142
	222

SPECIFICATION TABLE NO 102 THERMAL COMDUCTIVITY OF (COPPER * BERYLLIUM, ALLOYS

(Cu + Be | 99, 50%; impurity | 0, 20% each)

[For Data Reported in Figure and Table No. 102]

Composition (continued), Specifications and Remarks	0.01 Fe; specimen ~4.97 mm in diameter and 32 mm long; heated at 400 C for 3 hrs. and cooled slowly.	Approx. composition: heated at 300 C for 2 hrs.; electrical resistivity 8, 25, 6, 2 and 5, 54 x 10° ohn om at room temp. 77 and 4, 2 K respectively.	Approx. composition: specimen machined from a cast bar; heated to 1450 F for 1 hour and quenched in cold water, handlened at 570 F and air cooled.
Composition (weight percent)	1.50	0	9. 4 5
Composition (v	98,49	0.8.0	97,55
Name and Specimen Designation	Beryllium Bronze	Beryllium Copper	
Reported Error, ".			
urve Ret. Method Year Temp. Reported No. No. Used Year Range, K. Error, ".	18-290	2: 0-40	323-723
Year	1939	1955	1983
Nethod	ب	ب	٦
No.	<u> </u>	229	3.3.8 8.
Curve		eı	;•

THERMAL CONDUCTIVITY OF [COPPER + BERYLLIUM] ALLOYS DATA TABLE NO. 102

(Cu + Be 2 99, 50%; impurity 50, 20% each)

[Temperature, T. K. Thermal Conductivity, k. Watt cm-1K-1]

0, 177 0, 653 1, 700

CURVE 1

CURVE 2

0,009 0,014 0,018 0,023 0,039 0,049 0,078 0,185 0,185 0,215 0,304 0,314 0,314 0,314 0,314

1, 255 1, 255 1, 255 1, 255 1, 420 1, 715 1, 966 1, 966 1, 966

CURVE 3

SPECIFICATION TABLE NO. 103 THERMAL CONDUCTIVITY OF | COPPER + CADMIUM | ALLOYS

(Cu + Cd > 99, 50%; impurity < 0, 20% each)

cifications and Remarks	75 in. in dia and 8 in. long: Co.; rolled, amecaled and C for 2 hrs; electrical x 10° ohm ⁻¹ em ¹ at 20 and	cen except heated at 750 C citivity 38, 87 and 26, 56 x respectively.
Composition (continued), Specifications and Remarks	0.009 Si, 0.007 Fe; specimen 0.75 in. in dia and 8 in. long: supplied by American Brass Co.; rolled, americal and cold drawn then heated at 700 C for 2 hrs; electrical conductivity 50.561 and 31.19 x 10 ohm en at 20 and 200 C respectively.	0.07 Fe; similar to above specimen except heated at 750 C for 1,50 hrs; electrical conductivity 38,87 and 26,56 x 106 ohm cm ⁻¹ at 20 and 200 C respectively.
ight percent) Ca	SF *0	090
Composition (weight percent) Cu	r.99,21	~99,04
Name and Specimen Designation	Bar 134	Bur 69
Year Range, K Error, 5,		
Temp. Range, K	*93,473	293,473
Year	1935	1935
Jurve Ref. Method No. Used	د ا	٦
Ref.	1:35	135
Curve No.	_	01

DATA TABLE NO. 103 THERNIAL CONDUCTIVITY OF | COPPER + CADMIUM | ALLOYS

(Cu + Cd > 99, 50%; impurity < 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-tK-1]

CURVE 1°
293.2 3.448
473.2 3.519
CURVE 2°
293.2 2.761
473.2 3.117

No graphical presentation

SPECIFICATION TABLE NO. 144 THERMAL CONDUCTIVITY OF (COPPER) CHROMICM ALLOYS

(Cu + Cr > 99, 50%; impurity < 0, 20% each)

For Data Reported in Figure and Table No. 104

Composition (continued), Specifications and Remarks	0. 1% Agr. unannessled.
Composition (weight percent)	¥5.2 0.63
Name and Specimen Designation	Russian cupralloy
Reported Error, ".	0.5
Temp. Reported	1956 3.3-NO · 5.0
Curve Ref. Method Year F	1956
X S	13. 15.
F 2	<u> </u>
E 4	i -

THERMAL CONDUCTIVITY OF [COPPER + CHROMIUM] ALLOYS DATA TABLE NO. 104

(Cu + Cr : 99, 50%; impurity <0, 20% each)

[Temperature, T, K; Thernaal Conductivity, k, Watt cm-1K-1]

CURVE 1

0, 209 0, 272 0, 351 0, 351 0, 686 0, 686 1, 06 1, 33 1, 67 2, 69 2, 55 2, 55 3, 28 6, 23 6, 23 115, 2 117, 0 117,

A. A. G. P.

SPECIFICATION TABLE NO. 105 THERMAL CONDUCTIVITY OF [COPPER + COBALT] ALLOYS

(Cu + Co \pm 99, 50%; impurity \pm 0, 20% each)

[For Data Reported in Figure and Table No. 105]

ı	i	3. C 7	
	Composition (continued), Specifications and Remarks	0, 10 Zr., 0, 03 F; electrical conductivity reported at 63.3, 138, 181, 8, 302, 0, 376, 3, 457.5, 508.3, 600 and 700 C respectively as 39, 8, 32, 0, 28, 90, 22, 61, 19, 8, 17.37, 16, 14, 20 and 12, 05 x 10 ⁴ ohm cm ⁻¹	0. 1 Bc
	Composition (weight percent) Cu	0° 0°	0,65
	Composition (we Cu	>,99,23	99, 25
	Name and Specimen Designation		
	Temp. Reported Range, K Error, %		
	Temp. Range, K	337-973	345-948
	Year	1957	1959
	Curve Ref. Method Year No. No. Used		ίιi
	Ref.	377	541
	Curve No.	-	21

AND THE STATE OF THE PROPERTY

and the second of the second o

The state of the s

DATA TABLE NO. 105 THERMAL CONDUCTIVITY OF (COPPER + COBALT) ALLOYS

The second secon

'Cu + Co + ...5, 50%; Impurity + 0, 20% each)

[Temperature, T. K, Thermal Conductivity, k, Watt cm $^{\!-1}\,\mathrm{K}^{\,1}\!\mathrm{]}$

ក្នុងខ្លួនគ្នងមន្ត ក្នុងក្នុងក្នុងក្នុង

CURVE 1

CURVE:

2, 720 2, 820 3, 820 3, 929 2, 979 2, 979 2, 954 2, 452 3, 777 345,0 388,2 518,7 573,2 648,2 686,2 733,2 746,2 829,2 913,2

SPECIFICATION TABLE NO. 106 THERMAL CONDUCTIVITY OF (COPPER + GOLD) ALLOYS

(Cu + Au + 99, 50%; impurity $\leq 0,20\%$ each)

[For Data Reported in Figure and Table No. 106]

rks 	ohm cm	## and	820				C for 1 hr;		,	vire I mm al conduc-	ပ်	' x 10 ⁴ 7.	a wire of d to the 0 C.	. 4.7 L ohm	. 7.3 µоћт	710.4 µ ohm
Composition (continued), Specifications and Remarks	Calculated composition; polycrystalline; unannealed; careful to the careful to th	Similar to above specimen except when the same electrical resistivity, 2, 487, and 2, 172 u ohm cm at the and electrical respectively. 3,00,	Calculated composition; specimen 1,43 cm long with cross section 0,53 cm ² ; dast.	The above specimen; annealed for 10 hrs.	similar to above specimen; annealed for 30 hrs.	Similar to above specimen; annealed for 40 hrs.	emained 9 cm lang and 0.5 cm in dia; annealed at 750 C for 1 hr;	ρ ₀ · 3, 53 μ ohm cm.	Similar to above specimen except $\rho_0 = 7.04 \mu$ ohm cm.	Calculated composition; specimen rolled and drawn to wire 1 mm dia; heated to near melting point for 0,5 hr; electrical conduc-	tivity 5,7 x 104 and 5,5 x 104 ohm 1cm 1 at 0 and 100 C respectively.	Similar to above specimen; electrical conductivity 10.7 × 10 ⁴ and 9.1 × 10 ⁴ obm ⁻¹ at 0 and 100 C, respectively.	Calculated composition, specimen rolled and drawn to a wire of 3 cm in length and 1 mm² cross-section, then heated to the melting point, electrical resistivity 8.2 µohm cm at 0 C.	Similar to above specimen except electrical resistivity 4.7 μ when cm $_{\rm m}$ 0 C.	Similar to above specimen except electrical resistivity 7.3 µohm cm at 0 C.	Similar to above specimen except electrical resistivity 10.4 μ ohm cm at 0 C.
tht percent) Au	24. x	12.6	43, 67	43.67	43.67	43.67	- 0		±± 38.0	44.76		26.48	5, a	12.4	27.3	45.0
Composition (weight percent)	75.2	87.6	\$ 6 .33	56.33	56.33	5445 5473	66.00	79.9	62.0	55.24		70.52	9.1.6	87.6	72.7	55.0
Name and Specimen Designation																
Reported Error, %																
Temp.	22-93	16-12	4.22.7	448.2	411.2	467.2	422.2	1.9-134	6	273,373		273, 373	273.2	273.2	273.2	273.2
Year	+8:61	1934	1937	1957	1957	1957	1937	1957	5	1957		1919	1924	1924	1924	1934
Nethod 1.sed	3	نا	7		1	-1	-	٦	•	J H		T	£- 1	H	H	۲
Fel.		Š	232	332	232	232	232	233	;	233	İ	246	430	430	430	430
Curve	-	↑)	÷	••	ഹ	9	1-	yc	,	တ ဥ		:	12	2	2	15

DATA TABLE NO. 106 THERMAL CONDUCTIVITY OF [COPPER COLD] ALLOYS

(Call Au 39, 30°), impurity [0, 20°] each)

4
h. Wattern !
Conductivity
Thermai
ź
۲
Temperature.

	CURVE 10	273, 20 0, 64 373, 20 0, 66	CURVE 11	18.0 0.81	THE STATE OF	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	CURVE 1.:	273, 2	12 VE		273, 2 0, 91	 CORVE	273, 3 0, 62											
∡ ⊢	CURVE S (CORL.)	15,46 6,1627 22,75 0,239 33,94 6,249				107 30 0 676 107 30 0 685	116,00 0,740 124 t.0 0,731		CURVE 9	1, 92 0, 00863		3.95 0.0155	_		14, 08 0, 08%			31,29 6, 1604				90,70 0,325		
-4 -	CURVE 1	21.50 0.141 22.70 0.151	92, 70 U, 446	CURVE 2	21, 30 0, 239	91.00 00.12	CURVE 3	423, 70 1, 021	THATE 4		444,20 1,046	CORVES	411, 20 0, 686	CURVE 6	467, 20 0, 607	CURVET	422, 20 0, 632	3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CUNE		:: 17 0, 0267		4, 26 (4, 0377	

SPECIFICATION FABLE NO, 107 THERMAL CONDUCTIVITY OF (COPPER 1 IRON) ALLOYS

(Cur. Fe 2 99, 50%, impurity: 0, 20% each)

. For Data Reported in Pigure and Table No. 107]

Curve No.	No.	P.i. Medod Year No. Used	Year	Temp. Range, K	Reported Error, "c	Name and Specimen Designation	Conyosition (weight percent) Cu	eight percent) Fe	Composition (continued), Specifications and Remarks
-	غ	ن	1932	438, 2			s 99, 80	o. 20	High grade electrolytic Cu with traces of impuritles: specimen 6, 5 in, long and 0, 5 in, in diameter; heated at 1000 C for 1 hr, then quenched.
e1	13	٦	1902	438, 2			08,6954	0.20	Similar to the above specimen: heated at 650 C for 1 hr. then quenched.
**	13	-1	2067	#03. 51			11.69.1	88.5	Similar to the above specimen, heated at 1000 C for 1 hr. then geometricle.
4	6	<u></u>	1462	438. 2			1.99.71	67.59	Similar to the above specimen: heated at 650 C for 1 hr. then quenched.
(7	E	J	19:12	438.2			. 99,50	0, 50	Similar to the above specimen, healed at 1000 C for 1 hr. then quenched.
ဗ	6	-:	1932	438.2			05,99.50	0, 56	Similar to the above specimen; healed at 650 C for 1 hr., then quenched.
t-	1:	7	87.61	238.2				3.47	Similar to the above specimen; healed at 1000 C for 1 hr, then quenched.
z.	į;	-1	1972	40.8. u			180 80 /	1. uç	Similar to the above specimen; heated at 650 C for 1 hr. then quenched.
£	77	<u></u> :	1965	3034-303	0.6 :	ĹĿ	98.7.36	1, 25	0,014 P; specimen 0,5 in, in diameter and 6 in, long.
2	77	ے	1935	339-333	15,4	ບ	95, 822	4. lt.	0,048 P. specimen 0,5 in, in diameter and 6 in, long.
Ξ	21	نہ	1952	339-533		យ	890,368	24.0	0, 012 P. similar to above specimen.

DATA TABLE NO. 107 THEIMAL CONDUCTIVITY OF [COPPER FIRON] ALLOYS

(Cu + Fe : 99, 50%; impurity - 0, 20% each)

, Temperature, T. K. Thermal Conductivity, k. Watt $\mathsf{cm}^{\mathsf{TL}}\mathsf{K}^{\mathsf{TL}}$

1, 817 1, 938 2, 094
338, 7 422, 1 533, 2

SPECIFICATION TABLE NO. 194 THERMAL CONDUCTIVITY OF [COPPER + LEAD] ALLOYS

(Cu + Pb ≥ 99, 50%; impurity :: 0, 20% each)

[For Data Reported in Figure and Table No. 108]

Composition (continued), Specifications and Remarks	Specimen 0.25 in. in dat; supplied by Kenosha plant of the American Brass Co.; commercial hard-drawn temper rod; grain size 0.004 cm in transverse section and about 0.005 cm long by 0.004 cm wide in the longitudinal section.
Composition (weight percent)	98.94 1.04
Name and Specimen Designation	Lead Cu-126
Reported K Error, %	
Temp. Range, K	21-87
Method Year Used	1955
. Metho	۱
rve Rei.	1 582
1 = 7	}

DATA TABLE NO. 168 THERMAL CONDUCTIVITY OF [COPPER + LEAD] ALLOYS

(Cu + Pb > 99, Sc%; impurity <0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

Section of the

SPECIFICATION TABLE NO. 109 THERMAL CONDUCTIVITY OF [COPPER + MANGANESE] ALLOYS

(Cu + Mn > 99, 50%; impurity \$ 0.20% each)

[For Data Reported in Figure and Table No. 109]

Curve	-	Method	Year	Temp.	Reported Error. %	Name and Specimen Designation	Composition (weight percent)	eight percent) Mn	Composition (continued), Specifications and Remarks
ġ -	230	1	1925	332. 2			0.08	10.0	Approx. composition; specimen ~5 cm long with cross section 0,3 cm ² ; made from Cu (<0.03 of toml impurity) supplied by Baker, fused with Mn supplied by Elmer and Amend; electrical conductivity 2,76 x 10 ⁴ ohm 1 cm ⁻¹ at 23 C.
84	230	ب	1925	332. 2			80	20	Similar to the above specimen except electrical conductivity 1, 59 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.
n	230	ت	1925	332, 2			7.0	30	Similar to the above specimen except electrical conductivity 1, 11 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.
, प	230	٦	1925	332. 2			09	40	Similar to the above specimen except electrical conductivity 0, 916 x 104 ohm ⁻¹ cm ⁻¹ at 23 C.
က	13,	-1	1935	293, 473		Bar 1.16	99.55	0.43	0, 01 Fe, 0, 01 M _☉ specimen 0, 75 in, in diameter and 8 in, long; supplied by American Brass Co.; annealed at 700 C for 2 hrs.; electrical conductivity 29, 56 and 22, 00 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 20 and 200 C respectively.
ç	135	ü	1935	293, 473		Bar 117	99.05	1.65	0. 01 Fe, 0.01 Mg; similar to the above specimen except electrical conductivity 19. 07 and 15. 84 x 104 ohm ⁻¹ cm ⁻¹ at 20 and 200 C respectively.
7	135	٦	1935	293, 473		Bar 118	98,27	1,77	0.03 Fe. 0.01 Mg; similar to the above specimen except clectrical conductivity 12.54 and 11.22 x 10 ⁴ ohm ⁻¹ cm at 20 and 200 C respectively.
æ	135	_	1935	293, 473		Bar 119	95,34	4.55	0.06 Fe. 0.02 Mg. similar to the above specimen except electrical conductivity 5.567 and 5.446 x 104 ohin 1 cm at 20 and 200 C respectively.
3 5	135	٦	1935	293, 473		Bar 120	90.25	9.53	0, 18 Fe. 0.02 Mg. 0.021 C. similar to the above specimen- except electrical conductivity 2.814 and 2.829 x 10° ohm- cm ⁻¹ at 20 and 200 C respectively.
2	135	ü	1935	293, 473		Bar 121	80.03	19. к2	0. 09 Fe. 0. 02 Mg. 0. 035 C: similar to the above specimen except electrical conductivity 1.453 and 1.474 x 104 ohm or "1 at 20 and 200 C respectively.
ī	# #		1927	80.273		1	70	08:	Approx composition; coarse grain; electrical conductivity 0,784 and 0,743 x 10t ohm ⁻¹ cm ⁻¹ at 80 and 273 K respectively.

ed any management from

and the particle

Composition (continued), Specifications and Remarks	Approx, composition; medium grain: electrical conductivity 1, 69 and 2, 654 x 19f ohm ⁻¹ cm ⁻¹ at 80 and 273 K respectively.	Approx. composition, medium grain, electrical conductivity 0, 902 and 0, 863 x 10 ⁴ ohm ⁻³ cm ⁻³ at 80 and 273 K respectively.	Approx. composition; fine grain: electrical conductivity 1, 034 and 0, 951 x 104 ohm ²⁴ cm ²³ at 80 and 200 C resorctively.
Compasition (weight percent)	30	98	30
Composition	7.0	20	0.2
Name and Specimen Designation	ଧ	e:	₹
Reported Error, ",			
Temp. Ringe, K	80, 273	9.7.6	80, 27.3
Curve Ref. Method Year Temp. Reported No. No. Used Year Ringe, K. Error,",	1921	1201	1927
Ref. M	Ħ	Ħ	.
Curve No.	2	5	7.

DATA TABLE NO. 109 THERMAL CONDUCTIVITY OF (COPPER + MANGANESE) ALLOYS

(Cu + Mn ≥ 99.50%; impurity ≤ 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watts $cm^{-1}K^{-1}$]

¥ +	CURVE 9	293. 2 0. 259 473. 2 0. 381	~	1	473.2 0.218	CURVE 11	80 0.0605	2		80 0.0856 273 0.126		RVE	80 0.066 273 0.120		CURVE 14	80 0.0849	0				
H	CURVE 1	332. 2 0. 272	CURVE 2	332.2 0.172	CURVE 3	332, 2 0, 134	CURVE 4	332, 2 6, 130	CURVE 5		473.2 2.561	CURVE 6		473.2 1.900	e andito	CONVE	293. 2 1. 021	473.2 1.389	CURVE 8	293. 2 0. 490	

SPECIFICATION TABLE NO. 110 THERMAL CONDUCTIVITY OF COPPER - NICKEL! ALLOYS

(Cu+Ni)/99,50% , impurity $^{\circ}$ 0,20% each)

For Data Reported in Figure and Table No. 110]

Curve No.	No.	Method	Year	Temp. Runge, K	Reported Error, "5	Name and Specimen Designation	Composition (v	Composition (weight percent) Cu	Composition (continued), Specifications and Remarks
	135	٠,	1935	29.1, 473		Bur 107	98,7 :	ć. c.	0.14 Fe, 9.00 M.; specimen 0.75 in, in dismeter and 8 In, long; supplied by American Brass Co.; annealed at 800C for 2 brs., ejectrical conductivity 45,76 and 29,11 x 10 ⁴ ober ³ em ³ at 20 C and 200 C respectively.
c1	135	ت.	1935	293, 473		Bar 108	38° 47	₹. •	0, 02 Fe. 0, 04 Mg. similar to the above specimen except annicolled at 800 C for 3 hrs., electrical conductivity 39, 94 and 26, 86 x 10 ⁴ ohm ³ cm ⁻³ at 20 and 200 C respectively.
m	135	۳ ت	1935	293, 473		Bar Lob	97. 94	(5. –	o of Fe, 0.04 Me, similar to the above specimen everpt anneated at 800 C for 4 brs.; electrical conductivity 22,71 and 15,58 x 10 ⁴ ohm ³ cm ³ at 26 and 200 C re- spectively.
7	135		1935	293, 473		Bar 110	94, 92	50 %	0, 01 Fe. 0, 03 Mg, similar to the above specimen except electrical conductivity 12, 39 and 10, 64 x 16' ohm ⁻¹ cm ² 0 and 200 C respectively.
10	561	-	19.65	290, 470		3ar 111	75. 30 30 30. 30 30 30 30 30 30 30 30 30 30 30 30 30 3	50 °01	0.02 fet, 0.03 Mg, 0.024 C, similar to the above specimen except electrical conductivity 7, 07 and 6, 46 x 104 ohm ⁻¹ cm ⁻¹ at 20 and 200 C respectively.
œ	132		1935	290, 473		Bar 125	Ŷ	15 67	0, 05 Fe = 0, 0) Mg, 0, 03 Mn; similar to the above specimen except electrical conductivity 5, 094 and 4, 755 x 10 ⁴ ohm ⁻⁷ cm ⁻¹ at 20 and 200 C respectively.
r-	135	ن	1935	290, 470		Bar 124	69.51	30, 23	0, 05 Fe. 0, 05 Mg. 0, 13 Mn, similar to the above specimen except electrical conductivity 2, 754 and 2, 730 x 10° ohm ⁻¹ em ⁻¹ at 20 and 200 C respectively.
r.	154		1956	2, 31-108	Rus	Russian cupro nickel NM-41, 7	31° E	15.0	Specimen in strip form cut from a 6 κ 5 mm tube; measured in he)tum, unannealed.
5.	154	-	956	2, F76 5776	Rus	Russian cupro aicket NM-31, 6	z x	19, 0	The above specimen annealed at 800 C, measured in helium.
2	124	<u>-</u>	19.80	76 1 20			7.67	a. u. 21	6. 2 Mn. trace Mg. specimen -0.25 cm in diameter and -35 cm iong, chill east, bot rolled and cold drawn then annealed at 700 C for 12 hrs., electrical conductivity 3.54, 3446, 3.33, 3.21-3, 12 and 3.02 x 10 ³ ohm ³ cm ³ at 48, 150, 315, 462, 575 and 714 C respectively.
=	124	2	19730	3315-990			8.80	40,0	Similar to the above specimen except electrical conductivity 1, 99, 1, 99, 1, 96, 1, 96, and 1, 92 x 10 ⁴ ohm ²¹ cm ² at 62, 266, 510 and 717 C. respectively.

SPECIFICATION TABLE NO. 110 (continued)

Reported Error, " Spec	Name and Specimen Designation	Cumposition (Composition (weight percent) Cu	Composition (continued), Specifications and Remarks
	Eureka	60.0	40.0	Approx, composition; specimen 6 mm in diameter and 9 mm long.
		0.66	1.0	Specimen 7 cm long and θ, i to θ, 3 cm wide, drawn; clice-trical resistivity 2, 97, 1,60 and 1,295 μ ohm cm at θ, -190 and -252 C respectively.
		70.0	30.0	Approx, composition; specimen 4.1 mm in diameter and 21 mm long, supplied by Yorkshire Copper Works 1.td , cold-worked.
		90.08	20.0	Approx, composition; average grain size 0,011 mm.
		0.09	40.0	Density 8, 92 g cm ⁻¹ at 18 C; electrical conductivity 2, 04 and 2, 037 x, 10 ⁴ ohm ⁻¹ cm ⁻¹ at 18 and 100 C respectively.
	1 NO	0.00	10.0	Specimen 1/k in, in diameter; machined from an annealed bar; electrical resistivity 12.5, 12,72 and 14,68 μ ohm cm at 19,7,78,9 and 296 K respectively.
	CN 2	0.06	10.0	Specimen 1/s in, in diameter: cold-worked by rolling from 0.25 in, thick to 0.14 in, before being machined to size; electrical resistivity 12.65 and 14.69 μ ohm cm at 76.2 and 206 K respectively.
	C N 3	0.06	0 '01	Specimen 1/8 m, in diameter, severely cold-worked, rolled from 0.5 in, erosa section to 0.22 x 0.24 in, before machining, electrical resistivity 12, 63 and 14, 65 μ ohm cm at 78, 7 and 298 K respectively.
	CN 4	90.0	10.0	Single crystal; specimen 1/8 in, in diameter; electrical resistivity 13, 0, 13, 10 and 15, 64 μ ohm cm at 29,5, 79,3 and 208 K respectively.
		60.0	40.0	36 gauge wire bound and soldered together.
		. 99, 22	0.73	High grade electrolytic Cu with traces of impurities; specimen 6.5 in, long and 0.5 in, in diameter; annealed at 900 C.
		. 98, 43	1, 57	Similar to the above specimen.
		- 97,24	2,76	Similar to the above specimen.
		1.56	E	Similar to the above specimen.

	No.	Method Used*	ear	Temp. Range, K	Reported Error. "	Name and Specimen Designation	Composition (weight percent)	veight percent) Ni	Composition (continued), Specifications and Remarks
9:	230	_e :	1925	330.2			93	S	Approx composition; specimen ~5 cm long with cross section 0.3 cm ² , unade from Cu (< 0.63 of total impurity) supplied by Baker, fused with Ni (99.75 to 99. %5 pure including cobally supplied by International Nickel Co, of America, electrical conductivity 1.96 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
ę;	230	٦	1925	330.2			0.09	40.0	Approx composition; similar to the above apecimen except electrical conductivity 2.04 x 10 ⁴ ohm ² cm ² at 25 C.
λ.	230	ډ.	1925	3.10.2			70	30	Similar to the above apecimen except electrical conductivity 2.48 x 104 ohm tem t at 25 C.
61	236	ت	1925	320.2		<u>;</u>	96	10	Similar to the above specimen except electrical conductivity 3.49 x 104 ohm ⁻¹ cm ⁻¹ at 25 C.
8	951	۵.	1939	305.2		Mance	55.0	45.0	Approx composition; impurity < 0, 03,
æ	<u>=</u>	C	:923	323-1173	e.:	Горш	93.4	6.05	0.01 Mn, 0.01 St; unicaled at 900 C; lead used as comparative material.
32	219		1981	26-35	۳. ۲. ۷	Constantan	55.0	45.0	
33	\$ 2	H	1919	273,373			89, 94	10.06	Calculated composition; specimen rolled and drawn to 1 mm thick; heated 0.5 hr close to melting point; electrical conductivity 6.2 and 6.1 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 0 and 100 C, respectively.
34	546	1	1919	213,373			î.	20 1.	Similar to the above specimen except electrical conductivity 3.5 and 3.3 x 10° ohm-lem-f at 0 and 100 C, respectively.
35	346	۲	1919	213,373			, oo	.19.98	Similar to the above specimen except electrical conductivity 2.0 and 2.0 x 10° ohm lem * at 0 and 100 C, respectively.
98	£ 113	n n	0+61	61		o r je	£9.70.05	7-29, A9	Cu-Ni alloy containing 0.03 Mn, 0.03 Fe, and traces of other impurities, made from electrolytic Ni (containing 0.53 Čo. 0.05 Fe, 0.02 Al) and electrolytic Cu (containing 0.015 Sb, 0.01 Fe, 0.007 Sand trace of Pl; specimen 4.0 mn, in dia and 6 mm long, electrical resistivity 46.3 uohm cm at -195 C.
¥	15.	J	0461	78.2		6	r, 80.11	n 19.83	The alloy containing 0.04 Mn, 0.02 Se and traces of other impurities made from the same materials as above; electrical resistivity 27.1 µohm cm at -195 C.

	Composition (continued), Specifications and Remarks	α_s 11 Te and trace Mn; made from the same material as above, electrical resistivity 17, 6 μ obtains at +155 C.	 0, 14 Fe., traces of Mn and other impurities: made from the same materials as above: electrical resistivity 11, 9 μ οhm cm at -195 C. 	0, 09 Fe and traces of other impurities: as above lot electrical resistivity 3, 43 μ ohm cm at +195 C.	 (a) Fe and traces of other impurities; as above but elec- trical resistivity 1, 039 μ ohm cm at -195 C. 	Approx. composition; density x, 89 g cm?, electrical conductivity 1, 90 x 10² ohm f cm l at 18 C.	0, 1 Be. 0, 15 Co; electrical conductivity 25, 8, 23, 1, 26, 4, 18, 25, 16, 5, 15, 67 and 14, 18 x 10° ohm "cm" at 63, 0, 114, 6, 195, 273, 375, 8, 432, 5 and 551, 3 C respectively.	o, to Be. 0, to Zr.; electrical resistivity 3, 74, 7, 85, 4, 33, 7, 16, 33, 7, 105 and 8, 14 µohm cm at 59, 4, 11, 16, 291, 6, 365, 6, 457, 514, 5 and 626, 5 C respectively.	0, 20° No. electrical resistavity 4, 25, 4, 88, 5, 56, 6, 01, 6, 44, 6, 57, 7, 18, 7, 28, 7, 66, 8, 93 and 9, 78 pohm cm at 62/ 8, 130, 9, 217, 5, 290, 6, 462, 5, 440, 3, 540, 3, 538, 3, 674, 3, 618, 0 and 673, 6 C respectively.	.0.079 O Specimen 50,6 cm long.	. 0.079 O. Epiccimen 50.6 cm long.	0.079 O. specimen 50.6 cm long.	0,0042 Fe. 0,0014 Pb. trace Sn and Zn; specimen 50,6 cm long.	0.022 O. specumen 50.6 cm lung.	Approx. composition; specimen about 1 to 5 fifth in dainteer, and ~ 100 mm lying; measured in different strain conditions.
	ght wreent)	<u>;</u>	14 3	<u>19</u>	1.03	46, 6	e t ' 0	06.0	o x x	6,204	0, 363	O, 50%	0, 303	905.0	0.07
	Compression (weight percent)	36, 05	90,39	96,24	40°°4	B. 14.0	93, 85	94,96	e 'of	19,717	.199,618	. 99, 413	99, 961	. 89, 47	60,0
	Name and Specialen Designation	<u></u>	=	21/	23					ím	الميا	ILO	15	101	
۰	Reported! From.									e, 11	o. 11	0, 11	o.	0, 11	
	Temp. Ruge, K	7.	†) / (*	21 2 15	ti K	291.2	336-825	333-900	336-947	273-403	273-403	273-403	273-403	27:1-4(K)	다. 국
	Year	inter.	÷4:1	<u> </u>	S T	11981	1961	1967	1957	193×	1933	1938	1938	1938	1962
	Method	_	ند	نـ	i	-					:	نہ :	د.	نــ	Œ
	%	1 9	4	:: -	11 **	97. **	17	<u>'</u>	7 15	į	; ;	Ţ	27.1	27.1	612
	Curve No.	4	Ŗ	Ē		잌	÷	7	9	94	<u> </u>	: °	7	20	ī:

DATA TABLE NO. 190 THERMAL CONDUCTOVITY OF (COPPER 9 NICKEL) ALLOYS

(Cre v N) (26) (26), timporetty (0, 20%) each)

, Temperature, T. K. Thermal Conductivity, $\kappa_{\rm s}$ Wattern $^{1}{\rm K}^{-1},$

×	CURVE 35	273, 2 0, 20 373, 2 0, 26	CURVE 36	1	75, 2 0, 201	CURVE 37	78.2 0.234		CURVE 38	78,2 0,280	CURVE 39	ĺ	78, 2 0, 351	CURVE 40	0.000		CURVE 41	78.2 1.75	01 3VOII	CONTE	291,2 0,203	CHRVE 4:		336,2 2,13						
¥	CURVE 31				1,053		20 1, 162 20 1, 199		CURVE 32	14 0,0937			0.150		63 B. 174		51 0, 125 22 0, 185					10 0, 218 12 0, 226		CHUVE 'ES		0,52		#1. 3d di	CUKVE 14	0,31
⊢	티		5 473, 13 6 573, 13		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	973, 20	1073, 20 1173, 30		εl	# E	1 S. O.		5	1.0.0	114, 18.		159, 71		204 :27	70 413		284, 32	295, 00		SI.	27.3.	373, 2	5	3ł	273, 2
<i>-</i> 2	CURVE 21		9, 50 0, 001.3		90,60 0,150	CURVE 22	19.5.2		CURVE 23	108.2 2.001	CURVE 24		811.1 11.21	CHRVE 25	C1. 1		CURVE 26	330,2 0,226	26 330310	T TANK	356.9 0.326	CHRYF		0.241	CHBVE 26		330,2 0,369		CURVE 30	305, 2 0, 228
	(cont.)	P. 157	1. 175	<u> </u>	100	E. 005 E	0,00917 0,0103		4), 114(5) 4), 1144 5), 1144		د. 1		2 200	9,000502	8010°0		0, 09% 0, 32%		sto o	07.0		0,400,50	101	0, 135		0.361	0,357			73
: : :-	CURVE 15 femt.	15, 70		CURVE IN		2 G	-, -, -, -,	10.11	6	- F	F	CURVE 19	::	7	2) 2	12.51	19, 40	3 i	0.7/.	CURVE 20		4 9 1 4	14,20	60°E	00° 50	73, 00	79, 30			
_ ==	CURVE 12	2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	₹ :: •	CURVE 1.			CURVE 14		0,020	0° 0300	CURVE 15		0,00037	0,00485	0,00549	0,000177	0,00725	0.00s41	0,0000	0, 07350		CURVE 16	9, 226	6, 265	21 23015	1 1	0,00746	0.0120	6, 6964 0 113	; •
⊬	팅	27.1, 00	17:	[] []	;	88			E :		cn	1	1, 35 45 45	9 9. 1 01	60 5	69 f	8 5 5 7		7 5	31.50			291, 20	17.3, 20		3	3, 33	7, 21	14, 10	
4	CURVE & (coal.)		no 0, 07.36 50 0 105		=;	CURVE 9	}					9850.0 01				5 5	0.3	CURVE 10		0.405 0.405		20 0,628		- 6	CONCE			20 0.506		
۲	CUR			8 7	-		•	, g . i t i		1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65. 9. 5. 10. 9. 5. 10. 9. 5.		2	00 60			75, 30			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 000 m		•		115 135, 20				į
4	CURVE 1	293, 00 3, 217 473, 00 3, 243	747		293.00 2.020		CURVE 3	1,00	473,00 2,013	CURVE 4	250, 00 0, 036			CONVE		***** 00 00 °F / +	CURVE 6		473,00 0,602	CURVE 7	1	983.0 0 583 483.0 0 59		CURVE 8	. 42100 0		9,50 0,0156		17,00 0,0261 20 50 0 0143	
⊬		26 F			292	4		25.5	1		560	1			e :	Ť		S	14			ē; (-		c		: -	# :	<u> </u>	ĺ

Net shown on plot

Not shown on plot

SPECIFICATION TABLE NO, THE THERMAL CONDUCTIVITY OF COPPER CPALLADIUM ALLOYS

(Cu + Pd - 99, 50%; impurity - 0, 20% each)

For Data Reported in Figure and Table No. [111]

fications and Remarks	tl. unannealert; Amberri V5. 508, and 5, 184 µ ohm et (6.82)	it 600 to 700 C for 2 hrs.: at.			
Composition (continued), Specifications and Remarks	Calculated composition, polyerystal, unannealed, perspection resistivitys, 508, and 5, 184 µ ohm cm atme_and = 251 C_respectively. • 88.	Calculated composition; annealed at a with ordered atomic arrangement.	Similar to the above specimen.	Similar to the above specimen.	Similar to the above specimen.
eight percent) pd	£,01	हा स्ट	35, 15	24, 18	35, 82
Composition (weight percent) Cu	e- जू	75. K	21 .49	45. E	64, 18
Name and Specimen Designation					
Reported Error, "		9,6	a .:	o ::	o ::
Temp. Range, K	22-91	293, 57	293, 623	293, 1048	818, 1028
Curve Ret. Method year b	1. 1984	1968	1953	1958	8081
Method		<u></u>	-:	ند	ن
Ret.	4	191	391	161	125
Curve No.		ŤI	::	7	17

DATA TABLE NO. 111 THERMAL CONDUCTIVITY OF [COPPER + PALLADRUM JALLOYS

(Cu + Pd : 99, 50%; impurity < 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k, Watt cm 1 K11]

CURVE 1

21.6 22.7 79.9 80.3 CURVE 3

293, 2 573, 2 293.2 623.2 CURVE 4

SPECIFICATION TABLE NO. 112 THERMAL CONDUCTIVITY OF LCOPPER + PHOSPHORUS] ALLOYS

(Cu+P>99, 50%; impurity: 0, 20% each)

[For Data Reported in Figure and Table No. 112]

Curve No.	Ref.	Methox Used	d Year	Ref. Mcthod Year Temp. Reported No. Used Year Runge, K Error, 75	Reported Error, %	Name and Specimen Designation	Composition (weight percent) Cu	eight percent) P	Composition (continued), Specifications and Remarks
-	134		1930	L 193 6 318-512	< 2.0	83	94,53	0,460	 0. 05 Fe; specimen 7/8 in, in diameter; cast, cold-rolled and annealed at 650 C for 1 hr. before machining; elec- trical conductivity 11, 842 x 10f ohm cm 2 at 20 C.
2	134	-1	133	L 1980 329-516	<2.0	† 6	99.31	0,677	0, 02 Fe; similar to the above specimen except electrical conductivity 8,614 x 104 ohm ⁻¹ cm ⁻¹ at 20 C.
n	134		1930	193 322-516	< 2.0	7.9	99, 12	0, 930	0. 06 Fe; similar to the above specimen except electrical conductivity 6.5488 x 10° ohm¹ cm² at 20 C.
4	29		1932	438, 2			≈ 999.771	0, 229	High grade electrolytic Cu with traces of impurities; specimen 6.5 in. long and 0.5 in, in diameter; cast and machined; thermal conductivity data obtained from the mean value of 16 readings.
S	67		1932	L 1932 438,2			. 99, 594	0, 406	Similar to the above specimen.

DATA TABLE NO. 112 THERMAL CONDUCTIVITY OF [COPPER + PHOSPHORUS] ALLOYS

(Cu + P - 99450%; Impurity - 0, 20% each)

Temperature, T. K. Thermal Conductivity, k, Watt $cm^{-1}\,K^{-1})$

¥	3 (cont.	0.669	0.720	0.720	0.782	0.782		CURVE 4		1,665		CURVE 5		1, 222																										
H	CURVE	402.2	454.2	455.2	515.2	516.2		리		438		티		438																										
æ	CURVE 1	0, 971	966'0	0.983	0.987	1.004	0.992	1.004	1.017	1, 130	1, 121	1.218	1,205	1,326	1,305	CURVE 2		0.753	0.757	0,791	0.795	0.799	0. 828		0.841	0.874	0.870	1,004		1.180	1.176	CURVE 3	0.569	195.0	100.0	0.586	0.603	0.611	0.636	0.669
-	CO	318.2	320.2	3:77.2	338.2	339, 2	357.2	358.2	360.2	401.2	404.2	452.2	454, 2			CO		329.2	329.2	346.2	346.2	347.2	366.2	366.2	366.2	408.2	409.2	454.2	455.2	515.2	516.2	D C	399.9	1 0000	3.776	340.2	340.2	361.2	361.2	401.2

SPECIFICATION TABLE NO. 113 THERMAL CONDUCTIVITY OF (COPPER + PLATINUM) ALLOYS

 $(Cu + Pt > 99, 50\%; impurity \le 0.20\%; each)$

Specifications and Remarks	Composition (continued), operation		Calculated composition; cast.	Calculated composition; after 10 hrs annealing.	Calculated composition; after 20 hrs annealing.	Calculated composition; after 40 hrs annealing.	Calculated composition; after 50 hrs amealing.	
(4000000)	Composition (weight percent)	ld	43.43	43.43	43.43	43.43	43.43	
	Composition	C	56.57		30.37	56.37	76.97	20.30
	Name and	Specimen Designation						
	Temp.	Range, K Error, %		465.2	483.2	481.7	482.7	500.7
		Year		1957	1957	1957	1957	1957
į	Mothod	No. No. Used		-1	٦	u	ı	٦
	300	Š		232	232	232	232	232
				-	8	89	4	S

DATA TABLE NO. 113 THERMAL CONDUCTIVITY OF (COPPER + PLATINUM) ALLOYS

(Cu + Pt = 99.50%; Impurity < 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

×	CURVE 5*	0.73						
۲	CUR	500.7						
×	CURVE 1*	0.339	CURVE 2*	0.523	CURVE 3º	0,565	CURVE 4º	0.644
T	CUR	465.2	CUR	483.2	CUR	481.7	SE SE	482.7

No graphical presentation

SPECIFICATION TABLE NO. 114 THERMAL CONDUCTIVITY OF [COPPER + SILICON] ALLOYS

(Cu + Si > 99, 50%; impurity \leq 0, 20% each)

[For Data Reported in Figure and Table No. 114]

Curve No.	Ref.	Ref. Method Year No. Used	Year	Temp. Range, K	Reported Error, %	Name and Spectmen Designation	Composition Co.	Composition (weight percent)	Composition (continued), Specifications and Remarks
-	135	1	1935	293, 473		105	99,78	6, 23	0.02 Fe; specimen 0.75 in. in diameter and 8 in. long: supplied by American Brass Co.; inot rolled, cast and cold drawn to 7/8 in. in diameter; annealed at 700 C for 2 hrs.; electrical conductivity 26.6 and 19.8 x 104 ohm ⁻¹ cm ⁻¹ at 20 and 200 C respectively.
N	135	ı	1935	293, 473		¥	99, 65	0,32	0,032 Fe, trace Ph; similar to the above specimen except annealed at 700 C for 1 hr.; electrical conductivity 21.71 and 16.98 x 104 ohm ⁻¹ cm ⁻¹ at 20 and 200 C respectively.
es	135	1	1995	293, 473		106	99, 53	0, 45	0.03 Fe; similar to the above specimen except annealed at 700 C for 2 hrs.; electrical conductivity 17, 19 and 13, 96 x 10° ohm¹ cm¹ at 20 and 200 C respectively.
4	135	7	1935	293, 473		78	90'06	1.00	0.03 Fer similar to the above specimen except electrical conductivity 10.5 and 9.13 x 10° ohm ⁻¹ cm ⁻¹ at 20 and 200 C respectively.
ဟ	135	2	1935	293, 473		7.9	9 N, 09	1.98	0, 05 Fe; similar to the above specimen except electrical conductivity 6, 235 and 5, 659 x 104 ohm ⁻¹ at 20 and 200 C respectively.
9	135	٦	1935	293 473		3	96.0	3,91	0, 02 Fe; similar to the above specimen except electrical conductivity 3, 945 and 3, 655 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 20 and 200 C respectively.

DATA TABLE NO. 114 THERMAL CONDUCTIVITY OF (COPPER + SILICON) ALLOYS

(Cu + Si | 99,59%; impurity | 0,20% each)

(Temperature, T. K. Thermal Conductivity, k, Watt $\operatorname{cm}^{-1}K^{-1}$

21.3.2 1.920
29.3.2 2.301
CURVE 2
29.3.2 1.648
473.2 2.038
CURVE 3
293.2 1.293
473.2 0.824
473.2 0.510
473.2 0.586
CURVE 6
CURVE 6
293.2 0.510
473.2 0.5469
473.2 0.339
473.2 0.469

SPECIFICATION TABLE NO. 113 THERMAL CONDUCTIVITY OF (COPPER+SILVER) ALLOYS

(Cu + Ag < 99, 30%, ampurity = 0,20% each)

, For Data Reported in Figure and Table No. 115]

nd Remarks	with cross secal al impurity) are), electrical	cal conductivity	cal conductivity	cal conductivity	cal conductivity	cal conductivity	unannealed: 30 µ ohm em at	2 and 0, 0697 ely.
Composition (continued), Specifications a	Approx. composition; specimen ~5 cm long tion 0,3 cm? made from Cu (< 0, 03 of tot supplied by Bake". Instel with Ag (99, 9) conductivity 4,36, x 10 ⁵ ohm? em? at 25 C	Similar to the above specimen except electrical, 75 x 10° ohm 1 cm ⁻¹ at 25 C.	Similar to the above specimen except electrical, 59 x 102 ohm 1 cm ⁻¹ at 25 C.	Similar to the above specimen except electrical, 2,72 x, 10% dxm ⁻¹ cm ⁻¹ at 25 C.	Similar to the above specimen except electrical, 2 v. 10° ohm ¹ cm ⁻¹ at 25 C.	Similar to the above specimen except electric 4, 75 x, 10° ohm" cm ⁻¹ at 25 C.	Speimen 7 cm long and 0, 1 to 0, 3 cm wide: electrical resistivity 1, 79, 0, 429 and 0, 1 0, -130 and -252 C respectively.	Similar to the above specimen except annealed at 390 C for 3 hrs. Electrical resistivity 1, 724, 0,362 and 0,0697 μ ohm cm at 0, -190 and -252 C respectively.
cught percent)	j e	-	m,	50	<u>=</u>	•5	o ti	= :f
Composition (w	.	9	ē	ē	016	Ė	97.0	o 156
Name and Specimen Designation						ver bronze	Silver bronze; Cu 10	Silver bronze; Cu 19a
						5	•	•
Temo. Ringe, K	2.53	7777	335, 3	11 (Sec.	61 10 10 10 10 10 10 10 10 10 10 10 10 10	1177	7 5	7 7
tear							Ç	1757
kethod , seef	-	_	_:		<u>-</u> -		- .:	
ر زور زور		9,1		230	ę. Ci	Ξ.	! :	15
ļ Ž		*1	.,	-		æ	t-	,
	Rel. Method year Temp. Reported Name and Composition (weng No. Used Year Range, K. Errot, C. Specimen Designation Ca	Rel. Method year Termo, Reported Name and Composition (weight percent) No. Used Year Range, K. Errot, Specimen Designation Ca. Ag. 230 [1925] 135, 2	Rel. McConjection (word) Reported Name and Name and Specimen Designation Composition (word) percent) 250 1 1905 185, 2 30 30 30 250 1 1925 355, 2 40 40 40	Rel. McCode Newtood No. Temp. Reported Newtood Specimen Designation Composition (wordth percent) 250 1 1955 345,2 36 30 250 1 1955 355,2 60 40 250 1 1955 355,2 60 40 250 1 1955 355,2 60 40 250 1 1955 355,2 60 40	Red. Method Name and Vesat Composition (weight percent) 230 Used Vesat Error; Sixermen Designation Ca Ag 230 1 1025 335,2 50 50 40 240 1 1025 335,2 60 40 240 1 1025 335,2 70 30 240 1 1025 335,2 70 30	Red. Method Name and Vesat Composition (weight percent) 236 Used Range, K Errol, C Sketimen Designation Ca Ag 236 1 1925 335,2 60 40 246 1 1925 335,2 70 30 236 1 1925 335,2 70 30 236 1 1925 335,2 70 30 239 1 1925 335,2 80 90 239 1 1925 335,2 80 10 10	Red. Method Method State Value and State Compensation (wought percent) 230 1 145,2 3 30 30 230 1 165,2 3 40 230 1 165,2 3 40 240 1 165,3 35,2 50 40 240 1 165,3 35,2 70 30 250 1 165,3 35,2 70 30 250 1 165,3 35,2 70 30 250 1 165,3 35,2 70 30 250 1 165,3 35,2 70 30 250 1 165,4 35,2 70 30 30 250 1 165,4 35,2 70 30 30 250 1 165,4 35,2 70 30 30 250 2 2 2 2 2 30	Rel. Methods Volume and Sire (men) Designation Compessition (weight percent) 230 I 1955 345,2 36 30 240 I 1955 353,2 60 40 240 I 1955 335,2 70 30 240 I 1955 335,2 70 30 240 I 1955 335,2 70 30 250 I 1955 335,2 80 40 90 250 I 1955 335,2 80 90 10 250 I 1955 335,2 80 90 10 250 I 1955 335,2 80 90 10 250 I 1957 335,2 70 80 90 250 I 1957 31 90 90 90 250 I 1957 31 31 90 90 <

(Temperature, T. K. Thermal Conductivity, K. Wattern ¹K. ¹,

k (CURVE 1

CURVE 2 315, 2 2, 73.1

3, 126

376, 2 2, 928

335.2 2.674

CURVE :

335, 2 3, 025

<u>CURNE 6</u> 335, 2 3, 251

CURVE 7

21.2 21.2 3.57

CURVE >

SPECIFICATION TABLE NO. 116 THERMAL CONDUCTIVITY OF (COPPER * TELLURICM) ALLOYS

(Cu + Te + 99, 50%; imparity -0, 20% each)

(For Data Reported in Figure and Table No. 116)

Composition (continued), Specifications and Remarks	No other details reported. 9, 007 P. 0, 001 Fe. 0, 001 St. 0, 001 Ag, 3, 001 Zn, < 0, 001 Al, Pb. Mg, Mn, and Sn each; commercial hard tempered rod; specimen ground down from a 0. Z5 in. dia rod; average grain size 0. 1 x 0, 016 mm longitudinally and 0, 016 x 0, 016 mm transversely; density 8, 909 g cm. ³
Composition (seight percent)	0. 5 0. 56
Composition (weight	99. 5 99. 424
Name and Specimen Designation	ASTM Biot-5st Free-cuting (Te)Cu
Temp. Reported Range, K Error,",	
Temp. Range, K	295; 2 6, 0-100
Year	1950 1957
Curve Ref. Method year	٦
. S.	# ## ###
<u>ن</u> بۇ.	,

DATA TABLE VO. 116 THERMAL CONDICTIVITY OF COPPER STULLTRIFY ALLOYS

 $\mathcal{A}^{\alpha}_{\alpha} + \operatorname{Tr}_{\alpha} = (\mathbb{R}, \mathbb{R})^{\alpha} (\operatorname{impairt}_{\alpha}) = 0, 20^{\alpha} \operatorname{cuch})$

Temperature, T. K. Thermal Conductivity, $k_{\rm c}$ Watt cm $^{4}\,\mathrm{K}^{(4)}$

PAY THE PARTY OF THE PARTY.

SPECIFICATION TABLE NO. 117 THERMAL CONDUCTIVITY OF [CODDER CTN ALLOYS]

(Cu + Sn = 99,50%) impurity = 0,20% each

For Data Reported in Figure and Table No. 117.

Composition (continued), Specifications and Remarks	0, 2 P; unanmealed.	0,002 P. 0.01 Fe. trace Pb; cold-rolled to 7/8 in. in diameter and annealed at 650 C then slowly cooled; electrical conductivity 31,364 x 10 ⁴ ohm. ¹ cm. ¹ at 20 C.	0.01 Pt. 0.01 Fe. trace Pb; specimen supplied by American Brass Co.; high grade commercial allow, east in a mold of 24/4 m. in diameter; cold-relled and annealing to 7/8 m. in diameter at 650 C for 30 min then shally cooled electrical conductivity 21.154 x 10° ohm ⁻¹ cm ⁻¹ at 20 C.	0,06 P. 0.05 Fe, 0,61 Pb: similar to the above specimen except electrical conductivity 10,674 x 10! ohm ? cm ! at 20 C.	0,04 P, 0,02 Fe, 0,01 Pb; simular to the above specimen except electrical conductivity 7, v945 x 10° obm 7 cm ⁻¹ at 26 C.	0, 03 P. 0, 05 Fe. 0, 01 Pb; similar to the axove specimen everyl electrical conductivity 6, 4362 x 10f ohin % cm % at 20 C.	Specimen mean thickness 0.882 cm and 8.67 cm long; prepared by powder metallurgy method from pawder of nean particle size of 0.00133 cm diameter; supplied by Messra, Sintered Products; density 6.45 g cm ⁻¹ ; electrical resistivity 33.0 g ohm cm at 20 C. porosity 25.8%.	Specimen mean thickness 0, 889 cm and 8, 89 cm long; preprinted by powder metallurgy method; mean particle size 0, 00493 cm; supplied by Messrs. Sintered Products; density 6, 30 g cm ⁻¹ ; electrical resistivity 38, 5 µ ohm cm at 20 C; porosity 28, 2%.	Specimen 0. 85 cm² cross section and 7.6 cm long; prepared by powder metallurgy method; mean particle size 0.00493 cm; supplied by Messrs. Sintered Products; density 5.85 g cm 3; electrical resistivity 57.1 g ohm cm at 20 C; porosity 32.7 %.
Composition (weight percent) Cu Sn	6.46	66.0	1.92	4.92	, , , , , , , , , , , , , , , , , , , 	01.40	. i.	11.0	0.11
Composition (92,30	99.00	38,03	94,96	92.45	89.51	80.0	69.0	0.6%
Name and Specimen Designation	Phosphor bronze, 5	ī.	(7	,	\$	-	Bronze: A ₁	Bronze; B ₁	Bronze;P ₁ ·
Reported Urror.	e.:	e ni	e ::	2.0					
Temp. Ringe, K	-1	200-100	000 17 7	323-511	331-309	323-362	303 402	323 493	323-491
Year	3 5 5	1931	7. 6.1 1. 6.1	:03;	1061	1531	1952	1932	19.2
Method		_	ب	ـ ـ	<u>-</u> :	ب	o	J	Ú
Kri.	3	3	1 2	#	<u>f.</u>	<u>=</u>	13	2.5	515
. (.a.)		• • •	•9	•	13	မ	1.	,	z,

SPECIFICATION TABLE NO. 117 (continued)

Curve No.	ž ģ	Nethod Usec	Year	Temp.	Reported Error, "	Name and Specimen Designation	Composition (Composition (weight percent) Cu	Composition (continued), Specifications and Remarks
2	S	ن	1952	323 -4 69		Bronze; C,	89°0	11.0	Specimen mean thickness 0.948 cm and 8.88 cm long; prepared by powder metallurgy method; mean particle size, 0.01275 cm; supplied by Messrs. Sintered Products; density 5.55 g cm ⁻³ ; electrical resistivity 81.5 μ ohm cm at 20 C; porosity 36.2%.
=	515	U	1932	253-43×		Bronze; D _t	69.0	11.0	Specimen mean thickness 0.932 cm and 8.89 cm long; prepared by powder metallurgy method; mean particle size 0.02113 cm; supplied by Messrs. Sintered Products; density 5.75 g cm ³ ; electrical resistivity 52.0 μ ohm cm at 20 C; porosity 34.5%.
<u>:</u>	12	U	5561	7 Eag		Bronze; £ ₁	89.0	11.0	Specimen mean thickness 0.945 cm and 8.89 cm long; prepared by powder metallurgy method; mean particle size;0.04 cm; supplied by Messra. Sintered Products; density 5.50 g cm ⁻³ ; electrical resistivity 60.1 μ ohm cm at 20 C; porosity 36.8%.
7	315	-1	1941	293, 473		Phosphor bronze: 1	96. 35	3.11	6.02 P, <0.01 Fe, <0.01 Ni, <0.005 Pb, <0.005 Sb; cast, after air cooling annealed at 625 C then cold-rolled and machined; electrical resistivity 6.37 μ ohm cm at 20 C.
7	316	.4	191	293, 473		Prosphor broaze, 3	92, 6	7.31	 0.02 P₁ < 0.01 Fe, < 0.005 Pb, < 0.005 Sb; cast after air cooling, annealed at 625 C, hot-rolled at 300 C and annealed at 625 C for 2-1/2 hrs. again hot-rolled at 300 C and annealed at 625 C for 2-1/2 hrs. again hot-rolled cold-rolled and machined; electrical resistivity 12.31 μοhm cm at 20 C.
12	516	- i	1941	293, 473		Phosphor branze: 6	9.4.6	5.97	0.09 P ₁ < 0.001 Fe ₂ < 0.005 Pb ₃ < 0.005 Sb; similar to the above specimen except electrical resistivity 10.25 μοhm cm at 20 C.
2	516	ب	194	290, 473		Phosphor bronze; 7	93.9	6.65	0.12 P ₁ · · 0.01 Fe, < 0.01 Zn, < 0.005 Fb, < 0.005 Sb; similar to the above specimen except electrical resistivity 12.83 μ ohm cm at 20 C.
드	51.	-1	1341	293, 473		Phosphor bronze: 5	96.16	3.71	0.12 P, < 0.01 Fe, < 0.01 Zn, < 0.005 Pb, < 0.005 Sc, cast, after air cooling; annealed at 625 C then cold-rolled and machined.
<u>.</u>	654	œ;	1905	(-) デ		Sn ₂₅ Cu ₁₅	75,55	24.45	Cast and turned; density 8.89 g cm 3 at 14 C.
6 ,	439	œ	1902	t- €.		Sn ₁₀ Cu ₂₀	90.1	9.6	Cast and turned; density 8.475 g cm 3 at 14 C.

DATA TABLE NO, AUT THERMAL CONDUCTIVITY OF JOOPPER (TEST ALLOYS

< Cu > Sn = 991.50% (inpurity > 01.20% card >

<u>'</u> _
Walls on
÷
T. K. Tuermal Combactivity.
Tuermal
7
F.
Pemperature,

-st	CURVE 15	0,247		1 1 1 1 1		<u>.</u>																																	
₽	N COM	246.7	Ċ	3																																			
.	CUIVE 11	0.165	0.167	1,130	0.199	0, 211		CURVE 12		0.151	0.157	0.161	0.193	0, 197		CURVE 13		1.17	1. 46		CURVE 14		0,669	0.920		CURVE 15	ļ	0.437	1.0£		CURVE 16		0.753	1.00		CURVE 17	1	0.628	0.837
Ļ	21.15	1.23, 2	51 57 77 77	21.5	: ∓ : =	703°5		CLE		323, 2	335,7	355, 7	455, 7	463, 2		CCR		293, 2	473.2		COR		293.2	473, 2		CUB		293. 2	473, 2		CL:R		293. 2	473.2		En3		293.2	47.3.2
-4	۲ ₁	0,257	0.270	9, 272	0.276	000:0	0.305	0,0.17	0.342		CURVES		0.222	0.234	0, 236	0.264	0.259	0.304		CURVE 9		0.149	0.149	0.153	0.165	0.167	0.192	0, 201		CURVE 10		0.119	0.123	0.124	0.137	0.136	0.159		
· ;-	CUINT 7	7) (0) (1)	5.000	0.40,0	3.60.3	405	£01.	5) . 197	492.2		5	i	32.1.2	345,7	355, 2	400, 2	^! ÷	490,2		CUR		323.2	333.2	339, 2	385, 2	390.7	476.2	190.7		CCR		323, 2	335, 7	338, 2	387.7	424.2	469.2		
.	7	165.0	0.470	1 0K. 'C	0,383	0.910	1.00	0.987	1.03	1.06	1.18	1.15		.E. 5		0.678	0.656	0.716	0,762	0,749	0.795	0,858	5,4,0	0 r 10	916.0		CURVE 6		0,552	0.561	0.573	0.649	6.623	0.703	0.682	0.770	0.749		
f	CURVE 4	71 81 12 13	21 77 77 77	3.11.2	71 12 1 2 1	360, 2	402.2	403, 2	452.2	7.007	510.2	511.2		CURVE 5		331.2	332, 2	350.3	369.2	370.2	405.2	453.2	454.2	455.3	509.2		CUR	i	353.2	241.3	360.2	401.3	403.2	452.2	453.2	512.2	562.2		
æ	CURVE	0.01;1	0.0163		0.040.0	0,000.3	0,060%	o. 110	0.116	0.163	0.251		CURVE 2		2,33	# 2	 	5	38.	2,36	7.7	2, 43	÷ 0	2, 53	2,65	:: ::			ļ	1.85	T.8.1	1.8.1	1.92	1.95	1.96	2.01	2,05	2.03	
Ļ.	Ξİ	7) 17	- -	;; ;;	7	- :- 1	15.7	13	0. F	0.01	277		H.12		3.54. 3	1 61	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.0,2	136.2	136.9	100, 2	405.3	430.3	433,3	308.2	507.3		CURVE 3		383,2	395.2	396.2	?. €7	445.3	447.5	479.2	500.2	503, 2	

SPECIFICATION TABLE NO. 114 THERMAL CONDUCTIVITY OF (COPPER + ZINC) ALLOYS

(Cu + Zn - 99, 50%; impurity - 0, 20% each,

[For Data Reported in Figure and Table No. 118]

Composition (continued), Specifications and Remarks	0.02 Fe, 0.01 Pb; polycrystalline grain dia 0.070 mm; specimen ~13.25 in, long, 0.750 in, dia; annealed at 650 C for 1 hr; electrical conductivity 55, 264 x 10 ⁶ ohm ⁻¹ cm ⁻¹ at 20 C.	0.01 Fe, 0.01 Pb; polycrystalline, grain dia 0.110 mm; specimen ~13,25 in.long, 0.756 in.dia; annelaed at 650 C for 1 hr; electrical conductivity 53,325 x 10 ⁴ ohm ⁷ cm ⁻⁷ at 20 C.	0,02 Fe; polycrystalline grain dia 0,120 mm; specimen 13,25 in.long, 0,750 in. dia; annealed at 700 C for 1 hr; electrical conductivity 47,685 x 10f ohm 7 cm 1 at 20 C.	0.02 Fe; polyerystalline, grain dia 0.100 mm; specimen ~13.25 in, long, 0.750 in, da; amealed at 760 C for 0.75 hr; electrical conductivity 36,607 x 10^4 ohm $^{-1}$ cm $^{-1}$ at 20 C.	Similar to the above specimen except grain dia 0.085 mm; electrical conductivity 33, 562 x 10f ohm ⁻¹ cm ⁻¹ at 20 C.	0.01 Fe, 0.01 Pb; polycrystalline, grain dia 0.095 mm; specimen ~13.25 in, long, 0.750 in, dia; annealed at 700 C for 0.75 hr; electrical conductivity 25, 293 x 104 ohm ⁻¹ cm ⁻¹ at 20 C.	0.03 Fe, 0.01 Pb; polycrystalline, grain dta 0.125 mm; specimen ~13.25 in, long, 0.750 in, dta; annealed at 700 C for 0.75 hr; electrical conductivity 20.168 x 104 ohn ⁻¹ cm ⁻¹ at 20 C.	0.01 Fe, 0.02 Pb; polycrystalline, grain dia 0.190 mm; specimen -13.25 in. long, 0.750 in. dia; annealed at 700 Cfor 0.75 hr; electrical conductivity 18.459 x 10° ohm '1 cm -1 at 20 C.	0,02 Fe, 0.03 Pb; polycrystalline, grain dia 0.070 mm; specimen ~13.25 in, long, 0.750 m, dus; anocaled at 650 C for 3 hr; electrical conductivity 16.700 x 10 ⁴ ohn ⁻¹ cm ⁻¹ at 20 C.
Composition (weight percent) Cu	0,35	0.51	0.98	3,04	4.77	9.91	16.76	20.35	40.75
Composition	99,64	99,45	68.93	96,94	95.21	90,07	83,20	79,62	59.20
Name and Specimen Designation	OG.	59	Į.	12	13	**	15	16	22
Reported Error, %		ы	7	c1	2	74	7	6)	64
Temp. Range, K	319-494	323-501	324-493	332-505	329-506	328 - 509	326-504	327-509	325-512
Year	1 930	1939	1930	1930	1930	1930	1930	1930	1930
Method Used	-J	٦	-1	٦	-1	-i	٦	٦	٦
No.	¥21	<u>8</u>	E 133	133	52	133	133	133	133
Curve No.	-	¢1	m	4	က	g	t~	20	5

SPECIFICATION TABLE NO. 118 (continued)

A STATE OF THE STA

Curve	- 1	Method	Year	Temp.	Reported	Name and Specimen Designation	Composition (weight percent) Cu Zn	Composition (continued), Specifications and Remarks
.i.	. E	7.86d	0261		61	100	50,30 49,49	0.01 Fe, 0.04 Ph; polycrystalline, grain dia 16nm; specimen -12,25 in, long, 0.750 in, dia: annealed at 650 C for 2 hr; electrical conductivity 25, 812 x 10 ⁴ ohm ⁴ cm ⁻¹ at 20 C.
=	13:1	نـ	1930	329-512	ભ	v	69,14 30,31	6,03 Fe. 9,02 Pb; polycrystalline, grain dia 0,075 mm; specimen ~13,25 in. long, 0,750 in dia; annealed at 60 C for 0,75 hr; electrical conductivity 15,857 x 10 ¹ ohm. ³ cm. ³ at 20 C.
2	133		1930	329-611	÷ι	ត	65.43 34,53	0.01 Fe. 0.03 Pb; polycrystallune; grain dia 0.080 mm; specimen ~13.25 in. long, 0.750 in, dia; annealed at 650 C for 0.75 hr; electrical conductivity 15.325 x 10f ohm "t cm "t at 20 C.
::	133		1930	326-505	÷ı	y 7.	54.96 45.02	0.01 Fe; polycrystalline; grain dia 0.040 mm; specimen ~13.25 in, long, 0.750 in, dia; annealed at 650 C for 2 hr; electrical conductivity 20,466 x 10! ohm 4 cm ⁻¹ at 20 C.
= =	581	 	1935	293,473 351-7 9 3		19 Brass 79/30	66,24 33,72 70 39	0.01 Fc. 0.03 Pb; annealed at 700 C. Approx. composition, specimen ~ 7.5 cm long, 0.5% cm dia; density 8,44 g cm ⁻³ at 22 C.
91	\$ \$, ,	1908			Brass 70/30	70 30 98,33 1.63	Specific gravity 5, 44 at 22 C. Specimen - 5 cm long, 0.5 cm dia; supplied by Johnson, action of Go 1 at drawn; 0 > 0,425 g ohm cm.
13 2	# E	<u>.</u>	1961 1981	2.8-123		} 01	98,37 1.63	The above specimen ameraled at 500 C for 4 hr in a He atmosphere; $\rho_0 = 0.38 \mu$ ohm cm.
<u> </u>	70 F		1957		-	is is	94,63 5,37	Specimen 3 cm long, 0.5 cm dia; supplied by Johnson. Matthey and Co. Ltd; drawn; $\rho_{\rm c}=1.22$ plohm cm.
î	8,5					17	94,63 5.37	The above specimen amealed at 500 C for 4 hr in a He atmosphere; $\rho_0=1.12~\mu$ ohm cm.
, ÷;	234			7 1.9-91	e 1	10	90.02 9.95	upplic
51	234	7	. 1957	7 1.9-91		20	80.52 10.45	Similar to the above specimen except $\mathcal{L}_{\mathfrak{g}}=2.97~\mu$ ohm cm.

معد حيدان فالبال فالإرادي مدادي من يقد فالمواقيات أم يافلون مقدد الألا جدار مواولات في مساعد فدر مديدة أدامهم يددم

SPECIFICATION TABLE NO. 118 (continued)

Composition (weight percent) Composition (continued), Specifications and Remarks	31.37 Specimen 8 cm long, 0.3 cm dia; supplied by Johnson, Matthey and Co. 14d; drawn; \$\rho_3\$, 4.3, \$\rho_4 \text{ohm cm}\$.	31.97 The above specimen annealed in a He atmosphere at 500 C for 4 hry $\rho_{\rm c}=3.60~\mu{\rm chm}$ cm.	Specimen 2, 565 cm long, cross sectional area 5,017cm?,	Specimen 2,570 cm long, cross sectional area 3,447cm?,	 .μ - μ . ε . ε . Approx, composition specimen s em long, 0, 5 cm dra: drawn, annealed at 850 C for 4 hr; ρ 0, 56 μοhm cm. 	11S 9/ 5 4	9: 27 mm	32 Approx. composition; a brass; machined from an annealed and torisionally deformed bar.	32 Similar to the above spreimen but anneated (after machining) up to 250 C at a rate of 6 C min ⁻¹ .	32 Similar to the above specimen but annealed (after machining) up to 290 C at a rate of 6 C min ⁻¹ .	32 Similar to the above specimen but anneated (after machining) up to 400 C at a rate of 6 C min ⁻¹ .	7.35 Rolled and drawn; annealed close to the melting point for 1/2 hr.	14.35 Similar to the above specimen,	27, 89 Similar to the above specimen,	33.03 Similar to the above specimen.	18 Polycrystalline; fine grained.	13 Polycrystalline; coarie grained.	15 o brass; prepared from Johnson, Matthey spectrographically standardized metals; specimen 2.5 mm dia, 4 cm long; annealed just below melting point for 40 hr.	
Composition (68.13	68, 13			# 50 P	大の半	**C 17. 15.		89	65	% 9	92,63	35,65	72.11	66.97	82.	Ç.	13	
Name and Specimen Designation	308	30	Brass	Brass			Commercial bronze	7	8	n	ग					Red brass	Red brass	Brass	
Reported Error, T	-	-																	
Temp. Range, K	2.5-91	2.2-91	302-335	314-344	1.9-121	2.0-91	2.2-91	2.0-91	6.5-91	2.1-91	2.0-91	273,373	273,373	273,373	273,373	90,273	90,273	2.3-4.4	
Year	1957	1957	1944	1104	1957	1957	1957	1959	1939	1959	1959	1919	1919	1919	1919	1924	1924	1959	
Method Used	٦	-	نـ	~	≓	٦		<u>-</u> :	1	H		H	۲	H	H	-1	н	-1	
Res. No.	7	# # #	23.5	233	233	333	133	236	236	236	234	246	246	246	246	425	425	517	
Curve No.	÷i	7	10	Ξ,	15	<i>:</i> 1	8	<u>6</u>	5	8	33	.	22	¥.	(* ?:	8. 8.	8	40	

SPECIFICATION TAPLE NO. 115 (continued)

Curve No.	Ref.	f. Method	od Year	Temp. Runge, K	Reported Error, ",	Name and Specimen Designation	Composition (acignt percent)	cight percent)	Composition (continued), Specifications and Remarks
± 11	317	<i>د</i> ء،	1959	13. T		Briss	χ (3	13	The above specimen drawn to produce 10.4% strain.
7	515	<u></u>	1959	च. ११ ११		Brass	10 27	51	The above specimen drawn to produce 19, 8% strain.
7	0 7 7	C E	1940	E		~	95,429	4.540	g-brass with impurities of: 0,014 \$9 , 0,020 Fe. 0,007 \$, and trace As; calculated composition; annealed in N ₁ for 20 hr at 380-400 C.
4.0	Q ** **) L:R	C#61	55,273		٥١	161,120	7.180	Similar to the above specimen except 0.014 Sb, 0.009 Fe 0.096 S and trace As.
ş	0 7	ر چ	0761	78, 273		m	56.842	13.130	Similar to the above specimen except 0.01:1 Sb, 0.009 Fe 0.005 S, and trace As.
7	÷	LAR	1910	78,273		ਧ	82.551	17.420	Similar to the above specimen except 0.012 Sb, 0.008 Fe 0.006 S, and trace As.
4. %.	440	L:R	1940	78,273		ம	19.704	20.270	Similar to the above specimen.
9	9++	, LvR	1940	75, 273		ç	75,716	24.560	Similar to the above specimen except 0.011 Sb, 0.008 Fe 0.005 S, and trace As.
55	440	1.2R	1940	78,273		l÷	69,978	30.000	Similar to the above specimen except 0.011 Sb, 0.007 Fe 0.005 S, and trace As.
3.1	440	L: R	C NG I	78,273		L	64.030	35.95	Surifar to the glove specimen except 9,010 Sb, 0,006 Fe 0,004 S, and trace As.
 	7 † 0) LeR	1940	58. ETS		5	62.291	37.700	and trace, impurities: 0.009 Sb, 0.606 Fc, 0.004 S, and trace As; calculated compositions; annealed in N; at 380-490 C for 20 hr.
:3	440	L.R	1940	78,273		10	59.911	40.070	Sundar to the above specimen.
iš	440	ı L·R	1940	73,273		=	55,602	44.38	Similar to the Save specimen except 0,008 Sb, 0,006 Fe 0,004 S, a.d race As.
13	1	LR	1940	75,273		21	51.073	48,910	\$\beta\$-brass; impurities: 0.008 \$\beta\$, 0.005 Fe, 0.004 \$\beta\$, and trace \$As; calculated composition; innealed in \$N\$, at 380-400 \$C for 20 hr.
å	17	يـ	1960	1.44.0	i,	2.4	95.4	4,59	0.0) 30; annealed for 21 hr at 540 C; electrical resistivit 1.13 and 1.05 µ ohn en at 1.05 and 4.2 K, respective
lş.	£ .	ت	1960	1,4-4.0	es T	215	84,53	15,43	0.02 Fe, 0.02 Pb; annealed for 21 hr at 540 C; electrical resistivity 2, 55 and 2,36 μ ohm cm at 1,05 and 4,2 K, respectively.

SPECIFICATION TABLE NO. 118 (continued)

Composition (continued), Specifications and Remarks	0.01 Fe. coldworked; anneated at 500 C for 17 hr. electrical resistivity 2.7; and 2, 5× μ ohn em at 1,05 and 4,2 K, respectively.	 0.9 Fc. (0.01 Pb; annealed for 21 hr at 540 C; electrical resistivity 4.22 and 4.10 µohm cm at 1.05 and 3.2 K; respectively.
eight percent) Zn	13,43	30.02
Composition (weight percent) Cu Zn	86.56	69.95
Name and Specimen Designation	72.0	08.2
Reported Error, %	S.	S +
Curve Rel. Method Year Temp. Reported	1960 1.44.0	L 1960 1,4-4.0
Year	1360	1960
Method	د.	٦
. Ket.	> 15	7. 7.
Curve No.	6	દે

DATA TABLE NO. 118 THERMAL CONDUCTIVITY OF (COPPER + ZINC) ALLOYS

(Cu + Zn > 99, 50%; impartly > 0, 20% vach)

[Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

CURVE 8 CURVE 8 CURVE 8 227.4 1.448 43.6 1.502 443.0 1.469 660.3 1.522 660.7 1.691 696.7 1.611 696.8 1.690	് നന് നെയാന് മയ്യാന് എക്ക് ക്ക് വാന്		2 2 2 3 3 4 4 4 5 6 2 5 5 6 6 5 6 5 6 5 6 5 6 5 6 5 6 5	UST, 2 3,300 453,338,2 5,386,2 5,386,3 5,05,338,3 5,05,338,3 5,05,338,3 5,05,42 2 3,423 5,05,43,2 3,423 5,43,2 3,443,2 3,443,2 3,444,4 3,43,2 3,444,4 3,444,4 3,444,4 3,444,4 3,444,4 3,444,4 3,444,4 3,444,4 3,444,4 3,444,4 4,444,4 4,444,4 4,444,4 5,444,4 4,444,4 5,444,4 6,544,4
NA.	800 8888 44 4 4 8 8 8 8 8 8 8 8 8 8 8 8	IRV		350 373 373 389 385 385 385 385 473 573 573 575 575 575 575 575 575 575 5
<u> </u>	88 88 88 88 88 88 88 88 88 88 88 88 88	1212 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 800 800 800 800 800 800 800 800 800	332 342 345 454 464 346 346 346 346 346 346 34
I	88888888888888888888888888888888888888		5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	3372 506 3855 506 3855 325 423 325 464 346 346 346 362 362 362 362 362 362 362 404 404 404 455 407 455 407
	62888888888888888888888888888888888888		NA CONTRACTOR OF THE CONTRACTO	CURV 1053 123 123 124 125 125 126 126 127 127 127 127 127 127 127 127 127 127
	2888			423
	248 248 2008 2044 4044 4000 2000 2000 20			423 464 464 532 346, 5 346, 5 346, 5 360, 2 360, 2 362, 1 404, 4 406, 2 406, 2 406, 2 406, 2 406, 2 406, 3 453, 8 453, 8 454, 8 455, 2 455, 2 455, 2 455, 2
	4000 4004 4004 4000 600 600 600 600 600	30000000000000000000000000000000000000		#54 532,5 #64 344,2 346,5 346,5 346,5 360,2 360,2 362,1 40,4 404,4 405,4 405,4 454,8 455,2 455,2 455,2
	3350 3350 404 404 564 567 503 503 503 503 503 503 503 503 503	6868CO444ANN4:		464 244.2 346.4 346.4 346.4 346.5 360.5 360.2 362.1 449 405.4 406.2 406.2 445.8 455.2 455.2 455.2 455.2 455.2
	609 408 509 509 500 500 500 500 500 500 500 500			346, 5 346, 5 360, 2 362, 4 362, 4 404, 1 322 404, 1 405, 4 407, 8 453, 8 453, 8 453, 8 453, 8
	408 454 456 507 509 509 325 325			360.2 360.2 362.6 362.1 349 405.4 405.2 406.2 406.2 453.8 453.8 454.8 455.2
	424 504 507 509 609 628 638			5.52 5.52 5.52 5.53 5.54 5.53 5.54 5.53 5.54 5.53 5.54 5.53 5.54 5.53 5.54 5.53 5.54 5.54
	456 507 508 508 328 528			362.1 405.4 405.4 407.3 455.4 455.7 855.2
_	503 509 325 325 325			4 00 4 4 4 60 6 4 4 6 6 6 6 6 6 6 6 6 6
-	308 325 326	(1) (A) (1) (1) (2) (2)	01 20 20 X 21 21	4 005,4 4 007,8 4 53,8 4 55,2 2 5,2
_	325 326	ರ ಬಿ. ಮ ಎ ಎ ಎ	*1 ** ** * * *1 *1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	325 326	ពីភិភិភិពិ	30 30 37 31 31	401, 8 453, 8 854, 8 85, 2
CURVE 0		က်ကိုက်	20 2 N N N	453.8 454.8 55.3
		5 5	ac ei ei	4554 4555 25
_		5 0 □	21 21	455.2
			21	
		ς,		456.2
		-	LO.	LO.
		٠.	_	507.0
0.4 1.310		9	C J	507.2
-		.,	0	0
_		L;	08, 2 2, 255	50%, 2
_			S	509.5
_	456.4			
_	509.8		CURVE 7	2.473 CURVE 7
_			l	
				326.1
CURVE 10			28.2 1.565	328.2
				342.0
_				2,469 343,6 1,6
	0.635.0			5 855
•				- 000
~		-		353. 5
_		١.	æ.	\$105°
_		Γ,	(-	403.7
5.0 1.778	345.0	э.	L:	L:
_		37:	_	431.1

Not shown on plot

DATA TABLE NO. 11x (continued)

×	CURVE 38	0.660	1.270	CURVE 39	i	0.656	1,295		CURVE 40		0.00265	0.00304	9.3336	0.00375	0.00413	0.00413	0.00454	0.00568	0.00525	0.00576		CURVE 41		0,00255	0.00285	0,00319	0.00351	0.00389	0.00415	0.00460	0.004	0,00521	0.00067	. 64 340	7 7 7 7 7	0.00050	0.00286	0.00298	0.00327	0,00353	0,00381	0.00407	0,00433	0.00450	0.00487	0.00527
ţ-	CUR	3,	:: !-	CUR	-	ŝ	27.3		HIJ.		:: ::	2.6	χ x	7.:	≈	12 13	9.5	÷.	-: -:	₹.				e. ::	က (က (: : :	e :	m •	ر. د.	ж [†]	3,95		n T	Q I C	100	77	2 .		2.95	2	i es	3,6	3°.8	4.0	4.2	4.5
×	CURVE HE (cont.)	0.415	:: :::::::::::::::::::::::::::::::::::	0,542		CURVE 33		0.01405	0.0162	0.0202	0.0244	0.0283	0.0334	0.0532	0.0×0.0	0.127	0.185	0.295	1.364	26000	0,442	0.477	015.0	0.546	0.611	;	Z:		<u>}</u>	1.39	:	9 9 9	:	* : -		14 H	}	1.14	1.30		T: 37	į	1.03	1.25		
۲	CURVE	631.33	72.13 2.13	1.4.06		CUR		1,95	2. 27	2.13	3,25	71 71 71	₹. +		76°%	11.69	16.75	27.28	35. 3	44.2	5. 3.	†.	-::	;	90.9		CURVE	į	2.3.2	373.2		CONVE	i	7	7	OTHRVE 36		27: .2	372		CURVE 37	}	27.3.2	27.5		
4	CORVE 30 (cont.)	6,318	9 E	6,131	0,366	0,376	0000	×60°0	o. 122	02 7 .€	0. 166	e, 173		CUME		E010.0	0.0536	F2×0.0	9,1115	0,179	<u>/</u>	6,256	1 : "a	7.00	- :	/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200.0	00°.	:		3	0.000	77.0	0.0200	0.0211	0.0273	0.0461	0,0651	0, 101	0, 1:16	0.192	0,265	0,310	0.370	
ï	CURVE	6.95	5 is	: P.	17.52	27.07	ار وا	7.7.	F.0.4	: · · · ·	4.0g	91.4		اج ا ا		£0.9	í,	13, 63	16, 31	36, 36	£.56	27.7.	6.50		n :	?! : ?	e. /	, 8 :	'. B		≘¦ 5!	3	/ (C) 1	รับ ข้า	. F		-	; ;; ;;	9,03	13,33	17.23	28. 45	33, 15	41.5	£.9	
æ	CURVE 28 (cont.)	0.1713	0.2486		0.71	0,919	1:1:3	1.236	1,355	7.10	· () · ·	1.53	;	C. RVE 29		a. n. m.:	0.0416	0,0525	0.045.3	0.115	9, 165	2000		- : - :	61970	9 3	# / 1	276.0	: : : : : : :	G	-		11111111	9010	0.0131	0.0149	0.017.5	0.0203	57 10 10 10 10 10 10 10 10 10 10 10 10 10	79 20 30 30 30	0.0553	0.107	0,163	0.207	0.244	
{ ~	CURVE	9.53	± ₹.	15.59	33.01	31.03	÷.5	55.5	9.13	13 13	9	, . 06	•	≥′ ::]		2.13	Ş	3, 36	 	₹. 9	· ·	= : = :	42.51 (1.13)	21.99		7	7.00	· ·	7.	(C.)	7.06		≥! 	•	; - ;	(? (e)	51.2	:2:	: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	12	12,04	17.42	26.35	34,13	41.15	
-4	E 26	1.146	1.155	27.7	1.133	1,130	1,159	1, 174	1.1%	1,192		[편] [편]		1970°	0.1059	0.125	0.151	0.171	0.200	6018.0	0,365	0.5205	679	0.919		\$	<u> </u>	66.1		5.05	7.7	5.35	- 0.0	20.1	27.75	7,	1	853	į	0,0426	0,0407	0.05×::	0.0702	T::, 0 '0	0,1007	
÷	CURVE 26	313. \$	5. 15. 5. 15. 5. 15.	2.4.5	325.9	331.9	332.1	335.3	337.5	343,5		CUNNE 27		1.93	7. 7	2. s.		3,66	4, 27	ნ. 03	†0. -	9,27	12.10	16.15	20.34	e : Si :	7.1.	n : 5 :	f. :	: • · • ·	+ · · · · ·	- - - - - - - - - - - - -	7 8	n = 5	102.3	7		CURVE 28	ŀ	1.99	51.53	2, 63	3, 12	3.63	4.25	
÷٤		0,0146	0.0216	0,0458	0.0664	0.1007	0, 1366	0.1828	0, 240	0,368	0.398	0.445	0.500		žį ωi		0.0169	0,0219	0.0260	0,0262	0, 0334	0,0335	0.0356	0.033	0.1004	0.1616	± 2.0	2007 O	6.503	081.0	0.330	0.615	90 3	31	3.046	1,067	1,092	1,054	1,100	1.100	1.121					
۲	CURVE	2.514	5,651	r (- 1 - 1 · ,	10,32	:6° ±1	20.24	27.25	35,35	60.26	67.39	18.38	9.06	,	CURVE		2, 147	2,721	3,081	3,155	3,745	3.731	-61	4.25	8. 19 8. 19	95.3	18.34	24. 15	7. 7.	60,43	12.12	89.98 98.	ava.10		3.02	107	315.8	316.3	319,3	324.8	334.6					
-4	12.37	0.0248	0.0031	5.00.0 540.0	0.0632	0.1337	0.2263	0.330	0.451	0.549	9.0.0	0.615	0.:01	0.740	0.516	0.850	0.938	0.960	0.950	1.059	1.067		CCRVE 22	1	0.0177	0.0220	0.0263	0.0353	0.03.5	0.0445	0.1236	0.158	0.2400	0 201	5 5 5 C	0.434	0.442	0.573	0.616	0.615	0.629	0.660	6.666	0.711	0,763	
ù	CURUE	1.916	₹ 5 5 5 6 7	3 (a) (b)	70.7	1.	12.14	16,24	87.55	25, 10	30.60	31.30	સ. ઉ.કે.	43.34	え ば	60.40	69, 90	00.17	51.36	90,10	90.70		100		16.1	333	(- : : : : : : : : : : : : : : : : : :	95°5	0.7.	1.27	3.93	38°-1	10.01	13,23	02.5%	08-62	35, 10	38.	62,30	09.40	67.00	70.20	74.60	50, 80	91.10	

o Not shown on plot

-4 <u>-</u>	CURVE 57 (cont.)	3,7 0,0500 4,0 0,0560	CURVE 55	4.10 0 0.1 4.10 0 0 0 0			3,3 0,0383	4,0 0,0453	CURVE 59	1.35			1, 19 0, 0220 11 00 0 0231				4,00 0,0360												
_4 <u> -</u>	CURVE 51	78,2 0,510 273,3 1,138 (CURVE 52	1.1.5	CURVE 33		273, 2 0, 646	CURVE 54		273.2 1.41!	CURVE 55	1.469	213.2	CURVE 56		1.37 0.0366		 :	1:70 6		ļ	4.00 0.115	<u>CURVE 57</u>		_			0,0330	
∠	CURVE 43	2.3 0,00240 2.5 0,00260 5.7 0,00260				4.4 0.00477	CURVE 44	本の。 - 20.50 - 20.		CURVE 45	38.2		CURVE, 46	×08°0 6°%	273.2 1,602		CURVE 47	#15.0 8.71		CUBVE 45	0.0.0 0.71	253.2 1.439	CURVE 49	825°0 27°42		CC187E 30	:	20 TO 10 TO	

Not show e on plot

THE PERSON NAMED IN

F16 119 T-S. MP Mette THERMAL CONDUCTIVITY OF GERMANIUM + SILICON ALLOYS Ge MP 2006 KT E Ge + Si ≥ 9950%; impurity € 020% each1 TEMPERATURE, K (g) -THERMAL CONDUCTIVITY, Walt cm"

97

SPECIFICATION TABLE NO. 119 THERMAL CONDICTIVITY OF GERMANIUM SILICON ALLOYS

(Ge 1.8) 99,50% impaints 0,20% each.

For Data Reported in Eigure and Cable No. 119

Composition (continued), Specifications and Remarks	Delvy, calculated composition; in doped, lattice constant see, specimen 55.545 mm, grown by cone beeling to chain proper grain size. I en dai measured in a vaccum of 10 mm ifg.	Smalar to the above specimen except lattice constant 5,568,	Similar to the above specimen except lattice constant $\delta(\Delta z)$.
(weight percent)		17.21	Da ': ::
Composition (weight percent) Ge St		it i	am 23
Curve Ret. Method Vear Temp, Reported Name and No. No. Used Vear Runge, K. Error, Specimen Designation	11.58		
Reported Error, "	·		
Temp. Runge, K	95.30 100.00	80.300	807.300
Year	1 132	1958	1361
Metho	1	-	نہ
Ret.	298	563	77
Curve No.	-	2)	:7

AMERICAN PROPERTY OF THE PROPE

DATA TABLE NO. 119 THERMAL CONDUCTIVITY OF [GERMANIUM + SILICON] ALLOYS

(Ge + St | 95, 50%; varpurity | 0, 20% each)

(Temperature, T. K. Thermal Conductivity k, Wett on ^{4K-1}.)

CURVE 1 SO 0,350 300 0,201

CURVE 2. 8.264 80 0.128

CURVE 3

8.00 00.0

SPECIFICATION TABLE NO. 120 THERMAL CONDICTIVITY OF [GOLD + CADMIUM] ALLOYS

(Au) Cd | 99, 56%, imparity | 0, 30% early

[For Data Reported in Figure and Table No. - 120]

Composition (weight percent) Composition (continued), Specifications and Remarks	96,85 3.15 Celeutated composition, rolled and drawn to 1 mm dia wire annealed close to mething point for 0.5 hr, electrical	Continent to the and they keep to character at 0 and 100 C. Smillar to the above specimen except electrical conductivity.	Smilar to the above specimen except electrical conductivity, 3,9 and 3,2 x 10² ohm²em² at 0 and 100 C. respectively.
	96.45	94,46 5,15	89, 11 - 10, 39
Name and Specimen Designation			
Reported Error, "	 		
Curve Rei, Nethod Year Temp, Heported No. Ne, Used Year Range, K. Error, "	1919 275,575	55	273,373
Year	6261	T 1919	9161
Nethod Used	E 92		÷
Res. No.	3 1 51	<u>2</u>	\$ 7
Curve No.	-	~1	77

Temperature, T. K; Therinal Conductivity k, Watt cm 7K 1

CURVE 1

273.2 1.23 373.2 1.48

CURVE 2

273.2 0.95 373.2 1.17

CURVE 3

273.2 373.2

The state of the second of the

SPECIFICATION TABLE NO. 121 THERMAL CONDUCTIVITY OF (GOLD + CHROMIUM) ALLOYS

(Au + Cr \geq 99, 50%, Emparity \geq 0, 20% each).

[For Data Reported in Figure and Table No. 121]

Composition (continued), Specifications and Remarks	Calculated composition; 2 mm distribution, annealed in He at 500 C for 12 hrs; $J_0\approx 27.9$ jphm cm.
Composition (weight percent) nation Au	95, 29 L. 71
Name and Specimen Design	
Temp, Reported Range, K. Error, %	1959 4.3-90
Curve Ref. Method Year No. No. Used	1 450 L 195

And the second of the second o

construction and a second

DATA TABLE NO. 121 THERMAL CONDUCTIVITY OF [GOLD + CHROMICM] ALLOYS

 $(Au+Cr>99,50\%; impurity>0,20\% \, each)$

[Temperature, T, K. Thermal Conductivity, k, Watt cm $^{-1}$ K $^{-1}$]

__

CURVE 1 1, 3 0, 61 1, 7 0, 011 12, 0 0, 03 12, 0 0, 047 27, 6 0, 089 63, 2 0, 089 63, 2 0, 099 63, 6 0, 109 69, 6 0, 109 90, 2 0, 109

SPECIFICATION TABLE NO. 122 THEIMAL CONDUCTIVITY OF 'GOLD' CORALT' ALLOYS

The Manual Manual Control of the Con

 $\ell_{Au} + C_0 = 99, 50^{\rm s}$, imparity $-0.20^{\rm s}$ each

For Data Reported in Figure and Table No. 122

and the second s	Composition (continued), Specifications and actuals		Calculated composition; hard drawn; supplied by Sigmund	Cohn Corp.; electrical resistivity 1, 20 x 19 2 ohm em at	30 K.
	Composition (weight percent)	Au Co		53, 50 Lot 155	
	T.mp. Reported	Curve fiel, arenast Year Range, K. Error, J. Specimen Designation No. No. Used		1 353 1950 4-100	

DATA TABLE NO. 122 THERMAL CONDUCTIVITY OF [GOLD : COBALT] ALLOYS

(Au + Co + 99, 50%; impurity = 0, 20% each)

[Temperature, T, K: Thermal Conductivity, k, Watt cm -1 K-1]

0.01 0.0146 0.020 0.021 0.041 0.115 0.135 0.135 0.136 0.205

4, 0 6, 0 7, 0 10, 0 20, 0 30, 0 40, 0 60, 0 80, 0

CURVE 1

BENCA NAC 19 ALCON

SPECIFICATION TABLE NO. 123 THERMAL CONDUCTIVITY OF (GOLD + COPPER) ALLOYS

(Au + Cu + 99, 50%; impurity > 0, 20%)

[For Data Reported in Figure and Table No. 123]

Curve No.	% . %	Method Car	` .ar	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (v	Composition (weight percent)	Composition (continued), Specifications and Remarks
	232	٦	1957	438.7		۸1	75, 61	24, 39	Calculated composition; cast; specimen 1, 30 cm long, 0, 63 cm ² cross sectional area; density 18, 34 g cm ⁻² .
2	232	-;	1957	4.83.2		ΛΙ			The above specimen annealed 10 hrs at 200 C.
ຕ	232	ı	1957	420.7		18			The above specimen agnealed 20 hrs at 200 C.
4	232	٦	1957	473.7		١٧			The above specimen annealed 30 hrs at 200 C.
S	232	د	1957	395.2		۸۱			The above specimen annealed 40 hrs at 200 C.
9	232	7	1957	466.2		>	N5, 20	14. 80	Calculated composition, east; specimen 1,30 er. long. 0.63 cm² cross sectional area; density 19,40 g cm ⁻³ .
t-	232	_1	1957	504.7		>			The above specimen unnealed 10 hrs at 200 C.
øn	232	ü	1957	436.2		٧			The above specimen unnealed 20 hrs at 200 C.
6	335	J	1957	481.7		>			The above specimen annealed 30 hrs at 200 C.
20	232	1	1957	460.7		>			The above specimen annealed 40 hrs at 200 C.
:	232	٦	1957	445.7			50, 82	49. Jx	Calculated composition, cast; specimen 1, 49 cm long, 0.63 cm² cross sectional area; density 15, 05 g cm².
12	232	1	1957	27.79		=			The above specimen annealed 10 hrs at 200 C.
13	232	<u>.</u>	1957	401.7		=			The above specimen annealed 20 hrs at 20. C.
* 1	232	٦	1955	470.2		=			The above specimen anneated 30 hrs at 200 C.
15	23.2	٦	1957	403.7		=			The above specimen annealed 40 hrs at 200 C.
16	232	Г	1957	497.7		Ξ	년 (19	37, 46	Calculated composition; cast; specimen 1.45 cm long, 0, 63 cm² cn² cross sectional area; density 16, 70 g cm².
11	2332	7	1957	435.7		m			The above specimen annealed 10 hrs at 200 C.
ž	232	7	1957	4:17, 7		111			The above specimen annealed 20 hrs at 200 C.
19	23.7	٦	1957	457.7		177			The above specimen annealed 30 hrs at 200 C.
0.7	233	-1	1957	414.7		=			The above specimen annealed 40 hrs at 200 C.
7	246	H	1919	273, 373			96, 73	£.	Calculated composition; rolled and drawn to 1 mm dia wire; annealed close to melling point for 0, 5 hr; electrical conductivity, 14, 3 and 13, 4 x 10 ⁴ ohm "1 cm " ⁴ at 0 and 100 C respectively.
£;	246	H	1513	273, 373			92. 38	7, 45	Similar to the above specimen except electrical conductivity at 5 and at 10 c 10d ohm -1 and 100 C respectively.

مواقعا في الماسيد مستدرات المستدري المستدرين المستدارة المستدارة والمستدرية والمستدرية المستدرية المستدرية والمستدرية والمستدرية المستدرية والم

SPECIFICATION TABLE NO. 123 (continued)

	Cury No.	. S S.	Method Used	Year	Temp. Range, K	Reported Error, "	Name and Specimen Designation	Composition (weight percent) An Co	ight percent) Cu	Composition (continued), Specifications and Remarks
1. 191 271.273 271.273 20.8 49.2 20.7 20.0 20.0 20.4 20.2 20.1 20.0	ន	346	۲	1919	273,373			22.78	2.23	Similar to the above specimen except electrical conductivity 6.3 and 5.9 x 10° ohm²tem² at 0 and 100 C, respectively.
1	7,	9	۴	1919	273,373			59.25	5- 07	Similar to the above specimen except electrical conductivity 5.0 and 4.6 x 104 ohm tem" at 0 and 100 C, respectively.
	S) e)	430	۲	1924	273.2			\$0.8	79.5	Specimen rolled and drawn to 1 mm² cross sectional area; 3 cm long; annealed close to melting point for 0.5 hr; electrical resistivity at 273 K. p(273) = 10.8 µ ohm cm.
430 T 1924 273.2 3.1 Similar to the above specimen except o (273) = 11.8 μ ohm cm. 430 T 1924 273.2 3.7.4 Similar to the above specimen except o (273) = 11.8 μ ohm cm. 430 T 1924 273.2 3.7.4 Similar to the above specimen except o (273) = 13.0 μ ohm cm. 430 T 1924 273.2 3.2.1 Similar to the above specimen except of (273) = 13.0 μ ohm cm. 430 T 1924 273.2 3.1.3 Similar to the above specimen except of (273) = 13.0 μ ohm cm. 430 T 1924 273.2 3.1.3 Similar to the above specimen except of (273) = 13.0 μ ohm cm. 430 T 1924 273.2 3.1.1 Similar to the above specimen except of (273) = 13.0 μ ohm cm. 430 T 1924 273.2 3.1.1 Similar to the above specimen except of (273) = 13.0 μ ohm cm. 430 T 1924 273.2 3.1.1 3.1.1 3.1.1 μ ohm cm. 430 T 1924 273.2 3.1.2 3.1.3 μ ohm cm. 431 T	3.	430	۴	8	973.3			0.40	46.0	Similar to the above specimen except ρ (273) \pm 11.4 μ ohm cm.
430 T 1924 273.2 3 Similar to the above specimene except p (273) + 13.0 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 13.0 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 13.0 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm. 430 T 1924 273.2 3 Similar to the above specimene except p (273) + 7.6 µnhm cm.	2 4	430	٠ +		273.3			57.0	43,0	Similar to the above specimen except o (273) = 11.8 µ ohm cm.
430 1 1924 27.3 Similar to the above specimen except ρ(273) + 13.6 μohm cm 430 1 1924 27.3.2 Similar to the above specimen except ρ(273) + 10.5 μohm cm. 430 1 1924 27.3.2 Similar to the above specimen except ρ(273) + 10.5 μohm cm. 430 1 1924 273.2 Similar to the above specimen except ρ(273) + 10.6 μohm cm. 430 1 1924 273.2 Similar to the above specimen except ρ(273) + 11.6 μohm cm. 430 1 1924 273.2 Similar to the above specimen except ρ(273) + 11.6 μohm cm. 430 1 1924 273.2 Similar to the above specimen except ρ(273) + 11.6 μohm cm. 430 1 1924 273.2 Similar to the above specimen except ρ(273) + 11.6 μohm cm. 430 1 1924 273.2 Similar to the above specimen except ρ(273) + 11.6 μohm cm. 430 1 1924 273.2 Similar to the above specimen except ρ(273) + 11.6 μohm cm. 430 1 1924 17.6 Similar to the above specimen except ρ(273) + 11.6 μohm cm. 58 1	; ;	2	٠ +	16.	273.2			12.6	7.15	Similar to the above specimen except ρ (273) = 13.0 μ ohm cm.
430 I 123 2.8.1 Similar to the above specimen except ρ (273) = 1.6 μ ohm cm. 430 I 1924 273.2 Similar to the above specimen except ρ (273) = 7.6 μ ohm cm. 430 I 1924 273.2 21.3 Similar to the above specimen except ρ (273) = 7.6 μ ohm cm. 430 I 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm. 430 I 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm. 430 I 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm. 430 I 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm. 430 I 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm. 430 I 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm. 53 L 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm. 53 L 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 μ ohm cm.	ς, σ	2 2	. ₍₋ -	1651	273.2			67.3	7.	Similar to the above specimen except p (273) 13, 6 µ ohm cm.
430 T 1924 273.2 21.8 Similar to the above specimen except ρ(27)= 7.6 μ ohm cm. 430 T 1924 273.2 21.8 Similar to the above specimen except ρ(27)= 7.6 μ ohm cm. 430 T 1924 273.2 21.8 Similar to the above specimen except ρ(27)= 11.6 μ ohm cm. 430 T 1924 273.2 2.1.8 Similar to the above specimen except ρ(27)= 11.6 μ ohm cm. 430 T 1924 273.2 11.6 Similar to the above specimen except ρ(27)= 11.6 μ ohm cm. 430 T 1924 273.2 11.6 Similar to the above specimen except ρ(27)= 11.6 μ ohm cm. 430 T 1924 273.2 11.6 Similar to the above specimen except ρ(27)= 11.6 μ ohm cm. 58 L 1934 273.2 11.4 Polycrystalline specimen except ρ(27)= 11.6 μ ohm cm. 58 L 1934 22-80 11.4 Polycrystalline specimen except ρ(27)= 11.6 μ ohm cm. 58 L 1934 27.9 10.4 Polycrystalline specimen except ρ(27)= 14.4.5 μ ohm cm. 58	; 8	5 5	۰ ۴	1994	273.2			51.9	1.x1	Similar to the above specimen except p (273) = 10.5 µ ohm cm.
430 I 1924 273.2 21.8 Similar to the above specimen except 0(273) × 7.6 g bhm cm. 430 I 1924 273.2 Similar to the above specimen except 0(273) × 11.6 g obm cm. 430 I 1924 273.2 Similar to the above specimen except 0(273) × 11.6 g obm cm. 430 I 1924 273.2 Similar to the above specimen except 0(273) × 11.6 g obm cm. 430 I 1924 273.2 Similar to the above specimen except 0(273) × 11.6 g obm cm. 430 I 1924 273.2 Similar to the above specimen except 0(273) × 11.6 g obm cm. 430 I 1924 273.2 I 15.9 Similar to the above specimen except 0(273) × 11.6 g obm cm. 58 L 1834 22-90 IIa 59.6 10.4 The above specimen except 0(23) × 20 bm cm. 58 L 1834 27-90 IIa 56.9 IIIa 56.9 IIIa 56.9 IIIa 56.9 IIIa 56.9 IIIa 56.9 IIIIa 56.9 IIIIa 56.9 IIIIIIIIIIIIIIIIIIIII	3 :	£ 5	٠ ٢	8	61			18.1	21.9	Similar to the above specimen except ρ (273) = 7.6 μ ohm cm.
430 T 1924 273.2 8.4 μohm cm. 430 T 1924 273.2 8.2.1 17.9 Similar to the above specimen except ρ (273) = 11.6 μohm cm. 430 T 1924 273.2 8.2.4 17.6 Similar to the above specimen except ρ (273) = 11.6 μohm cm. 430 T 1924 273.2 11 82.4 17.6 Similar to the above specimen except ρ (273) = 11.6 μohm cm. 430 T 1924 273.2 11 89.6 10.4 Polycrystalline specimen except ρ (273) = 11.6 μohm cm. 58 L 1934 22-91 12 96.9 3.10 Polycrystalline specimen annealed 40 hrs at 365 C in vacino, ρ (83) 58 L 1934 23-91 12 99.4 10.4 Polycrystalline specimen; cast; μenerical resistivity at 33 K. 3 μohm cm. 58 L 1934 17.57 Polycrystalline specimen; cast; μenerical resistivity at 33.3 μohm cm. 59 L 1934 Polycrystalline specimen; cast; μenerical resistivity at 33.4 μohm cm. 59 L 1934 Polycrystalline s	; ;	9	٠ ١-	1924	273.2			21. E.	21.8	Similar to the above specimen except ρ (273) $\approx 7.6~\mu$ ohm cm.
30 T 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 uohm cm 430 T 1924 273.2 Similar to the above specimen except ρ (273) = 11.6 uohm cm 430 T 1924 273.2 11.6 uohm cm 430 T 1924 273.2 11.6 uohm cm 430 T 1924 273.2 11.6 uohm cm 58 L 1934 22-80 11a 59.6 10.4 Polycrystalline specimen except ρ (273) = 8.0 μohm cm. 58 L 1934 22-90 11a 59.6 10.4 The above specimen accept ρ (273) = 8.0 μohm cm. 58 L 1934 22-90 11a 59.6 10.4 The above specimen annealed 40 hrs at 365 C in vacuo. ρ (83) 58 L 1934 12.5 10.4 The above specimen annealed 40 hrs at 36.0 C in vas. ρ (83) 10.4 Polycrystalline specimen accept ρ (273) = 8.0 μohm cm. 59 L 1934 12.5 Polycrystalline specimen accept ρ (273) = 43.5.3 μohm cm. 59 L 1934 12.4 </td <td>! #</td> <td>430</td> <td></td> <td>1924</td> <td>273.2</td> <td></td> <td></td> <td>6.47</td> <td>31.1</td> <td>Similar to the above specimen except p (273) = 8.4 µ ohm cm.</td>	! #	430		1924	273.2			6.47	31.1	Similar to the above specimen except p (273) = 8.4 µ ohm cm.
430 T 1924 273.2 11.6 Similar to the above specimen except ρ(273) + 11.6 uohm cm. 430 T 1924 273.2 11.6 Similar to the above specimen except ρ(273) + 11.6 uohm cm. 430 T 1924 273.2 11 5.9 Similar to the above specimen except ρ(273) + 8.0 μohm cm. 430 T 1924 273.2 11 5.9 Similar to the above specimen except ρ(273) + 8.0 μohm cm. 58 L 1934 22-90 113 89.6 10.4 Polyervstalline specimen except ρ(273) + 8.0 μohm cm. 58 L 1934 21-91 12 96.9 3.10 Polyervstalline specimen; east; ρ(83) + 434.3 μohm cm. 58 L 1934 13 99.43 1.57 Polyervstalline specimen; east; ρ(83) + 434.3 μohm cm. 58 L 1934 97.4 49.9 Polyervstalline specimen; east; ρ(83) + 435.3 μohm cm. 58 L 1934 97.4 49.9 Polyervstalline specimen; east; ρ(83) + 435.3 μohm cm. 58 L 1934 79.2 49.9	. 2	23	۲	186	273.2			7.5%	17.9	Similar to the above specimen except p (273) = 11.6 g ohm cm.
430 T 1924 273.2 14.5 Similar to the above specimen except ρ (273) × 11.6 uohm cm. 430 T 1924 273.2 11 5.9 Similar to the above specimen except ρ (273) × 8.0 μohm cm. 58 L 1934 22-80 11 89.6 10.4 Polycrystalline specimen except ρ (273) × 8.0 μohm cm. 58 L 1934 22-80 11a 89.5 10.4 Polycrystalline specimen amerited 40 hrs at 365 C in vacuo. ρ (83) 58 L 1934 21-91 12 96.9 3.10 Polycrystalline specimen amerited 40 hrs at 365 C in vacuo. ρ (83) 434.5 uohm cm. 58 L 1934 79-91 14a 50.1 49.9 Polycrystalline specimen; cast; quenched from 800 C; ρ (83) × 435.3 μohm cm. 58 L 1934 79-91 14a 50.1 49.9 Polycrystalline specimen; cast; quenched from 800 C; ρ (83) × 435.3 μohm cm. 58 L 1934 79-91 49.1 70 cast μohm cm. 323.4 μohm cm. 58 L 1934 79-91 49.1 7		4 30	-	1924	273.2			7.75 7.75 7.75 7.75	17.6	Similar to the above specimen except p (273) = 11.6 g olim cm.
430 T 1924 273.2 Similar to the above specimen except ρ (273) × 8.0 μ σhm cm. 58 L 1934 22-80 11a 89.6 10.4 Polycrystalline specimen cast: electrical resistivity at 33 K. β 58 L 1934 22-80 11a 89.6 10.4 The above specimen cast: electrical resistivity at 33 K. β 58 L 1934 22-91 12 98.43 1.57 Polycrystalline specimen cast; ρ (83) + 434.5 u ohm cm. 58 L 1934 79-91 14a 50.1 49.9 Polycrystalline specimen; cast; quenched from 800 C; ρ (83) = 66.4 μ ohm cm. 58 L 1934 87.4 149.1 The above specimen annealed at ~400 C for 20 hrs; ρ (83) = 324 μ ohm cm. 58 L 1934 87.4 149.1 The above specimen annealed at ~400 C for 20 hrs; ρ (83) = 324 μ ohm cm. 58 L 1934 79.9 70.1 49.1 The above specimen annealed at ~400 C for 20 hrs; ρ (83) = 324 μ ohm cm. 58 L 1934 79.9 70.1 70.1 70.1 70.1 70.1 </td <td>9 6</td> <td>4.30</td> <td>-</td> <td>1924</td> <td>273.2</td> <td></td> <td></td> <td>57.5</td> <td>12.5</td> <td>Similar to the above specimen except ρ (273) \pm 11.6 g ohm cm.</td>	9 6	4.30	-	1924	273.2			57.5	12.5	Similar to the above specimen except ρ (273) \pm 11.6 g ohm cm.
58 L 1934 22-80 11 89.6 10.4 Polycrystalline specimen; cast; electrical resistivity at 33 K p (83) 58 L 1934 22-80 11a 89.6 10.4 The above specimen cancaled 40 hrs at 365 C in vacuo; ρ (83) 58 L 1934 21-91 12 96.9 3.10 Polycrystalline specimen; cast; ρ (83) · 434.5 u ohm cm. 58 L 1934 79-91 14a 50.1 49.9 Polycrystalline specimen; cast; quenched from 800 C; ρ (83) · 435.3 μ ohm cm. 58 L 1934 97.4 14b 50.1 49.1 The above specimen annealed at ~400 C for 20 hrs; ρ (83) · 435.3 μ ohm cm. 58 L 1934 97.4 14b 70.1	; ;	130	- 6-	1924	273.2			94.1	6.10	Similar to the above specimen except p (273) = 8,0 μ ohm cm.
S8 L 1934 22-80 11a The above specimen annealed 40 hrs at 365 C in vacuo; ρ (83) S8 L 1934 22-91 12 96.9 3.10 Polverystalline specimen; cast; ρ (83) · 434.5 uohm cm. S8 L 1934 79-91 14a 50.1 49.9 Polverystalline specimen; cast; quenched from 800 C; ρ (83) · 436.3 μohm cm. S8 L 1934 79-91 14b 50.1 49.1 The above specimen annealed at ~400 C for 20 hrs; ρ (83) · 323 μohm cm. S8 L 1934 79.92 14b 50.1 49.1 The above specimen annealed at ~360 C for 32 hrs; ρ (83) · 31.5 μohm cm.	ž	85		1934	80.93		ı.	89.6	10.4	Polycrystalline specimen; east; electrical resistivity at 33 K. ρ (33) = 927 μ obta em.
58 L 1934 22-91 12 96.9 3.10 Polycrystalline specimen; cast; ρ(83) · 435.3 μohm cm. 58 L 1934 71-91 14a 50.1 49.9 Polycrystalline specimen; cast; quenched from 800 C; ρ (83) 58 L 1934 87.4 14b 50.1 49.1 The above specimen annealed at ~400 C for 20 hrs; ρ (83) · 323 μohm cm. 58 L 1934 87.4 14b 50.1 49.1 The above specimen annealed at ~360 C for 32 hrs; ρ (83) · 312.6 μohm cm.	66	%	1	1934	22-80		113	9.6×	7.02	The above specimen annealed 40 hrs at 365 C in vacuo; ρ (83) = 925 μ ohm cm.
58 L 1934 21-91 13 98.45 1.57 Polycerystalline specimen; cast; quenched from 800 C; ρ (83) 58 L 1934 79-91 14b 50.1 49.1 The above specimen annealed at ~360 C for 30 hrs; ρ (83) = 323 μ chm cm. 58 L 1934 79.92 14c 50.1 49.1 The above specimen annealed at ~360 C for 32 hrs; ρ (83) = 312.6 μ chm cm.	9	ď	_	1934	16-66		2	6.8	2.:	Polycrystalline specimen; east; ρ (83) - 434, 5 u ohm cm.
58 L 1934 79-91 14a 50.1 49.9 Polycrystalline specimen: cnst; quenched from 800 C; p (83) 58 L 1934 97.4 14b 50.1 49.1 The above specimen annealed at ~300 C for 32 hrs; p (83) 58 L 1934 79.92 14c 50.1 49.1 The above specimen annealed at ~360 C for 32 hrs; p (83) 58 L 1934 79.92 14c 50.1 49.1 The above specimen annealed at ~360 C for 32 hrs; p (83)	; ;	} %	ב נ	1934	21-91		13	98,43	1: 31	polycrystailine syxtimen; east; p (83) + 435, 3 µ ohm cm.
58 L 1934 F7.4 14b 50.1 49.1 58 L 1934 79.92 14c 50.1 49.1		33	د,	1934	19-91		# T	50.1	6.64	
Se L 1934 79,92 14c 50.1 49.1	4 3	33		1934	4.7.		#1	50.1	49.1	The above specimen annealed at ~400 C for 20 hrs; ρ (83) $^\circ$ 323 μ ohm cm.
	7	ę,		1934	19,92		14c	50.1	1.04	The above specimen annealed at ~ 360 C for 32 hrs; ρ (83) $^{\circ}$ 312, 6 μ 0hm cm,

SPECIFICATION TABLE NO. 123 (continued)

Š Š	. S. F.	Methoc	Ref. Method Year No. Used	Temp. Range, K	Reported Error, ",	Name and Specimen Designation	Composition An	Composition (weight percent)	Composition (continued), Specifications and Remarks
<u>12</u>	3	٦.	1934	36'08		143	50. 1	40.1	The above specimen annealed at ~820 C for 2 hrs then quenched.
÷	ŝ	-1	1934	22-80		146	Su. 1	1 % 1	The above specimen measured after 5 months: p(s3) = 988 john cm.
Ļ	ś	J	1934	15-17		} † [50. 1	49. 4	The above specimen annealed at $\sim\!325~C$ for 30 hrs; $p(s;t)\approx341~\mu dim~cm$
4	6	نـ	1934	စာ ဖွဲ		15.	3.85	र। ए	Polycrystailine specimen, cast; quenched from 400 C; p(s.) 1157 gs/m em.
2	£	-1	1934	88.158.		135	75, 6	य सं ?1	The above specimen annealed at 360 C for 22 hrs; $\rho(33) = 175.3$ µdvm cm.
ę.	'n	_	1934	81, 92		12.	78 C	4 77	The above succimen annealed at 345 C for 30 hrs; $\rho(\kappa;j) \approx 222.8~\mu$ pubm cm.
ភ	ú	٦.	1934	19-91		154	35,6	प री	The above specimen annealed at 325 C for 30 hrs; p(s3) = 179.7 µohin cm.
8	17	 i	1934	75, 91		15.	9 gr	₹. ₹.	The above specimen annealed at 800 C for 2 tris; quenched; ρ(s3) = 917, θ μοhm cm.
2	á	7	1904	22-79		35.	73.6	7 7 7	The above specimen measured after 4 months; p(83) = 799, 0 john cm.
ま	ń		1534	21-50		17.	15.6	err eer 01	The above siverimen annealed at ~ 325 C (or 40 hrs. $\rho(\text{M})^{-2}$ 182.6 golim cm.

DATA TABLE NO. 123 THERMAL COSDICCTIVITY OF GOLD + COPPER! ALLOYS

(Au + Cu +99, 50%, imparity = 0, 20%, each) Tempe rature, T. K. Thermal Conductivity, k, Watts $\,\rm cm^{-1} K^{-1}\,[$

T k	84.9 0.193 CURVE 49 84.9 1.25 85.3 1.27	SO. 9 0.849 91.4 0.854 CURVE 51 79.1 1.03	91.3 1.07 91.4 1.08 CURVE 52 79.3 0.227 91.4 0.235 CURVE 53 22.7 0.0916 79.1 0.259 CURVE 54 22.0 0.458 80.4 1.01
T k	21.2 0.278 22.4 0.305 75.8 0.414 80.3 0.428 91.4 0.893	78, 6 0, 3.5 83, 2 0, 339 90, 8 0, 355 CCURVE 43 87, 4 0, 629	CURVE 44 79.3 0.616 91.7 0.662 CURVE 45 80.2 0.226 91.6 0.236 23.2 0.100 80.0 0.237 CURVE 47 21.3 0.236 22.1 0.245 80.3 0.582 80.3 0.582
CURVE 32	273, 2 0, 85 CURVE 33 273, 2 0, 72	273.2 0.51 CURVE 35 273.2 0.43 CURVE 36	273.2 0.50 CURVE 37 273.2 0.73 CURVE 38 79.6 0.228 91.5 0.0817 22.8 0.0817 22.8 0.0817 22.8 0.0817 22.9 0.0817 22.9 0.0817 22.9 0.0817 22.9 0.461 80.1 0.459 91.3 0.508
CURVE 22	273,2 0,67 373,2 0,70 273,2 0,36 373,2 0,46	273, 2 0, 55 373, 2 0, 55 373, 2 0, 59 CURVE 25	273.2 0.59 CURVE 26 273.2 0.52 CURVE 29 273.2 0.48 CURVE 29 273.2 0.47 CURVE 30 273.2 0.62 CURVE 31
T k	493,2 1,34 CUINE 13 401,7 0,745	470.2 0.649 CURVE 15 403.7 0.946 CURVE 16	455.7 0. S94 CURVE 17 455.7 0. S94 CURVE 19 457.7 0. 561 CURVE 20 444.7 0. 569 CURVE 21 273.2 1. 09 373.2 1. 34
T k	483,7 0,361 483,2 0,803 CURVE 3	CURVE 4 413.7 0, VIR CURVE 3	395. 2 0.957 CURVE 6 466. 2 0.812 CURVE 3 426. 2 0.602 CURVE 9 481. 7 0.598 CURVE 10 460. 7 0.598 CURVE 11 445. 7 0.879

Not shown on plot

SPECIFICATION TABLE NO. 124 THERMAL CONDUCTIVITY OF (GOLD + PALLADRICM | ALLOYS

(Au + Pd · 99, 50%; impurity · 0.20% each)

[For Bata Reported in Figure and Table No. 124]

Curve No.	Ref.	Method	1 Year	Curve Ref. Method Year Temp. Reported	Reported Error, 9	Name and Specimen Designation	Composition (weight percent) Au Pd	reight percent) Pd	Composition (continued), Specifications and Remarks
	241	ம	11911	298.2			5.0	90	Approx. composition; electrical conductivity 3.7 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
51	241	6 ?	1 91 1	294.2			09	07	Approx, composition; electrical conductivity 4, 02 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
က	241	(L)	1 161	298.2			0.5	30	Approx. composition; electrical conductivity 5.45 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
•	241	LL:	1911	298.2			£0	20	Approx, composition; electrical conductivity 7, 92 x 10 ⁴ ohm ³ cm ⁻¹ at 25 C.
ເລ	241	មា	1911	208.2			96	10	Apprex, composition; electrical conductivity 13,27 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
9	တို့ ဟိ	ᆈ	1934	21 -87		25	9.5	ശ	Calculated composition; heated at 800 C for 2 hrs; 5, 44 melan error electrical resistivity, 3, 939 and 3, 479 µ ohm em at 440 and -251 C, respectively.
۲-	50.00		1934	21 - 46		£.	9.0	70	Calculated composition, herical at 800 C for 2 hrs; 9.10 melen conv. electrical resistivity 5.605 and 7.175 µ ohm cm at 400 and -251 C, respectively.
x 0	5.5	1	1934	21 -92		† 2	60.1	39. 9	Calculated composition, heated at 800 C for 2 hrs; 27.7, proference electrical resistivity, 24, 48, and 23, 66 µ ohm cm at the and -251 C, respectively.

DATA TABLE NO. 121 THERMAL CONDICTIVITY OF GOLD (PALLADIUM AL. DNS

 $\ell_{AB} + \ell_{AB} = 99, \text{ad}^2q, \text{empirity} = 0, 20\%, \text{each} \ell_{AB}$

Temperature, T. K; Thermal Conductivity k, Watt on ⁴K⁻¹C

0,0549 0,0569 0,139 0,135 0,135 $\begin{array}{ccc} T & k \\ & \underline{C}(\underline{R}\underline{V}\underline{E},\underline{I}) \\ & \underline{295,2} & 0.300 \end{array}$ 295, 2 0, 100 295, 2 0, 590 295, 2 0, 950 295,2 0,140 CURVE ! CURVE 5 CURVE CURVE 2 CURVE CURVE :: CURVE 4 1 0 0 0 9 1 0 0 0 0 1 0 0 0 0 n 5. 4 n 6 - 1 n 6 d 6

THERMAL CONDUCTIVITY

SPECIFICATION TABLE NO. 125 THERMAL CONDUCTIVITY OF (GOLD + PLATINUM ALLOYS

(Au + Pt | 99, 50%; impurity | 0, 20% cach)

[For Data Reported in Figure and Table No. 125]

Curve No.	No.	Method Year Used	Year	Temp. Runge, K	Reported Error, "	Name and Specimen Designation	Composition (v	Composition (weight percent) Au	Composition (continued), Specifications and Remarks
-	145	ш	1911	298.2			06	01	Approx. composition; electrical conductivity 9, 61 x 10 ¹ ohm ⁻¹ cm ⁻¹ at 25 C.
۲۱	241	ш	1911	298.2			06	20	Approx. composition; electrical conductivity 5, 49 x 10 ¹ ohn ¹ cm ¹ at 25 C.
۳	241	H	1911	298.2			7.0	30	Approx. composition; electrical conductivity 5, 10 x 10 ⁴ ohm $^{-1}$ cm $^{-1}$ at 25 C.
4	241	ıı	1911	29%.2			09	40	Approx., composition; electrical conductivity 3, 03 x 10 ⁴ ohm ² em ² at 25 C.
ın	450	-i	1959	4.2-92			8.46	5.0	Specimen 2.6 mm μ_1 dut/homogenized at 1050 C then drawn (reducing the cross section by 90%) and then annealed in vacuum for 4 hrs at 1050 C; $\rho_2 > 0.82~\mu$ ohm cm.
ယ္	450	- :	1959	6, 2-91			5.86	s: 1	Specimen 3 mm in dia; received as drawn; annealed in vacuum at 1082. C for 4 hrs; $\rho_0 \approx 1.95 \mu$ ohm cm.
1-	450		1959	4.2-31			88. 4.	1.6	Specimen 3 mm dia; received as drawn; annealed in vacuum at 1050 C for 4 hrs; $\rho_0 = 2.04~\mu$ chm cm.
n	451	۲	1930	291.2			92.07	7.93	Specimen 0.79 cm in dia and 25 mm long; supplied by Heraeus, W.C.; rolled and drawn from a piece that had been tempered at 800 C and quenched.
e:	17	۲	1930	291.2			84,13	15.57	Similar to the above specimen.
9	451	(-	1930	291.2			68.22	31.78	Similar to the above specimen.
=	47.4	f	0.01				68 60 60	17.	Similar to the above specimen.

DATA TABLE JO. 123 THERMAL CONDUCTIVITY OF [COLD + PLATINUM] ALLOYS

(Au + Pt > 99, 50%; Impurity - 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k. Wutts cm-1K-1]

-	CURVE 7	61.1	6.7	ن. د	6	o :	0 4 1	64. 2 0. 715	.	91. 2 0. 91		CURVE 8	29.7	,	CURVE 9		291. 2 0. 48		CURVE 10		291. 2 0. 23		CURVE 11		291. 2 0. 21														
¥	E 1	0.7.0		الد الد		0.410		E3	4	0. Jeo	E 4	;	0. 260	1/		0. 175	325	•		. 855	9	₹	1, 10			F. 33	8	E 6	0. 14	0. 17	0. 235	P. 33	4	0.475	0. 81	88	95
۲	CURVE	298		CURVE		296		CURVE	6	e N	CURVE	}	867	,,,,,	ררעו	4.2	1.2	8 0	12.3	21.2	32.2	33.7	41.5	55. 5	6 y 0	0.0	é	7 . C	4	CURVE	6.2	7.5	10.0	14. 4	19.7	24.5	70.5	80. 8	91.0

SPECIFICATION TABLE NO. 126 THERMAL CONDUCTIVITY OF | GOLD + SILVER) ALIONS

(Au + Ag = 99, 50%; impurity = 0, 20% each)

[For Data Reported in Figure and Table No. 126]

SS 25 1 2 2 4 5 2 4 5 2 4 5 4 5 4 5 4 5 4 5 4 5	1934	16-15	Specimen Designation	Au Ag	Λg	Composition (continued), Specifications and remarks
	19:14		so.	64.6	न ज	Calculated composition; single crystal; A 20 Endeader electrical resistivity 40, 22 and 8, 85 gohm on at 190, 2251 C, respectively, 10, 0,
	0101	22-92	t-	द	15.5	Calculated composition, single erystal; and electrical resistivity. Rand 6,69 gohm em at and -251 C, respectively. 8.64,
	•	273,373		54, 63	X:	Calculated compusition; specimen rolled and drawn to 1 mm thick; heated 0.5 hr at temp near the melting point; electrical conductivity 9.1 and 8.4 x 10 ⁴ ohm em ⁻¹ at 0 and 100 C, respectively.
	1919	273, 373		50.32	39, 65	Similar to the above specimen except electrical conductivity 9.1 and 8.5 x 104 ohm" [cm] at 0 and 100 C. respectively.
	1919	273,373		65, 46	ita H	Similar to the above specimen except electrical conductivity 7,2 and 7,2 x 103 ohm length at 0 and 100 C. respectively.
246 T	6161	273,373		69.17	30, 43	Similar to the above specimen except electrical conductivity 8,9 and 8,4 x 103 ohm lem" at 0 and 100 C, respectively.
346 T	1919	273,373		73.19	36, 41	Similar to the above specimen except electrical conductivity 9.1 and 8.5 x 103 ohm "em" at 0 and 100 C. respectively.
246 T	1919	273,373		1.23 1.23	18, 11	Similar to the above specimen except electrical conductivity to, 2 and 9.6 x 104 obm ² cm ² at 0 and 100 C. respectively.
246 T	6161	273,373		3. 3.	2.3	Similar to the above specimen except electrical conductivity. 10,2 and 12,4 x 10° ohm²lem² at 0 and 100 C. respectively.
246 T	1919	273, 373		93,44	6.16	Similar to the above specimen except electrical conductivity. 18,1 and 15,9 x 10f ohm leni? at it and 100 C. respectively.
246 T	6161	273,373		97,26	(- -:i	Similar to the above specimen except electrical conductivity 25.1 and 22.0 x 10° ohm lem ²¹ at 0 and 100 C. respectively.

THERMAL CONDUCTIVITY OF (GOLD + SILVER) ALLOYS DATA TABLE NO. 126

(Au + Ag > 99, 50%; impurity < 0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watts $cm^{-1}K^{-1}$]

¥ ►	CURVE 9	273. 2 0.96	N		CURVE 10	<u></u>	373.2 1.61	CURVE 11		273, 2 1, 84	~																		
4	VE 1	0.120	0. 125	0. 238	0.238	1	VE 2		0. 162		0.312	VE 3	0. 73	0.95	VE 4	0.72	0.93	VE 5	0.61	0.89	VE 6	0.73	0.91	VE 7	0.68	c. 93	VE 8	0.78	5
۲	CURVE	21.4	22. 5		79.6		CURVE	21.7	22. 1		81.0 8.0	CURVE	273.2	373. 2	CURVE	273. 2	373. 2	CURVE	273.2	373.2	CURVE	273.2	373. 2	CURVE	273.2	373.2	CURVE	273. 2	

SPECIFICATION TABLE NO. 127 THERMAL CONDUCTIVITY OF (FOLD + ZINC) ALLOYS

(Au + Zn = 99, 50%; insparity < 0, 20° each)

Composition (continued), Specifications and Remarks	Calculated composition; specimen relled and drawn to 1 mm thick; heated .50 hr at temp near the melting point; electrical conductivity 15,6 and 14,4 x 10f ohn 'em' at 0 and 100 C respectively.	Similar to the above specimen except electrical conductivity 8.5 and 8.6 x 102 obuillend at 0 and 100 C. respectively.
Composition (weight percent) Au Zn	1.63	3, 59
Composition (9K, 32	14.36
Name and Specimen Designation		
Temp. Reported Ringe, K. Error, C.		
Temp. Runge, K	273,373	273,373
Year	1919	1919
Method Year Used	<u> </u>	H
رد بد	346	947
Curve No.	-	?1

DATA TABLE NO. 127 THERNAL CONDUCTIVITY OF [COLD + ZINC, ALLCYS

(Au + Zn + 99, 50%; impurity + 0, 20%; each)

[Temperature, T. K. Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1°
273.2 1.17
173.2 1.33
CURVE 2°
273.2 0.67
173.2 0.67

No graphical presentation

THE PROPERTY OF THE PARTY OF TH

TAPENCE AND

SPECIFICATION TABLE NO. 12* THERMAL CONDICTIVITY OF HAPNEM; ZINCONIUM ALLOYS

(HI + Zr -99, 50%; imparity -0.23% each)

For Inta Reported in Figure and Table No. 123,

Composition (continued), Specifications and the first in	0,00x Hz, 0,007 Al, 0,005 W, 0,005 Fe, 0,001 Cu. 0,002 Zn, 0,002 each of Si. Triand No, trace So. U, Co, Ni, Mg, Crand Mn; specimen 2 em in dualid 15 cm long; supplied by Westinghouse Authoric Power Division; electrical resistavity 34.1, 40.6, 40.6, 41.1, 24.6, 60.1 and 65.6 µohm cm at 0,50, 100, 150, 200 and 250 C, respectively; measured in vacuum of -1 x 10 ⁻⁵ mm Hg; Arrico iron used as comparative material.	Specimen 5 x 1, 52 mm and ~6 cm long; supplied by Foote Mineral Co.; as received; p = 4, 23 µ ohn cm; electrical resistivity ratio p \(\rho(255) \cdot 0, 1165.	0.1 Max Ti and St. 0.01 Max Fe. V and Zn. 0.001 Max Mn, Ni and Cu. 0.0001 Max Mg: specimen contained 5 one-inch dia disks.
Composition (weight percent)	96.78	99.5-99 0.5-1.0	xeN 1 66 -
Ref. Method year Range, K. Error, T. Specimen Designation No. Used		IIF)	
Error, "			9.5
Temp. Range, K	182 - 183 183 - 183	16-1.5	SUST-10+
'car	38.	1957	<u>\$</u> .
Method I sed	C,	۔	œ.
£ .5	at a	151	614
\$ 9.	_	÷ı	r

DATA TABLE MO. 125 THERMAL CONDUCTIVITY OF DIAFMUN + ZIRCOMUM ALLOYS

(Hf + Zr ~99, 50%; impurity ~0, 20% each)

[Temperature, T. K; Thermal Conductivity k, Watt em 2K21]

CURVE 1

0,253 0,215 0,215 0,215 0,215 0,215 0,205 0,205 0,205 0,205 CURVE 2

0,022 0,037 0,037 0,037 0,140 0,140 0,235 0,255 0,255 0,255

0.226 0.212 0.205 0.198 0.191 6.189 400.9 737.1 848.2 1130.4 1527.6 1877.6

CHAPTER STORY

CURVE 3

SPECIFICATION TABLE NO. 129 THERMAL CONDUCTIVITY OF [INDIUM - LEAD] ALLOYS

(In + Pb < 99, 50%; impurities <0, 20%)

[For Data Reported in Figure and Table No. 129].

Composition (continued), Specifications and Remarks	Without magnetic field.	Measured in a magnetic field of 642 gauss; less than the threshold field intensity.	Specimen in superconducting state; measured in a magnetic field of 214 gauss.
Composition (weight percent) In	14, 52	14, 52	14, 52
Composition (weight po	85, 48	45. 45.	85.48
Name and Specimen Designation			
Reported Error, %			
Temp. Range, K	2, 6-174	2,6-8,8	2.6-3.2
Year	1936	1836	1536
Method Used	د ا	٦	٦
Ref.	228	228	228
Curve No.	-	e1	m

CHEN DATE OF THE SAME

DATA TABLE NO. 129 THERMAL CONDICTIVITY OF INDIGM + LEAD | ALLOYS

 $(\ln + \ln \log 5.50\%$; imparities 0.20%;

the Market in the commend to the second

Temperature, T. K. Thermal Conductivity, R. Watt em ²¹ K⁻¹,

	0,0132	0.0155	3050-0	0.230	0. 0273	0.032%				0.0725	0.0775				0.24S		VE 2	0 0142	0.0180		0.0229		0, 0407
CLRVE	중 (2) 기 기	1 <u>.</u> 1 d					5, 01	6.41	16, 3	15.1	20.1	61 61 1-	0.52	70. U	81.0	174.0	CURVE						
																-							

0.0131 0.0140 0.0157

2, 59 2, 87 3, 18

CURVE 3

SPECIFICATION TABLE NO. 130 THERMAL CONDUCTIVITY OF TIDIUM + THALLIUM ALLOYS

Un - TI 199, 50%; imparaty - 0, 20% each)

For Data Reported in Figure and Table No. 1307

Composition (continued), Specifications and Remarks	Calculated composition; single crystal = 0, 05 impurities; ameabed; critical temp(T) = 5.28 K; critical magnetic field III) 276, 5 or isteds; in normal static data eventual fram smoothed curve.	The above specimen in superconducting state,	specimen except $\Gamma_{\rm C}=3,252$ K; is, in normal state,	The above specimen in superconducting state,	Similar to the above specimen except $T_{\rm C}$ = 3, 223 K: $H_{\rm C}$ = 2.8, 3 oersteds; in normal state,	The above specimen in superconducting state.	Calculated composition; polyceysial = 0.05 impurities; annealed; T _c = 0.305 K; data extracted from smoothed curve; in normal state.	The above specimen in superconducting state.	Calculated composition; 10,05 imparities; single crystal; annealed; in normal state.	The above specimen in superconducting state,	Calculated composition; polycrystal; error 3% below 0.4 K; in normal state.	The above specimen in superconducting state.	Calculated composition; polyervistal; copyer potassium. Tutton salt used as cooling agent; in superconducting state.	The above specimen measured with chronium polassium alum as ecoling agent, in superconducting state.	n normal state,	Calculated composition, single crystal, copper potassium Tutton salt used as cooling agent; in superconducting	
Composition (continued)	Calculated composition; single er smealed; critical temp(T) 3 forbill (H,) Zei, a cristeds; in tric ted from smoothed curve.	The above specimen in	Similar to the above specimen except Γ_C $H_C = 2.81.1$ occiseds, in normal state,	The above specimen ii	Similar to the above specimen except $T_{\rm C}$ $H_{\rm C} \approx 2.2.3$ oersteds; in normal state.	The above specimen in	Calculated composition; po annealed; T _c + 5, 305 K; curve; in normal state.	The above specimen in	Calculated composition; 10.15 annealed; in normal state.	The above specimen at	Calculated composition in normal state.	The above specimen in	Calculated composition. Tutton salt used as state.	The above specimen malan as cooling ago	The above specimen in normal state,	Calculated composition Tutton salt used as	
reight percent)		8.53	20.00	277, 90	97 Tar	00.40	40°58	43.28	16.51	16,51	23, 90	23,90	23.90	23, 90	23, 90	23, 90	
Composition (weight percent) In Ti	91,40	:: * .18	7-3, 10	56.10	60,20	69,20	36,72	56,72	53.49	6+*:*	76,10	76.10	76.10	76.10	26.10	76,10	
Name and Specimen Designation																	
Reported Freez,	(? †;	10	19 21	5.5	12	ć.;	10.	13			3-10	3-10	13	m	m	m	
Temp. R Runge, K F	1,3-4,0	7.0	21.1.1	1.0-0.	0.3-6.0	1.3-1.2	1.3 4.2	1,3-3,2	1.7-1.3	1,7-8,1	1.4-7.9	1.4-0.1	0, 15-0, 23	6, 29-0, 75	0, 35-0, 69	0.15-0.27	
Year	1955	1955	1855	1955	1955	1955	1955	1955	1952	1952	1953	1955	1955	1955	1955	1933	
Method Used	<u></u>	_:	ے	_ ;	٦		~ `	٦.	-1	_		<u></u>	- 1	<u>-</u> :	_	-1	
itet. 7	21	111	3	20	1.12	2	11.	132	; <u>*</u>	ä	107	107	107	107	107	701	
Curve No.	-	71	::	+	٠٦	φ	1-	,,	s	91	Ξ	7	<u>=</u>	*	ū	16	

SPECIFICATION TABLE NO. 4.39 (continued)

Composition (continued), Specifications and Bemarks	The above specumen in normal state.	Calculated composition; single crystal; in superconducting state.	The above specimen in normal state.
	The ab	Calculate state.	The ab
reight percent)	961.53	07.00	39, 40
Composition (weight percent) in [1]	56.10	0 5 fee	69,20
Name and Com- Specimen Designation			
Reported From C	: *	::	-:
Temp, Reported Range, K. Preor, "	1955 0,28-9,74	1955 0,15-9 a	26 197 1, 1953 0,29-0,76
Method Year	1923	1955	1955
Method	-4	-:	-1
No. No.		101	197
Curve No.	2	£1	36

DATA TABLE NO. 130 THERMAL CONDUCTIVITY OF JINDIUM + THALLIUM) ALLOYS

(In + Tl ≥ 99, 50%, impurity > 0, 20% each)

	×	CURVE 19 (cont.)	0.00328	0.00437	0.00200	0.00610	0.00660	0.00110	0.00860	0.00020	0.0112	0.0122	0.0125	0100.000	27 24	0 00164	0.00209	0.00237	0.00273	U. 00293	0.00346	0.00373	0.00428		0.00200																						
	F	CURVE	0.31	0.34	0.37	0. 43	0.46	0.49	0. 53	0.58	0.61	99.0	0. 16	2		96 0	100	0, 37	0.41	0.45	0. 52	0.58	0. 63		0.76																						
	¥	CURVE 16 (cont.)	0.00205	0.00220	0.00231		CURVE 17		0.00232	0.00300	0.00327	0. 00382	0.00+03	0.00+68	0.00402	0.00030	0.000	0.00955 0.00955	0.00960	0.0105	0.0107	0.4116	0. 9175	,	CCHVF 18		0.00250	0.00273	0.00310	0.00355	0.00430	0.00170	0, 00525	0. 00565	0. 00615	0. 00655	0, 00685	0. 00745	:	CURVE 19		0.00118	0.00164	0.00218	0.00250	0. 00252 0. 00252	
m-1K-1	۰	CURVE	0.230	0.250	0. 210		כהצ		0.28	0.32	0.33	0.36	90.0))	 	9 -	3 !: 5 =	5 6	0.61	19 0	0.68	0.71	0.73		ši	;	0.28	35 O	- C	966	2 7	0	O. 54	9	0.63	D. 6H	0.71	91.70		5	:	0.10	0.21	0.24	0. 26	0. 28 0. 29	
y, k, Wutts cm -1K-1	¥	CURVE 13	0. 000103	0 000145	0. 000165	0. 000232	0. 000303	0. 000385	0.060437		CLIKE I		0.000.0	0.000318	0.00123	0.0000	0.0000	0.200	0.00323	0, 00345	0.09395	0, 00432	U. 00473	0.00000	0.00045	0. 00386		10 C T 13		0.00353	0.00530	0.00490	0.00550	0. 00570	0.00640	0.00669		CURVE 16		0.000510	0 000715	0.000770	0.000303	0.00101	0.00123	0.00174	
Conductivit	۳	CUR				51 .0		77 10	0. 23		ان: ان:			5 C C C C C C C C C C C C C C C C C C C		7 7					0.625					0.1		<u>ج</u> ا			0 190					0.690		5								0.220	
[Temperature, T. K. Thermal Conductivity, k,	4	VE 9	0. 0260	0.0288	0. 0301	0. 0351	0 0416	0.0474	0.0490	0.0515	0, 0541	0.0533		0.0641		CCRVE 10	1160 0	0 0211	0.0288	0.0315	0.0362	0.0390	0, 0403	0, 0425	0, 0455		CURVE 11	•		0.0133	0.0169	7070 C	0. 0295	0, 0302	9, 0340	0.0374	0.0410		CURVE 12		0.0113	0.0123	0.0153	0.0187	0.0216	0, 0280 0, 0310	
ıture, T.	۲	CURVE	. 75	1. 93	7. 05		5.85 6.	3, 19	3, 32	3.48	3.69	3.89	÷ 03	7		Si	1 7.	? ~ •	5. 16	33			2, 82	6 €i	3. 10		ວ' ວ່		eg :	7 :	: :	in	2.90	J. 13	3.39	3.63	3.91		5		1.39	1. 57	1.84	2. 16	2, 42	3.83	
[Tempera	*	CURYE 6 (cont.)	0.0145	0. 015ห	0.0175	9610.0	0.0210	0.0224	0.0239	0.0253		CURVET		0.00735	0.00190	0.0030	0.010	4.10	0.0135	0.0150	0.6162	0.0175	0.0187	0.0500	0.0213	0. 0226	0.0240	0.0280		CURVES	50000	0.00133	0.009.05	0. 0102	0.0114	0.0126	0.0138	0.0150	C. 0162	0.0175	0. 0187						
	+	CURVE	F. 89	5.00	2.20	5:40	5.60	2.80	3.00	3.20		3		1.30	9 -		96.	7.00	; ;	2, 60	200	3.00	3.20	D# :5	3.6U	08 S	3	07.7		<u>تا</u>		3 7	1.60	1.80	5. 60	2.20	2, 40	5. 60	2.80	3.00	3, 20						
	ı	3 (cont.)	0.0368	0.0392	C 417		CURVE 4		0.0176	6.0174	0.0173	0.0176	0.0185	0. 0203	0. 0222	0.0241	0.0260	0.0281		BVE 5	1	0. n095	6. 0102	J. 0117	0.9131	0.0147	0.0163	6. 0179	0.0196	0.0214	0.0233	0.000	0.0293	0. 0312	0. 0330	0.0346	0. 0396	0. 0438	0.0419		RVE 6		0.0142	0.0140	0.0139		
	H	CURVE	3.80	36 7	4. 20		CO		1. 30	1. 40	1.60	1. 80	8 .i	5. 20	13. 40	5. 6 0	2.80	90.6	,	CUB)	1.30	1. 40	1.60	1.80	2.00	2.20	2.40	5 . 6 0	2.80	3.00	07 7	9	3.80	4.00	4.20	4.78	2 44	6.04		CUR		1.30	1. 40	1.60		
	- 4	ive i	0.0333	0.0358	0.0410	0.0461	0.0515	0.0570	0.0625	0.0680	0.0735	0.0790	0.0845	0.0900	0.0360	0. 102	0.108	0 3 4		0 0127	0.0335	0.0355	0. 6386	O. 0430	0.0490	0.0560	0.0630	0. 07/00	0.0770	0.0840			J. C120	0.0129	0.0148	0.0186	0. c184	0.0203	0.0222	0.0241	0.0260	0.0281			0.0344		
	۰	CURVE	1.30	1. 40	1. 60	1. 80	3	5. 20	9	2 60	2. 80	3 8	3, 20	3. 40	; 60	3.80	8 -i	32977		2	1.40	29	1.80	2. 80	2. 20	2. 40			ج ج	3. 20	1	3	1. 30	1. 40	1. 60	1.80	5. 90.	2. 20	2. 40	2. 60	2.80	3.00	3, 20	3. 40	3.60		

A Million of Manager and Manager and Manager and Manager and Manager and Manager and Manager and Manager and M

and the state of t

SPECIFICATION TABLE NO. 131 THERMAL CONDUCTIVITY OF (INDICM + TIN) ALLOYS

 $\{ \ln + |\sin(99,50^{\rm F}), \, {\rm timpurities} = 0, \, 20^{\rm F} \}$

) For Data Reported in Figure and Table No. 131.

Composition (continued), Specifications and Remarks	Supplied by American Souelting and Refining Co.; a roal of a nine dia; annealed at 140 C for six months; electrical resistantivity 0, 37 x 10 4 ohm em at 4, 2 K, normal-state conductivity was measured in a longitudinal magnetic field of 500 gauss.	The above specimen beat repeatedly at room temperature before the measurement.
Composition (weight percent) In Sn	-	
Composition In	8	
Name and Specimen Designation	7 4	51 51
Reported Errot, ".	 	:
Temp, Reported Ringe, K. Errot, ".	0, 5-1, 3	0.4-1.4
Year	1965	1960
Curve Ret. Method Year F	7 Dec 1	380 E 1
Ret.	÷ ,	v.
Curve No.	_	÷ı

(In + Sn + 99, 50%; impurity = 0, 20% each)

CURVE 1

0.0348 0.0348 0.0424 0.0454 0.0552 0.0522 0.0549 0.0531 0.0549 0,532 0,600 0,600 0,646 0,731 0,945 0,950 0,992 1,103 1,260 1,342

CURVE 2

0.0268 0.0292 0.0224 0.0324 0.0434 0.0434 0.0434 0.0434 0.0432 0.0432 0.0432 0.0432 0.0432 0.418 0.455 0.559 0.548 0.664 0.703 0.744 0.541 1.012 1.125 1.125 1.365

Not shown on plot

SPECIFICATION TABLE VO. 132. THERMAL CONDUCTIVITY OF LEAD (ANTIMONY ALLOYS)

The St. 191, 30 % imparts 0, 20% each

For Data Beported in Figure and Table No. 102]

S. P.		Methy. Used	¹ Year	Carve Rel. Method year Temp. Reported No. No. Used Year Range, K. Erner,	Reported Ernor, *	Хатис апь! Spectine в Designation	Composition (weight perecut) bon	eight percent) Sh	Composition (continued), Specifications and Remarks
-	000	نہ ا	19%	<u> </u>			e: e:	g.	Prepared by fusing 40 and 50 each containing - 0.03 outpartness supplied by Boker; specimen 10 cm long 1, 9 cm dag, electrical conductivity 2.46 v 10 ⁴ ohm ² 1 cm ² 3 C.
÷ı	623	ت	1925	i.			66	÷	Similar to the above specinion except electrical conduc- tivity 2,66 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 22 C.
17	010	÷	1925	ñ			ē-	0 5	Similar to the above specimen except electrical conduc- tivity 2,87 v 10° obm ° em ° at 22° C.
-	339		1985	Ħ			9	50	Similar to the above specimen except electrical conduc- tivity ii, 10 x 10 ⁴ ohm ³ cm ³ at 22 C.
'n	330	٦	1925	17			96	<u>=</u>	Similar to the above specimen except electrical conductivity 3, 60 x 10 ³ ohm ³ cm ³ at 22 C.
9	13		: :361	307-(55			ţ,	<u>=</u>	Eutectic alloy; metting point 24% C; specimen 1, 5 cm dia

حماصة حليبقالا الماراق إهرااته عييس والمالية البالقاعات ومقافع عالمته مسيمانا فمستعدة المالية

The second secon

DATA TABLE NO. 122 THERMAL CONDICTIVITY OF (LEAD + ANITMONY ALLOYS

(Pb + Sh 99, 50%; imparity 0, 20% each)

(Temperature, T, K; Thermal Combeterity k, Watt em 2K-1)

CURVE 2

327 0.265

CURVE 2

327 0.215

CURVE 3

327 0.218

227 0.230
CURYE 5
327 0.244
CURYE 6

007.2 0.269 016.2 0.269 019.2 0.200 370.2 0.201 192.2 0.20 141.2 0.201 65.3 0.201 665.2 0.100 655.2 0.100

SPECIFICATION TABLE NO. 133 THERMAL CONDUCTIVITY OF LEAD + BISMUTH ALLOYS

(1% + Bi 99, 50%; imparity -0, 20% each)

(For Data Reported in Figure and Table No. 133)

enurks	nper-	field of	days close atc.	field of									•		•	perconducting	conducting state.	measured in
Composition (continued), Specifications and Remarks	Polyerystal; grain size 0.5 tym; annealed in vacuo for several hr close to the melting point; in super-conducting state.	The above specimen measured in a magnetic field of 1000 gauss; in normal state.	Single crystal; annealed in vacuo for several days close to the neiting point; in superconducting state.	The above specimen measured in a magnetic field of 1000 gauss; in normal state,						In superconducting state,	The above specimen in normal state.	In normal state.	The above specimen in superconducting state,	In normal state,	The above specimen in superconducting state,	Specimen straight; annealed; measured in superconducting state.	The above specimen bent; measured in superconducting state,	The above specimen annealed at room temp; measured in superconducting state,
Composition (weight percent) Ph Bi	0.262	202.0	0.716	91210	10, 20	14, 12	21,66	27, 26	38,85	5,0	0.5	9.3	4.2	10	9.1	-		1
Composition (99, 79⊰	99,794	99.284	482.66	49, 80	85, 48	#0 % to	7. ?i	61.15	99.	99. 5	99. ×	99, 8	96	90	66	on on	96
Name and Specimen Designation	Pb-Bi 0.2	Pb-Bi 0.2	Pb-Bi 0.7	Pb-Bi 0.7														
Reported Error, "	61 11	41 C3	÷1	7	± 3	۳. ۱۱	77	:7 41	ෆ †'									
Temp. Range, K	1.1	1.0-4.2	1.14.5	1.2-4.5	308-421	302 +06	296-125	298-415	311-405	2.8-8.5	2.9-11	3,6-11	3.5-7.6	4.8-17	2.6-7.4	1.04.3	1.04.2	1.0-4.2
Ret. Method Year No. Used	1958	1958	1958	1958	1956	1956	9261	1956	1956	1952	1952	1952	1952	1950	1950	1958	1958	1958
Methor Used	ت		-1	ij	œ	ΣĽ	53	ш	ш	-1		٦	٦.	د	_1	٦	_	1
% <u>i</u>	257		150	121	/	<u>'</u>	<u>/</u>	7 71	7. 7.	768	897	465	897	96	96	349	389	339
Curve No.	-	:1	13	-	13	9	1 -	1:	2	10	11	13	27	1	51	16	11	18

٠,

DATA TABLE NO. 133 THERMAL CONDUCTIVITY OF 'LEAD + BISMUTH', ALLOYS

The second secon

(Pb + Bi + 99, 50%; impurity - 0, 20% each)

[Temperature, T, K; Thermal Conductivity k, Watt em-1K-11

¥	CURVE 17 (cont.)	0.355		CURVE 18	:	0.085	0.100	0, 1:31	0.167	c. 30	0.21	0.26	0.315	0.40	0.43	0.49	0.48	0.46	0.44	0.41	0.37	0.34	0.32																				
H	CURVE	4.10	:	CUB		0.997	1.035	1.103	1.225	1.305	1.352	1.500	1.698	1.96	2.12	2.38	2.70	3.02	3,23	3. H	3,78	÷0.+	4.21																				
×	CURVI: 15	0.163	6,113	0.097	0.083	6.065	0,063	0.057		CURVE 16		0.150	0.212	0.320	0.310	0.400	0.470	0.556	0.648	0.690	099.0	0.529	0.470	0.408	0.360	0.336		CURVE 17		0.128	0 173	0.232	0.308	0.350	0.420	0.510	0.610	0.680	0.693	0.620	0.560	0.50	0.460
÷	Con	6. 6. 6.	8 F.	4,70	5,70	9.30	7, 10	., 10		CUR		0,997	1, 095	1.210	1,245	1.39	1, 56	1.72	1.95	2.17	5. 5.	3. 26	.5. 41	Ţ.	4.03	4, 25		#()		0, 997	. 6:	1.13	1.30	1.37	1.52	1.70	1, 93	2.13	2.40	2, 75	3, 09	3,25	3, 30
±£	CURVE 11 (cont.)	0.215	0,310	0.355	0.359	0.415	0.430	0.440		CURVE 12		0.380	0.420	0.475	0,525	0,575	0.610	0.620	0.615	0.600	0.575		CURVE 13		0.500	0,495	0.430	0,500	0,525	0.570		CURVE 14		.:0 ·0	0.935	0.030	0.016	0,055	0.058	0.065	0.030	0.036	0.110
Ĺ.	CURVE	0.4		0.5	8.0	9.6	10.0	0.11				3. 5.	0.7	5.0	6.0	7.0	9.0	3,0	9.0	10.0	11.0		COR]	3.5	1.0	0.0	0.9		7.0		CUR		4.75	5.70	5,90	7.25	a. 55	9.00	10.40	13.00	14.75	17.00
	CURVE 7	0, 192	0.130	0.192	0.196	0.197	0.197	0.203		CURVE 8		0.131	0.159	0.151	0.150	0.149	0.151	0.149	0,149		CURVE 9		0.115	0.118	0,126	0.130	0.135	9, 135		CURVE 10		0.435	42.1	0.372	0.340	6.337	0.340		CURVE 11		0.150	0.158	
F	n)	236.2	326.2	349.2	358.2	394.5	408.2	425.2				298.2	310.2	332, 2	352.2	356, 2	380.3	400,2	415.2		CUF		311.2	331.2	352, 2	377.2	390.2	405.2		CUR			o ::	4.0	5.0	6,0	9 9		CUR	į	2.9	3.0	
×	CURVE 3 (cont.)	0.782	0.830	908.0	0.675	0.586	0.500	0.449	0.403	0.371		CURVE 4		0.04:34	0.0520	0.0615	0.0501	0.0860	0.0932	0.1125	0,1275	0.144	0.174	0.1505		CURVE 5		0.225	0.242	0.247	0,253	0.259		CURVE 6	<u> </u>	0.207	01	60	0.210	0.209	0.203		
T	CURVE	1.69	2,47	2,74	3.09	3, 36	3,69	3.94	4, 23	4.50		CUR		1.23	1.45	1,70	2, 21	2.36	55.1	3, 01	58.5	(- -	44.	4.52		CUR		303.2	343,4	363.4	3.46.2	420.7		CCR	•	201.7	326.3	342,7	2.1.2	3-5-2	105.1		
ᅶ	VE 1	0.154	0.298	0,397	0.418	0.503	0.522	0.100	0.75	0.774	0.825	0.841	0.876	0.851	998.0	0.841	0.781	908.0	0.75	0.750	707	0.702	0,663	0,638		CURVE 2		0.150	0.19]	0.255	0.300	0.347	0. +1.	0.500	0.545	0,620		CURVE ::		6,337	0,540	22.0	
۲	CURVE 1	1.09	1.28	1.45	1.49	1.61	Į.	1.90	2.04	5.8 5.8	2.13	2,30	2.35	2,45	8	2, 76	3	3.11	3, 29	3.35	3.61	3.67	3,98	4.25		CUR		00.1	1,28	1.64	1.0;	2.39	çı ei	£.:		1.24		MINIO MINIO	<u>:</u>	1.12	-	3.	

Total and and and

And the Manufacture of Control of the Control of th

SPECIFICATION TABLE NO. 134 THERMAL CONDUCTIVITY OF (LEAD + INDIUM) ALLOYS

The second secon

(Pb + In : 99, 50%; impurity < 0, 20% each)

For Data Reported in Figure and Table No. 134,

Composition (continued), Specifications and Remarks	Calculated composition; specimen in superconducting state at lower temp.	The above specimen measured in a magnetic field of 721 gauss (below critical field strength).	Calculated composition.	Calculated composition; measured in a magnetic field of 481 gauss.	The above specimen measured in a magnetic field of 240 gauss.	The above specimen measured in a magnetic field of
0						
Composition (weight percent) Pb	35.65	35,65	0, 556	35.65	35.65	35,65
Composition (Pb	64,35	64, 35	99. 4.14	64.35	64.35	64.35
Name and Specimen Designation						
Reported Error, %						
urve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error, %	2.5-278	2.5,3.6	15-81	2.5,3.6	2.5,3.6	3.56
Year	1936	1926	1936	1936	1936	1936
Method Used	228 L	ı	L	H	-	H
Ref. No.	228	228	228	228	228	228
Curve No.		01	က	4	S	9

DATA TABLE NO. 134 THERMAL CONDUCTIVITY OF [LEAD + INDIUM] ALLOYS

(Pb + In :: 99, 50%; impurity <0, 20% each)

[Temperature, T, K; Thermal Conductivity k, Watt cm 4K-1]

*	IVE 5	0.00709	0.00769		CURVE 6		0.00763																													
1	CURVE	2.52	3. 86		CUR		3. S																													
귝	IVE 1	0.00769	0.00769	0.00833	0.00813	0.00787	0.00862	0.00943	0.00390	0.0117	0.0127	0.0141	0.0132	0.0131	0.0143	0.0157	0.0170	0.0242	0.0267	0.0293	0.0326	0.0813	0.0980	0.202	CURVE 2	0.00676	0.00752	IVE 3	0.149	0.158	0.160	0.165	0.263	IVE 4	0.00680	0.00769
н	CURVE	2.51	2.64	2.87	3.20	3.56	4.02	4.36	4. 2	5.87	6.52	6.81	7.02	7.25	7.69	8.45	9.16	14.90	16.30	18.00	20.40	69.00	83.00	278.00	CUB	2.33	ဗ ဗ	CURVE	14.80	16.10	17.90	20.40	81.00	CURVE	2.53	%

Mediana. Memorahan Memorahan Memorahan Santan Santan Memorahan Santan Santan Santan Santan Santan Santan Santa

SPECIFICATION TABLE NO. 135 THERMAL CONDICTIVITY OF LEAD + SILVER ALLOYS

The second secon

(19) - Ag | 99, 50%; imparate | 0, 20% each)

For Data Reported in Figure and Table No. [135]

	Composition (continued), Specifications and Remarks	Prepared by fusing 19 (+ 0.03 importies), supplied by Bakert and Ag 39.9 pures specimen (5.5 cm long, 0.3 cm² cross sectional area; electrical conductivity 6.15 × 10 (ohm ⁻¹ em ⁻¹ at 22 C.	Similar to the above specimen except electrical conductivity 6,21 x 10 ⁴ ohm. Fem. l at 22 C.	Similar to the above specimen except electrical conductivity 4, 95 x 10 ⁷ ohm ²¹ ent ²¹ at 22 C.	Similar to the above specimen except electrical conductivity 1,88 x 10 ⁴ ohm ³ cm ⁻¹ at 22 C.	Similar to the above specimen except electrical conductivity 4.57 x 10° ohm "cm" at 22° C.
Commercial and Accorded to Commercial and Accorded to Commercial and Commercial a	ja Ag Composition	95	0+	D#:	Ę	10
Commercial	ીત.	D:	89	0.5	02	06
Name and	Specimen Designation					
Reported	Near Range, K. Error, C.					
Temp.	Ruge, K	:: :::	F122	E33	221	::H::
	No. 1 set 1 car Ran	976	1925	1925	1979	1925
Metho	7/2	-1		د	٦	J
Be:	No. No. 1868	<u>\$</u>	5. 11	Ē.	3	0 55
Curve	ź	-	٠,	**	-	13

DATA TABLE NO. 135 THERMAL CONDUCTIVITY OF DEAD + SILVER ALLOYS

(Pb + Ag : 99, 50%; imparity : 0, 20% cach)

(Temperature, T, K; Thermal Conductivity, k, Watt em *1K*1,

.

CURVE 1

333 0.490

CURVE 2

333 0.439

CURVE 3

333 0.395 CURVE 4

333 6.381

CURVE 5 333 0.351 。 | Andrew State |

649

SPECIFICATION TABLE NO. 136 THERMAL CONDUCTIVITY OF (LEAD + THALLIUM) ALLOYS

(Pb + Tl | 99, 50%; impurity | 0, 20% each)

(For Data Reported in Figure and Table No. 136)

Curve	Ret	Ret. Method Year	Year	Temp.	Reported	Name and Seestimen Designation	Composition	Composition (weight percent)	Composition (continued), Specifications and Remarks
		2					2		
-	230	.ı	1925	333			00	05	Prepared by fusing Pb (-0.03 impurities, supplied by Baker) and Tl (technically pure, supplied by Eimer and Amend); specimen ~6.5 cm long, 0.3 cm² cross sectional area; electrical conductivity at 25 C 2.54 x 10° ohm "1 cm"1.
8	230	-1	1925	333			99	04	Similar to the above specimen except electrical conductivity 2, 62 x 10° ohm 1 cm 1 at 25 C.
ო	230	ب	1925	gg 6			0:	30	Similar to the above specimen except electrical conductivity 2,74 x 10° ohm-1 cm ⁻¹ at 25 C.
4	230	J	1925	333			0 ×	20	Similar to the above specimen except electrical conductivity 2, 98 x 10° ohm "1 cm "1 at 25 C.
S	230	ы	1925	g			06	10	Similar to the above specimen except electrical conductivity 3.54 x 10° ohm ⁻¹ cm ⁻¹ at 25 C.
g	379. 257	LI.	1956	1.2-4.4	4 61	PbTl 0.6	95.428	0.572	Pulverystal (long crystais); amealed in vacuo close to melting point for several hrs; in superconducting state
t~	379. 257	ı	1956	1.24.5	e)	PbTI 0.6	99.428	0.572	The above specimen measured in a magnetic field of 1000 gauss, in normal state.
œ	379.	,	1956	1.1-4.5	C)	PbT1 0.6	99.428	0.572	Similar to the above specimen except strained; in super- conducting state.
6	257	7	1956	1.3-4.4	4 2	PbT1 0.6	99.42k	9, 572	The above specimen measured in a magnetic field of 1000 gauss, in normal state.

ياللهم والمالية

DATA TABLE NO. 136 THERMAL CONDUCTIVITY OF [LEAD + THALLIUM] ALLOYS

(Pb + Tl > 99, 50%; impurity < 0.20% each)

[Temperature, T. K; Thermal Coaductivity, k, Watts ${\rm cm}^{-1}{\rm k}^{-1}{\rm j}$

CURVEB	1, 08 C. 0389 1, 12 0. 0440 1, 32 0. 0707		1. 45 0. 0900 1. 53 0. 1025 1 86 0. 172	2, 42 0, 282	36 0.39	8	, ,	CURVE 9	1, 25 0, 1038	67	80	77 0	4. 38 0. 377														
CURVE 1	333 0.201 CURVE 2	333 0. 201	CURVE 3	333 0. 226	CURVE 4	333 0. 251	CURVE 5	333 0. 285	CURVE 6	L 15 0. 264	ä	6	L. 70 0. 593	1, 89 0, 735	y	\$ 0 C	9	3. 37 0. 488	+ +	CURVE ?	•	1	9	÷	2, 47 0, 295	000 O OF #	÷

SPECIFICATION TABLE NO. 137 THEHMAL CONDUCTIVITY OF (LEAD + TIN] ALLOYS

(Pb + Sn : 99, 50%; impurity : 0, 20% each)

[For Data Reported in Figure and Table No. 137]

Composition (continued), Specifications and Remarks	Approx. composition; <0.03 total impurity in each metal; specimen 1.9 cm in dia and 10 cm long; supplied by Baker; electrical conductivity 4.95 x 10 ohn: 1 cm -1 at 22 C.	Similar to the above specimen except electrical conductivity 5, 29 x 10° ohm -1 cm ⁻¹ at 22 C.	Similar to the above specimen except electrical conductivity 5.65 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 22 C.	Similar to the above specimen except electrical conductivity 5, 99 x 10f ohm -1 cm ⁻¹ at 22 C.	Similar to the above specimen except electrical conductivity 6.47 x 10° ohm ⁻¹ cm ⁻¹ at 22 C.	No other details reported.	76 (99, 99 pure) supplied by Johnson Matthey; specimen 7 cm long. 3 mm in dis; polycrystal with grain size 0.1 mm; same 'led in vacuo for several hrs at a temp a few degrees anne'led in vacuo for several hrs at a temp a few degrees also 'let he melting point; in superconducting size; θ = 0.124 μ chm cm.	The 31.7 specimen in normal state at 1000 gauss.	Approx. c. aposition; measured in normal state.	Approx. composition; measured in superconducting state.
Composition (weight percent) Pb Sn	10	20	30	04	50	44.0	0.27	0.27	30	30
Composition (06	83	7.0	09	20	58.0	99. 73	99.73	70.0	7.0
Name and Specimen Designation							PhSn 0.5	PbSn 0.5		
Reported Error, %							± 2. 0	±2.0		
Temp. Range, K	327.2	327.2	327.2	327.2	327.2	15-70	1.14.5	1.14.6	3.0-11	3.2-6.0
	1925	1925	1925	1925	1925	1936	1958	1958	1950	1950
Ref. Method Year No. Used	i	1	-1	ı	u	ר	٦	ı	ı	1
R. Ref.	230	230	230	230	ន្តិ	228	257	257	8	*
Ourse No.		83	က	•	'n	ဖ	6	œ	ø	07

DATA TABLE NO. 137 THERMAL CONDUCTIVITY OF [LEAD + TIN] ALLOYS

(Pb + Sn ≥ 99. 50%; impurity ≤ 0. 20% each)

[Temperature, T. K. Thermal Conductivity, k, Watts $\mbox{cm}^{-1} \mbox{K}^{-1}$]

*	et.)	558	575	59 5	596			222	233	248	275	322	436	595	835	3		060	100	110	120	130	145	215	265	315		의	050	065	072	080	110	115	120	170		
۲	CURVE 7(cont		ö	0			CURVES	1. 10 0.	19 0.	27 0.	÷	5	53	91	90 90 4	3	CURVES	3.0 0.	3.2 0.		3.7 0.			~	9.3			CURVE 1	3.2 0.	5 0.	7 0.	.0	5 0.	₩.	5.0 0.	0.		
×	IVE 1	0.380		IVE 2		0.372	VE3		0.385		VE 4	717		IVE 5	797	<u>.</u>	IVE 6	24			0.294		0.483		VE 7		0. 246		0.368				0.602	0. 630			Ġ	0. 553
H	CURVE	327		CURVE		22	CURVE	}	727		CURVE	***	į	CURVE	127	į	CURVE	14.7	17.1	18.9	20.8		10·0		CURVE		1. 14		1. 40	1. 51	1. 61	1. 72	2.65				 3, 55	3.87

SPECIFICATION TABLE NO. 139 THERMAL CONDUCTIVITY OF [LITHREM + SODREM] ALLOYS

 $(L_1+N\alpha \otimes 99,\,30\%)$ impurity $(0,\,20\%)$

[For Data Reported in Figure and Table No. -1.38°_{\odot}

Composition (continued), Specifications and remaining to the order of the continues, and one of the continues of the continue	
non (weight percent) Na 9, 26	
Curve Ref. Method year Temp. Reported Name and Composite Li No. Used Range, K Error, To Specimen Designation Li 1922. C 1965 56:1-1193 ±8 Ball.	

DATA TABLE NO. 138 THERMAL CONDUCTIVITY OF [LITHIUM + SODIUM] ALLOYS

(Li + Na > 99, 50%; impurity < 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1

563.2 0.480 573.2 0.481* 623.2 0.485 673.2 0.497 773.2 0.497 873.2 0.497 873.2 0.501 873.2 0.510 973.2 0.514 1073 0.528 1173 0.528 * Nut shown on plot

SPECIFICATION TABLE NO. 139 THERMAL CONDUCTIVITY OF MAGNESTIM + ALMMINUM) ALLOYS

The state of the s

(Mg + Al ~99, 50%; impurity < 0, 20% each)

For Data Reported in Figure and Table No. 1397

Curve No.	Ref.	Ref. Method You Voc. Used	Year Range, K	Reported K Error, %	Name and Specimen Designation	Composition Mg	Composition (weight percent) Mg Al	Composition (continued), Specifications and Remarks
_	230	61 7	1925 336.2			95.82	4.12	0.028 Fe. 0.019 Si; specimen~5 cm long with cress-section 0.3 cm²; supplied by Aluminum Co. of America; electrical conductivity 9.06 x 104 ohm "1 cm "1 at 63 C.
e)	230	L 19	1925 336.2			89.82	10.12	0,023 Si, 0,028 Fe; similar to the above specimen except electrical conductivity 6,00 x 104 ohm ⁻¹ cm ⁻¹ at 63 C.
ຕ	95.8	L 19	1929 87-476	т Т		94.0	ô. 0	Specimen 1, 23 cm² in cross section and 3 cm long; cast; electrical conductivity 14, 7, 8, 04, 6, 47 and 5, 99 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.
7	35. 80.	L 19	1929 87-476	T		92.0	8. O	Similar to the above specimen except electrical conductivity 13.32, 7.31, 5.95 and 5.55 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.
ισ	850. 93	.1	1929 87-476	T 60		88	12	Similar to the above specimen except electrical conductivity 9.65, 5.99, 5.27 and 4.90 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.
9	225	61 T	1928 373-623	~		94.0	9	Specimen 12 in long and 1 in, in dia; annealed at 300 C for 3 hrs.
r-	225	I. 19	1928 373-625	, -		6 8	11	Similar to the above specimen.
on.	673	E 13	932 300.2	e.		97.9	2.1	Specimen 200 mm long; electrical cond.ctvlfy 11.9 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 27 C.
ø	613	E 19	1932 295.5	1.3		95.8	2.3	Specimen 200 mm long; electrical conductivity 8.9 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 22.3 C.
10	613	E 19	1932 295.1	1.3		93.8	6.2	Specimen 200 mm long: electrical conductivity 6.9×10^4 ohm $^{-1}$ em $^{-1}$ at 21.9 C.
11	673	Е 13	1932 291.5	1.3		91.8	8.2	Specimen 200 mm long; electrical conductivity 5, 9 x 104 ohm ⁻¹ cm ⁻¹ at 18.3 C.
12	613	E 19	1932 281.5	1.3		89.7	10.3	Specimen 200 mm long; electrical conductivity 5.5×10^4 ohm $^{-1}$ cm $^{-1}$ at 19.3 C.
13	673	E 19	1932 296.5	1.3		87.8	12.2	Specimen 200 mm long; electrical conductivity 5.1 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 23.1 C.

DATA TABLE NO. 139 THERMAL CONDUCTIVITY OF (MAGNESIUM + ALUMINUM) ALLOYS

(Mg + Al \geq 99,50%; impurity \leq 0,20% each)

[Temperature, T, K: The rmal Conductivity, k, Watts $\text{cm}^{-1} K^{-1}_{\parallel}$

.¥	CURVES	300.2 0.887	CURVE 9	295, 5 0, 690	CURVE 10	295.1 0.556	•	CURVE 11	291.5 0.510	CURVE 12		231.5 0.452	CURVE 13	296.3 0.385												
	E 1	0.665	E 2	0.485	E 3	0.603	0.799	0.971		ŧ۱	0.419	0.649	0.808	E3	0.335	985.0	0.682	19. '0	9 4	0.753	0.753	0.774	E 7	0.879	0.920	0.941
٠	CURVE	336.0	CURVE	336.0	CURVE	87.0	273.0	476.0		COM	67.9	273.0	476.0	CUINE	47.0	9. 51	373.0	476.0	CURVE	373.2	523.2	523.2	CURVE	373.2	573.2	623.2

SPECIFICATION TABLE NO. 110 THERMAL CONDUCTIVITY OF [MAGNESIUM + CADMIUM] ALLOYS

 $(M_K + Cd + 99, 50\%; \, \mathrm{impurity} \leq 0, 20\%; \, \mathrm{rach}^3$

Composition (continued), Specifications and Remarks	Specimen 1.23 cm ² in cores section and 3 cm long; as cost; electrical conductivity 85.0, 15.43, 14.85 and 11.33 x 10 ohm ² cm ² at ⁴⁷ , 273, 372 and 476 K respectively.
Composition (weight percent) Mg Cd	8,0
Composition (weigh	92.0
Name and Specimen Designation	
Reported Error, ",	1
Temp. Runge, K	112
Year	1929
Curve Ret. Method Year No. No. Used	-i
¥ 8	93°
Curve No.	-

DATA TABLE NO. 140 THERMAL CONDUCTIVITY OF | MAGNESIUM + CADMIUM] ALLOYS

(Mg + Cd = 99, 50%; impurity $\leq 0.20\%$ each)

Temperature, T. K. Thermal Conductivity, k, Watt ant K.

CURVE 1

87.00 1.301 273.00 1.414 373.00 1.477 476.00 1.544 No graphical presentation

الموالية الأراقية في الوائق بيونوسوسوا ومال ويلقونه ويسواف ويسون في الموافقة فيقا ويوني يراو وداي الوائد أسانو والفزرين والمنظوف بمروجات

SPECIFICATION TABLE NO. 141 THERMAL CONDICTIVITY OF I MAGNESIUM 4 CALCIUM) ALLOYS

 $(Mg+Ca-99.5) \approx impurity + 0.20\% \cdot each^3$

Composition (continued), operations and	10.07 impurities: specimen ~ 29 cm long and 1.4 cm in dia; forged at clevaled temperature; density 1.74 g cm 3; electrical resistivity 4.85, 5.35, 7.05 and 8.7 g ohm cm at 20, 50, 150 and 250 C respectively.
Composition (weight percent) Mg	97,11 2,32
Name and Specimen Designation	W 1641
Reported Error, "3	323-523 + 3
Year	19.39
. Methy Useo	ر ا
Surve Rel	68
	Temp. Reported Name and Composition (weight Percent) Range, K. Brror, S. Specimen Designation Mg

DATA TABLE NO. 141 THERMAL CONDUCTIVITY OF | MAGNESIUM + CALCIUM) ALLOYS

(Mg + Ca | 99, 50%; imparty < 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k., Watt cm. tk. 1]

CURVE 1: 323.2 1.403 423.2 1.423

No graphical presentation

SPECIFICATION TABLE NO. 142 THERMAL CONDUCTIVITY OF 'MAGNESIUM + CERIUM' ALLOYS

 $(Mg+Ce^{-1}99,50^{\mu_{\rm S}},\,nnpurity-0,\,20^{\mu_{\rm S}}\,each)$

(For Data Reported in Figure and Table No. 112)

Curve No.	Ref.	Method Used	Year	Surve Ref. Method Year Temp. Reported No. No. Used Year Runge, K Error,"	Reported Error, ",	Name and Specimen Designation	Composition ()	Composition (weight percent)	Composition (continued), Specifications and Bemarks
-	. 65°. 93°.	1 550, 1, 1929 93	1929	97-476	4 -5		92. 0	ກ່	Specimen 1, 23 cm ² in cross section and 5 cm long, as cast: electrical conductivity 74, 02, 14, 0, 10, 05 and 8, 22 x 10 ⁴ ohn ⁴ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.
24	850. 93	ı.	1929	87-476	÷		x O	12. 0	Similar to the above specimen except electrical conductivity 45, 5, 11, 5, 8, 10 and 6, 22 x 10 ⁶ mm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.
n	393	J	1939	323-523 - 3	n	W 1630	89.84 4	19.1	Specimen ~29 cm long and 1.4 cm in dia; 9.06 impurities, forged at elevated temperature; density 1.86 g cm ³ ; Cc in the form of mischmetal; electrical resistivity 6.7, 7.4, 9.7, and 11.9 pohm cm at 20, 50, 150 and 250 C.

DATA TABLE NO. 142 THERMAL CONDUCTIVITY OF [MAGNESIUM + CERIUM] ALLOYS

(Mg + Cc > 59, 56%; impurity : 0, 20% each)

(Temperature, T. K. Thermal Conductivity, k. Watt cm- | K-|]

ST. 0 1. 059
273. 0 1. 251
373. 0 1. 423
476. 0 1. 423
CURVE 2
57. 0 0. 808
273. 0 1. 029
373. 0 1. 159
476. 0 1. 255
476. 0 1. 255
423. 2 1. 046
423. 2 1. 067
523. 2 1. 067
523. 2 1. 067

THERMAL CONDUCTIVITY OF MAGNESIUM + COPPER ALLOYS

THERMAL CONDUCTIVITY, Wett

TEMPERATURE, K

CHARLES OF THE

SPECIFICATION TABLE NO. 142 THERMAL CONDUCTIVITY OF MAGNESICM - COPPER, ALLOYS

 $(M_{\rm H} - Cu - 99, \, 50^{\rm o})$, impurity $-0.20^{\rm o}$ each)

For Data Reported in Figure and Table No. 143,

Composition (weight percent) Composition (continued). Specifications and Remarks Mg Cu	Specimen 1, 23 cm² in cross-section and 3 cm long; cast; electrical conductivity 43, 0, 17, 57, 14, 55 and 10, 7 x 10 ⁴ ohm ¹ cm ¹ at 87, 273, 373 and 476 K. respectively.	Similar to the above specimen except electrical conductivity 92, 6, 20, 6, 17, 5 and 12, 5 x 10 ⁴ obm ³ cm ³ at 87, 273, 373 and 456 K, respectively.	Forged.	Specimen 12 in, forg and 1 in, in dia; annealed at 300 C for 3 hrs.	Similar to the above specimen.	Similar to the above specimen.	Specimen 200 mm long; electrical conductivity 22, 0 x 10 ⁴ ohm ⁴ cm ⁻⁴ at 20, 3 C.	Specimen 200 mm long; electrical conductivity 20, 8 x 10 ⁴ ohm ¹ cm ¹ at 24, 2 C.
gat percent) Cu	D .X	15, e	4.0	3.0	1.3. 0	1.0	ण 2i	:: ' '
Composition (weight percent)	D :16	0 33 /	96. 0	0	=;	9.1.6	97, 6	9.8.9
Name and Specumen Design	:							
Reported Front,	! ! #	# #	1. 0				£.3	n
Jurse Rel, Method Year Temp, Reported No. No, Used Amer, Empt., Prior.		87-476	373	373-623	373-623	373-623	29:1, 5	297. 4
Year	1929	1929	1927	1928	1924	1028	1932	1932
Methori	500 1. 1929 93	نہ	'n	-1	÷	٦	ы	ш
Ret.	100 to 10	90 116	3	2	: ?}	10	67.3	67.3
Curve No.	_	*1	m	-+	10	:5	t -	7.

DATA TABLE NO. 143 THERMAL CONDUCTIVITY OF MAGNESHIM (COPPER) ALLOYS

 $(M_R+Cu=99,50\%)$ importly $-0.20\%~{\rm erch})$

[Temperature, T. K. Thermal Conductivity, R. Watt em. J.K. L.

CURVE 2

0, 479 1, 247 1, 295 1, 326

87 273 373 476

CURVE 1

1, 506

37.3

CURVE 3

CURVE 1

1, 464 1, 506 1, 464

373, 2 523, 2 623, 2 CIRVE 5

373, 2 523, 2 623, 2 373, 2 1, 276 523, 2 1, 234 623, 2 1, 297

CIRVE 6

293, 5 1, 389

297.4 1.310

CURVE 8

SPECIFICATION TABLE NO. 144 THERMAL CONDUCTIVITY OF [MAGNESIUM + MANGANESE] ALLOYS

(Ng + Mn > 99.50%; impurity : 0.20% each)

[For Data Reported in Figure and Table No. 144.]

Curve No.	Ref.	Metho: Used	Year	Temp. Range, K	Ref. Method Year Temp. Reported No. Used Year Range, K Error, 73	Name and Specimen Designation	Composition (weight percent)	ight percent) Mn	Composition (continued), Specifications and Remarks
~	850. 93	<u>.</u>	1929	87-476	3-4		÷ 66	0.5	Specimen 1, 23 cm² in cross-section and 0 cm long; cast: electrical conductivity 93, 90, 19, 05, 13, 26 and 10, 6 x 10 ⁴ ohm lcm l at 87, 273, 373 and 476 K, respectively.
8	50. 93	ы	1929	87 476	7		99.2	a . 0	Specimen 1, 23 cm² in cross-arction and 3 cm long; cast, electrical conductivity 64, 46, 17, 88, 12, 30 and 10, 0 x 10³ ohm²lcm²l at 87, 273, 373 and 476 K, respectively.
င	93 93	<u>.</u>	1925	87-476	T		0.56	2.0	Similar to the above specimen except electrical conductivity 38,50, 14,37, 11,0 and 8,70 x 10 ⁴ ohm 'lem 1 at 87, 273, 373 and 476 K, respectively.
4	93,	ы a	1929	87-476	გ ქ		96,46	3.84	Steplar to the above specimen except electrical conductivity 20,5,12,65,9,8 and 8,0 x 10 ohm "cm." at 87, 273, 373 and 476 K, respectively.
ហ	397	٦	1939	32?-523	.3.0	W 1567	97, 29	2.64	0.07 total impurities: specimen = 29 cm long and 1.3 cm in day, forgod at elevated temperature; density 1.77 g cm 7; electrical resistivity 4.9, 5.1, 7.15 and 8.9 µohm cm at 20, 50, 150 and 250 C. respectively.

DATA TABLE NO. 144 THERMAL CONDUCTIVITY OF [MAGNESIUM + MANGANESE] ALLOYS

(Mg + Mn - 99, 50%; impurity +0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

87
1, 319
273
1, 598
373
1, 602
476
1, 644

CURVE 2

87
1, 176
373
1, 176
373
1, 176
373
1, 176
373
1, 176
373
1, 130
476
1, 243
476
1, 234

CURVE 6

CURVE 6

CURVE 6

CURVE 6

323.2
1, 381
423.2
1, 423
523.2
1, 423

SPECIFICATION TABLE NO. 145 THERMAL CONDUCTIVITY OF (MAGNESIUM + NICKEL) ALLOYS

 $(Mg + N_L - 99, 50\%, \ inspurity + 0, 20\%, each)$

[For Data Reported in Figure and Table No. 145]

Composition (continued), Specifications and Remarks	6.07 impurities; specimen ~29 cm long and 1.4 cm in dia: density 1.84 g cm ⁻² ; electrical resistivity 4.7, 5.2, 7.0, and 8.75 gohm cm at 20.50, 150 and 250 C, respectively.	Specimen 200 mm long; electrical conductivity 21.4 x 104 ohm "1 cm "1 at 20.2 C.	Specimen 200 mm long; electrical conductivity 26.3 \times 10° ohm $^{-1}$ em $^{-1}$ at 24. 5 C.
ght percent) Ni	رن 66	1. 9	ж (б
Composition (weight percent)	94, 117	98.1	81 Ž
Name and Specimen Designation	W 1635		
Reported Error, "	o .i	F. 3	E
Temp, Reported Range, K. Error, C. Spea	323-523 · 1,0	293, 4	297. 7
Curve Rel. Method Year F	6061	1932	2861
Method Used	<u>-</u>	ы	n
Rei.	707	813	673
Curve No.	-	οı	n

DATA TABLE VO. 315 THERMAL COMPLETIVITY OF MAGNESIEM + MICKEL, ALLOYS

[Mg + Ni 198 367], impaint 0, 207 each

Temperature T. K. Thermal Conductivity, k. Watt em. ¹ S. ¹,

C(TAVE 3

CURVE 2

CUBVE 1

#25

SPECIFICATION TABLE NO. 146 THERMAL CONDUCTIVITY OF [MAGNESIUM + SILICON] ALLOYS

(Mg + Si 299, Soff, imparity < 0, 20% each)

[For Data Reported in Figure and Table No. 146]

Bomorka Domorka	Composition (continued), Specifications and the many	Specimen 1, 23 cm ² in cross-section and 3 cm long; cast; electrical conductivity 113.0, 18, 76, 12, 96 and 10, 04 x 10° ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K.	Similar to the above specimen except electrical conductivity 109, 0, 17, 37, 11, 72 and 8, 93 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K. respectively.
	Composition (weight percent) Mg	6.7	.;
	Composition	86. 3	94. S
	Name and Specimen Designation		
	Reported Error, ".	\$ E	†
	Temp.	37.176	37-476
	Year	1929	1929
	Curve Ref. Method year R		-1
	و نج ا	2 2	છે. જ
	رميم	· -	¢1

And the second of the second s

DATA TABLE NO. 146 THERMAL CONDUCTIVITY OF (MAGNESIUM + SHIJCON) ALLOYS

(Mg + S) 2 99, 50%; 'mpurity 3.0, 20% each)

(Temperature, T. K. Thermal Conductivity, k. Watt cm-1 K-1)

0. 955 1. 397 1. 402 1. 406

455

CURVE 2

80 + + + 0 + + + 1 1 1 1 1

មន្តដូផ្

CURVE 1

SPECIFICATION TABLE NO. 147 THERMAL CONDUCTIVITY OF UNAGNESITM + SILVER, ALLOYS

(Ng + Ag > 99,50%; impurity < 0,20% each)

Composition (continued), Specifications and Remarks	Specimen 200 mm long; electrical conductivity 15.2 x 20 ohm-'lom ' at 25.5 C.	Specimen 200 mm long; electrical conductivity 17.3 x 10.	ohm 'cm : n z/ C.
Composition (weight percent) MK Ag	8.50	0.9	•
Specimen Designation			
Temp. Reported Range, K. Errof.	1 2		1.3
	30		300.2
X Year		.	1972
f. Meth		E .	67.3 E
Curve Ref. Method year		10	••
15	1		

DATA TABLE NO. 147 THERMAL CONDUCTIVITY OF LUAGNESTUM + SILVER) ALLOYS

MK + AK 99.50%; impurity < 0.24% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm²⁴K²⁴]

CURVE 1: 1.310
CURVE 20
CURVE 20
L.155

SPECIFICATION TABLE NO. 145 THERMAL CONDUCTIVITY OF [MAGNESIUM + TIN] ALLOYS

(Mg + Sn > 99,50%; impurity < 0,20%; each)

Sylvense Personal Removal	Composition (continued), Specifications and remains		Specimen 200 mm long; electrical conductivity 15.6 x 10 ^d ohm ⁻¹ cm ⁻¹ at 21 C.	Specimen 2001 mm long; electrical conductivity 10,2 x 10 ⁴ ohm 'lem ' at 21,5 C.
 	at percent) Sn		21	6.4
	Composition (weight percent) Mg		97.8	93,6
	Name and Specimen Designation			
		- 1	1.3	13
	form. Reported	remer. "	*! #,	٠ <u>٠</u>
	Y e3"		19.3	19. 17.
	Method Year	55.	ت ا	i i
	Curre Red.	j	مًا ا	<u>آ</u>
	1	Ś		• •1

DATA TABLE NO. 145 THERMAL CONDUCTIVITY OF (MAGNESIUM + TIN) ALLOYS

 $(Mg + Sa - 99, S0^{6}s; \, imparity \leq 0, 20^{3} \, \, each^{\alpha}$

Temperature, T. R. Thermal Conductivity, k. Watt em' [K.].

T k

CURVE 1:
294.2 1:059

CURVE 2:
254.7 0.741

Ne graphical presentation

SPECIFICATION TABLE NO. 149 THERMAL CONDUCTIVITY OF [MAGNESIUM + ZINC] ALLOYS

 $(\mathrm{Mg}+\mathrm{Zn}/(99,50\%))$ imparity $\approx 0,20\%$ each j

[For Data Reported in Figure and Table No. 1495]

Composition (continued), Specifications and remarks	Specimen 1, 23 cm ² in cross-section and 3 cm long, electrical conductivity 34, 0, 15, 37, 11, 50 and 8, 50 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 87, 253, 373 and 476 K, respectively.	Specimen 200 mm long; electrical conductivity 18, 7 x 104 ohm-1 cm-1 at 25, 8 C.	Specimen 200 mm lings electrical conductivity 16, 6 x 104 ohm 4 cm ⁻¹ at 25, 5 C.
Composition (weight percent) Mg Zn	ગ	i. 1	6.1
Composition (92. 0	6.58	93.9
Name and Specimen Designation			
Reported Error, 7	7	1.3	77
Method Year Temp. Used Year Runge, K	87-476	199.0	298.7
Vear	1929	1935	1932
Method Used	-	ш	щ
بر بر	8.3	Ç	e:
Curve	-	41	ET.

DATA TABLE NO. 149 THERMAL CONDUCTIVITY OF [MAGNESIUM + ZINC] ALLAYS

(Mg + Zn ≥ 99, 50%; impurity ≤0, 20% each)

[Temperature, T. K. Thermal Conductivity, k, Watt cm " K 1]

1.26 CURVE 2 299

CURVE 3

299.7 1.09

68's

SPECIFICATION TABLE NO. 150 THERMAL CONDUCTIVITY OF | MANGANESE + COPPER) ALLANS

(Mn + Cu + 99,50%; inspurity < 0.20% each)

Composition (continued), Specifications and Remarks	Approx composition; the alloy made from Cu (< 0.03 impurity) supplied by Baker and fused with Mn, supplied by Eimer and Amend, specimen < 5 cm long with 0.3 cm² in cross-section; electrical conductivity 0, 42 x 10f ohm² cm² 1 at 23 C.	Similar to the above specimen except electrical conductivity 0,687 x 10% ohm cm ⁻¹ at 23 C.
Composition (weight percent) Mn Cu	40.0	90.6
Compositue	6.0.0	40.0
Name and Specimen Designation		
Reported Error, 7,		
Temp.	6.0K	332.2
Year	1927	1925
Method Year Used		د
يَخِ فِيْ	339	085
Cury So.	~	¢1

DATA TABLE NO. 150 THERMAL CONDUCTIVITY OF (MANGANESE + COPPER) ALLOYS

(Mn + Cu > 99, 50%; impurity < 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1,

T k

CURVE 1

332.2 0.113

CURVE 2

CURVE 2

372.2 0.105

No graphical presentation

SPECIFICATION TABLE NO. 151 THERMAL CONDUCTIVITY OF LIMANGANESE + IRON ALLOYS

(Mn + Fe + 99, 50%; imparity < 0, 20% cach)

Compassion (continued), Specifications and Remarks	No detail reported,
ght percent) Fe	15.21
Composition (weight percent) Mn	96,79
Curre Ref. Method Year Temp, Reported Name and Composition (weight percent) Composition (co. No. Used Year Range, K. Error, ", Specimen Designation Mn	Ferromanganese, 23
Reported Error, "	
Temp. Runge, K	317.4
Year	19:51
rve Ref. Method v	30H
Ref.	ž
Curve No.	7

DATA TABLE NO, 131 THERMAL CONDICTIVITY OF I MANGANESE + 1RONI ALLONS

One + Fe 99, 50% imports +0,20% each

(Temperature, T. K. Thermal Conductions, E. Watt em 'K. '.

<u>-</u>

CURVE

. .

SPECIFICATION TABLE NO. 132 THERMAL CONDUCTIVITY OF (MANGANESE + NICKEL) ALLOYS

(Mn + Ni + 99, 50%; impurity < 0, 20% each)

Composition (continued), Specifications and Remarks	Approx composition; specimen made from Ni (99,75 to 99,85 pure including colait supplied by International Nickel Co. of America and fused with Mn, supplied by Eliner and Amend; specimen ~5 cm long with 0.3 cm² in cross section; electrical conductivity 3,56 x 10³ ohm² cm² at 25 C.	Similar to the above spectionen except electrical conductivity 4.59 x 10 ³ ohm ⁻¹ cm ⁻¹ at 25 C.	Similar to the above specimen except electrical conductivity 5.12 x 103 ohm ⁻¹ cm ⁻¹ at 25C.	Similar to the above specimen except electrical conductivity 5.58 x 10 ³ ohm ³ cm ³ at 25 C.
Composition (weight percent) Mn Ni	G.	40	OE:	61
Composi	20	99	92	90
Name and Specimen Designation				
Reported Error, "				
urve Ref. Method Year Runge, K Error,"	333,2	333.2	333.2	333.2
Year	1925	1925	1925	1925
Method Used	1	<u> -</u> :	د	-:
% Fei.	230	230	230	330
Curve No.	_	¢ι	m	7

DATA TABLE NO. 152 THERMAL CONDUCTIVITY OF (MANGANESE + NICKEL) ALLOYS

(Mn \times Ni \simeq 99, 50% impurity \simeq 0, 20% each)

(Temperature, T, K; Thermal Conductivity, k, Watt em"1K")

×	CURVE 4	G. 092				
F	CUR	333.2				
¥	CURVE I	0.092	CURVE 2º	0.096	CURVE 3'	0.105
Ħ	CUR	333.2	CUR	333.2	S	333.2

No graphical presentation

The state of the s

SPICHTGATION TABLE NO, 133 THERMAL COURTITITY OF MERCERS SOBRY, ALLOYS

Olg. No. 99, 50°; imparity 0, 90°;

(Tor Data Reported in Dignre and Table No. 1537

Curve No.	₹.	Method Used	Ne ar	Frmp. Runge, K	Reported Error, "	nic and nen Designation	e atton (s H:	erght percent) Na	3
-	₫2	د.	19.36	104-0-0	 		7: ::e	, 	
~1	316.		1900	397 - 423	o ří	Ξ	54, 05	41,95	Similar to the along especimen.
~;	9 13 13	4	19.86	176-429	0.4	21	62, 69	15, 40	Sombit to the above spectrien.
7	316, 63	<u>.</u>	1936	475-429	6 T	7.7	65, 54	34, 46	Similar to the above specimen.
, 7	316. 65	i.	9861	374-426	7.3.0	12	95 Y 9	31.44	Similar to the above specimen.
ပ	316. 53	ند	1536	019-426	0 %	10	13 E	: T	Souther to the above spectmen.
(-	316. 65	_1	9886	:75-427	.3.0	s	98 83	26, 74	Similar to the above specimen.
,	316. 65	1.	19346	376-427	D ::	7.	74, 30	E (2)	Similar to the show e specimen.
n	316, 65	٦	19.86	326-424	. 3. 0	9	76, 15	() X () () () () () () () () () () () () ()	Similar to the above specimen.
2	316. 65	-	1936	173-424	3. E	o	55.55	22, 25	Similar to the above specimen.
11	316, 65		1936	171-421	3.0		08.85 8.80	21. 11	Summar to the above spectarin.
77	316. 65		9061	405, 425	0 '8' 0	17	x '90	51 22 4	Similar to the above specimen,
ដ	316. 65	-1	1936	377-430	0 %	I3	68.0	32, 0	Smilar to the above specimen.
<u> </u>	316. 65	٦	1936	378-425	-3.0	11	5.30	30, 3	Similar to the above specimen.
13	316, 65	_;	1936	377-423	< 3, 0	(-	75.6	54.4	Similar to the above specimen,

SPECIFICATION TABLE NO. 153 (continued)

Composition (continued), Specifications and Remarks		Similar to the above specimen.	Similar to the above specimen.
Composition (weight percent) Hg Na		1, 29	0, 2:53
Composition (1		98.71	99, 767
Name and Specimen Designation		.,	21
Reported Front. %		, 3. 0	< 3.0
Temp.		1936 372-403	1936 380-410
Method Year			
Metho	מאר	1 315	ı
Surve Ref.	NO.	315	316
Car	8	=	7

DATA TABLE NO. 153 THERMAL CONDUCTIVITY OF [MERCURY + SODIUM] ALLOYS

(Hg + Na 2 99, 50%; Impurity < 0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm 'fK-']

×	CURVE 15*	0.0929 0.0990 0.1652	CURVE 16*	9.1046 0.1110	CURVE 17*	0.1063										
Н	CUR	377.0 400.9 422.6	CURI	372.3 401.5	CURV	379,5 403,5										
<u>.</u> 4	VE 3*	0.0928 0.0998 0.107	VE 9	0.0911 0.0877 0.104	CURVE 10*	0.0910 0.0972 0.0972	0.103	, ,	0.0879 0.0967 0.102	76.12	0.1474	<u>√E 13*</u>	0.1030	0.1101	CURVE 14*	0.0995 0.1058 9.1126
۲	CURVE	375.8 400.0 427.3	CURVE	375.9 400.4 424.4	CUR	373.4 599.0 400.3	421.8	CURVE	370.6 400.8 4 20.8	CU.IVE	405.0 4**4.0	CURVE	376.9	399.1 430.1	CUR	377.7 400 ÷ 425.2
¥	VE !	0.149 0.157 0.170	IVE 2	0.135 0.144	IVE 3	0.116 0.124 0.132	IVE 4	0.108	0.122 VE 5	0.0999	6.115	VE 6	0.0978 0.0978	0.106	WE 7	0.0940 0.101 9.109
1	CURVE	380.4 398.8 433.7	CURVE	397.2 423.3	CURVE	376.4 401.7 429.0	CURVE	375.4	429.4 0 CURVE	374.4	426.4	CURVE	878.7 879.2	405.0	CURVE	374.8 400.4 426.9

^{*} Not shown on plot

Company of the Compan

SPECIFICATION TABLE NO. 154 THERMAL CONDUCTIVITY OF (MOLYBDENIUM + IRON) ALLOYS

(Mo + Fe : 99, 50%; impurity < 0.20% each)

Composition (continued), Specifications and Remarks		core feedbare and the second	0.1 C; specimen 20 x 20 mm cross sectional atea.
Composition (weight percent)	Mo Fe		62 Ba1
Name and	🦏 Specimen Designation		Russian ferromolybdenum
Report	Range, K Error, %		330.4
Mothod	No Used Year	.ww.	1 204 1. 1937

DATA TABLE NO. 154 THERMAL CONDUCTIVITY OF (MOLYBDENTUM + IRON) ALLOYS

(No + Fe : 99,50%; impurity < 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

r k CURVE 1

330.4 0.5

SPECIFICATION TABLE NO. 155 THERMAL CONDUCTIVITY OF [MOLYBDENUM + TITANIUM] ALLOYS

والنافل والمراج والمتحافظ والمتحافظ والتافي والمارات والمتحافظ والمتحافظ والمتحافظ والمتحافظ

(Mo + Ti = 99, 50%; impurity = 0, 20% each)

[For Data Reported in Figure and Table No. 155]

cifications and Remarks	ured in a vacuum of	0, D., 1/4 in. L D.; surface	d; partially melted after	D. , 3/4 in. I. D. ; surface ored during measurement.	purities: 0.026 C, < 0.001 Fe, < 0.0001 Ni, < 0.001 Si, 0.07 Zr, u.0007 O ₂ , 0.0001 H ₂ , and 0.0001 N ₂ ; specimen 2 in. dia, 1 in. thick; supplied by Climax Molybdenum; density 622 lb ft ⁻³ ; measured in a He atmosphere; Armoo iron used as standard.	ising different method.	18 Zr. commercial Mo; cylindrical specimen 15 mm in dia and 70 mm long; density 10.17 g cm ⁻³ ; electrical resistivity 6.52 µohm cm at 23 C; thermal conductivity data obtained from the smooth curve calculated from measurements of thermal diffusivity, specific heat and density.	ecimen composed of 15 rings, 3 of which were I in. thick and 12 were 0.5 in. thick; measured in helium atmosphere; data extracted from the smooth curve.
Composition (continued), Specifications and Remarks	Recrystallized at 2700 F; measured in a vacuum of 2×10^{-5} mm Hg.	Specimen 3/4 in. long, 3/4 in. O.D., 1/4 in. L.D.; surface scratches climinated	The above specimen remeasured; partially melted after measurement.	Specimen 3 in. long, 2.5 in. O. D., 3/4 in. 1. D.; surface scratches eliminated, discolored during measurement.	Impurities: 0.026 C, < 0.001 Fe, < 0.0001 Ni, < 0.001 Si, 0.07 Zr, 0.0007 O ₂ , 0.0001 H ₂ , and 0.0901 N ₂ ; specim 2 in. dia, 1 in. thick; supplied by Climax Molybdenun; density 622 lb ft ⁻³ ; measured in a He atmosphere; Arm iron used as standard.	The above specimen measured using different method.	6. 18 Zr., commercial Mo; cylindrical specimen 15 mm in dia and 70 mm long; density 10. 17 g cm ⁻³ ; electrical resistivity 6. 52 µohm cm at 23 C; thermal conductivity data obtained from the smooth curve calculated from measurements of thermal diffusivity, specific heat and density.	Specimen composed of 15 rings, 3 of which were 1 in. thick and 12 were 0.5 in. thick; measured in helium atmospher data extracted from the smooth curve.
Composition (weight percent) No Ta	0. \$	0. 5	0.5	0, 5	0, 49	0.49	0.28	0.5
Composition	93,5	90, 5	99. 5	39, 5	19. 51	99. 51	Bal.	99, 5
Name and Specimen Designation	Heat No. 1132	1					Specimen 2	
Reported Error, %	ശ	9~	9 ~	9~	# #	#4		
Temp. Range, K	1955 473-1173	1963 1233-1863	1963 1660-2432	1963 1800-2247	344-975	1963 1100-2578	1965 1057-1707	1961 589-1947
	1955	1963 1	1963 1	1963 1	1963	1963 1	1965 1	1961
Ref. Method Year No. Used	υ	~ ~	æ	*	Q	G,	<u>.</u>	æ
Ref. M	£ 3	24	5.44	7.	29.63 20.63	583	8 8	924
Curve No.	7	οι	ю	4	w	ဖ	(~	ac

DATA TABLE NO. 155 THERMAL CONDUCTIVITY OF (MOLYBDENUM + TITANIUM) ALLOYS

i El (Mo + Ti + 99, 50%; impurity : 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-'K-1]

×	VE I &	1.19	1.03	0.938	0.838	0.774	0.689	0.587	0.537	0.466	0.372	•																												
Т	CURVE	588.7		941.6	1098	1189	1316	1465	1539	1647	08.CT	7.4.6.1																												
ب	VE 4	0.307	0.349	0.322	0.356	0.332	0.338	0.327	0,312		VE 5		17.1		1.21	•	1.1		VE 6		1.07	1.00	0.935	0.883	0.815	۲.	6.9.0		VE 7	1.188	1.035	1.018	0.941		0.821					
Ł	CURVE	1799.8	1325.9	1828.7	1337.1	2205.4	2244.3	2277.6	2286.5		CURVE		344.3	427.6	588.7	180.4	974.8		CURVE		1099. x	1319.3	1494	1702.6	1958.2	2238.7	2577.6		CURVE	1057	1220	1349	1200	1609	1707					
4	핅	1.15	1.14	21.1	1.10	1.10	1.10	1.09	1.0.1		/E 2			0.284			0.288	0.267	0.290	0.266	0,262	0.258		VE 3	i I	0.297	0.293	0.295	0.270	0.2H2	0.304			0.283		0.234		0.341	0.233	ა. 345
٠	CURVE	473.2		673.2	113.2			1073.2	1173.2		CURVE		22	1233.2	1241.5	1241.5	1645.9	1652.1	1668.7	1859.3	1860.4	1863.2		CURVE		1679.8	1659.8	1659.8	1798.2	1800.9	1314.8	2008.2		2025.9	2030.4	2032.6	2035.9	2328.7	2405.9	2431.5

Not shown on plot

SPECIFICATION TABLE NO. 156 THERMAL CONDUCTIVITY OF [MOLYBDENUM + TUNGSTEN] ALLOYS

ター を変し

 $(Mo+W\times 99,\,50\%)$ impurity $\approx 0,\,20\%$ each)

[for Data Reported in Figure and Table No. 156]

Composition (continued), Specifications and Remarks	Impurities: 0.07 Zr and 0.012 C; specimen 2 in. dia, 1 in. thick, supplied by Climax Molybdenum, density 9.93 g cm. 3; measured in a He atmosphere; Armeo iron used as standard.	The above specimen measured using different method.
Composition (Acight percent) Mo	17 29 83	70, 17 29-83
Name and Composition Specimen Designation Mo	70.17	70,
	-	→ 11
Tenna, Reported Range, K. Error, 7.	543 C 1961 358-1964	2552-011t #96t d #55 6
d Year	1963	1963
. Metho	·	2
Curve Ref. Method year R.		
اغ ⁵	· "	

DATA TABLE NO. 156 THERMAL CONDUCTIVITY OF (MOLYBDENCM + TUNGSTEN, ALLOYS

(Mo + W $^{\circ}$ 99, 50%; impurity $^{\circ}$ 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k. Watt $cm^{-1}\,K^{-1}\,]$

<u>_</u>

CURVE 1

358.1 1.23 452.6 1.19 652.6 1.09 838.7 0.993 963.7 0.919 CURVE 2 1110, 9 0, 820 1376, 5 0, 775 1613, 7 0, 704 1732, 1 0, 575 2291, 5 0, 497 2291, 5 0, 405 22919, 3 0, 405 2772, 1 0, 389

FIG 157

TEMPERATURE, K

N:MP (72614 K.-

THERMAL CONDUCTIVITY OF NICKEL + CHROMIUM ALLOYS

EN: +Cr > 9950%; impurity < 020% each]

(a) (a) (b) (a)

THERMAL CONDUCTIVITY, Woth cm" K"

SPECIFICATION TABLE NO. 137 THERMAL CONDUCTIVITY OF [NICKEL + CHROMIUM | ALLOYS

(Ni + Cr = 99, 50%;) impurity = 0, 20% each)

[For Data Reported in Figure and Table No. 157]

è .	Ref.	Method Used	Year	Curve Ref. Method Year Temp. Reported	Reported Error, %	Name and Specimen Designation	Composition (weight percent)	percent) Cr	Composition (continued), Specifications and Remarks
	230	→	1925	329			06	 p1	Prepared by fusing Ni (99, 75 to 99, 85 pure including Co, supplied by International Nickel Co.) and Cr (supplied by Einel and Amend.); specifien ~5.5 cm long, 0.3 cm² cross sectional area; electrical conductivity 1403 ohin 1 cm ⁻¹ at 25 C.
	230	- :	1925	329			7.0	30	Similar to the above specimen except electrical conductivity 845 ohm ⁻¹ cm ⁻¹ at 25 C.
	230	_	1925	329			09	40	'imilar to the above specimen except electrical conductivity x13 ohm "t cm "t at 25 C.
	230	- i	1925	329			90	50	Similar to the above specimen except electrical conductivity 850 ohm 3 cm ⁻¹ at 25 C.
	136	2.	1928	305		Nichrome N	90	20	Specimen 0, 25 cm dia; 8, 40 g cm ⁻³ density.
	129	ပ	1533	373 -795	3-5	Chromel P	06	10	Specimen 2 em dia, 15 em long, lead used as standard (0.352 watt em ⁻¹ deg ⁻¹ at 6 C assumed value).
	129	၁	1933	373-788	:: ::	Chromei A	80	20	Similar to the above specimen.
	673	si.	1952	309. 1			98	20	Specimen 200 mm long; electrical conductivity 9520 ohm ⁻¹ cm ⁴ at 35.9 f.

The state of the s

DATA TARLE NO. 157 THERMAL CONDUCTIVITY OF [SICKEL - CHROMIUM] ALLOYS

 $(N_L+C_{\rm T}:99,50\%,\ inpurity-0,20\%\,{\rm coch})$

(Temperature, T. K. Thermal Conductivity, k. Watt em at K. 4),

0.150 0, 190 0, 209 0, 247 0, 247 0, 256 329, 2 0, 126 329, 2 0, 117 329, 2 0, 197 325, 2 6, 109 CURVE 2 CURVE 4 CURVE 1 CURVE 3 CURVE 5 CURVE 6 CURVE ? 373, 2 473, 2 573, 2 673, 2 773, 2 373. 2 473. 2 573. 2 673. 2 773. 2 305

0.131

र का जन्म करा तथा

CURVE 4

THERMAL CONDUCTIVITY OF NICKEL + COBALT ALLOYS

EN: + Cop 9950%; impurity 4 0.20% soch 3

THERMAL CONDUCTIVITY, West cm?

TEMPERATURE, K

FIG 158

N-MP 172614 K -- Co-MP 1745 K

SPECIFICATION TABLE NO. 158 THERMAL CONDUCTIVITY OF (NICKEL + COBALT) ALLOYS

(Ni + Ce > 99, 50%; impurity > 0, 20% each)

[For Data Reported in Figure and Table No. 158]

	Temp. Range, K	Reported Error, "	Name and Specimen Designation	Composition (weight percent) Ni Co	Co	Composition (continued), Specifications and Remarks
593-1508				~ 97. 5	ei ei ≀	Approximate composition; hollow cylindrical rod 6 in. long, 1, 2 cm 0, D, and 0, 168 cm 1, D.
323-1173		C)	RCA N91	78.1	21. 6	0-185 Mn. 0, 115 C, and 0, 01 Mg; annealed at 1000 C; lead used as primary standard; advance (55 Cu. 45 M) use? as working standard
323-1173		ç,	RCA NOT	59. 5	40.0	0, 175 Mn. 0, 132 C. 0, 19 St. awi 0, 01 Mg; annealed at 1000 C.
303				0€ 2	~1°	Impuritues: 0, 11 Fe, 0, 06 C, trace P, 0, 02 S, 0, 009 Si, 0, 005 Al, trace Mn, and 0, 01 Cu; cast machined; annealed 40 min at 800 C; slowly cooled.
303				0 × 1	~30	Impurities: 0, 12 Fe; 0, 07 C; trace P; 0, 02 S; 0, 01 SI; 0, 01 AI; trace Mn, and 0, 01 Cu; cast, machined; unnealed 40 min at 800 C; slowly cooled.
303				9: ~	~30	Impurities: 0, L2 Fe, 0, 09 C, trace P, 6, 002 S, 0, 01 Si, 0, 02 A1, trace Mn, and 0, 009 Cu: cast, machined; annialicity min at 800 C, cooled slowly.
303				092	~ 40	Impurities: 0.14 Fe, 0.11 C, 0.001 P, 0.03 S, 0.02 Al, trace Mn, and 0.00x Cu; cast, machined; unnealed 40 min at 800 C, cooled slowly.
303				99~	0 <u>5</u> ~	Impuritues: 0, 15 Fe, 0, 13 C, 0, 002 P, 0, 03 S, 0, 02 Si, 0, 03 Al, trace Mn, and 0, 007 Cu; cast, machined, annealed 0, 00 Al, trace Mn, and property of the control of

DATA TABLE NO. 15× THERMAL CONDUCTIVITY OF UNICKEL COBALT ALLOYS

(Ni+Co-99,50%) , imparity -0.20% each)

[Temperature, T. K. Thernaal Conductivity, R. Watt em. J.K. 1,

→	CURVE 5	363, 2 0, 515	CURVE 6		30.3, 2 0 490		CURVE 7		303, 2 0, 45×		CURVES		303, 2 6, 506																													
+	CURVE 1 (cont.)	1223, 2 0, 259° 1363, 3 0, 251	; ;	5	.; .;	.; .;	473, 2 6.	⊃	1508, 2 0, 243		CURVE 2		20 0.	ခ :1	.i	573, 2 0, 401	673, 2 0, 383	773, 2 0, 386	873, 2 0, 359	21	1073, 2 0, 401	1173, 2 0, 421		CURVES		Ö	373.2 0.411	473, 2 0, 396	.: .:	.; G	ဘ် ငန	873, 2 0, 343	ن د	Ö	1173, 2 0, 301		CURVE 4		303, 2 0, 552			
×	CURVE 1	2 0.523	ြေ	Ö	Ö	o.			o :	0		=	j	Ö	ဘ်	2 0.389	2 0, 393	2 0.339	2 0, 372	0.377	9.339	0.351	2 0.360	ö	÷	2 0.310	2 0.319	2 0.293		j	oʻ	ö	0.239	0.289	0. 293	2 0.257	2 0.272	2 0.272	2 0.293	2 0.255	Ö	
1	อเ	590.						673.								828	8:38.					893				923.		958.								1103.	1113.	1123.	1163.	1213.	1223.	

SPECIFICATION TABLE NO. 189 THERMAL CONDUCTIVITY OF (NICKEL + COPPER) ALLOYS

(Ni + Cu = 99, 50%; imparity \$0, 20% each)

[For Data Reported in Figure and Table No. 159]

124	ż	Used	Year	Range, K	Reported Error, "	Name and Specimen Designation	Ni Cu	Cu	Composition (continued), operations and remains
	-	۵	1930	325-970			~ 60	~ 40	0.2 Mn, trace Mg; annealed at 700 C, density H 81 g cm ⁻³ ; electrical conductivity ranging from 1, 88 to 1, 74 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 52 to 697 C.
2	124	Q,	1930	317-966			~ 840	~20	0. 2 Mn. trace Mg; annealed at 700 C, density 4, 82 g cm ⁻³ ; electrical conductivity ranging from 3, 36 to 1, 96 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 44 to 693 C.
7	230	٦	1925	330			0 &	50	Prepared by fusing Ni (99, 75 to 99, 85 pure, supplied by International Nickel Co.) and Cu (< 0, 03 impurities, supplied by Baker); specimen ~5, 5 cm long, 0, 3 cm² cross sectional area; electrical conductivity 3, 00 x 104 ohm ⁻¹ cm ⁻¹ at 25 C.
CV	230	14	1925	330			70	30	Similar to the above specimen except electrical conductivity 2, 15 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
C.4	230	-	1925	330			09	40	Similar to the abuve specimen except electrical conductivity 2, 02 x 10 ⁴ chm ⁻¹ cm ⁻¹ at 25 C.
• • •	230	J	1925	330			0 S	20	Similar to the above specimen except electrical conductivity 1, 98 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
	9	ŧ	6	973 373			60, 93	39, 07	Rolled and drawn; annealed close to melting point for 1/2 hr.
4 0	94.5	- F	0161				M1, 63	18.37	Similar to the above specimen.
4 55	917	→ ы	1965		0.5-5	U			0, 649 ± 0.104 Cu from x-ray micrognalysis (0.865 Cu from residue resistivity measurement); specimen 4 mm in district from
									supplied by Johnson Matthey and Co.; clim Castron. J.M. 396 Ni and J.M. 30 Cu; annealed for 12 hrs at 80 C; J.M. 396 Ni and J.M. 30 Cu; annealed for 12 hrs at 80 C; J.K. 50°, 21° 27 x 10°3°, 4.99 x 10°3° and 8.79 x 10°3 pohm cm at 4.1, 10.1, 16.0, 21.8, 25.2, 31.8 and 34.1 K respectively.
•	917	ယ	1965 1.6-107	0.5-5	G			1.65 ± 0.22 Cu from x-ray microanalysis (1.73 Cu from residue resistivity measurement); specimen 4 mm in dia; supplied by Johnson Matthey and Co.; chill east from J.M. 890 Ni and J.M. 30 Cu; anneaded for 12 hrs at 850 C; electrical resistivity; i.01 x 10 ⁻³ , 5.12 x 10 ⁻³ , 2.12 x 10 ⁻³ , 5.57 x 10 ⁻² , 5.63 x 10 ⁻³ , and x, 185 x 10 ⁻³ , 4.05m cm at 3.4, 7.4, 15.8, 20.1, 24.8 and 29.6 K.

SPECIFICATION TABLE NO. 159 (continued)

Composition (continued), Specifications and Remarks	4.52 to 65 Co from X-ray interbandlysis (5.29 Co from residue resistivity measurement); specimen 4 mm in dra; supplied by Johnson Matthey and Co.; chill cast from 5. M. Sio N. and J. M. 30 Cu anneated for 12 his at Sio C. electrical resistivity 9.02 v 10.7, 2.01 x 10.7, 1.57 and 29.3 X. respectively.	0.746 - 0.054 Cu from x-ray microanalysis (0.172 Cu tron residue resistivity mensurement) specimen 4 mm in dia; suiphed to Johnson Matthey and Co.; chill cast from J.M. soo Ni and J.M. 30 Cu somewhele for 12 bront satisfied C electrical resistivity J.J. x 10°°, 4.634 x 10°°, 1.65 x 10°°, 24 x 10°°, 4.633 x 10°°, 30°, 30°, 30°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°, 4.634 x 10°°°°, 4.634 x 10°°°°, 4.634 x 10°°°°, 4.634 x 10°°°°, 4.634 x 10°°°°°, 4.634 x 10°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
Composition (weight percent)		
Name and Specimen Designation	<u>ω</u>	in the second se
Reported Freor, "	ļ	;; ;; ;;
Nurve Ret, Method Year Temp, Reported No. No. Used Sear Ringe, K. Frror, "	11 all E (965 2,0-82,1 0,3-5	1965 2.0-111
Year	13.61	
Method	iui	ယ)
. Ke	- 	÷ ;
Curve No.	=	<u>ti</u>

DATA TABLE NO. 139 THERMAL CONDUCTIVITY OF SICKELS COPPER JALLOYS

 $(\mathrm{Ni} + \mathrm{Ca} - 99, 50\%, \, \mathrm{ampurity} - 0.20\%, \, \mathrm{cach})$

[Temperature, T. K. Thermal Conductivity, k. Watt em. ¹ K. ¹,

Ţ.	CURVE 11 (cont.)		70,1 0,44 42,1 0,49	CURVE 12	2,0 0.22	8,4 0,27 8,6 0,39			10.4 1.14	14.6 1.52	21	(- .	20.3 1.93			6.1.9		40.9 2.23	51.0 2.03	20. T 20. C		-	-	111.4 1.24					
Ld Em	CUBVE 10 (cont.)				20,7	25,7 0,54				71.4 0.85		90.2 0.86	100.4 0.85			CURVE 11	60 0 66			20.00		0.1	15.4 0.10	16.3 0.11				50.6 0.24	
Ħ	CURVE	273, 2 0, 26 373, 2 0, 26	CURVE 9	1.6 0.07	3,5 0.10	6.4 0.26		12.3 0.50		16.3 0.64		0	20° 20° 20° 20° 20° 20° 20° 20° 20° 20°			29.8 1.03	32.2 1.05			50.3 1.15	. ~-	_	90.4 1.09	101.0 1.05	•	CI'RVE 10	,	2.4 0.00	
Η *	CLRVE 1	ର ଶ	න් න් නු න	667, 2 0, 486 747, 2 0, 456	01 01		CURVE 2	317, 2 0, 360	401, 2 0, 339	584, 2 0, 427			575 O C C C S	i	CURVE 3		450. 0 0. 305	CURVE 4	330, 0 0, 289	CURVE 5		330, 0 0, 266		CURVE 6	350, 0 0, 226		CURVE 7	173.2 0.22	

Not shown on plot

SPECIFICATION TABLE NO. 160 THERMAL CONDUCTIVITY OF (NICKEL + IRON | ALLOYS

(N) + Fe $\approx 99,\,50\%_{\odot}$ impurity $\approx 0,\,20\%$ each)

[For Data Reported in Figure and Table No. 160]

, L	No.	Method Jsed	Year	Temp. Ranke, K	Reported Error, %	Curve Ref. Method Year Range, K Error, Specimen Designation No. No. Used	Composition (weight percent)	right percent) Fe	Composition (continued), Specifications and Remarks
	206		1920	1920 330. 2			1 57	24. 9	Prepared from Fe (99.97 pure), Ni (high purity): 0.1 C. specimen ~5.8 cm long, 0.98 cm dis.
61	15.1	O	1953	1953 323-1173	21		50, 85	48, 50	0 12 Mn. 0, 24 C., and 0, 003 S. annealed at 950 C. Teadused as primary standard; Advance (55 Cu., 45 Ni) used as working standard.
m	129	ပ	1933	309-865	ıo	N.S. nickel.	. 66	0.6	 14 Cu, 0, 05 Mn. and 0, 014 S. specimen 2 cm dia. 15 cm long (0, 352 watt cm⁻¹ deg⁻¹ at 0 C, assumed value).
	302	ï	1953	558-472			99.4	0. 2	 Mg. 9, 95 Co. 9, 03 Sn. 9, 62 St. 9, 025 C. 9, 01 Cr. 0, 01 Mn. 9, 993 Tr. 9, 902 each of Al and Pb. and 0, 005 Stepperimental method inaccurate.
	912	- 1	2961	1962 4, 2-81			35. 5.	х Т	Specimen 0, 2 cm dia, 5, 2 cm long: fused in an induction furnace under vacuo of 10.3 tori, from Ni and Fe supplied by Johnson-Metthry: cold rolled, annealed at 117; K tor 2 hrs. Journe reads.

- Constantial and

DATA TABLE NO. 160 THERMAL CONDUCTIVITY OF [NICKEL + IRON] ALLOYS

(Ni + Fe ≥ 99, 50%; imparity < 0, 20% each)

(Temperature, T. K. Thermal Conductivity, k, Watt cm-1 K-1)

¢	VE 5	0, 6367	<u> </u>																														
•	CURVE	80°.18																															
ć	/E 1	0.289	/E 2	0.181	0, 183	0.189		0, 204		0.214	0.219	0. 224	/E 3	0.682	0.668	0.649	0.599	0.549	0.527			0, 524		0, 566	/E 4	0.845	c. 640	0.690	0.816	1.038	0. 90H	0. 774	0.598
	CURVE	330, 2	CURVE	323.2	37.1.2	# 6 F	20.00	773.2	87.3. 2	973, 2	1073, 2	1173.2	CURVE	309. 2	336.6	373, 2	473, 2	573 2	622. 9	627.2	653. 8	673, 2	773. 2	864. n	CURVE	328.2	340. 2	342.2	347.2	452.2	457.2	457.2	472.2

FIGURE SHOWS ONLY 7 OF THE CURVES REPORTED IN TABLE

THERMAL CONDUCTIVITY OF NICKEL + MANGANESE ALLOY

[Ni +Mn # 9950%; impurity & 0.20% soch]

[6][n] (**4**), .

THERMAL CONDUCTIVITY, Well om

NETP 626 KT

TEMPERATURE, K

SPECIFICATION TABLE NO. 161 THERMAL CONDECTIVITY OF INCKEL+ MANGANESE, ALLOYS

 $(N_1+Mn)(99,50\%)$ impurity -0.29% cacm)

	('omposition (continued), Specifications and Remarks	Prepared (rom Nt (99,75 to 99,85 pare including Co. supplied -y International Nickel Co.) and Ma (pare); specially 5,5 cm long, 0,3 cm² cross sectional area; electrical conductivity 27,7 × 10° ohm 4 cm² at 25 C.	Similar to the above specimen except electrical conductivity 14,2 × 10 ³ ohm ⁻¹ at 25 C.	Similar to the alowe specimen except electrical conductivity 10.4 × 10 ⁵ ebm ⁻¹ cm ⁻¹ at 25 C.	Similar to the above specimen except electrical conductivity 3, 56 x 10 3 obta 4 cm 4 at 25 C.	 0.07 Fe. 0, 03 Co. 0, 03 St. 0, 03 Mg and traces of other matals. Armore iron used as standard. 	0, 06 C = 0, 02 S). 0, 005 S, 0, 65 Cu, and 0, 14 Fe; specimen 0, 635 cm dm, 39 cm long, electrical conductivity reported as 11, 3, 5, 12, 2, 87, 2, 40, 2, 10, and 2, 02 x 10° chm ⁻¹ cm ⁻¹ at 0, 200, 400, 600, 800, and 900 C, respectively.	6, 1 Cu., 6, 15 Fe, 6, 65 Si, 0, 1 C. 6, 605 S. n uts Fe, 6, 634 each of Co and Mg, 6, 63 Si - 6, 62 Ti, 9, 006 Al, 0, 601 B, 0, 014 Cu., 0, 005 each of Ca and Cr. specimen 2 cm, in doi: 10, 25 cm long: Armeo from used as comparative material.
7.1976 X	percent) Ma	 - - -	95	22	95	62.0	9.5	9. 9. 52. 9.
[For Data Reported in Figure and Table No. 161]	Composition (weight percent)	0.0 G	0.5	ų,	90	99, 54	89, 4×	4, 98, 4, 98, 542
L. For L		Description of the second of t				A - Nickel	A-Nickel	Grade A A-Nickel
	Year Reported Name and Year Range, & Front, Specimen	1 1925 333	13 78	200	333	420-914	273-1173	1928 305 1954 422-910 5-19
	_	1 5561	1925					1928 1954
	I. Method	200 L 1925 338	_		·	့	·	<u>a</u> U
			5	9	2 02	07.7	000	981 98
	Curve	Mai. Mai. 1	÷	1 25	: -1	- v	း မွ	(~ x.

DATA TABLE NO. 161 THERMAL CONDUCTIVITY OF (MICKEL) MANGANESE, ALLOYS

 $(N_1 + M_B \approx 99, 50\%, impurity + 0, 20\% each)$

(Temperature, T. K. Thermal Conductivity, k, Wattern ¹ K ¹

×	CURVE 3	.65 0.	21.31 0.	0 68	5	87 0.		a a a a																								
z	VE 1	0.310		7. 2	0.176		- I	0.155	VE 4		0.092	VE 5	0.715				0.473		0.485	0, 577	VF. 6	0.728	0,653						'n.	0.628	VE 7	0.615
Ή.	CURVE	333	į	CORVE	333	1	CCPVE	333	CURVE		333	CURVE	420.4	520, 0	594, 8	617.4			x 000 x	914, 1	CURVE	273.2		473.2	573, 2	67.3, 2	773. 2		1073.2	1173, 2	CURVE	305, 2

Not shown on plot

SPECIFICATION TABLE NO. 162 THERMAL CONDUCTIVITY OF (NIORICA + URANIUM) ALLIOYS

 $(\mathrm{Nb}+\mathrm{U}/(\mathrm{599},\mathrm{50\%}),\mathrm{1mpurity}/(\mathrm{50},\mathrm{20\%})$ each)

[For Data Reported in Figure and Table No. 162]

Composition (continued), Specifications and Remarks	Prepared by are casting Nb (* 99.5 pure) and U (pore), measured in vacuo of 2 x 10.5 mm Hg. Armeo from used as standard.	Similar to the above specimen.
Composition (weight percent)	90 13	80 20
ted Name and ्र Specimen Designation		
p. Reported	255	1255
Temp. Range, K	367-1255	367-1255
Method Year	1961	1961
Method	ပ	Ų
. S. E.	σ. φ. φ .	3) **
Curve No.	-	çı

DATA TABLE NO. 162 THERMAL CONDUCTIVITY OF (NICHIEM) - URANEM) ALLOYS

 $(NL+U\odot 99, 50^{6}c_{\rm f})$ impurity $\simeq 0, 20^{6}c_{\rm f}$ each)

[Temperature, T, K, Thermal Conductivity, k, Watt cm 4 K $^{1}\mathrm{J}$

Ţ

CURVE 1

366, 5 0, 177 477, 6 0, 295 588, 7 0, 236 699, 9 0, 264 811, 9 0, 394 1033, 2 0, 384 1144, 3 0, 425 1255, 4 0 470

CURVE 2

366.5 0.242 477.6 0.277 588.7 0.312 699.9 0.343 811.0 0.374 922.2 0.496 1633 2 0.498 1144.3 0.466

SPECIFICATION TABLE NO, The THERMAL CONDICTIVITY OF MOBIUM STREONIUM ALLOYS

(Nb. Zr., 99,50% imparity, 0,20% each

For Data Reported in Figure and Table No. 163

	Very C	. Ref.	Methods Users	100	Femp. Range, K	Reported From,	Name and Specimen Designation	Composition (weight percent) Nb	aght percent) Zu	Composition (continued), Specifications and Remarks
3.14 R 1964 1824-2175 64 NS - 0.5 Zr 195 7 S 3.14 R 1962 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	7	£	1963	5281-po51		Nb - 0,5 Zr	39.3	\$ ¹ .6	Specimen 0,75 in, long, 0,75 in, O.D., and 0,25 in, I.D.; ground surface scratches eliminated; annealed at 3350 F.
414 R 1962 cd 175-10. Ch-103. Zr Ch-103. Zr Sp.	11	Ē	=	1	1702-2178	÷	Nb + 0.5 Zr	99.5	(5) 2	The above specimen remeasured; partially method during test,
7.25 L 1965 1.7-8.0 17. 7.25 L 1963 1.7-8.0 1.7-8.0 17. 7.25 L 1963 1.7-8.0 2.0 2.0 17. 7.25 L 1963 2.0-8.5 4.4 99.0 1.0 77. 7.65, 22.5 1.963 4.20-664 1.4 99.0 1.0 77. 7.66, 22.5 1.963 4.20-664 1.4 77. 77. 8.5 1.966, 22.5 1.963 4.20-643 1.4 77. 7.66, 22.5 1.963 4.20-643 1.4 77. 77. 8.5 1.966, 22.5 1.963 4.20-643 1.4 77. 7.66, 22.5 1.963 2.22-1077 1.4 77. 77. 8.5 1.966, 22.5 1.963 2.22-1077 1.4 77. 77. 7.66, 22.5 1.963 2.22-1077 1.4 77. 77. 77. 77. 7.66, 22.5	••	# 65	Ľ	1.063	1222-2221	÷	705 - 05. Zr	er da	;	Specimen 3 m, long, 2.5 m, O. D., 0.75 m, 1, D.; ground; surface scratches eliminated; discolared during test.
125 1 1963 1,12-8 (1) Ph State Ph 725 1 1963 2,10-8 (2) 353-463 344 379,0 2,10 779 725 1 1963 353-463 344		9	-1	1380	1.x=9.0			/ 66		Specimen I mm wire; armented in vacuo; in superconducting some.
7.25 L 1963 1.9-8.53 Pri Pri 7.25 L 1983 2.0-x.53 ************************************	15		-	11 12 12 12 12 12 13 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	5 y			× 186		The cover specimen measured in a magnetic field of 19,000 gauss) in aormal state.
7.55 1. 1963 2.0 - x 5 176 37. 176 766.925. C 1963 453-465 *44 170 77 766.925. C 1963 540-941 *44 77 766.925. C 1963 540-941 *4 77 766.925. C 1963 570-531 *4 77 766.925. C 1963 420-545 *4 77 766.925. C 1963 420-545 *4 77 855 766.925. C 1963 72-1077 *4 76 766.925. C 1963 722-1077 *4 76 855 766.925. C 1963 72-1077 *4 76 766.925. C 1963 72-1077 *4 76 76 766.925. C 1963 72-1077 *4 76 76 76 766.925. C 1963 72-1077 *4 76 76 76 76 76 76 76 76	ے	(* 1)	لہ	1,963	1.9-8.5			e. 46	e ;	Similar to the above specimen but in superconducting state.
166.925. C 196.925	1.	1.25	<u>-</u> :	m96.1				0.50	- - 	Pic above specimen measured in a magnetic field of 10,000 gauss; in normal state,
166,925, C 1963 403-664 +4 455 766,925, C 1963 549-941 +4 766,925, C 1963 616-10×7 +4 766,925, C 1963 420-545 +4 766,925, C 1963 420-545 +4 855 766,925, C 1963 630-419 +4 855 766,925, C 1963 722-1077 +4 855 766,925, C 1963 818-1243 +4		766,923 735	ر ن	1963	1000 - 1000	♥ *		99.0	0.1	Armeo fror used as comparative material; interpolated electrical resistivity 19,5, 20,7, 21,7, 31,4, 35,1, 38,7, 42,1 and 43,4 John en at 100, 200, 300, 400, 500, 600, 700 and 800 C. respectively; run No. 1, equilibrium No. 1,
766.925. C 1963 549-941 +4 The above specimen run No. 1. equilibrium No. 3. 640-10 run No. 1. equilibrium No. 3. 640-10 run No. 1. equilibrium No. 3. 640-10 run No. 1. equilibrium No. 3. 640-10 run No. 2. equilibrium No. 3. 640-10 run No. 2. equilibrium No. 3. 640-10 run No. 2. equilibrium No. 3. 640-10 run No. 2. equilibrium No. 3. 640-10 run No. 2. equilibrium No. 3. 640-10 run No. 3. equilibrium No. 3. 640-10 run No. 3. equilibrium No. 3. 640-10 run No. 3. equilibrium No. 3. 640-10 run No.	5.	766,925 ×35		1,963	400-664	7				The above specimen run No. 1, equilibrium No. 2,
766.925. C 1963.955. C 1963.955. C	=	766,925 858		1 963	549-941	4.				
746.925. C 1963 371-531 : 4 The above specimen run No. 1. equilibrium No. 2. equilibrium No. 2. equilibrium No. 355 766.925. C 1963 620-419 : 4 The above specimen run No. 2. equilibrium No. 365 766.925. C 1963 722-1077 : 4 The above specimen run No. 2. equilibrium No. 365 766.925. C 1963 722-1077 : 4 The above specimen run No. 2. equilibrium No. 365 766.925. C 1963 722-1077 : 4 The above specimen run No. 2. equilibrium No. 365	_	766.925 *55		1963	516-1057	-1				
766.925. C 1363 420-545 * £ 4 The above specimen run No. 2. equilibrium No. 3. equilibrium No. 4. equilibrium No. 4. equilibrium No. 4. equilibrium No. 4. equilibriu	c i	766,925 355		1963	379-831					
766.925. C 1963 630-419 t.4 The above specimen rat. No. 2, equilibrium No. 855 722-1077 + 4 The above specimen ran No. 2, equilibrium No. 855 766.925. C 1963 838-1243 + 4 The above specimen ran No. 2, equilibrium No. 855 766.925. C 1963 838-1243 + 4 The above specimen ran No. 2, equilibrium No. 855 765.925. C 1963 838-1243 + 4 The above specimen ran No. 2, equilibrium No. 855	n	766,925 855		1. K 53	420-545	7				2. equilibrium No.
766.925. C 1963 722-1077 + 4 The above specimen run No. 2. equilibrium No. 855 756.925. C 1963 838-1243 + 4 The above specimen run No. 2. equilibrium No. 855 855 756.925. C 1963 838-1243 + 4 The above specimen run No. 2. equilibrium No. 855	4	766,925 855		1363	61s-059	.				2. equilibrium No.
786.925, C 1963 828-1243 + 4 855	r)	766,925 855		1963	722-1077	T				2. equilibrium No.
		766.925 855	<u>ن</u> :	1963	8)8-1243	*				The above specimen run No. 2, equilibrium No. 4.

SPECIALCATION TABLE NO. 163 (confined)

Compassition (continued), Specifications and Remarka	The above specimen run No. 2, ecuilibrium No. 5.	The alloye specimen run No. 2, equilibrium No. 6.
Composition (weight percent)		
Name and Specimen Designation		
Reported Error, C	.	<u>.</u>
Temp. Reported Range, K. Error, T.	1963 902-1421	1963 704-1051
Year		1963
Curve Ref. Method Year R	17 746,925. C	766,925. C 755
S. S.	67992	76,937 55,
Curv.	7.	'

DATA TABLE NO. 163 THERMAL CONDUCTIVITY OF INDIBIUM + ZIRCONIUM | ALLOYS

(Nb + Zr > 99, 50%; impurity = 0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Wattem 4 K-4,

¥	E 14	0.518 0.564 0.520	0,526	;	<u> </u>	67.0	0.580	0.601	0,593		E 16		0.573	0.554	0.619	0.620	0.612		CURVE 17		0.548	0,575	0.563	0.604	0.61:5	0.658		E 18	!	0.530	0.548	185.0	0,588	0.647								
÷	CURVE 14	650.2 745.2 791.2	419.2		CLIVE IS	66	83.5.2	971.2	101		CURVE 16		818.2	955,2	6111	1202	1243		CURV		922, 2	1042	1083	1276	1377	1.42]		CURVE 18		704.2	816,2	949.2	1020	1051								
*	CURVE & (cont.)	0.488 0.494 0.495		CCRVE 9		0.510	0.520	0,524	0.534		CURVE 10		0.512	6, 533	0.553	0.558	0.568		CURVE 113		0,519	0,543	0.550	0.557	0.573		CURVE 12		0.458	0.4822	0.489	0.511°	0.495		CHRVE 13*		0.480	0,492	0.548	0.441	0.450	U. # ://
۴	CURV	424.2 449.2 465.2				506.2	577.2	630.2	664.2				549.2	676.2	797.2	885.2	941.2		CCH		616.2	770.2	915.2	1070	10,33		CUR		379.2	427.2	4.4.2	509.2	531.2		CUR	ij	420.2	460.2	508.2	6 51.5	3.000	2.010
ж	CURVE 6	0, 0025 0, 0025 0, 010	0.012	u. 01 5	0.017	0.00.0	0:0:0	0, 035	0, 645	0.055	0.000	0.000	0.120	0.155	0.185	0, 2:10	0, 275	0.320	0, 367		CURVE 7		0.090	0.030	0 125	0.135	0.145	0,150	0, 160	0.170	0.215	0, 230	0,250	0, 295	385		CURVE 8		0.473	0.475	2.7.2	
۲	3	1.9 1.5 2.5 3.5	23.65	၈ ် ဂ <i>်</i>		ب د ج	9	æ m	0 ·	۳. ۲	÷.	5.05	5, 55	S 05	6. 55	7, 65	ار دی	1980	છ. મ		Cul	j	2.0	2, 15	O ::	3. 2	4	e n	3, 75	4.0	c.	5. 55	6. 1	7.1	ν.		CC	: 	355.2	1 6 6 7 7	2.060	
ú	CURVE 4	0. 0023 0. 005 0. 005	0. 0075	010 0	0.012	0.020	e. 030	0.045	0.065	0.085	0.090	0.110	0, 115	0. 125	0.155	0. 192	0. 207	0, 2:30	0. 240	0.270	0.275	0.315	0.340	0.362	0.380	0.430		CURVE 5		0.020	0.055	0.095	0.100	0.130	0.170	0, 220	0.240	0.270	0.315	0.360	0300	
4	EIJ	x - = = - = = = = = = = = = = = = = = = =	2.3	ဖြင့် လုံ <i>ဂ</i>	g N	o m	3.6	15 × 5	4, 55	z. Ť	7.0	to id	5. 4	5, 55	6.1	6.55	6.7	7.0	7.05	. S	 S	3.0	3,45	æ. s	9.0	9.05		COE		1.7	2.0	2i 2i	2.3	3.1	6.6	5.0	5.5	6.05	7,05	7 9.5		
¥	CUIVE 1		0.174	c. 173	9 I G	0.130	ı	IVE 2	l	0.240	0. 2:37	6. 221	0.214	0. 220	0.2.41	0.215	0, 202	0, 232	0.240	0. 224	6. 223	0. 225	0.255	0.276		CURVE 3	1	0.231	0.252	0.185	0.183	0.192	0.159	0.183	0.180	0, 169	0, 203	0.234	0.225			
H		1199. x 1199. x 1199. x	1693. 7	1697.	1697.	7.007		CURVE		1352. 1	1370.9	1610.9	1611.5	1613, 7	1760.4	1773, 7	1777.1	1976. 5	2014. 8	2014.8	2158, 2	2174, 3	2175.9	2178.2		ECC.		1321. 5	1328, 2	1616. 5	1640.4	1641. 5	1647.1	1854.8	1856. 5	1870.9	2188.2	2198, 2	2225, 4			

Not shown on plot

SPECIFICATION TABLE NO. 164 THERMAL CONDUCTIVITY OF | PALLADIUM + COPPER, ALLOYS

(Pd + Cu > 99, 50%; impurity < 6, 20% each)

(For Data Reported in Figure and suble No. 164)

narks		14. 36.8 and 14. respectively.	5.1 and	~>50 C.		thick sheet; red atomic			tomic		
Composition (continued), Specifications and Remarks	Unannealed tolverystal: 28, 65 tohm cm.	Annealed; 44 4 25 Statement electrical resistivity 36.8 and 37.15 4 4 4 4 4 4 5 5 15 and 29.60k, respectively.	Anneated, Act of the Control resisivity 5. Land 5. 12 of the Control of the Contr	The above specimen annealed in vacuo for 2 hrs at ~50 C.	The above specimen annealed at ~325 C for 30 hrs.	Calculated composition: specimen from a 0, 2 mm thick sheet; cold rolled, annealed for 2 hrs at ~650 C; ordered atomic arrangement.	Similar to the above specimen.	Similar to the above specimen.	Similar to the above specimen except disordered atomic arrangement.	Similar to the above specimen.	Similar to the above specimen.
Composition (weight percent)	9.3	37.3	4. 6.1 6.1	42.2	42.2	47, 25	42, 19	29, 33	47.25	42.19	29. 33
Composition (v	90.8	62.7	S7. 8	57, 8	57. 3	52, 75	57.81	7.9. 67	52.75	57.81	70, 67
Name and Specimen Designation	r.	61	21a	21b	216						
Reported Error, %						n	m	m	m	m	m
Temp. Range, K	21-91	21-85	28-85	21-92	21-30	293, 823	293, 623	303, 623	893, 1048	293, 1648	821, 1073
Year	1934	1934	1934	1534	1934	1958	1958	1958	1958	195x	1958
Ref. Method No. Used	۱.,	٦	7	نـ	٦	٦	-;	-:	ت	٦	J
Ref.	25	ar ar	Z	S.	Ğ	381	162	168	191	391	391
Curve No.	-	51	ກ	4	ø	ထ	1•	y.	6	Ξ	==

DATA TABLE NO. 164 THERMAL CONDUCTIVITY OF (PALLADIUM + COPPER) ALLOYS

(Pd + Cu ≥ 99, 50%; impurity ≤ 0, 20% each)

[Temperature, T, K. Thermal Conductivity, k, Watts $cm^{-1}K^{-1}$]

×	VE 8	0.23	<u>;</u>	VE 9	0.65	0.75	VE 10	:	0. 25	0.84	VE 11	0.55	0.68																	
	CURVE	303. 2	7 .570	CURV	893. 2	1048. 2	CURVE		293. 2	1048. 2	CURVE	821.2	1073.2																	
¥	VE 1	0. 0396	0. 0312			VE 2	0.0706	0.0742	0. 103		VE 3	0.652	0.658	0.683	VE 4	0.0634	0. 0658		0. 101		VE 5	0.246	0.259	0.628	VE 6		1. 42	VE 7	1.50	1. 80
••	CURVE	21. 4	27.7 80.0	80.5 S. 5		CURVE	21.0	22. 1		85.3	CURVE	79.3	80.9	9.98	CURVE	21.1	21.9	80.2	80. 7	92.0	CURVE	21.3	22.3	80.2	CURVE	293. 2	823. 2	CURVE	293.2	623.2

;

THERMAL CONDUCTIVITY OF PALLADIUM + GOLD ALLOYS

[Pd+Au ≥ 9950%; impurity € 020% sach]

THERMAL CONDUCTIVITY, Watt cm" K" -----

SPECIFICATION TABLE NO. 165 THERMAL CONDUCTIVITY OF [PALLADIUM + GOLD] ALLOYS

(Pd + Au 2 99, 50%; impurity ≤0, 20% each)

[For Data Reported in Figure and Table No. 165]

io.	Ref.	Method Used	Year	No. No. Used Year Range, K Error, ",	Reported Error, %	Name and Specimen Designation	Composition Pd	Composition (weight percent) Pd	Composition (continued), Specifications and Remarks
-	241	241 E 1911	1161	298.2			66	10	Approx. composition, electrical conductivity 6,65 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
2	241	ப	1911	298. 2			08	20	Approx. compusition, electrical conductivity 5.33 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
e	241	ы	1911	298. 2			92	30	Approx. composition; electrical conductivity 4, 72 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
*	241	ш	1161	298. 2			09	40	Approx. composition; electrical conductivity 3.89 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
G	241	ш	1911	298. 2			Siu	50	Approx. composition; electrical conductivity 3, 74 x 10 ⁴ ohm -1 cm -1 at 25 C

[Temperature, T, K; Thermal Conductivity, k, Watt cm $^{-1}$ K $^{-1}$]

CURVE 1

298, 2 0, 52

CURVE 2

298.2 0.42

CURVE 3

298.2 0.40

298, 2 0, 36

CURVE 4

CURVE 5

298.2 0.36

Not shown on plot

SPECIFICATION TABLE NO. 166 THERMAL CONDUCTIVITY OF | PALLADIUM + PLATINUM] ALLOYS

(Pd + Pt = 99, 50%; impurity < 0, 20% each)

⊢ ≅ 1	emp.	Ref. Method Year Temp, Reported No. Used Year Range, K Error.",	Name and Specimen Designation	Composition (weight percent) Pd Pt	right percent) Pt	Composition (continued), Specifications and Remarks
298.3				e6	.	Approx composition; electrical conductivity 6,56 x 104 ohm^1cm^1 at 25 C.
298.2				80	20	Approx composition; electrical conductivity 5,07 x 104 ohm 'en' 1 at 25 C.
298.3				70	98	Approx composition; electrical conductivity 4.43 x 104 ohm ⁻¹ en ⁻¹ at 25 C.
298.2				09	07	Approx composition; electrical conductivity 4.02 x 104 ohn 'tm' 1 at 25 C.
298.2				550	20	Approx composition; electrical conductivity 3,79 x 104 ohm-lcm 1 at 25 C.

DATA TABLE NO. 166 THERMAL CONDUCTIVITY OF [PALIADIUM + PLATINUM] ALLOYS

(Pd + Pt > 99, 50%; impurity < 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm 1K-1]

¥	CURVE 42	0.380	CURVE 5	0.370	
F	CURY	298.2	CURV	29A.2	
*	CURVE 1*	095.0	CURVE 25	0.440	CURVE 3*
H	CUR	298.2	CUR	298.2	CURI

No graphical presentation

0.400

SPECIFICATION TABLE NO. 167 THERMAL CONDUCTIVITY OF PALLADIUM + SILVER ALLOYS

(Pd : Ag = 99, 50%; impurity $\pm 0,\,26\%$ each)

For Data Reported in Figure and Table No. 167]

							Comment of the port of the contract of the con	Commention foontinged). Specifications and Remarks
Curve				Temp.	Reported Error. %	Name and Specimen Designation	Pd Ag	
ç. Ç	Š	Used		remige,				Ammy compaction: electrical conductivity 4, 7, x 10 ⁴
-	241	[6]	1911	298. 2			90 10	ohm 1 cm 1 at 25 C.
• •	741	i E	1161	298. 2			80 20	Approx. composition: electrical conductivity 3.21 x 10 ⁴ ohm ¹ cm ⁻¹ at 25 C.
ı (°	777	1 <u>(a</u>	1911	298. 2			70 30	'Approx, composition: electrical conductivity 2, 56 x 104 ohm 4 cm 4 at 25 C.
o •	117	1 [4	1911	298, 2			60 40	Approx. composition; electrical conductivity 2, 38 x 10 ⁴ ohm ¹ cm ¹ at 25 C.
y u	241	1 E	1911	298.2			20 20	Approx, composition; electrical conductivity 3, 03 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25 C.
ာ ဖ	240	1 1	1956				5 50	Specimen supplied by Johnson-Matthey and Co., Ltd.: annealed at 880 C; ρ ₀ = 5.81 μohm cm: electrical resistivity 16.8 μohm cm at 293 K.
•	240	ت	1956	2. 2-152			70 30	Similar to the above specimen except $\rho_0 = 35.6$ yohm cm; electrical resistivity 40.9 yohm cm at 293 K.
- ∞	240	1 1	1956				50 50	Similar to the above specimen except $\rho_0 = 27.7 \mu \text{ohm cm}$: electrical resistivity 30. 5 μ ohm cm at 293 K.
9	390	ය අ	1956 1956	486.7			75 25 50 50	

DATA TABLE NO. 167 THERMAL CONDUCTIVITY OF (PAI LADIUM + SILVER) ALLOYS

(Pd + Ag ≥ 99. 50%; impurity ≤ 0. 20% each)

[Temperature, T. K. Thermal Conductivity, k, Watts $cm^{-1}K^{-1}$]

.	ont.)	0. 0220 0. 0276	0.0315	0.0395	0.0684	0. 0864		0. 124			0. 172			ക	0.293	!	10		0. 251																				
-	CURVE 8(cont.)	4.65 0.	5 6		5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5		•	22. 64 0			m	117.2 0		CURVE	486.7	•	CURVE 10		448.2 0																				
×	6(cont.)	0.237		7 <u>. 3</u>	0.00413	0.00470		0. 00655	0.00775	c. 010 ₂	0.0178	0.0180	0.0203	0.0245	0.0320	0.0405	0.0503		o. 0635 o. 163	0 111								0. 151	0. 173		Ε 8		0.00546	0. 00725	0. 00991	0.0119	0.0134		0.0171
H	CURVE	90.99	91. 30	CURVE	181			3. 169			7. 06	7. 41	7.59	10. 15	15.27	16. 81	19.35	23.09	28.24	70.43	73,94	81, 29	91.23	90°B	114.5	137. 1	129. 7	136.2	151.6		CURVE		1.811	2, 315			3, 434	3.833	4.017
×	16.1	0.480	'E 2	;	0.310	E 3.		0.320	4		0.270		5	0	0. J20	9]	0. 00856		0.01305									U. 0399		0.0579								0.25
-	CURVE	298.0	CURVE	! !	298. 0	CURVE	}	298.0	CHRVE		298. 0		CURVE		283	THATE	1	2, 634) i	3 4 23		4.013	4, 259	5. 82					10, 99	12. 63	14. 59	16. 49	19.03	20, 30	24. 45	30, 46		70, 36

SPECIFICATION TABLE NO. 16: THERMAL CONDUCTIVITY OF (PLATINUM + COPPER) ALLOYS

(Pt + Cu $\ge 99,50\%$; impurity $\le 0,20\%$ each)

For Data Reported in Figure and Table No. 164

cifications and Remarks		s annealing.	annealing.	s annealing.	ors annealing.		's annet ling.	es anneuling.	rs annealing.	irs annealing.		s annealing.	re anveating.	rs annealing.	irs annealing.		se annealing.	rs annealing.	re annealing.	re annoaling.
Composition (continued), Specifications and Remarks	Cast.	The above specimen after 10 hrs annealing.	The above specimen after 15 hrs annealing.	The above specimen after 50 hrs annealing.	The above specimen after 100 hrs annealing.	Cast.	The above specimen after 10 hrs annet ling.	The above specimen after 20 hrs annealing,	The above opecimen after 50 hrs annealing.	The above specimen after 100 hrs annealing	Cast.	The above specimen after 5 hrs annealing.	The above specimen after 10 hrs anveating	The above specimen after 20 hrs annealing.	The above specimen after 100 hrs annealing	Cast.	The above specimen after 10 hrs annealing.	The above specimen after 20 hrs annealing	The above specimen after 40 hrs annealing.	The above specimen after 50 hre annealing
eight percent) Cu	24.57	24.57	24.57	24, 57	24.57	14.92	14.92	14.92	14.92	14.92	49.42	49.42	49.42	49.42	49.42	37.69	37.69	37.69	37.69	37.69
Composition (weight percent)	75, 43	75.43	75, 43	15, 43	75.43	85.08	85.08	85.08	85.08	85.08	50.58	50,58	50.58	50,58	50.58	62.31	62.31	52.31	62.31	62.31
Name and Specimen Designation		-																		
Reported Error, %																				
Temp.	586.2	544.2	502.7	490.2	458.2	583.7	552.7	556.2	570.2	549.2	529.7	505.2	518.2	519.2	511.2	529.2	626.2	623.7	594.2	654.2
Year	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957
Method Used	ı	۔ ،	٦	-1	-1		-1	٦	د	'n	۔،	د		-1	ب	-1	ı	-1	-1	u
₹.	232	232	232	252	232	232	232	232	232	ä	323	232	232	232	232	22	232	232	232	232
Zo Zo	-	8	n	4	ĸ	9	۲	œ	o	10	=	12	13	ĭ	15	91	11	18	61	ន

DATA TABLE NO. 16% THERMAL CONDUCTIVITY OF [PLATINUM + COPPER] ALLOYS

(Pt + Cu ≥ 99,50%; impurity ≤ 0.20% each,

[Temperature, T, K; Thermal Conductivity, k, Watts cm-1K-1]

×	CURVE 11	529.7 0.259	CURVE 12	0.377	CURVE 13	518.2 0.410	CURVE 14	519.2 0.531	CURVE 15	0.527	CURVE 16	529 2 0 184	CURVE 17	0.163	CURVE 18	629 7 0.205	CURVE 19	0.205	CURVE 20	654.2 0.209
٢	CUR	529.7	CUR	505.2	CUR	518.2	CUR	519.2	CUR	511.2	CUR	529 2	CUR	626.2	CUR	629 7	S	594. 2	CON	654.2
*	CURVE 1	0.151	CURVE 2	0.431	CURVE 3	986 0	CURVE 4	0.573	CURVE 5	0.615	CURVE 6	0.192	CURYE 7	0.218	E 8	0.280	CURVE 9	0.272	CURVE 19	0.230
۲	CUR	586.2	CUR	544.2	CUR	502.7 0.596	CUR	490.2 0.573	CUR	458.2	CUR	583.7 0.192	CUR	552.7 0.218	CUR'E 8	556.2	CUR	570.2 0.272	CUR	549.2 0.230

SPECIFICATION TABLE NO. 169 THERMAL CONDUCTIVITY OF PPLATINUM + GOLD! ALLOYS

W Hearth of

(Pt + Au | 99,50%; impurity + 0,20% each)

Composition (continued). Specifications and Remarks		Calculated composition; tempered at 800 C and quenched,	then rolled and drawn.	Similar to the above specimen.	Similar to the above specimen.	Similar to the above specimen.	
tht percent)	Au	50, 64		25. 19	10, 10	3	· •
Composition (weight percent)	P. 4	i	G. 7.	13.45	9	200 000	92.00
Name and	Specimen Designation						
behavior in the first of the fi	Near Range, & Print,						
1 1 1	Runge . b		291.3		291.3	291.2	291.2
) t. II.		E1.31		1930	00:61	6061
	Vo. Net Used		151		121	121	191
	Carve Ke		_		÷ι	**	~

DATA TABLE NO. 169 THERMAL CONDUCTIVITY OF (PIATINUM + GOLD) ALLOYS

 $(\mathbf{p_t} + \mathbf{Au} - 99, 50\%; \, \mathrm{Impurity} \approx 0, 20\% \, \, \, \mathrm{cach})$

[Temperature, T. K: Thermal Conductivity, k, Watt cm⁻¹K ¹]

CURVE 1:
291.2 0.21
CURVE 2
291.2 0.24
CURVE 3
291.2 0.35
CURVE 4:
291.2 0.46

No graphical presentation

SPECIFICATION TABLE NO. 150 THERMAL CONDUCTIVITY OF PLATINEM HUDDOM] ALLOYS $(13\times 1) = 99, 50^{6}, \ \mathrm{impurity} = 0, 20^{6}, \ \mathrm{each})$

and the contrast of the state o

1.00
Ξ.
ž
Table
Ë
and
Figure
Ī
. <u>=</u>
Reported
2
Deter
- 1
_

Composition (continued), Specifications and Remarks	1	Approx. composition; electrical conductivity 3, 98, 98, 97, 3, 10f ohio 1 cm 1 at 273 and 373 C. respectively.	Annroy, Composition; electrical conductivity 3, 49	3, 19 x 10 ohm 1 cm 1 at 273 and 373 C, respectively.	Approx. compastion; electrical confectivity 3, 02,	2 X I X III chiii Cin an Chian
(hasalida) (weight bereent)	II N	01 96	•	5.7 10.8	97	•
		- 1	4	64		::
	Found. Reported	William Commen	1914 273-353			1914 273-373
	and Vent		1914		7161	1914
	e. Med	is. 1. sc.		•	'	·
	Curve Ret. Method year	No.			÷ı	÷

DATA TABLE NO. 170 THERMAL CONDUCTIVITY OF (PLATINUM) INIDIUM) ALLOYS

(Pt+1r-99,50%)/(mpurity+0,20%) each)

[Temperature, T. K. Thermal Conductivity, k, Wattern ⁴ K ⁴]

<u>.</u>

CURVE 1

273. 2 0. 310 290. 2 0. 310 373. 2 0. 314

CURVE 2

273, 2 0, 234 290, 2 9, 234 373, 2 0, 247

CURVE 3

273.2 0.176 290.2 0.176 373.2 0.176

SPECUFICATION TABLE NO. 171 THERMAL CONDICTIVITY OF IPLATINUM + PALLADIUM) ALLOYS

 $(\mathbf{pt} + \mathbf{Pd} - 99, 50\%, \, \mathrm{Innutrity} \leq 0.20\%, \, \mathrm{each})$

Composition (continued), Specifications and Remarks		Approx composition, electrical conductivity 3,79 x 10 ohm 4 cm 4 at 25 C.	Approx composition; electrical conductivity 3.69 x 10 ohm 1 cm 1 at 25 C.	Approx composition, electrical conductivity 3,80 x 104 ohm 1cm ⁻¹ at 25 C.	Approx composition; electrical conductivity 4.17 \times 104 ohm 'cm ' at 25 C.	Approx composition; electrical conductivity 5.20 x 104 ohm^tcm^t at 25 C.
Composition (weight percent) Pt Pd		20	40	30	20	10
Composition		25	99	02	80	06
Name and Specimen Designation						
Nurve Ref. Method Year Femp. Reported						
Temp.	Transfer	298.2	298.2	298.2	298.2	298.2
Year		1161	1161	1161	1161	1911
Method		1 241 E 1911	ш	ш	щ	æ
Ref.	Š.	241	241	241	241	241
Curve	į	-	61	eş.	₹	v

DATA TABLE NO. 171 THERMAL CONDUCTIVITY OF | PLATINUM + PALLADIUM) ALLOYS

(pt + pd $\approx 99.50\%$; inpurity $\le 0.20\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm [K-1]

×	CURVE 4*	0.43	CURVE 50	0.43	
H	CURV	298.2	CUR	298.2	
ж	/E 13	0.370	CURVE 2*	0.340	CURVE 3*
۴	CURVE	298.2	CUR	298.2	CUR

No graphical presentation

298.2

THE PARTY OF THE PARTY.

STEED BY PROCEEDINGS 162 "THEN ALL CONDICCIVITY OF PLATINGM RHODICM ALLOYS

A CONTRACT OF THE PROPERTY OF

(Pt. 1kh 99-50') comparity 0,20° each:

for Data Reported in Eigure and Table No. - 172.

Curve	1 2 2	Method		Curve Ray, Method Well Rough, Reserved St.	E control	Curve Real Method World Reached National Section of National Presentations National Real Real Real Real Real Real Real Re	Composition (wright percent)	Composition (wright percent)	Composition (continued), Specifications and Remarks
			į		· · · · ·				
-	,	+161 - A - X 1	Ē	1.7 1.7 1.7 1.7 1.7 1.7			96	21	Specimen 0, 1018 cm in dia and 35, 1 cm long, 22, 45 and 22, 45 and 31, 45 cm on electrical resistivity, 25, 49 pohm cm al twee O and 100 C, respectively.
71	ĝ.	34.0	1961	12 t - 12 t			99	Q	0.01 - 0.1 Fe. 0.001 - 0.01 Cu. Jr. Pd. Si and Zr each. 0.001 cach B and Ca; machined and then annealed at 1000 C; specimen in the form of right cylinder of 2.539 cm in dia and 7.5 cm long; the solid portion of the cylinder 6.49 cm in length.
n	999	ن	1962	1962 673, 1973			0	-	Similar to the above specimen, measured as the temperature decreases.
→	979	×	1965 1965	1962 - 544-1254			₹	-	I in, outside dia and 0.25 in, inside dia discs punched from 0.04 in, thick sheet and stacked to 1 in, high; annealed at 982 C for 30 min; grain size increase by 2 to 3 times after the measurement.
٠.	5,0	3×9 R	7961	1962 1240-1747			6.6	95	The second run of the above spreamen.

DATA TABLE NO. 172 THERMAL CONDUCTIVITY OF [PLATINUM + BRODIUM] ALLOYS

(Pt.) Re 99,50° inpurity 0,20° racal

Watts on [1K-1]
تمد
Conductivity,
Toermal
- 1
٦, ٦
(Temperature,

CURVE 4 Cont.	1.40	1.42	1.41	1.34	1.35	1. 15	1.36	1.36	. 35°	, ::: '	1.30	1.23	1,20	1.17		1.19	1.03	1.11		0	<u>.</u> .		1.18	1, 22	1.19	1.15	1.16	1.15	1.12	1.14	Ξ.	1.13*	0.952		996.0					
CURVE	927.1	944.3	985,4	955.9	1023.7	1026.5	1027.1	1079.3	1030.4	10401		1134.3	1198.2		8	1253.7	~	1254, 3			1240, 4	1241.5	1300.4	1300, 4	1300, 4	1340.9	1249.3	1349.3	1437.6	1437, 6		1451.5	1710.9	33.	1747.1					
CURVE 1	0.301	0.301	0,305		CURVE 2	<u> </u>	5	0.615		7	t۳	6,755		CURVE 3		609.0	0.693		CURVE 4	1.38	1, 44	1,32	1.39	1. 41	1.4	1.37	1.36,	1.38	1.32	1.37	1.34	1.36		1.41	1.33	1.46	1.40	1.37	2	
13	273.2	230.5	373.2		53	{	413.3	673.2	473, 2	1073.2	1273.2	1.83.2		밁		673, 2	1073.2		CC	547.6	547.6	549,8	590.9		638.3	10.4	690.4	690.4					t-, 707	x.60r	×03.8	425.9	466.5	466.5	925.4	

Not shown on plot

SPECIFICATION TABLE NO. 172R RECOMMENDED THERMAL CONDUCTIVITY OF [PIATINUM + RHODIUM] ALLOYS

[For Data Reported in Figure and Data Table No. 172R]

ent) and Remarks	± 5% from 500 to 1000 K and ±5 to ±10% below 500 K and above 1000 K.
Nombal Composition (weight percent) and Remarks	60 Pt and 40 Rh; well annealed
Name and Designation	
Curve No.	¥

DATA TABLE NO, 172R RECOMMENDED THERMAL CONDUCTIVITY OF (PLATINUM + RHODIUM) ALLOYS

[Temperature, T1 in K and T2 in F; Thermal Conductivity, k1 in Watt cin-1 K-1 and k2 in Btu hr-1ft-1F-1]

Ë		0247 2420	21300 2780								
ķ	cont.)	(43, 8)	(45. 9) (45. 5)								
ž	CURVE A (cont.)	(0.758) (0.768)	(0.778) (0.787)								
<u>,</u>		1500	1700 1800								
ţ		98.0 80.3	170.3 260.3	440.3 620.3	800.3	1160	1340	1520	1700	1880	2060
, k	V	(26.8)	(28.7) (39.8)	32.1	36.0	38.8	40.0	41.1	42.0	42.6	43.2
ı.	CURVE A	(0.464)#	(0.497) (0.516)	0.555	0.650	0.672	0.692	0.711	0.727	0.738	0,748
ī.		273. 2	9 9	000	6 <u>8</u>	006	1000	1100	1200	1300	1400

t Values in parenthoses are extrapolated.

SPECIFICATION TABLE NO. 173 THERMAL CONDUCTIVITY OF [PLATINUM + RUTHENIUM] ALLOYS

(Pr + Ru + 99, 50%; impurity = 0, 20% each)

For Data Reported in Figure and Table No. 1733.

	Composition (continued). Specifications and Remarks	Specimen prepared by stacking 1 in. O. D. and 0.25 in. 1. D. discs punched from a 0.040 in. thick sheet to a 1. D. discs punched from a 0.040 in. thick sheet to a thickness of 1 in.; annealed at 982 C for 30 min. grain size increased by 2 to 3 times after the measurement. The second run of the above specimen. The third run of the above specimen. The fourth run of the above specimen.	
Life Diena Allendaria	Need Temp. Reported Name and Composition (weight percent)	No. No. Used Range, K Error, C Specifical Control of Signature No. Used S28-826 1 589 R 1962 903-1039 2 589 R 1962 1221-1472 3 589 R 1962 1221-1472	
	1	No.	-

DATA TABLE NO. 173 THERMAL CONDUCTIVITY OF 'PLATBUM'S RUTHENIUM' ALLOYS

(Pt.+ Ru | 99, 50%; impurity | 0, 20% each)

em-1K-1]	
y, k. Wati	T R CURVE 4 (cont.) 189.3 0.588 211.5 0.606 227.6 0.589 1239.5 0.603 1249.5 0.603 1314.8 0.614 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539 1425.6 0.539
Conductivit	T 1189.3 1189.3 1297.6 1297.7 1249.8 1250.2 1249.8 1250.2 1314.8 1314.8 1314.8 1314.8 1316.6 1427.6 1635.9 1635.9
(Temperature, T. K. Therma) Conductivity. k. Watt em-tK-t)	K. C. C. C. C. C. C. C. C. C. C. C. C. C.
ture, T. K	CURVE 3 CURVE 3 1221.1 0.5 1222.1 0.5 1222.1 0.5 1222.1 0.6 1222.1 0.7 1235.4 0.7 1235.4 0.7 1235.4 0.7 1255.1 0.7 1252.1 0.7 1072.1 0.7 1082.1 0.7 1183.2 0.7
(Temperal	k (cent.) 0, 531 0, 631 0, 631 0, 632 0, 633 0, 637 0, 647 0, 544 0, 573 0, 573 0, 574 0, 574
	CURVE 2 (cont.) 557.5 0.531 899.5 0.633 899.5 0.614 999.5 0.610 959.7 0.637 1015.7 0.544 1015.7 0.544 1015.7 0.544 1015.7 0.544 1015.7 0.544 1015.7 0.544 1015.7 0.544
	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	T K CURVE I (cont.) 754.3 0.643 824.3 0.589 824.3 0.589 824.9 0.649 825.9 0.601 825.9 0.601 825.9 0.657 813.7 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557 8450.4 0.557
	K CURVE.1 6 0 663 6 0 663 5 0 619 5 0 619 7 0 694 1.3 0 694 1.3 0 694 1.3 0 694 1.3 0 694 1.3 0 662 1.4 0 594 0.9 0 662 0.9 0 659 0.9 0 659 0.9 0 659 0.9 0 659
	527.6 531.5 531.5 531.5 531.5 531.4 634.3 634.3 634.3 690.9 690.9 690.9

Not shown on plot

SPECIFICATION TABLE NO. 174 THERMAL CONDUCTIVITY OF PPLATINUM + SILVER) ALLOYS

(Pr.4 Ag > 99,30%; impurity > 0,20% each)

Permanent of the Permanent	Composition (continued), special canons and resulting		No detail reported.		No detail repaired.	No detail reported.	
	Composition (weignt percent)	۸ĸ	ŝ	;	ភ	95	
	Composition	ä	Ŷ		35	Ů.	
	Name and	Specimen Designation					
	Tomb Reported	Ruge, K. Error,"		553.3	•	506.7	521.2
		_		1956		1956	1936
	1	Teat Year	 	4		4	1
		Curve Rei.		6		<u>ē</u> ;	161
		י הביינ י		-	•	*1	n

DATA TABLE NO. 174 THERMAL CONDUCTIVITY OF (PIATINUM + SILVER) ALLOYS

(Pt+Ag+99,50%, inpurity < 0,20%, each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm²⁴K⁻¹]

T k

CURVE 1*

553.2 0.363

CURVE 2*

506.7 0.249

CURVE 3*

0.272

521.2

No graphical presentation

SPECIFICATION TABLE VO. 175 THERMAL CONDICTIVITY OF PLETONION CALUMINUM ALLOYS

 $p_0+Al=99,50\%;\; menerty=0,20\%;\; each)$

Constitution of the contract o	Composition (confined), Specifications and actualise	Pa	Straig strawe at the straight of the straight	Specimen 2 can in dia anti a cin tong, inconer and verification instead as the comparative material.	
	Compassion (weight percent)	W nd		99,0	
	eguertest Name and	rive," Specimen Designation		5-10 Della-stabilized	
	Corres Ret Method Temp. Re	No. No. Used Year Ronge, K. Erroer,		1 926 C 1960 (7.55-57)	

DATA TABLE NO. 155 THERMAL CONDICTIVITY OF PRICTOMEN 9 ALLMINEMS ALLOYS

(pu + Al = 99, 50%; inspurity = 0, 20% each).

[Temperature, T. K. Thermai Conductivity, E. Watt em 'K.]

ŧ

CLTKVE !

676.2 0.092 676.2 0.093 676.2 0.058 676.2 0.158 776.2 0.158 776.2 0.159

SPECIFICATION TABLE NO. 176 THERMAL CONDUCTIVITY OF (PLUTOMUM + 1ROM) ALLOYS

(Pu + Fe · 99.50%; impurity < 0.20% each)

Composition (continued), Specifications and Memarks		Measured in vacuum of 10^4 mm Hg; melting point at $410~\mathrm{C}_\odot$
Composition (weight percent) Pu		90.5
Curve Ref. Method Year Temp. Reported Name and	Used name, it will be	1 182 L 1959 473-823 5.0

DATA TABLE NO. 176 THERMAL CONDUCTIVITY OF [PIUTONIUM + IRON: ALLOYS

(Pu + Fe > 99.50%; impurity < 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt $cm^{-1}K^{-1}$]

.¥	/E 1,	•		o. 164			
۲	CURVE			623.20			

SPECIFICATION TABLE NO. 177 THERMAL CONDUCTIVITY OF POTASSICM SOBICM ALLOYS

 $(K\times Na -99,\,50^{0})_{4}\,\,\mathrm{impurity}\,(0,20^{0})$

For Data Reported in Figure and Table No. 177

Composition (continued), Specifications and Remarks	Highly purritied: specimen in logaid state, electrical resistivity 41, 6, 43, 4, 51, 3, 58, 8, 67, 3, 77, 3, and 80, 2 polini coi at 150, 200, 300, 400, 500, 600, and 700 C respectively.	Highly purified: Specimen in liquid state; electrical resistivity 47, 23, 14, 13, 12, 21, and 69, 37 golim on at 200, 300, 406, and 500 C respectively.	In liquid state.	Very pure; softum free from Fe, Ca. Mg. Al. and K. jiofassum free from Fe, Ca. Mg. and Al. supplied by Einer and Amend, specimen 1.562 cm LD, and 20 cm long, electrical resistivity 21. 90, 32. 10, 34, 04, 34, 11, 35, 15, 35, 27, 35, 13, and 36, 40 golm cm at -10, 6, -8, 9, 5, 8, 6, 2, 20, 7, 22, 0, 22, 1, and 42, 9 C respectively; specimen in liquid state.	In hypod state.	 0.02 Fe and 0, 004 O (post test): molten specumen contained in a type 347 standers steel tube; supplied by Fisher Scentific Co.; electrical resistanty reported as 8, 07, 8124, 8139, 8130, 8131, 9147, 9147, 9147, 9147, 9147, 9147, 9147, 9157, 15, 48, 17, 90, 21, 80, 21, 80, 21, 81, 81, 82, 83, 31, 31, 31, 32, 33, 31, 31, 41, 38, 32, 33, 31, 31, 41, 38, 31, 32, 31, 32, 31, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Composition (weight percent) K	:: 3i	5.1.4	95.0	37. 0	52	9. %
Composition (v	77.7	56.5	78.0	63.0	-15	Birl.
Name : r l Specimen Posignation						
Reported Front, %	e	0.0				
Temp. Range, K	430-950	449-794	432-1030	262 -316	388-899	473-1073
	1955	1955	1956	1913	1959	1962
Ret. Method Year No. Used		- -	2	. <u>u</u>	-	1 1
Ret. No.	4	158	10.5	?! !-	50.5	756. 862.
Curve No.	-	ç١	77	· · ·		o

DATA TABLE NO. 177 THERMAL CONDUCTIVITY OF [POTASSIUM + SODIUM] ALLOYS

(K + Na < 99, 50%; impurity <0, 20% each)

[Femperature, T, K, Thermal Conductivity, k, Watt cm $^{-1}$ K $^{-1}$]

CITE		•	4	4	e	•	e
	CURVE 1	CURVE	VE 5	CURVE	5 (cont.)	CURVE	CURVE 5 (cont.)
430.3	0, 239	388. 2	0, 225	588. 2	0.265	793, 2	0.277
		390, 7	0, 2:45	600.2	0.260°	797. 2	0.284
589. 4		393, 2		604. 7	0, 266		0.280
637.2		406.2	0.221	605. 2	0.255	808.2	0. 263
4	0.362	408, 2	0. 235	60×.2	0.2613	827.7	0.282
798.7	0.261	418.2		613.2	0.250	834.2	0, 273
7.6. J	0, 258	419.2	0, 235	628.2	0.261	856.2	0, 273
949.5	0,256	425, 2	0, 232	630, 2	0, 250		0.277
		430.2	0, 225	633, 2	0.263		
CURVE	IVE 2	430, 7	0, 244°	641.2	0.242	CURVE	VE 6
			0.228	644. 7	0, 252		
449.0	0.244	442, 2	0, 2:39	650.0	0, 264	473.2	0.458
558.6	0.260		0, 2338	653.2	0,256	549.2	0.434
627.7	0, 266	451.2	0, 2:36	664.2	0.261	609.2	0.417
	0.271	458, 2	0, 232	667, 7	0.276	683.2	9338
27	0.271	458, 7	0.244	671.2	0, 260	750.2	0.380
		463.7	0.236	681.2	0.259	836.2	0.362
CURVE	IVE 3	467, 7	0.246	681.2	0.282	905.2	0.350
		468.7	0. 2323	685, 2	0.282	990,2	0.338
432, 0	0.129	474.2	0. 232	687.0	0, 268	1073	0.328
466.1	0.131	476. 2	0.242	689.2	0.277		
	0.134	479.2	0, 232	695.0	0, 258		
495, 5	0.129		0.242	703.0	0, 274		
561.4	0.134		0. 256	703. 2	0, 285		
6.32, 0	0, 136		0. 245	703 7	0.261		
761. 4	0. 138	500.2	0.250	707.2	0.291		
8.32. 0	0.143	504.2	0. 2.33	709. 2	0.277		
901.4		508.2	0.24.1	713.2	0.284		
	0.145		0. 245	715.0	0.266		
1029. 7	0.150	520. 7	0. 257	723. 2	0, 274		
			0, 243	733.2	0.281		
350	CURVE 4		0. 252	736.2	0.289		
ļ				738. 2	0.268		
262.6	0. 295			747. 2	9, 273		
264.3	0.291		0.271	748.2	0.253		
0.626	65.0	5	0.245	7.58	0.286		
	10.7.0		9.60	3 6	717.0		
กร		- 10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.219	101.			
N 6	7.7	1000		2.777	50 C		
, ,	0.244	100	147.0	0.0%	0.292		
316.1	0, 259	5 5 5	0. 271	187.7	0.300		

Not shown on plot

SPECIFICATION TABLE NO. 178 THERMAL CONDUCTIVITY OF BUBIDIUM CESH M ALLOYS

 $RD = C_{N} - 99, 50\%, \ \mathrm{impurity} - 0, 20\% \ \mathrm{each})$

For Data Reported in Figure and Table No. 1787

Composition (continued), Specifications and Remarks	 n. 66 K., 0, 65 Mg, composition after testing, 6, 35 CS. n. 13 Mg, 6, 13 K., 6, 63 Cg, 6, 608 Fe, 6, 605 O., 6, 602 Mg, 0, 603 Cg, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 6, 605 CG, 65
Composition (weight percent) (3)	Rad 0, 32
Name and Specimen Designation	
Reported Error, %	
Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error,	1962 312-1025
Year	1567
Method	
Ref.	36
Cury	-

ontananananananan seraitah darah darah darah manananan saraha mananan saraha mananan sarahan darah dar

THERMAL CONDUCTIVITY OF [RUBIDIUM + CESTUM] ALLOYS DATA TABLE NO. 178

(Rb + Cs ≥ 99, 50%; impurity ≤0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm -1 K-1]

۲

CURVE 1

0, 335 0, 325 0, 309 0, 287 0, 288 0, 258 0, 248

312.4 419.9 533.5 634.9 699.3 854.9 923.3

SPECIFICATION TABLE NO. 179 THERMAL CONDUCTIVITY OF (SELENDIN + BROMINE) ALLOYS

(Se + Br : 99.50%; impurity < 9.20% each).

Composition (continued), Specifications and Remarks	Vitrecus and amorphous.	Hexagonal crystal.	Hexagonal crystal.
ght percent) Br	0.5	0.5	0.25
Composition (weight percent) Se Br	5.66	9 3. 5	99.75
Name and Specimen Designation			
Reported Error, "	< 4.0	0.4 >	< 4.0
Temp. Range, K	300.7	293.2	293.2
Year	1957	1957	1957
Method	۱.	J	
Rcf.	358	358	353
Curve No.	-	82	က

DATA TABLE NO. 179 THERMAL CONDUCTIVITY OF (SELENTUM + BROMINE) ALLOYS

(Se + Br · 99, 50%; impurity < 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K 1]

T k

CURVE 1
300, 0,0101

CURVE 2
253.2 0,0217

CURVE 3

SPECIFICATION TABLE NO. 156 THERMAL CONDUCTIVITY OF (SELENIUM + CADMIUM) ALLOYS

(Se + Cd = 99, 50%; unpurity > 0, 20% each)

Composition (continued), Specifications and Remarks	Amorphous specimen prepared from the melt of 99, 99599 pure selenium by rapid cooling in caeuum; doped with cadmium,	Similar to the above specimen.
ution (weight percent)	0.5	0.1
Composition (weight percent)	93.60	0.66
Name and Specimen Designation	æ - 5-	B-5
teported	5-5 5-	3-5
Temp. I	293-315	293-315
	1966	1906
Jurve Ret, Method Year No. No. Used Year	1 86·	70 767
% <u>₹</u>	÷.	967
Curve No.	~	e :

DATA TABLE NO. 140 THERMAL CONDUCTIVITY OF (SELENIUM + CADMIUM) ALLOYS

(Se + Cd \leq 99, 50%; impurity \leq 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm74K4]

¥	32 <u>1</u>	0,00436	0,00466	0.00474	0.00493	0.00498	0.00509	0.00520	0.00531	0,00566	0,00493	0,00523	0,00536	0.00608	0.00686		
Ę	CURVE Z	292.6	294,6	296.4	299,4	309.4	299.4	303.4	304,8	306.4	306.8	308.3	309, н	311.8	315, 1		
ᅶ	.1 34	0.00437	0.00444	0.00456	0.00470	0.00484	0.00490	0,00505	0.00516	0.00525	0.00628	0,00558	0.00594	0.00616	0.00637	0.00667	0.00706
Т	CURVE	292.6	294.6	2.6.2	298.6	300,1	301.6	303,6	305, 3	306.0	304.2	307.4	308.9	310.3	311.2	313.0	315.0

SPECIFICATION TABLE NO. 141 . LAMAL CONDUCTIVITY OF (SELENIUM + CHLORINE) ALLINYS

(Serv.C) 99, 30% mightarty so, 20% each)

	Commission (continued), Specifications and Remarks	Anorphus.	Crystathne form prepared from vitreous form by heating of 130 C for 40 min.	Crystalline form prepared from vitreous form by herang at you C for 40 min.	Anorphous.	Amorphous.	Amerphous.
	veight percent)	35.=	.c	C5710	0.25 c	0.50	1.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Composition (weight percent) Se	98,13	20,73	90*13	52,00	99,50	9-1-6
	Name and Specimen Designation	No. 1	n ion	No.	, , , , , , , , , , , , , , , , , , ,	No. 9	No. 10
	Temp, Reported Range, N. Error,						
	Temp. Range, K	2.465	1767	294.3	291.7	291.7	291.7
	Curve Ref. Method Year I	13.61		19.33	1933	1933	1987
	Nethod Vsed	1 191 1	:	∴	<u></u>		نـ
	Se Fe	2	197	-	1987	<u>ئ</u> 10	17
	Curve.	-	• (1)	n	-7	מי	ی

DATA TABLE NO. 181 THERMAL CONDUCTIVITY OF (SETENIUM) CHIORINEL ALLOYS

(Se + C) = 99,50% (impairty > 0,20% each)

[Temperature, T. K: Thermal Conductivity, k, Watt em 'K 1]

±	CURVE 4	50500*0	CURVE ST	0,09855	CURVE 6	7.00947
۰	ST ST	291.7	COR	291.	CE	251.7
ú	CURVE I	95800.0	(F) (B)	0,0253	CURVE 3	0,0253
٢	CLE	294.2	CURVE	6. 16 9	CUR	3

SPECIFICATION TABLE NO. 152 THERMAL CONDUCTIVITY OF ISELEVIUM * ROBINE) ALLOYS

(Se + I - 99, 50°; maparity - 0,20°; each)

The Composition (continued), Specifications and Remarks		Amerphons.	Crystalized at 214 C from vitreous form.	Amorphous.	Crystolized at 211C from vitreous form.	Amorphous.	Crystalized at 214 C from vitreous form.	Anorphus.	Court of at a 14 C from vitrous form.		Anustralias.	(rystalized at 2.14 C from varreous form.	Anorphous.	Crystatized at 214 C from vitroous form.	
aght percents	-	0177e	6.243	0,531	H.C.**	1111		1,1193	, ,		;2 7] ~	1.05	1,045	9	
Composition (weight program)	ž	99,153	49,137	99,466	595.466	99,323	99,323	1000		35°38	25,59	64,740	98,615	0.00	010*56
	Specimen Designation Se														
1 -	No. No. Used Year Range, K. Frrort,														
d. Method Temp. Report	Runge, K	666	5.000	e obe	* 1956		2.000	1.661	2.667	299.3	299.3	239.3	6.666	í	299.2
	100 100 100 100 100 100 100 100 100 100	12	12	1	12.01		2 1 2 1		12.51	1957	1957	1957	10		1957
Method	1887	{ 	۔ نـ			. د	، نـ	i.	نہ	٦	_;	_	ì .	נ	د
3	i		1		•	÷ .	1	1	Ţ	19:	135	3	1	1	<u>ئ</u> ج
Corve	,	.		, .	•	-	is.	2	۱٠	r	G	Ξ	: :	7.	บ

DATA TABLE NO. 152 THERMAL CONDUCTIVITY OF (SELENIUM + 10DINE) ALLOYS

(Se + 1 - 99, 50%; in purity (0.20^{6}) each)

(Temperature, T. K. Thermal Conductivity, k, Watt $\mathrm{cm}^{-1}\mathrm{K}^{-1}\mathrm{)}$

		115		3 (i) 2
4	CURVE 11	= ·	CURVE 12	9.029.4
- -	CUR	299.2 0.0115	CUR	299.2
¥	CIRVE 9	299.2 0.0111	CURVE 10	0,0290
÷	CIR.	250.2	CUR	2.002
ie.	CURVE 7	299.2 0.00279	CURVE 4	299.3 0.0273
←	CUR		CUR	299.3
يد	CURVE 5	299,2 0,00941	CURVE 6	t-r20*0
←	CUR	299.3	CUR	299.2
×	CURVE 3	259.2 0,00916	CURVE, 4	299.2 0.0254
٢	CUR	259.2	CUR	299.2
ž	CURVE 1	0.09883	ار ان	0.0220
ŧ-	CURV	299,3	CURVE 2	299.2

《中文》

SPECIFICATION TABLE NO. 183 THERMAL CONDUCTIVITY OF [SELENIUM + THALLIUM] ALLOYS

 $(Se+T)\approx 99,\, 50\%$, impairity $\approx 0,\, 20\%$

[For Data Reported in Figure and Table No. 183]

Composition (continued), Specifications and Rensarks	Polycrystal; prepared by fusing Se (99, 996 pure) and TlySe in 10-4 mm Hg vacue; specimen 16 mm dia, 8-10 mm thick disk; annewled at 110 and 210 C for 1 br.	Similar to the above specimen.	Similar to the above specimen.	Similar to the above specimen.	Amorphous specimen prepared from the melt of 99, 9999 pure selentum by rapid cooling in vacuum.
veight percent)	0. 5	0.75	1.0	J. S	J . U
Composition (weight percent)	99, 5	99. 25	99.0	98. 5	99. 0
Name and Specimen Designation					B-5
					3-5
Temp, Reported Range, K Error, R	293-363	293-363	253-363	293-363	291-317
Year	1961	1961	1961	1961	1961
Ref. Method Year B	522 L 1961			1	-
Ref.	522	522	555	523	x S
Curve No.	-	¢.	יה ו	4	· vs

DATA TABLE NO. 183 THERMAL CONDUCTIVITY OF (SELENIUM + THALLIUM), ALLOYS

(Se + Tl \approx 99, 50%, imparity \approx 0, 20%)

(Temperature, T. K. Thermal Conductivity, k, Watt em '1 K-1)

9 0.0113	3 0.0113	0 0.0115	9 0.0116	6 0.0116	3 9.012 8 9.012	1 0.012	8 0.0128	0 0.0126	9 0.0126	9 0.012																							
33	3	2 2	3	1	3	VE 2				0.0176	0, 0163	3	0.01:10	3	0.0109	VE 3	0.0238	0.0230	0. 0213	0.0197	0.0192		30.	. 015	IVE. 4		024	570	9, 0222	9. 9.297	0.015	Ξ.	9. U.4;
						CUR								3	 	CUR													61 14 25 27		. :	٠.:	\$1
	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0163 294.3 0.0113	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0163 294.3 0.0113 2 0.0151 296.9 0.0115 2 0.0142 299.0 0.0115	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0163 294.3 0.0113 2 0.0151 296.9 0.0113 2 0.0142 299.0 0.0115 2 0.0126 300.9 0.0116	2 0,0197 290.9 0,0113 2 0,0183 294.3 0,0113 2 0,0151 296.9 0,0113 2 0,0152 299.0 0,0115 2 0,0126 300.9 0,0116 2 0,0117 302.6 0,0116	2 0.0197 220.9 0.0113 2 0.0183 294.3 0.0113 2 0.0181 294.9 0.0113 2 0.0142 299.0 0.0116 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0100 306.8 9.0120	2 0.0197 290.9 0.0113 2 0.0183 294.3 0.0113 2 0.0181 296.9 0.0113 2 0.0142 299.0 0.0116 2 0.0126 300.9 0.0116 2 0.0101 302.6 0.0116 2 0.0101 306.8 9.0126 306.8 9.0126 307.1 0.0125	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0163 294.3 0.0113 2 0.0142 296.9 0.0113 2 0.0142 299.0 0.0115 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0100 305.3 9.0126 31RVE 2 307.1 0.0128	2 0 0.0197 290.9 0.0113 2 0 0.0182 292.3 0.0113 2 0 0.0151 296.9 0.0113 2 0 0.0152 299.0 0.0116 2 0 0.0126 300.0 0.0116 2 0.0117 302.6 0.0116 2 0.0100 305.3 0.0126 307.8 0.0128 307.8 0.0128 2 0.0205 311.0 0.0128	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0151 296.9 0.0113 2 0.0151 296.9 0.0113 2 0.0142 299.0 0.0113 2 0.0117 302.6 0.0116 2 0.0117 302.6 0.0126 2 0.0117 305.3 9.0120 306.8 9.0126 307.1 0.0126 307.1 0.0126 2 0.0205 311.0 0.0126	2 0.0197 290.9 0.0113 2 0.0183 294.3 0.0113 2 0.0181 294.3 0.0113 2 0.0142 298.9 0.0116 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0100 305.3 9.0120 307.8 0.0128 307.8 0.0128 307.8 0.0128 2 0.0192 313.9 0.0126 2 0.0192 313.9 0.0126	2 0.0197 290.9 0.0113 2 0.0183 294.3 0.0113 2 0.0151 296.9 0.0113 2 0.0126 300.9 0.0116 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0100 305.3 9.0126 2 0.0100 305.3 9.0126 2 0.0128 307.1 0.0128 2 0.0128 311.0 0.0128 2 0.0156 311.0 0.0128 2 0.0156 313.9 0.0126 2 0.0156 316.9 0.0126	2 0 0197 290.9 0.0113 2 0 0182 292.3 0.0113 2 0 0183 294.3 0.0113 2 0 0181 296.9 0.0113 2 0 0182 299.0 0.0113 2 0 0112 299.0 0.0116 2 0 0117 302.6 0.0116 2 0 0100 305.3 0.0128 2 0 0100 305.3 0.0128 2 0 0205 311.0 0.0128 2 0 0176 316.9 0.0126 2 0 0163	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0151 296.9 0.0113 2 0.0151 296.9 0.0113 2 0.0142 300.9 0.0116 2 0.0126 300.9 0.0116 2 0.0100 305.3 9.0126 305.8 9.0126 307.8 9.0126 307.8 0.0126 2 0.0205 311.0 0.0126 2 0.0136 316.9 0.0126 2 0.0151	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0142 298.9 0.0116 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0100 306.3 9.0126 307.8 0.0128 307.1 0.0128 307.1 0.0128 2 0.0129 313.9 0.0126 2 0.0151 316.9 0.0126 2 0.0151 316.9 0.0126 2 0.0151 316.9 0.0126	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0163 294.3 0.0113 2 0.0142 299.0 0.0116 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0100 306.8 0.0126 307.8 0.0126 307.8 0.0126 307.8 0.0126 2 0.0129 313.9 0.0126 2 0.0151 316.9 0.0126 2 0.0151 316.9 0.0126 2 0.0130	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0163 294.3 0.0113 2 0.0142 298.9 0.0116 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0117 302.6 0.0116 2 0.0100 306.8 9.0126 307.8 0.0128 307.8 0.0128 2 0.0192 313.9 0.0128 2 0.0151 316.9 0.0128 2 0.0151 316.9 0.0128 2 0.0151 316.9 0.0128 2 0.0121 316.9 0.0128	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0183 294.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 296.9 0.0116 2 0.0182 299.0 0.0116 2 0.0187 299.0 0.0116 2 0.0187 299.0 0.0116 2 0.0187 290.9 0.0116 2 0.0187 290.9 0.0128 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0183 294.3 0.0113 2 0.01842 299.9 0.0113 2 0.01842 299.9 0.0116 2 0.01842 299.9 0.0116 2 0.0187 302.6 0.0116 2 0.0177 302.6 0.0116 2 0.0100 306.8 9.0128 2 0.0176 311.0 0.0128 2 0.0151 313.9 0.0128 2 0.0151 0.0130 2 0.0151 316.9 0.0128 3 0.0131 3 0.0131 3 0.0133 3 0.0238	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 293.0 0.0116 2 0.0184 299.0 0.0116 2 0.0184 299.0 0.0116 2 0.0187 302.6 0.0116 2 0.0100 306.8 0.0126 307.8 0.0128	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 296.9 0.0116 2 0.0126 300.9 0.0116 2 0.0117 302.6 0.0116 2 0.0117 302.6 0.0116 2 0.0117 302.6 0.0116 2 0.0117 302.6 0.0116 2 0.0117 302.6 0.0116 2 0.0129 313.9 0.0126 2 0.0130 313.9 0.0126 2 0.0130 313.9 0.0126 2 0.0130 313.9 0.0126 2 0.0130 313.9 0.0126 2 0.0130 313.9 0.0126 2 0.0130 313.9 0.0126 3 0.0131 3 0.0130 3 0	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0183 294.3 0.0113 2 0.0184 200.9 0.0113 2 0.0184 200.9 0.0116 2 0.0187 200.9 0.0116 2 0.0187 200.9 0.0116 2 0.0187 200.9 0.0116 2 0.0187 200.9 0.0116 3 0.0187 313.9 0.0128 3 0.0183 313.9 0.0128 3 0.0183 313.9 0.0128 3 0.0183 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 5 0.0238 5 0.0238 5 0.0238 5 0.0238	2 0.0197 290.9 0.0113 2 0.0185 292.3 0.0113 2 0.0185 294.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 299.9 0.0116 2 0.0182 299.9 0.0116 2 0.0187 302.6 0.0116 2 0.0177 302.6 0.0128 2 0.0177 307.8 0.0128 2 0.0176 313.9 0.0128 2 0.0151 313.9 0.0128 2 0.0151 316.9 0.0128 2 0.0151 316.9 0.0128 2 0.0121 316.9 0.0128 2 0.0238 2 0.0238 2 0.0238 2 0.0197 3 2 0.0197 3 3 0.0197 3 3 0.0197 3	2 0.0197 290.9 0.0113 2 0.0187 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 292.3 0.0113 2 0.0182 296.9 0.0116 2 0.0184 290.0 0.0116 2 0.0187 290.0 0.0116 2 0.0187 290.0 0.0116 3 0.0187 300.1 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0126 3 0.0189 311.0 0.0189 3 0.0189 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 0 0.0197 290.9 0.0113 2 0 0.0182 292.3 0.0113 2 0 0.0181 294.3 0.0113 2 0 0.0182 299.9 0.0113 2 0 0.0182 299.9 0.0116 2 0 0.0182 299.9 0.0116 2 0 0.017 302.6 0.0116 2 0 0.017 302.6 0.0128 2 0 0.017 307.1 0.0128 2 0 0.015 313.9 0.0128 2 0 0.015 313.9 0.0128 2 0 0.015 316.9 0.0128 2 0 0.013 316.9 0.0128 3 0.023 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 298.9 0.0116 2 0.0184 200.9 0.0116 2 0.0187 299.0 0.0116 2 0.0187 299.0 0.0116 2 0.0187 299.0 0.0116 302.6 0.0116 307.8 0.0128 307.8 0.0128 307.8 0.0128 307.8 0.0128 307.8 0.0128 307.9 0.0128 30.0182 313.9 0.0128 30.0183 313.9 0.0128 30.0180 318.9 0.0128 30.0180 318.9 0.0128 30.0180 318.9 0.0128 30.0180 318.9 0.0188 30.0180 318.9 0.0188 30.0180 318.9 0.0188	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0183 294.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 293.4 0.0116 2 0.0184 2 293.4 0.0116 2 0.0187 299.0 0.0116 2 0.0187 299.0 0.0116 2 0.0187 290.0 0.0116 2 0.0189 313.9 0.0126 2 0.0189 313.9 0.0126 2 0.0189 313.9 0.0126 2 0.0189 313.9 0.0126 2 0.0189 313.9 0.0126 2 0.0189 313.9 0.0126 2 0.0189 313.9 0.0126 3 0.0189 313.9 0.0126 3 0.0189 313.9 0.0126 3 0.0189 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 0,0197 290.9 0,0113 2 0,0187 292.3 0,0113 2 0,0183 294.3 0,0113 2 0,0184 294.3 0,0113 2 0,0184 299.4 0,0116 2 0,0117 302.6 0,0116 2 0,0117 302.6 0,0116 2 0,0117 302.6 0,0116 2 0,0117 302.6 0,0128 2 0,0117 307.8 0,0128 2 0,0119 313.9 0,0128 2 0,0139 313.9 0,0128 2 0,0139 313.9 0,0128 2 0,0139 313.9 0,0128 2 0,0139 313.9 0,0128 2 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0128 3 0,0139 313.9 0,0138 3 0,0139 313.9 0,0138	2 0.0197 290.9 0.0113 2 0.0187 292.3 0.0113 2 0.0182 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 292.3 0.0116 2 0.0184 290.0 0.0116 2 0.0184 290.0 0.0116 2 0.0187 290.0 0.0116 3 0.0187 302.6 0.0126 3 0.0182 307.8 0.0126 3 0.0182 307.8 0.0126 3 0.0182 311.0 0.0126 3 0.0181 30.0126 3 0.0182 311.0 0.0126 3 0.0182 311.0 0.0126 3 0.0182 311.0 0.0126 3 0.0182 311.0 0.0126 3 0.0182 311.0 0.0126 3 0.0182 311.0 0.0126 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182 3 0.0182	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0183 294.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 292.3 0.0116 2 0.0184 290.0 0.0116 2 0.0187 290.9 0.0116 2 0.0187 290.9 0.0116 3 0.0187 307.8 0.0126 3 0.0182 307.8 0.0126 3 0.0182 313.9 0.0126 3 0.0182 316.9 0.0126 3 0.0181 316.9 0.0126 3 0.0182 316.9 0.0126 3 0.0182 316.9 0.0126 3 0.0182 316.9 0.0126 3 0.0182 316.9 0.0186 3 0.0182 316.9 0.0186 3 0.0184 4 3 0.0185 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0182 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 294.3 0.0113 2 0.0184 200.9 0.0116 2 0.0187 299.0 0.0116 2 0.0187 299.0 0.0116 2 0.0187 299.0 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0128 3 0.0189 313.9 0.0189 3 0.0189 313.9 0.0189 3 0.0189 313.9 0.0189 3 0.0189 313.9 0.0189 3 0.0189 313.9 0.0189 3 0.0189 313.9 0.0189 3 0.0189 313.9 0.0189 3 0.0189 313.9 0.0189	2 0.0197 290.9 0.0113 2 0.0182 292.3 0.0113 2 0.0182 292.3 0.0113 2 0.0181 294.3 0.0113 2 0.0182 294.3 0.0116 2 0.0184 2 299.4 0.0116 2 0.0187 299.4 0.0116 2 0.0187 299.8 0.0116 3 0.018	2 0.0197 290.9 0.0113 2 0.0187 292.3 0.0113 2 0.0183 294.3 0.0113 2 0.0184 299.4 0.0113 2 0.0184 299.4 0.0113 2 0.0184 299.4 0.0113 2 0.0187 299.4 0.0113 2 0.0117 302.6 0.0113 2 0.0117 302.6 0.0113 2 0.0117 302.6 0.0128 3 0.0129 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0139 313.9 0.0128 3 0.0238 313.9 0.0128 3 0.0238 313.9 0.0128 3 0.0238 313.9 0.0128 3 0.0238 313.9 0.0128 3 0.0238 313.9 0.0128 3 0.0239 313.9 0.0128 3 0.0239 313.9 0.0128

Not shoon on plot

SPECIFICATION TABLE NO. 184 THERMAL CONDUCTIVITY OF [SILICON + GERMANIUM] ALLOYS

(St.) Ge / 99, 50%; Impurity / 0, 20% each)

[For Data Reported in Figure and Table No. 184]

Composition (continued), Specifications and Remarks	n-type; calculated composition; 5b-doped; lattice constant 5, 448; specimen 5 x 5 x 15 mm; grown by zone leveling technique; grain size <1 cm dia; measured in vacuo of ~10.6 mm Hg; electrical resistivity 18 ohm cm at 300 K.
Composition (weight percent)	22.31
Composition (w	77. 69
Name and Specimen Designation	
Reported Error, "	
Temp. Range, K	908 '08 8 961
Year	
Method Year Used	263 L
Curve Ref. No. 1	263
Curve No.	~

one of the second of the secon

DATA TABLE NO. 184 THERMAL CONDUCTIVITY OF [SILICON + GERMANIUM] A LLOYS

(Si + Ge : 99, 50%; impurity :: 0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm $^{-1}$ K $^{-1}$]

0.431 0.185 CURVE 1

360

A Constitution

SPECIFICATION TABLE NO. 145 THERMAL CONDUCTIVITY OF (SILICON - IRON) ALLOYS

A STATE OF THE STA

(Si + Fe : 99, 50%; impurity : 0, 20% each)

[For Data Reported in Figure and Table No. 185]

No.	Ref.	Method Used	Year	Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error, "	Reported Error, %	Name and Specimen Designation	Composition (weight percent)	sight percent) Fe	Compessition (continued), Specifications and Remarks
-	204	1	1937	295.5		Russian fer rosilicon: 1	76.8	2.3. 2	Porous specimen, cross-section 20 x 20 mm.
*1	504	_	1937	304.7		Russian ferrosilicon; 2	7.1.7	2N, 3	Specimen cross section 20 x 20 mm.
m	20 2	-	1937	309.2		Russian ferrosilicon, 3	73, 15	26, 85	Sixeamen cross section 26 x 20 mm. heat flow perpendicular to thickness.
7	204	-1	1937	281.1		Russian ferroeilicon; 4	78.7	21. 2	Specimen cross section 20 x 20 mm.
r.	204	ı	1937	315.6		Russian ferrosilicon, 5	76. ∺	23.2	Specimen cross section 20 x 20 mm.
9	356	æ	1956	373-1173	[- #		90.0	10.0	No details reported.
t-	356	Œ	1956	373-1173	±7		80.0	20.0	No details reported.
œ	356	Ħ	1956	373-1173	(- +1		75.0	25.0	No details reported.
6	356	×	1956	373-1173	1.7		62.0	38, 0	No details reported.
01	356	æ	1956	373-1173	£#		59.0	41.0	No details reported.
11	356	æ	9561	373-1173	11		55.5	44.5	No details reported.
12	356	×	1956	373-1173	47		52, 3	47, 5	No details reported.

DATA TABLE NO. 145 THERMAL CONDUCTIVITY OF (SILICON + IRON) ALLOYS

(Si + Fe ≥ 99, 50%; impurity ≤ 0, 20%; each)

[Temperature, T. K. Thermal Conductivity, k, Watte $\operatorname{cm}^{-1} k^{-1}$]

×	CURVE 9(cont.)	773.2 0.0879 1173.2 0.126	CURVE 10	6		1173. 2 0. 192	CURVE 11	o .	573.2 0.0837 773.2 0.0711	خ د	CURVE 12		60	Ö	~														
×	-	136		0.200	ຕຸ	0.271 117	VE 4	0.236 37	ادم	0.236	4 6 6	? {	431		238	0, 224	VE 7			0. 180		VE 8	0.276		0.155		VE 9	0. 142	0. 109
۲	CURVE	295. 5	CON	304. 7	CURVE	309. 2	CURVE	381. i	CURVE	315. 6	TIRVE		373. 2	573. 2	773. 2	1173. 2	CURVE	373. 2	573. 2	773.2	7.0.7	CURVE	373.2	573.2	113.2	1173.2	CURVE	373.2	573. 2

SPECIFICATION TABLE NO. 156 THERMAL CONDUCTIVITY OF SILVER (ANTIMONY) ALLOYS

 $(Ag+Sb-99,50^{67}) \ impart (= 0,20^{6}) \ each)$

1 For Data Reported in Figure and Table No. 1865

Curve No.	Ref.	Method	Year	urve Ref. Method Year Temp. Reported	Reported Error, ?	Name and Specimen Designation	Composition (weight percent)	ight percent) Sh	Composition (continued), Specifications and Remarks
-	8.20	٦	1959	523 L 1955 2.1-4.1		-	95.94	2. 06	Importures 0.1, east, machined; specimen 0.100 x o 155 x 3 m, annealed for 20 hrs of 50 - 100 C below biquidus; grain sée a few tenths of a millimeter $\rho_{\rm c}=12.4~\mu{\rm d}$ m cm.
?I	523	1	1959	2 1-4.2		53	945, 94	90 %	Similar to the above specimen except p., 17, 4 gohm em.
ĸ	523	-i	1959	2, 2-4, 1		77	95, 93	4.07	Samilar to the above specimen except $ ho_{ij}=24.7~\mu^{0} \mathrm{m}$ cm.
7	523	٦	1959	2, 4-4, 1		7	95, 23	4, 47	Similar to the allowe specimen except $\rho_{ij}=28,3$ galin cm
S	523	7	1959	2, 1-4, 2		13	94, 72	5.2	Similar to the above specimen except $\rho_{\parallel}=33.2$ gohm cm.
Ģ	523	٦	1959	1, 9-4, 2		9	53, 64	6, 36	Similar to the move specimen except $\rho_{\rm s}=39,5$ golument.
(~	523	-1	1959	2. 1-4. 1		14			Prepared by mething cutting chips from specimen 4 and 6 fators? 6 - 30 6 john cm.

DATA TABLE NO. 146 THERMAL CONDUCTIVITY OF (SILVER + ANTIMONY) ALLOYS

(Ag + Sb : 99,50%; impurity < 0,20% each)

[Temperature, T, K; Thermal Conductivity, k; Watts cm -1 K -1

lemperarate, 1,																																														
151	¥	(Cont.)	0.0139	0.0149	0.0162	0.0175		13		0.00744	0.00765	0.00814	0.00886	0.00982	0,0115	0.0132	0.0151	0.0161	0.0174	0.0182		역		0.00663	0.00711	0.06851	0.00897	0.00950	0.0103	0.0123	9.0142	9.0167	0.0186		ч		0.00666	0.00702	0.00801	0.00920	0.0120	0.0141	0.0171			
	۲	CURYE_4(cont.)	3.50	3,70	3.92	4, 13		CURVE		2.13	2, 17	2, 29	2.41	2.63	3 00	3, 32	3,68	3.88	4.05	4. 20		CURVE		1.93	2.05	7.35	5. 4 6	2. 37	2,85	3, 13	3.45	3,88	4, 20		CURVE		2. 10	2.17	2.38	5.68	3.23	3.62	4.13			
	¥	<u>,E 1</u>	0,00734	0.00790	0.00890	0.00336	0.0110	6.0124	0.0154	0.0189	0.0218		/E 2	į	0.00690	£.09718	0.00784	0.00832	0.00924	0.0101	0.0121	0.0134	0.0151	9610.0		면 년		0.00704		0.00857	0.00929				0.0139	0.0155	0.0173)E 4		0.00816	0.00848	0.00967	0.0106	0.0125	
	⊢	CURVE	2,08	2.13	2.30	2.37	63.	2.90	3,35	51.75	4.10		CURVE		20.07	2, 15	33	2,37	2.55	2.75	3.10	3.27	3, 55	4.20		CURVE		2.23	2.41	2.55	2.70	2.90	3.15	3.42	3.62	3.82	4 . 10		CURVE		2.38	2.45	2.71	2.89	3, 27	

SPECIFICATION TABLE NO. 187 THERMAL CONDUCTIVITY OF SHVER + CADMICM | ALLOYS

(Ag. Cil. 39, 50% ampuraty - 6, 20% each)

For Data Reported in Figure and Table No. 1877

DATA TABLE NO. 1st THERMAL CONDUCTIVITY OF (SILVER + CADMIUM) ALLOYS

(Ag + Cd = 59, 50% , 1mparity = 0, 20% each)

<u>-</u>
W:tt cm
تخ نخد
Conductivity.
Thermal Con
4
Ę.
(Temperature,

CHINES CURYER CURYER CURYER CORYER CORYER CURYER C	*	/E 16	1. 52	/E 17	:	1.41	3	/E 18	1	1.36	1. 59																														
CHINES CHINES CORNES CORN CORNES CORN CORNES CORN	۴	CURVE 16	273. 2 373. 2	CUR		273. 2	37.3. 2	CURY		273, 2	373, 2																														
Curve Curv	×	13 (cont.)	0, 545 0, 652	0, 713 0, 812		E 14		0. 01.12h 0. 0220	0, 92566	0, 02807	6, 63681	0.03404	0. 0378	0,0424	0,0450	0.0498	0,0853	0,05.51	u, 111	U. 121	÷. 1.	0.1455	0, 184	0, 233	0. 247	0.274	, C.	C. 427	6. 46.	6. 500	0, 555	0, 559	0, 717	0, 796		E 15		2, 03	2. 1 5		
T	٠	CURVE	91, 22 113, 95	128.3		CLIRV	6	2,002	2. 705	2. 3nb	3, 087	3, 310	3, 579	3, 867	4.016	4. 23	र श ड	ž E i	7, 512	is x	9, 51	10.32	13, 36	15, 12	20, 50	25. x	Ţ.	51.5 51.5	,1,4	36.0	91. 2	91. 2	127.6	145.3		CURV		273, 2	373, 2		
T	×	2 (conf.)	0. 151 0. 192	0, 2:37	0.329	0, 340 0, 1	0,517	2000 1000 1000	0, 609	999 0	0.717	0, 782	0.866	0. !41	:	=	;	0, 0133	i. 0147	i, 0164	o, olto	u. 0235	0, 0252	0, 0267	0, 02%	0. 0.504	0, 0545	c. 0624	0, 0686	0,030	0, 1025	v. 121	0, 150	0.177	0.216	0.399	0, 436	0.487	0, 542	0, 540	0. 5:12
T K T K T K T K T T K T	H	CURVE	9,44	74. 95 19. 67	25.33	28, 31	61, 30	90 C	81 G	91, 03	104, 5	116.2	133, 9	L 7	;		•	(5) (6)		973 F	2	980 1	3. 525 3.	4, 023	4, 319	<u>:</u>	<u> </u>	n r n	3 3	11.40	13, 52	15, 86	Io. 11	22, 55	26. 14	61, 51	70, Gh	K2. 04	91.18	91.0	91. 02
T R T R T R GURVE 5 CURVE 5 CURVE 7 (cond.) CURVE 9 (conf.) 64 CURVE 6 CURVE 7 (cond.) CURVE 9 (conf.) 64 40.5 1.330 10.14 2.112 5.41 0.125 79 40.2 1.372 1.372 1.374 2.45 0.20 79 40.2 1.372 1.372 1.374 2.45 0.20 79 40.2 1.372 1.374 2.45 0.20 0.10 79 40.2 1.372 1.374 2.45 2.45 0.10 0.11 70 40.2 1.374 2.45 0.10 0.13 0.10 0.10 50 50 1.2 1.10 0.14 1.10 0.12 40 4.2 4.2 4.7 0.14 1.10 0.14 50 4.2 4.7 0.14 1.10 0.14 0.10 50 4.2	*	o (cont.)	1, 041	1, 299	=		0.03345	0.0381	0,0482	0. 0541	0, 0598	0. 9697	0, 1312	000 T	0, 1922	0, 229	0, 289	0.330	u, 364	0,393	0, 445	. ;	0, 650	6. 766	C 8314	G. 508		2]		0,0135	0, 0227	0.0240	0, 0:107	0.000	0, 0387	0, 9451	0.0440	0, 052h	0.0371	0, 0925	0, 1302
T R T R T R T 64 405 2 1.310 91.4 2.112 6.41 45 9 1.143 105.8 2.312 7.06 64 451.2 1.312 105.8 2.312 7.06 65 451.2 1.312 2.425 7.88 65 1.471 105.8 2.312 7.88 65 1.477 2.148 2.425 7.88 65 1.477 2.148 2.425 11.76 98 1.477 2.148 10.085 11.76 98 1.477 2.148 1.477 11.786 11.78 98 1.548 1.477 2.148 11.78 11.78 11.78 112 416.2 1.242 1.143 11.29 11.78 11.78 11.78 112 416.2 1.242 1.143 1.143 11.78 1.78 1.18 112	۲	CURVE 1	111, 57 132, 40	151, 22	CLIVI		2.31	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	21.5.	3, 517	3. 838 3.	7	# 5	: :5:	χ. Σ	10, 53	GE 'E1	13, 50	11.25	13.43	95 .f.	61.03	∠₁ -i -	50, 72	6H '07	9 F. 05		CURV		1.00.1	. 29. 1	2, 695	2, 887	3, 071	971	048.30	4, 025	4, 282	6, 05	6, 65	· 31
CURVE 5 CURVE 7 CURVE 6 405.2 1,310 100,8 2,425 475.2 1,330 100,8 2,425 475.2 1,330 100,8 2,425 475.3 1,477 560,0 1,471 560		(conf.)	0, 1725 0, 191	0, 216 0, 269	0,341	0, 445	9.556	0, 677 n 730	1. 624	1, 121	1 207	1,280	1, 569	1. 677	F. +93		2		0.0247	9, 0037	G, 0085	0.0423	0, 0435	0, 0522	0, 0545	0, 0585	0, 04.7.1	0, 106	0, 133	0. 134	0, 159	0, 182	0, 28?	0, 343	0.394	0, 4:1:1	0.483	0. 709	0. 769	9, 831	0, 902
CURVE 5 CURVE 5 405.2 1.310 405.2 1.310 405.2 1.310 405.2 1.310 405.3 1.311 405.3 1.312 1.313 1.313 1.314 405.3 1.315	۲	CURVE	6.41	7. S. P.	11.76	15, 36	19. 80	χ. r 8	61.3	51.6	81.5	91.5	121.9	136.3	3. 8. 8.		CURVI		1, 030	2, 516	2, 797	3, 044	11, 1159	833 F	3, 666	3, 864	4. 2×4	6, 00	33	-1.26 -1.26		9,31	13, 83	17, 26	20, 83	24, 15	30, 23	61.69	70, 73	80. 16	91, 24
CURVE 5 CURVE 5 1310 45. 40.5 9 1.0143 47. 1.0143	¥	(conf.)	2. 112 2. 312	7. 7. 7.	VE X		0.0833	90.00	0.1140	0.1265	0, 1371	0. 1461	0, 1665	0.133	0, 232	0.320	0, 392	0, 495	0,629	0, 343	9. 976	1, 284	1, 425	1.636	1, 679	1, 787	1, 906	2. 020		VE 9		0.1143	0, 0535	e. 0578	6, 0642	U. 07:17	0,0788	0,0800	0, 0850	0, 1004	0. 163
64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	۲	CURVE	91.4 109.3	127.4	CUR		5. 148	is a	100	3, 304	3, 561	3, 793	4, 294	185	ر. دي	3 x	9, 64	11. 90	15, 09	3. 2.	25, 54	35, 73	45, 20	60, 97						CUR		2, 199	500 H	2, 757	9, 986	11, 344	3, 535	31, 669	.F. X71	C80.7	7. 13
\$4446888 \$24444888 \$24444888 \$24444888 \$24444888 \$24444888 \$24444888 \$2444888 \$2444888 \$2444888 \$2444888 \$2444888 \$2444888 \$24488888 \$2448888 \$2448888 \$2448888	¥	2 3	1.310	1.351	1.4.1	1. 477	1, 50%	<u>4</u> 3:	9 3.		1, 230	1,218	1.301	1.249	1, 343	1,381	1.443	1. 464		Έ. ¹ .		0, 0324	0, 1005	0, 1072	0. 1221	0. 1:::1	0. 144	0, 1522	0. 1956	0.3465	0.3717	0.4074	0, 459	0, 6244	0, 801	020	1.159	157	1, 76.7	1. 46.1	7, 983 7,
# # # # # # # # # # # # # # # # # # #	۴	CURI	405, 2	451.2	202.0	5. P. S	5.05°	627.3	CUR		395, 2	416.2	437, 6	457.3	4.7.2	52.5, 4	0.689. 0.689.	603, 7		CURY		1. 574	090. %	0.44.0	Sign of	3, 1950	چ د ا د ا	7.7	ĭ.0: *	?	£,	5, 62		95 11	5	5		7.3	1.1.7	(- (-	7
	ú	VE 1	90 1 6	<u>.</u>	2. 6 61	56. 56 56. 56	2, 657	9 6 6	1 H.		1, 715	27, 1	1. *16	1. 140	7, 7,1	1, 973	1.9~:	₹. 0 . %		V.E. 3		11	5.4.1	1.4.1	100	: E: T	1,640	1.4.5.		7 1/		1.4.7		1. 479.1	7			#	11.77		
CORVE 1 19.19 4.	۲	CUR		5.054	0 → 6000	7 450	9 :19	6.45, 5	7 L R		7 ()27	6.6	1-12-	477, 9	9.110	4 7 1 5	1.	1.00		H ()		412.2	7.77	, Tot		14	 	6 :1.4		7.50		, 152.	7 -		i i				5.57		

SPTCTTCATION TABLE NO. 155 THERMAL CONDUCTIVITY OF (SILVER 5 COPPER), ALLOYS

Ag (Cu - 99, 50"; unpurity - 9,20"; each)

th percent) Composition (continued), Specifications and Remarks Cu	bequirities 0,03,	Impurities 0,03,	Imparities a, 63,	Impurities 0,03,	Impurities 0,03,	Impurities 0,03,	Inquirities 0,03.	Impurities 0.03.
percent)	;	15,0	25.0	35.0	110.11	45.0	٠. ت <u>.</u> .	
Composition (weight percent)	95,0	5,5	.5.u	65.19	60,11	55.0	0.750	50.0
Bysered American Front, Specima Designation								
Court Real Method year Prints		7.077	1.0		71	71 (200	11	11.00
100	:	57	575	575	1925	1925	177	9761
	3.	-	-	_	-		-	ä
3 / 1 2 / 1	3	Ā.,	Ā	Ä.	E 51	£	÷.	ă Ci
		٠,		-	,-	÷	:•	,

DATA FABLE NO. 188 HIERMAL CONDUCTIVITY OF ISLLVER + COLDER! ALLOYS

(Ag + Cu = 99,500% imparity = 0,20% each)

[Temperature, T. K. Thermal Conductivity, k, Wattern 'K, I]

	CURVE :	Gul ":	TIME 4	5 1		
i-	CL78.			5° 100 H		
4	CURVE 4	3, 192	CURVE 5	545.2 3.113	CURVE 6	: <u>:</u>
i	CLR	11.50	CUR	0.40, 9	CURY	100 to
.2	H 1	3,519	CURVE 2	3,431	CURVE 3	1.00.
+	CURVE	335, 2	CURV	335.2	CUR	3:15.2

SPECIFICATION TABLE NO. 189 THERMAL CONDUCTIVITY OF ISHAER (GOLDLALLOVS)

 $(\Lambda_{\rm E}+\Lambda_{\rm H}-99,56\%)$ = 9,20% each)

(For Data Reported in Figure and Table No. 1891

		ž. 0							
	Composition (continued), Specifications and Remarks	clectrical resistants of 2 and 1.43 woln em at 0.163	Calculated composition; single crestority and the composition of the crestority of the composition of the co	Calculated composition; wire, 1 min and rolled and drawn; annealed close to melting point for 9.5 br.	Similar to the above specimen, electrical conductivity 26.3 and 24.2 x 10° ohm²lem % at 0 and 100.0°, respectively.	Similar to the above specimen except electrical conductivity 19,5 and 16,0 x 10f ohm? em? at 0 and 100 C, respectively.	Similar to the above specimen except electrical conductivity (4.7 and 12.5 x 10f ohm/em²l at 0 and 100 C. respectively.	Similar to the above specimen except electrical conductivity 12.5 to 11.5 x 134 ohm 'em' at 0 and 100 C. respectively.	Similar to the above specimen except electrical conductivity to, 3 and 9,5 x to! ohn? 'em' at 0 and 100 C. respectively.
	ight percent) Au	5.0	<u>/.</u> <u>!.</u>	7.	7 (- ,	19, 26	99,127	# #	11.16
	Compas tion (weight percent) Ag An	8.65		3. 10. E.	11.15	t: '02	F6.65	68, 63	55,81
	Name and Specimen Designation	E.G. 8.00							
	Curve Ret. Method Year Temp. Reported No. No. Used Year Range, K. Frrort,								
	Temp. Rimge, K	3	76-77	13.87	21 21 21 21 21 21	574, 373	71	100 mg	173. NT
	Vear	5	11 12 13	6262	61	6461	1919	1919	919
	Mothad Used	1 4 4	-	-	_	-	⊢	۳	Ļ
ļ	ر ز:	4	.5	9	44.	3	÷.	71.5	9#1
	37		-,			12	ç	į.	7

DATA TABLE NO. 159 THERMAL CONDUCTIVED OF SHAFR GOLD ALLOYS

 $\epsilon A_{\rm pole}^{-1}$ (A) (199–100°), are purely (19, 200°) can be Temperature, T/K Thermal Conductivity $\langle k \rangle$ Wattern $^{1}/K^{-1}$

CL RVE 4 254, 2 2, 08 353, 2 2, 08 97.00 97.00 97.00 97.00 97.00

CURVE 5

573, 2 1, 32

CLRVE 7

CURVES

270.2 0.91 370.2 1.19

CURVE

21 21 23 (2 2) (2

CLRVE

។៩មានី មានមាន់ជាជា

67686 53975

CURVE 1

CURVE

7 0 0 0 0 5 1 7 7 3

SPECIFICATION TABLE NO. 190 THERMAL CONDUCTIVITY OF SILVER - INDICM, ALLOYS

LNg - In - 99-50°, impurity - 0, 20°; each)

For Data Reported in Figure and Table No. 1907

Curve No.	Ref.	Method Used	Year	Ref. Method Year Temp. Reported No. Used Year Ringe, K. Error, ".	Reported Error, "	Name and Specimen Designation	Composition (weight percent) Ag	eight percent) In	Composition (continued), Specifications and Remarks
_	33	٦	1929	1929 1. 9-76			57 66	62.93	Calculated composition: polycrystalline specimen ~6 cm long: p ₀ = 0.45 jubin em (same as the succeeding specimen, Ag - In 1)
÷,	15	≟	1956	15-87		A ₅ - In 1	99.73	0.25	Calculated composition, prepared from Ag (pure, supplied by Nordaska Affiveriet) and In (=0.0006 impurity); annealed in vacuo at 720 C; electrical resistivity ranging from 0.425 to 1.89 johm em at 14 to 273 K; respectively.
••	ī:	-i	1956	15-95		Ag - In 2	9 7 66 66	6 76 76	Similar to the above specimen except electrical resistivity ranging from 0,895 to 2,395 john em at 14 to 273 K, respectively.
7	705	ပ	1967	25.52			99. 0	1.0	Cast; copper used as comparative material.
٠,	75	J	1962	7 / 1			93.0	2.0	Cast; copper used as comparative material.
٤	<u>7</u>	၁	1962	298.2			97. 0	ы Э.;	Cast; copper used as comparative material.
1-	75.	ပ	1007	2.767			96.0	4.0	Cast; copper used as comparative material.
,	307	Ú	2367	298.2			95.0	5.0	Cast, eapper used as comparative material.

DATA TABLE NO. 190 THERMAL CONDUCTIVITY OF [SILVER + INDIUM] ALLOYS

(Ag + In < 59, 50%; impurity < 0, 20% each)

(Temperature, T. K; Thermal Conductivity, k, Watt cm 4 K-1)

CLRVE 3 (cont.)	15 0 0, 722 19, 0 0, 760	e a	0	.0	76. 8 1. 530	82.0 1.570	T.	94.8 1.770		CURVE 4*		298, 2 2.74	CURVE 5		298, 2 2, 75		CURVE 6	298.2 2.85		CURVE 7		298.2 2.15		CURVE 8		298.2 2.31											
CURVE 1	0, 091 0, 123			0, 162	0.196	98.77.0	1 035	_	1, 15,	7.	ã					2, 236	CURVE 2	ļ	1.00	1.01	1.	1, 17	1. 22	1 25			- 1		5.20	2, 20	2, 19	CURVE 3	31.3		0.632	969.0	
	1. 3. 90. 9		17		0 7 55	3, 93	14, 69		5.3		100	19 73	7	. 1	61 (61 (61 (61 (7	SCO		15.0		ري او.	17.4	15.3		20.3		٠.	-10. -	₹. ₹.	81.2		D)		ی ت		17.0	

* Not shown on plot

STORY OF STREET

SPECIFICATION TABLE NO. 191 THERMAL CONDUCTIVITY OF SILVER (LEAD ALLOYS

(Ag - Pb - 99, 50", imparity - 5, 20" each)

For Data Reported in Figure and Table No. 1917

"	ied grug velv.	ectrical spectively.	thes. Pross- m 4	vity	v.ty	vity	vity
Composition (continued), Specifications and Bemarks	Calculated composition, prepared from Ag (pure, supplied by Nordaska Affevered) and Pb (a conois importay); annealed in viscous at 720 C, electrical resistivity ranging from 0, 635 to 2, 07 point on at 14 to 273 K, respectively.	Similar to the above specimen but quenched in viater, electrical resistivity 0, 953 to 2,47 johin em at 14 to 273 K, respectively.	Prepared by fusing Ag (99.9 pure) and 4b (= 0.63 impurities, supplied by Baker), specimen ~5.5 cm long, 0.3 cm² cross-sectional area, electrical conductivity 12, 17 x 10f chm ⁻⁴ cm ⁻³ at 25 C.	Similar to the above specimen except electrical conductivity 9.43 x 10 ⁴ ohm ⁴ cm ⁻¹ at 25 C.	Similar to the above specimen except electrical conductivity 7.14×10^4 ohm 4 cm 4 at 25 C.	Similar to the above specimen except electrical conductivity 6.90×10^4 ohm 4 cm 4 at $25 C_*$	Similar to the above specimen except electrical conductivity 6, 15 × 10 ⁴ ohm ⁻¹ em ⁻³ at 25 C.
position (weight percent) Composition As	0.25	0° 3×	10	50	\$.	04	95
Composition (weight percent) Ag Pb	99, 73	99, 62	96	0×	70	09	90
Specimen Designation	AK-195 I	Ag.: M. 2					
Reported Error,"							
Carre Ref. Method Year Temp. Reported No. No. Used Year Range, K. Error,"	Î	88: <u>91</u>		3.53	3353	22 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	323
Yeru	9564	1006	୍ର ପ୍ରଥନ ଅ	1925		9 261	1925
Wethod Used	÷	. ـا	_	د.	- 1	_	- 1
No.	15	5	9	230	2:10	230	230
No.	~	÷1	n	7	ia		t-

DATA TABLE NO. 191 THERMAL CONDUCTIVITY OF (SILVER * LEAD) ALLOYS

(Ag. Ph. 99, 50°, impurity = 0, 20°, each)

(Temperature, T. K. Thermal Conductivity, k. Wattem⁴¹ K⁻¹)

0.430 333 0, 577 333 0, 561 CURVER CURVE 7 CURVE 5 3.53 0.987 0, 745 CURVE 4 CURVE CURVE 2 CLRVE 1 333 377.5

SPECIFICATION TABLE NO. 192 THERMAL CONDUCTIVITY OF (SILVER+ MANGANESE) ALLOYS

 $(A_{\mathbf{K}}+M\mathbf{n}-99,50^{97})$ unpurity $(0,20^{97})$ each)

	Composition (continued). Specifications and Remarks	Calculated composition; prepared from pare Ag and Mn with	0.00005 impartities, unitorin paying phim em. eross-section 2.5 mm? rolled: p. 1.17 phim em.	Calculated composition; measured in a magness com-	Calculated composition; measured in a magnetic river of 19 kiloocristeds.	Calculated composition; measured in a magnetic record. 12 kilonersteds.	Calculated composition; preparted from party AS and yourdasks . 9, upones unpartities; polycerystalline; supplied by Nordaska . 9, upones unpartities; polycerystalline;	Affiveriet, Halsingborg, specialist and 720 K. eross-section, rolled and out; annealed at 720 K.	Similar to the above specimen.	
e No. 192]	tht percent)	2		9, 28	6.0 8.0	0, 23	6.27		12, 69	
For Data Reported in Figure and Table No. 1927.	Composition (weight percent)	98	99, 72	99,72	99, 72	99, 72	99, 72		87, 31	
For Data Repor	ě	Specimen Designation							-	r
		Curve in Method Year Runge, K Error, Special	5-57		S-4. 1	1- 18 9 1	5-3.9	88-41		16-72
		rear Ra	1959 1.3-57	i.	1956 1.5-4.1	1936 2.	1956 1, 5-3, 9	9961		1936 16-52
		fethod , Used	-	ı	_1	٦	÷	_		.i
		.j.c.		1	619	619	20	ន		<u></u>
		Curve		-	51	n	₹	ശ		ع

DATA TABLE NO. 192 THERMAL CONDUCTIVITY OF [SILVER + MANGANESE] ALLOYS

(Ag + Mn = 99, 56%; impurity < 0, 20% each)

[Temperature, T, K₁ Thermal Conductivity, k, Watte $cm^{-1}k^{-1}$]

¥	E 5 (cont.)	0.702	0.724	0.764	0.764	0.800	1.660	1.700	1,690	1.710	1.720		/E 6		0.340	0.365	0.492	0.398	0.730	0.840														
⊬	CURVE	17.7	18.8	19.4	19.8	20.4	68.4	74.0	79.2	80.8	88.0		CURVE		15.6	16.4	17.6	19.2	67.6	72,4														
×	VE 2	0.0405	0.0425	0.0610	0.0686		0.0805	0.60.0	0.0980		0.115	0, 123		F 3		0.0688	0.1038		E 4		0.0402	0.0635		0.111		VE 5	ļ	0.610	0.610	0,632	0.622	0.654		0.664
۲	CURVE	34.		1,95	2.27	2.57	2.88	3, 23	3.41	3, 70	3,92	4 . 10		CURVE		2,58	3, 72		CURVE		1.50	2, 25	3.41	3, 91		CURVE		14.4	8 .4 .8	15.0	15.4	16.3	16.8	17.2
צי	CURVE 1	0 0340	0 0359			0 05×4	0.0597		0.0657	0.0637	0.0734	0.0733	0.0827	0.0880	0.60.0	0.101	90.10	0.117	0, 532	0.544	0.573	0.599	0.626	0.643	899.0	0.689	0.704	1.260	1, 285	. 286	1.348	1, 328	1.361	90+ 1
-	COL	1 47	55	96	86.1	7.	2.28	2.31	2.61	3.86	2.91	3.08	3.26	3.43	3.74	3.81	3.92		14.83	15,31	16.05	16.98	17.48	18.03	18.96	19.38	19.96	67.46	70.98	73, 98	75.48	77.39	81.58	86.51

A STATE OF THE PARTY OF

SPECIFICATION TABLE NO. 193 THERMAL CONDUCTIVITY OF (SILVER + PALLADIUM) ALLOYS

 $(Ag+Pd+99,\,50\%,\,imparity \pm 0,\,20\%$ each)

[For Data Reported in Figure and Table No. 193]

Curve No.	Ref.	Method Year Used	Year	Temp. Range, K	Reported Error, "	Name and Specimen Designation	Composition (weight percent) Ag	ight percent) Pd	Composition (continued), Specifications and Remarks
-	341	ıı.	1161	298.2			99	99	Approx. composition; electrical conductivity 3.03 x 104 $$ ohm $^{-1}$ cm $^{-1}$ at 25 C.
24	142	ы	1161	298, 2			0:9	07	Approx. composition; electrical conductivity 4, 56 x 10^4 ohm $^{-1}$ cm $^{-1}$ at 25 C.
r	241	ப	1911	298. 2			o.	30	Approx. evanosition; electrical conductivity 6,43 x 104 ohm $^{-1}$ cm $^{-1}$ at 25 C
+	7	ы	1911	208.2			90	02	Approx. composition; electrical conductivity 9, 47 x 10^4 ohm $^{-1}$ cm $^{-3}$ at 25 C.
က	241	ш	1911	298, 2			90	10	Approx. composition; electrical conductivity 16, 14 x 10 ⁴ ohn ²¹ cm ²¹ at 25 C.
9	240	ı,	1956	2. 2-112			97, 92	2, 0.8	Specimen supplied by Johnson, Matthey and Co., 14d.; annualed at 610 C, $\rho_0 \approx 0.39$ μohm cm, electrical resistivity 2, 52 μohm cm at 29.4 K.
(~	240	1	1956	1, 8-123			97, 92	2, 03	Specimen supplied to Johnson. Matthey and Co. , 14d.; strained: ρ_0 = 0, 14 μ phm cm. electrical resistivity 2,54 μ phm cm at 293 K.
30	240	- 1	1956	1. 9-147			केत 'केत	5, 06	Specimen supplied by Johnson, Matthey and Co., 14d., annealed at 610 C, ρ_0 = 2, 20 µohm cm; electrical resistivity 3, 91 µohm cm at 293 K.
on .	240		1956	2. 0-150			90. 1		Specimen supplied by Johnson, Matthey and Co., Ltd.; annealed at 650 C, ρ_0 = 4.15 polymem: electrical resistivity 6.0 polymem at 293 K.
10	240	-1	1956	2.3-157			79.92	26, 08	Specimen supplied by Johnson, Matthey and Co., Ltd., annealed at 650 C
ñ	240	-1	1956	2, 1-147			79, 92	20.08	Specimen supplied by Johnson Matthey and Co Ltd. ; annealed at 800 C ρ_c = K. 45 jubhn cm, electrical resistivity 10.0 jubhn cm at 293 K.
12	240	a a	1956	2, 2-145			70.38	29. 62	Specimen supplied by Johnson, Matthey and Co., Ltd.; annealed at 890 C· ρ_0 = 12. 78 polm cm, electrical resistivity 14. 66 polm cm at 293 K.
13	240	-	1956	1, 9-151			09	40	Specimen supplied by Johnson, Matthey and Co., Ltd.; annealed at 880 C; ρ_0 = 19, 10 polm cm, electrical resistivity 21, 1 μ hm cm at 293 K.

SPECIFICATION TABLE NO. 193 (continued)

Construction of the second sec	Composition (continued), Specifications and refliction	Specimen supplied by Johnson, Matthey and Co., Ltd.; annealed at 880 C; $\rho_c \approx 27.7$ µphm cm, electrical resistivity 27.7 µphm cm at 293 K.	
	Composition (weight percent) Ag	000	0 50
	Ref. Method Year Range, K Error, Specimen Designation Ag. Used	240 L 1956 1. R-117 50	390 P 1956 448.2 50
	Curve R	14 24	15 35

A LONG TO SERVE

DATA TABLE NO. 193 THERMAL CONDUCTIVITY OF SHLVER - PALLADIUM ALLOYS

(Ag + Pd > 99, 50%), impurity = 0, 20% each)

mperature, T. K; Thermal Coaductivity, k. Watts cm⁻⁴K⁻¹,

-	x.	CURVE, 13 (cont.)	0, 220	7 11 2	- 21 - 21 - 21 - 21 - 21 - 21 - 21 - 21		CURVE 14		0, OIL 45	0.00123	0,0119	#:10 p	0,0159	0.0171	5.10°C	0.0220	0170.0	0.0310	0.0000	\$ 700 O	0,0004	F(E)O O	0, 133	0.124	0.155	161.0	0 172	161.0		E 15		0, 251												
ŀ	-	CURVE	9.13	 	t (2)		8133	:	Z :	- 36 N C	11.	3.4.5	36° %	4. 01	4, 27	9. c	t á	n a d	5 3	. a.	11. 2		0.00	22.6	9 7 7 9	1 9 1	: F	117.3		CURVE 15		44.7												
-	Z	CURVE 12	0.00761	0.00917	01010 01000	0,0175	0,0215	0.0550	0, 0 855	991.0	0, 187	0.202	0.209	0, 225	0.238	2. Z-3.	U. 2h	0, 262	\$ 20 co	o, 305 202	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T	;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.500	0,0000	0,00322	215.0	0,0158	0,0194	0, 0211	0.0256	0, 0253	0.0416		0.00%	0.0906	0, 130	7.00	0, 130	0. 196 6. 963	0. 20.3	9, 208 0, 213	
f	-	5	2,24	2.5	£ 24 14 22	£.55	4, 27	(2, 12) (2)	7. 6 ;	: 4 £ £	23. 23. 24.	13 X 71	32.9	9.09	3 / 3 / 3 /	5. 95 5. 95	5 of 5	0.16	110.4	123.	0.01	F10. 1	3	Ž		96.	Ç.	} = i =	. S	3, 67	3, 87	4, 27	4.28	5, 73	و. دو:	31.8	66 6 6	14, 1	1.5	2.5. 5	27.5	61.7	3. F.	
	v.	(0 (cont.)	0,360	265.0	7.55 7.55 7.55 7.55 7.55 7.55	0.450	0.510		디	66000	0,0111	0, 0134	0,0134	0,0145	6, 0159	0,0169	2 To 0	0.0194	0, 2603	0.0207	0,2300	0.0201	0,0247	0, 0271	0,0263	0,000	0,0652	0.000	0.1.5	0.155	0, 223	0, 27.5	b. 270	0,2%	0,282	*	0.315	9.31%	20.00	0.359	0.347	0.436	5 5 7 7 5 7 7 7 7 0	
rity, K. Matt	-	CURVE 10 (cont.)	86,8	110.6	120, 6	113, 1	156, ×		CURVE	:	: <u>1</u> i ~i	2, 75	3. (*) (*)	2, 89	90 :	x ::	98.	(-) (-) (-) (-)	9 20 20 20 20 20 20 20 20 20 20 20 20 20	3 : ::	i i	06.4	7 O	(*) **	ж ; М :		9 ; 6	11.3	; x	20.2	27, 9	55, 5	99. e	60.7	61.1	71.1	[] m	# : 3/4:	 	0.10	91.2	119.7	121. 5	
Thermal Conductivity, K. Watts cm 'K-'	×	(cont.)	0, 175	0, 20 ×	0, 242	0, 313	0:3:0	6,432	6, 444	0.7±0.0	0,000	0.614	0,640	79 °0	0, 725	0.75		0, 520	¥.		2		0.0102	0.0082	0.0138	0.0165	9,0194	0,0213	2 70 0	0.64	0,0434	0, 0539	0.0802	c. 102	0. 134 0.	9: '0	0.214	0,226	0.273	6.241	0, 252	20%.0	975.0	
	- -	CURVE 9 (cont.	±.≎	16. 7	20,4	1 7	34.0	97.0	t- 20	л г 6 г		104 0	105, 6	115, 4	125, 3	138.3	146.7	9 × 1	150.4		CURVE 10		:: ::	2.01	2, 46		S :	DE T	, j	6.09	84.0	7, 12	9, 13	11.2	14.1	17.6	26 1	6 . 7.	27 (00)	90.5	65.4	s. 69	S1. 6	
Temperature, T. K.	¥	(cont.)	0.110	0. 121	0, 121 0, 139	. 11. c	0, 170	₩07.0	0, 235	0,256	0.465	177	0,514	0, 534	0,540	0, 696	0, 717	0, 764	0. SIE	0, KR2	0, 880	1.00° 0	0, 963	1.09	: 12 : 13	1. 2.:	1, 29	. :: ·	=		0, 0131	9, 0155	0.0197	0, 0236	0, 6284	0, 0326	0.0370	0, 0666	0, 0715	0.0776	0,0910	0. 108	0. 133	
	-	CURVE & (cont.)	6, 21	6, 55	တွင် တိုင်	1 1 1] [6 6	10. 5	E .21	₩ - ₩ \	+ 5 0 1	25.2	30.	æ E	36.3	1.5	57.4	65.6	5) (-	# .i.	5 02	91.0	91.2	110.0	121.1	120.7	9.9.9 9.1.9	: · · ·	n GWGHO		1.95	2, 20	2, 66	3,06	3, 53	S ri	4. 3.1	\$7 9	7. 9	71 1-	17 % %	9.34	10.9	
	*	(cont.)	1, 70	1, 92		-	0.00	0,0562	0.0676	0740 O	0, 0856 0, 110	0.116	#11 0	0, 135	0, 141	9,200	0, 246	977.0	0, 310	9, 148	0, 3719	0,461	o, 514	0,633	93 x 30	1. 2.	. 35 	2 2	900		1 5	1. 77	7	66 1		ж С:		0,0248	0, 0307	0, 6360	0,0450	0, 0541	0, 0691	
	;- -	CURVE 6 (cont.)	91.5	111.7	7 11110	CURVE	7	20.50	13 13	22 (F) ଜୁନ ଜୁନ	7 T	:: -	71.7	5,311	7,36	9,00	10, 5	- .::	1.1, 5		0.9 1	r.	۲ وز		10 B)	1 99	3	2 1	e in	0.15	10t.	117, 2	127, 8		CURVE 8		1, 94	61 61 61	5 67	н. 13	 	(- ? i	
	æ	CURVE 1	0, 320		CURVE 2	054.0		CURVE 3		0, 570	E BACIL	-	7		CURVE 5		1.410		CURVE 6		0,0575	0, 0614	0,0723	0,0959	0, 115	0.11	0, 142	0, 196	0.000	0,203	75.70	07.420	0,550	0,691	0.829	0,976	50 .C	1.33	7	1.53	1, 61	(<u>9</u>)	70	
	÷	CUR	298, 2		E.	9	9 .00	CUR	ł Į	298, 2	115	3	21 20 20 21		CUR		298.2		CU3		2, 15	2, 30 30	2,66	3, 15	3, 65	66°°	4.27	(3) (4)	ā ē		57	11.1	74. 7	18, 2	(- 2i 31	9.87	35.8	56. 7	9.99	75, 1	8.2.8	85. ts	90, 7	

SPECIFICATION TABLE NO. 191 THERMAL CONDUCITATIV OF ISHAER + PLATIMENT ALLOYS

(Ag + Pt - 99,50%; impurity - 0,20%; each)

Curve No.	Ref.	Curve Ref. Method Year No. No. Used	Year	Temp. Range, K	Temp, Reported Range, K. Error, 7,	Name and Specimen Designation	Composition (weight percent) Ag		Composition (continued), Specifications and Remarki
~		F	11 61	7 61 61			0.46	10.0	
Ω	2	ıa	1911	29.8			75.0	25.0	
÷	241	Œ	1161	298			70.0	0.00	
₹	241	ш	1911	298			67.0	33.0	
'n	330	¥	39.26	521.3			50.0	50, n	

DATA TABLE NO. 191 THERMAL CONDUCTIVITY OF ISHAER + PLATINGME ALLOYS

(Ag+Pt+99,50%, inpurity+0,20%, each)

(Temperature, T, K: Thermal Conductivity, k, Watt end 'K 1)

CURVE 17
298 0.98
298 0.384
CURVE 3
298 0.31
CURVE 4
298 0.30
313
CURVE 5
521.2 0.372

No graphical presentation

SPECIFICATION TABLE NO. 195. THERMAL CONDUCTIVITY OF SHAVER + TEL ALLOAN

The second secon

(Ag + Sa 119, Ga" e impair év + a, 20 - each

Composition (continued), Specifications and Remarks	Ag						
cent		10.0	\$1. 46 \$	9,100	0.11	20.05	
Composition (weight percent)	Ar.	96. n	0.9	0.01	6,63	20,05	
to all publication of the control of	Curve Ret, Method Year Ruga, K Franc, Specim Designation No. No. Used		2,505	5,550	6 1111	C Copp	23.3.2
	Ten Russ						
1	od Year		1, 1923	5761	1925	1925	1935
	TSG.		3.00	gan L.	os.	330	230 1.
	Ve Be		÷	÷)	*i	÷1	e) (0
	153						

DATA TABLE NO. 195 THERMAL CONDUCTIVITY OF (SILVER 2-10), ALLOYS

 $\langle A_{R} \rangle \cdot Sn = 99.56 ^{\rm C} {\rm g}/({\rm impurity}) \leq 0.20 ^{\rm c}/({\rm exch})$

Pemperature, T. K. Thermal Conductivity, E. Wartens, E. J.

T K T K

CURVE I CURVE 5

333.2 0.297 333.2 0.577

CURVE 2

333.2 0.497

CURVE 3

CURVE 3

333.2 0.490

No graphical presentation

SPECIFICATION TABLE NO. 196 THERMAL CONDUCTIVITY OF [SHAFR + ZINC] ALLOYS

(Ag + Zn - 99/59%) impurity - 0.20% (ach)

[For Data Reported in Figure and Table No. 196]

Composition (continued), Specifications and remarks	Calculated composition; specimen relied and drawn to wire 1 mm thick; he ated to near melting point for 0.5 hr; electrical conductivity 21,4 and 19,5 x 101 ohm="emi-date 0 and 100 C, respectively.	Similar to the above specimen except electrical conductivity 13,5 and 13,0 x 10 ⁴ ohm ² em ² ; at 0 and 100 C. respectively.	Similar to the above specimen except electrical conductivity 9.3 and 9.2 x 10 ³ ohm/lem? at 0 and 100 C. respectively.	Similar to the above specimen except electrical conductivity s, 1 and s, 2 x 104 ohm tem? at 0 and 100 C. respectively.
Composition (weight percent) Ag Zn	96,47 31,53	92,63 7.37	86,93 13,07	16,81 - 90,18
Name and Specimen Designation				
Curve Ret. Method Vear Temp. Reported	271,373	273,373	800.00	273,373
Vear	6161	9191		1919
Method	-	i-	· Þ	(-
Fei.	91 0	9	: <u>9</u>	: <u>9</u>
Curve		^	ı ::	; -

DATA TABLE NO. 196 THERMAL CONDICTIVITY OF (SILVER + ZINC.) ALLOYS

(Ag + Zn | 90, 50%; impurity | 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k -Watt cm $^{1}\,\mathrm{K}^{-1}$

CURVE 4 274.2 0.70 375.2 0.49

CURVE 3

273.2 1.00 373.2 1.27

C:RVE 2

273, 2 1, 56 373, 2 1, 45

CURVE 1

SPECIFICATION TABLE NO. 197 THERMAL CONDUCTIVITY OF [Sodiem + Mercury] ALLOYS

 $(N_A+H_R \otimes 99, 50\%) \text{ impurity} = 0, 20^{\sigma^2})$

(For Data Reported in Figure and Table No. 197

Commence to the Secretions and Remarks	Composition (commerce), opening	Calculated composition; pure; supplied by Mallinekrodt	Chemical Co.; in Jiquid state.	Similar to the above specimen.	
(Change delayer)	Comprisition (weight percent)	36.95		47, 50	
	Comprisition (w	88 89	;	52, 50	
	Name and Specimen Designation				
	Reported Error, "		3,0	÷	:
	Temp.		373-429	406 43.1	TGC 400 404
	Year		1938		r ň
	Method		65 L 19		.1
	Ref.		65	1	65
	Curve Ref. Method ye	2	-		c i

DATA TABLE NO. 197 THERMAL CONDUCTIVITY OF [SODIUM + MERCURY] ALLOYS

[Temperature, T, K; Thermal Conductivity, k, Watt em -1 K -1] $(Na + Hg \approx 99, 50\%, \ impur(ty < 0, 20\%)$

0, 233 0, 232 0, 249 CURVE 1 373. 4 399. 8 429. 0

464, 6 0, 175 433, 5 0, 187 CURVE 2

[No + K 29 50%; impurity & 0.20% each]

THERMAL CONDUCTIVITY, Watt em

SPECIFICATION TABLE NO. 194 THERMAL CONDUCTIVITY OF (SODIUM + POTASSIUM) ALLANS

(Na + K \geq 99, 50%), imparity $<0,\,20\%$ each)

(For Data Reported in Figure and Table No. 193)

Composition (continued), Specifications and Remarks	Commercially pare; in liquid state; stainless steel used as comparative material (thermal conductivity $\sim 6,2$ wattem 1 C 1).	Eutrette composition; prepared from commerically pure Na and K. in liquid state (melting point -12, 5 C).	The above specimen solidified and then remelted. Entertie commostion; electrical resistivity reported as 36, 26	~151.28 point on in the range 310 ~1363 K; thermal conductivity data calculated from measured electrical resistivity values and the Lorenz number 2, 45 x 10 ° W ohm K °.
Composition (weight percent)	5. X4. 3.			
Composi	51.7			
Name and Specimen Designation		N S R	Na K	Ψ Ψ
Curve Ref. Method Year Range, K Error, Speci No. No. Used				
Temp. Range, K	412-770	347-621	373-622	266-1366
Year	C 1946	1950	1950	1965
Method	ပ	. i		1
No.	1 242	243	243	859, 861
Curve No.		91	n	7

DATA TABLE NO. 198 THERMAL CONDUCTIVITY OF [SODIUM + POTASSIUM] ALLOYS

(Na + K = 99, 50%, imparity = 0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-4 K-4]

CURVE 3 (cont.)	431, 20 0, 176 441, 26 0, 180	20 0.	Ö	20 0.2	20		CURVE 4		266 0.154	Ö	ó	9	Ö	0	<u>.</u>	0	33 0	ó		1366 0.218																	
CURVE 1	412, 20 0, 245 415, 80 0, 249	50	30 0.	263	.00 .0	96	53. 00 O.	14. 80 0.	769.76 0.282		CURVE 2		346.70 0.184	0.1	0. 1	20 0.13	50 0.1		.20 0.1	20 0.1	80 0.	20 0.1	20 0.	20 0.	559. 20 0. 201	20 0.	20 0.	20 0.2	. 20 0, 26	CURVE 3	373, 20 0, 155	20 0.1	-	20 0.1	0 07	14. 20 0. 1	R. 20 0. 1

SPECIFICATION TABLE NO. 199 THERMAL CONDUCTIVITY OF LTANTALUM + NEOBTUM | ALLOYS

(Ta + Nb > 99, 10%; impurity < 0, 20% cach)

Composition (continued), Specifications and Remarks		0.02 Mo, 0.014 W. < 0.01 each of Fe, Si, and Th; specimen	7.28 mm in dia and 65.8 mm long; prepared from a our	produced by electron-beam melting in vacuum; density	16.57 g cm ⁻¹ at 20 C; electrical resistivity reported as	54.8, 63.3, 64.5, 72.4, 80.7, 90.5, tour and tour	g ohm em at 1243, 1488, 1512, 1750, 2010, 4020,	and 2782 K, respectively.
Composition (weight percent)	Ta		10.00					
but ame Name and	Curve Ref. Method year Temp. repaired Specimen Designation as No. 11sed Range, K Error, v. Specimen Designation		,	SOE LONG LONG LONG L				

DATA TABLE NO. 199 THERMAL CONDUCTIVITY OF UTANTALUM + NIOBRUM / ALLOYS

 $(Ta+Nb+99,50\%; impurity \le 0,20\%; each)$

[Temperature, T. K: Thermal Conductivity, K. Walt cm. 14, 1]

2 160 0.604 2275 0.604 2275 0.604 2393 0.629 2506 0.635	2695 2906 2900
T K CURVE 1* 1208 0.557 1250 0.510 1280 0.522 1306 0.572	1410 0.545 1460 0.606 1490 0.549 1505 0.549 1560 0.572 1560 0.621 1600 0.594 1670 0.586 2032 0.602 2062 0.602

^{*} No graphical presentation

TO STREET WAS ARRESTED.

SPECIFICATION TABLE NO. 200 THERMAL CONDUCTIVITY OF (TANTALEM + TUNGSTEN) ALLOYS

(Ta $^{\circ}$ W $^{\circ}$ 99, 50%; imparity $^{\circ}$ 0, 20%)

For Data Reported in Figure and Table No. 2005.

		lie (Ref. McInd Vent Range, K Error, C.	Reported Error, C	Name and Specimen Designation	Composition (weight percent)	ight percent) W	Composition (continued), Specifications and Remarks
	υ	1963	435-1049	न ॥		500, 43	5, 40	Impuritace: 0. 10 Nb, 0. 02 St, 0. 02 Tt, 0. 01 Mo, 0. 01 Nt, 0. 005 Fe, and 0. 004 C; specimen 2 in. dia, 1 re. long, measured in an He atmosphere, Armeo iron as standard.
	<u>-</u>	1963	1122-2850	7 11		90, 43	9.40	The above specimen measured by another method,
5 7	:	1966	1514-21.80		Ta-10 W; No. 1	Kal.	о .;	6, 0025 C and 6, 002 O; specimen 2, 1265 cm in dia and 6, 3254 cm long; density 16, 91 g cm ⁻³ ; thermal conductivity was derived from the temp distribution on the flat surface of the cylindrical dise specimen heated in high vacuum (10 ⁻⁶ nm Hg) by high frequency induction generating localized heating within 0, 003 n. of the surface at current frequency of 500, 000 eps with heat lost only by radiation; the cylindrical surface being assemed isothermal, and the temp gradient along the radius was analytically correlated to the thermal conductivity.
-	1	1966	1731-2742		Ta-10 W; No. 2	Bal	9. 9	0, 0025 C and 9, 002 O; similar to the above specimen except specimen 2, 1251 cm in dia and 0, 3145 cm long.
ភា ។ វៈ	1	1966	1652-2756		T 111; No. 1	Bal,	χ. ,-:	2. o Rf. 6.6034 et. 0.0023 N. 0.0022 C and 0.0005 H; cut from the same bar as the above specimen; specimen 2.5476 cm in dia and 0.2504 cm long; density 16.73 g cm ⁻² ; measuring method same as that for the above specimen.
6 349	1	1966	1524-2082		T 1111; No. 2	Bal.	x (;	2, 0 Pf. 6, 0034 O. 6, 0023 N. c. 0022 C. and 0, 0005 H; similar to the above specimen.

DATA TABLE NO. 200 THERMAL CONDUCTIVITY OF [TANTALUM + TUNGSTEN] ALLOYS

(Ta + W \geq 99, 50%; impurity \geq 6, 20%)

(Temperature, T. K; Thermal Conductivity, k, Watt cm -1 K -1)

•	CURVES	O.	1816 0.627		.5	ιģ	5 0.	0	2520 0.596	0	0	Ö		CURVE 6		0	1585 0.627	0	0	0	Ö	Ö	0	2082 0.586															
ţ	VE 1	0, 5:17			604		VE 2		0.630			0, 701	0.713	0.736	0.762	0.731	6, 787	0, 800		VE3	1	0.546	0.535	0.552	0.518	0.516	0.4%	0.526	0.586		/E 4	0.610	0.599	581	0.5H2	0.580	0.571	0.542	•
•	CURVE			828.2	1048.7		CURVE		1122. 1	1313.7	1608.2			2188.7	2369.3	2538, 7	2677.6	2849.8		CURVE		1514	1648	1733	1307	1857	1938	1973	2012	2130	CURVE	1731	1868	1990.5	2075	2238	2496	2619	2142

Not shown on plot

SPECIFICATION TABLE NO. 201 THERMAL CONDUCTIVITY OF [TELLURIUM + SELENIUM] ALLOYS

 $(T_{K}+S_{K})\cdot 99,\,50\%;\,\,\mathrm{impart}(y\geq 0,\,20^{67})$

[For Data Reported in Figure and Table No. (201)]

Composition (continued), Specifications and Remarks	Prepared from 99, 995 pure Te and 99, 9985 pure Se; molten specimen contained in a short cylindrical cell.	Similar to the above specimen.
Composition (weight percent) Te	96, 85 3, 15	h6, 60 13, 40
teported Name and Stror, Specimen Designation		
Temp. Reported	753-904	742-623
Curve Ref. Method Year No. No. Used	1966	1966
Metho	914 L	14 L
ve Rel	i j	Š
1 9 S	-	ç

And the second of the second o

DATA TABLE NO. 201 THERMAL CONDUCTIVITY OF (TELLUREM + SELENIUM) ALLOYS

(Te + Se > 99, 50%; impurity < 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1

733 0.052 8.35 0.063 9.04 0.074 2.12 0.021 7.34 0.033 8.43 0.044 9.23 0.044

. ...

Section 41 Section 64

SPECIFICATION TABLE NO. 202 THERMAL CONDICTIVITY OF TELLURIEM + THALLICM, ALLOYS

 $(Te+Tl \approx 99,\, 50\%,\, nnpurity+0,\, 20\%)$

[For Data Reported in Figure and Table No. 202]

Composition (continued), Specifications and Remarks		p-type; electrical resistivity 9,79, 2,36, 1,60, and 1,41x 10 ⁻² ohm cm at 205, 302, 401, and 430 C respectively; measured by the neck-down sample method.	p-type, electrical resistivity 4,33, 3, 61, and 2,69 x 10 ⁻³ obnion at 2×6, 310, and 378 C respectively; measured by the neck-down sample method.	p-type; electrical resistivity 4, 24, 2, 79, 1, 93, 1, 62, and 1, 26 x 10 ⁻³ olm cm at 321, 424, 527, 620, and 796 C respectively; measured by the neck-down sample method.
Composition (weight percent)		- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	4 7)	<i>,</i> ÷
Composition (69	ń	5.5
Name and Specimen Destantion				
	i			
Curve Ref. Method Year Temp. Reported		1965 483-680	561-627	594-1938
Year		1963	1965	1965
Method		ш.	ப	ய
F.		927	927	927
Curve		4	61	m

DATA TABLE NO. 202 THERMAL CONDUCTIVITY OF [TELLURUM + THALLIUM] ALLOYS

(Te + Tl : 99, 50%; imparity < 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k. Watt cm. 1K-1]

T. Etailo

483.2 0.0032 492.2 0.0035 515.2 0.0042 541.2 0.0052 569.2 0.0054 588.2 0.0054 620.2 0.0106 630.2 0.0101

CURVE 2 561.2 0.0051 576.2 0.0061 592.2 0.0061 607.2 0.0071

CURVE 3

594.2 0.0094 617.2 0.0107 657.2 0.0115 701.2 0.0154 701.2 0.0154 702.2 0.0258 814.2 0.0252 855.2 0.0314 950.2 0.0364 950.2 0.0364 950.2 0.0568 1045.2 0.0568 1068.2 0.058

SPECIFICATION TABLE NO. 203 THERMAL CONDUCTIVITY OF | THALLIUM + CADMIUM; ALLOYS

(T) + Cd + 99,50%; imparity $\leq 0,20\%$ each)

Composition (continued), Specifications and Remarks		Impurities < 0.03.	Impurities < 0.03.	Impurities < 0.03.	In:purities < 0.03.	Impurities < 0.03.
ht percent)	Cd	10.0	20.0	30.0	40.0	80.0
Composition (weight percent)).e	90.0	80.0	70.0	0.09	50.0
Name and	Specimen Designation					
fcmp.	Range, K Error, "	336.2	336.2	336.2	336.2	336.2
		1925	1925	1925	1925	1925
Method	No. Used 1881	ن	نا:	۱ ــــ	٠	i
Ref.	ż	230	30	330	230	230
Curve	ż	-		. m	* *	ď

DATA TABLE NG. 303 THERMAL CONDECTIVITY OF (THALLIUM + CADMIUM) ALLOYS

 $(T_1 + Cd) > 99.50\%$; impunity < 0.20% each)

[Temperature, T.K. Thermal Conductivity, k, Watt cm-1K-1]

×	/E 5	0.661						
i-	CURVE	336.2						
мŝ	CURVE 1*	0.444	CURVE 2*	0.494	CURVE 3	0.536	CURVE 4*	0.582
Ļ٠	CURI	336.2	CUR	336.2	CUR	336.2	CUR	336.2

No graphical presentation

MANARES AND

المؤافية في الطائية والمرابط المراب المرابط والمرابط والمراطع والم والمراطع والمراطع والمراطع والمراطع والمراطع والمراطع والمراط والمراطع والمراطع والمراطع والمراطع والمراطع والمراطع والمراطع

SPECIFICATION TABLE NO. 200 THERMAL CONDUCTIVITY OF [THALLIUM + INDIUM] ALLOYS

(Tl+1n-99,59%), impurity (-0,29%)

(For Data Reported in Figure and Table No. 204)

Compusition (continued), Specifications and Remarks	Calculated composition; • 0.65 impurities; innealed poly- erystal; measured under vacuo of ~5 x 10 · mm llg and in a longitudinal magnetic field; in normal state.	The move specimen in superconducting state. Calculated composition; 0.05 imperities; innealed poly- crystal; measured in a longitudinal magnetic field and under vacuo of ~5 × 10° mm Hg; in normal state.	The above specimen in superconducting state.
Composition (weight percent) Th	57 T. T.	47, 43 35, 97	35, 97
Composition (Tl	52, 17	52, 17	64, 63
Nume and Specimen Designation			
Curve Ref. Method Year Temp. Reported No. No. Used Year Runge, K. Error. C.	ia ei	છ છ સંસં	ei ei
Temp. Runge, K	1, 3-6, 7	1, 3-2, 8 1, 3-7, 0	1, 3-2, 6
Year	132 L 1955	1955	1955
Methor Used	-1	י ר	H
	135	132	132
Curve No.	-	e) =5	7

DATA TABLE NO. 202 THERMAL CONDUCTIVITY OF [THALLIUM + INDIUM] ALLOYS

(T1 + In 199, 59%; impurity 10, 20%)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

پد	CURVE 3 (cont.)	0.0118	0. 012k	c. 0139	0.0151	0.0162	0.0174	0.0186	9.019я	0.0211	0.0223	0.0251	0.0272	0.0298	0.0318	v. 0359		CURVE 4		0.0115	0.0115	0.0115	0.0116	0.0118	0.0121	0.0126	0.0132														
۴,	CURVE		2.60	05.5	3.00	3, 20	3.40	3.60	3.80	4.00	4. 20		5. 21	5, 74	6. 19	7.01		CC		1.30	1.40	1.60		2.00	2. 20	2.40															
¥	CURVE 1			0.0079	0, 0089	0.0099	0. 0110		0.0131	0.0141	0.0152	0.0164	0.0175	0.0187		0.0212	0.0224	0.0244	0.0261	0.0289		0.0346		CURVE 2		0.0109	0.0111	0.0114	0.0119	0.0123	0.0128	0.0134	0. 6140	0.0146	CURVE 3	0.0061	0. 006e	0.0076	0.0086		0.0107
£-	5	1.30	1.40	1, 60	1.80	2. 00	2, 20	2.40	2.60	2.80	3.00	3, 20	3, 40	3, 60	3.80		4. 20		4.95	5.48		6.73		CC		1, 30	1.40	1.60	1.80	2.00	2, 20	2. 40	2.60	2, 80	5	1.30	1, 40	¥, 60	1.80	8	2, 20

SPECIFICATION TABLE NO. 205 THERMAL CONDUCTIVITY OF (THALLIUM + LEAD) ALLOYS

(TI + Pb : 99, 50%; impurity < 0, 20% each)

[For Data Reported in Figure and Table No. 205]

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent) T1 Pb	reight percent) Pb	Composition (continued), Specifications and Remarks
1	230	٦	1925	333			8 0	¢1	Prepared from Pb (< 0.03 impurity, supplied by Baker) and Tl (technically pure, supplied by Eimer and Amend); specimen -5.5 cm long, 0.3 cm² cross-sectional area; electrical conductivity at 25 C, o(25 C) 4.95 x 10 ⁴ ohm '1cm ⁻¹ .
C1	230	<u>.</u>	1925	333			96	4 7	Similar to the above specimen except $\sigma(25 \text{ C}) - 4.72 \times 10^4$ ohm "1cm".
က	230	ı	1925	333			94	ų	Similar to the above specimen except $\sigma(25~C) - 5.16 \times 10^4$ ohm "1cm".
4	730	-1	1925	333			06	91	Similar to the above specimen except \((25 \in) \cdot \cdot 4.90 \times 10^4 \) ohm \(^1\cdot m^{-1}\).
ဟ	230	1	1925	333			0%	20	Similar to the above specimen except σ (25 C) \cdot 4.02 x 104 ohm $^{-1}\text{cm}^{-1}$.
မှ	230	٦	1925	333			7.0	30	Similar to the above specimen except σ (25 C) = 3.04 x 104 ohm $^{-1}$ cm $^{-1}$.
t-	230	J	1925	333			96	90	Similar to the above specimen except 0 (25 C) 2.63 x 10 ⁴ ohm ⁻¹ cm ⁻¹ .
x	230	J	1925	333			50	50	Similar to the above specimen except σ (25 C) \pm 2.63 x 10° ohm $^{-1}$ cm $^{-1}$.
တ	ř		1927	80,273		PbT1; 1	66.0	34.0	Coarse grained; electrical conductivity 2.817 and 4.2 x 104 ohm "lcm" at 273 and 80 K, respectively.
10	8	د	1927	80, 273		Pot!; II	66.0	34.0	Fine grained; electrical conductivity 2. 672 and 3.93 x 104 ohm "1cm" at 273 and 80 K. respectively.

0.127

8 2

CURVE 10

80 273

DATA TABLE NO. 205 THEIMAL CONDUCTIVITY OF (THALLIUM + LEAD) ALLOYS

(T1 + Pb : 99, 50%; impurity : 0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, watt cm-1K-1]

333 0 385

CURVE 2

CURVE 1

333 0.364

CURVE 3

533 0.402

CURVE 4

333 0.377

333 0.322

CURVE 5

333 0.259

CLRVE 7

CURVE 6

333 0.226

CURVE 8

333 0.201

CURVE 9

an in a street of the street o

and the first of the second of the fact of the first of t

SPECIFICATION TABLE NO. 206 THERMAL CONDUCTIVITY OF THALLIUM (TELLURICM) ALLOYS

 $(T1-Te-99,50^{\prime\prime}) \text{ insparity } -0.20^{\prime\prime})$

For Data Reported in Figure and Table No. 206

Composition (continued), Specifications and Remarks	p-type; electrical resistivity 2, 95, 2, 29, 1, 95, 1, 71, and 1,58 x 10 ? onn on at 431, 533, 656, 713, and 769 C respectively; massured by the neck-down sample method.	n-type; electrical resistavity 1, 51, 1, 49, 1, 42, and 1, 21 x 10 ⁻¹ ohm cm at 45s, 540, 64s, and fest C respectively; measured by the neck-down sample method.
Consposition (weight percent) T1	1 1 1 1 1 1 1 1 1 1	7.9
ed Name and Specimen Designation		
Temp, Reported	701-1067	722-1024
-	1965 70	1965 72
Pod Ye	ω.	3 3
tet. Me	927	750
Curve Ret. Method Year No. No. Used	- e	51 51

THERMAL CONDUCTIVITY OF [THALLIUM + TELLURIUM] ALLOYS DATA TABLE NO. 206

(T1 + Te | 99, 50%; imparity | 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm. tK.1]

CURVE 1

0.0128 0.0131 0.0149 0.0178 0.0195 0.0195 0.0237 0.0237 0.0329 710.2 710.2 757.2 811.2 868.2 925.2 942.2 95.2 1041.2

CURVE 2

0.0059 0.0124 0.0209 0.0270 0.0347 722.2 745.2 915.2 569.2 925.2

and the state of the state of the state of the Habitan in the state of the best of Manuschine and Manuschine in the state of the state

SPECIFICATION TABLE NO. 207 THERMAL CONDUCTIVITY OF LTHALLIUM + TIN ALLOYS

(41 + Sn \simeq 99, 50%; ampurity $\stackrel{?}{\sim}$ 0, 20% each)

Composition (continued), Specifications and Bemarks	Impurities · 0.03.	Imparities < 0.03.	Impurities 0.03.	CALL TO A real page 1 money to	inputation of the second of th	Impurities · 0.03.	Impurities · 0.03.
ercent) Sn	10.0	20.0	30.0	:		46.6	96.0
Composition (weight percent) Ti	90.08	80.0	20.0		0.00	53.4	50.0
Name and Specimen Designation							
Reported							
Temp. Kunge, K	336.2	336.2		336.2	336.2	336.2	336,2
Year	1925	0.00		1925	1925	1925	1925
Method	_	۔ (1	_ i	-	ı,	_
Surve Ref. 3	Ŗ		1	<u> </u>		9.30 9.130	230
Curv.	-	• •	٠,	∵ 3	Ŧ	:C	· · · ·

DATA TABLE NO. 207 THERMAL CONDUCTIVITY OF LIMALLIUM + TIN) ALLOYS

(T1 + Sn - 99.50%; impurity < 0.30% each)

[Temperature, T, K: Thermal Conductivity, k, Watt cm-1K-1]

౫	CURVE 5	0.331	CURVE 6"	0.372				
T	CUR	336.2	CUR	336.2				
*	íE I'	0.301	CURVE 2"	0.255	CURVE 3	0.259	CURVE 4"	0.289
۲	CURVE	336.2	CUR	336.2	CUR	336.2	S	336.2

SPECIFICATION TABLE NO. 298 THERMAL CONDUCTIVITY OF [THORIUM + URANITAL ALLOYS

(Th \pm U \pm 99, 50%; inspirity \pm 0, 20%; each)

Composition (continued), Specifications and Remarks	
Composition (weight percent) n Th	97.
Name and Specimen Designation	
Temp. Reported Range, K Error, "	293-67:3
	1561
Curve Ref. Method Year No. No. Used	3 96C
Ref.	396
Curve No.	7

DATA TABLE NO. 208 THERMAL CONDUCTIVITY OF LIMORIUM + FRANIUM ALLOYS

(Th+U=99,50%; impurity+0,20%; each)

Temperature, T. K. Thermal Conductivity, k., Watt cm71K 11

T CURVE 1

293,29 0,139 575,29 0,39 573,2 0,39 573,2 0,40 673,2 0,40

SPECIFICATION TABLE NO. 202 THERMAL CONDUCTIVITY OF LITE ALUMINUM, ALLOYS

All the light to 1

 $(8n+A) \simeq 99,50\%$ impurity $\approx 0,20\%$ each)

Composition (continued), Specifications and Remarks		Impurities less than 0.03.	Impurities less than 0.03.	Imourities less than 0, 03.	Impurities less than 0.03.	Impurities less than 0.03.
Arreent) Al	 	50.0	to.ot	30.0	20.0	9.0
Composition (weight percent) Sn Al		50.0	60.09	70.0	0.05	90.06
Name and Specimen Designation						
Reported Error, 7	!					
Temp, Reported		324.2	324, 2	324.2	324.3	324.2
i		1925	1925	1925	1925	1925
Curve Ref. Method Year No. No. Used			ı.	- -	i	
R. 1.		336	330	983	530	5.5 2.5
Curve No.		-	ŗì	**	+	10

DATA TABLE NO. 309 THERMAL CONDUCTIVITY OF LITER + ALUMINUM; ALLOYS

ISn + Al = 99, 50%; impainty < 0,20% each)

[Temperature, T. K. Thermal Conductivity, k, Watt cm-1K-1]

æ	CURVE 5	0.912						
۲	CUR	334.2						
×	; I g	1,393	, , ,	1,255	(E 3	1.142	CURVE 43	0.950
٠	CLRVE	324.2	CURVE	324.2	CURVE	324.2	CURY	324.2

SPECIFICATION TABLE NO. 210 THERMAL CONDUCTIVITY OF THIS ANTIMONY, ALLOYS

(Sn + Sb | 99, 50% imperity | 9, 20% each)

(For Data Reported in Figure and Table No. 210)

Compassition (continued), Specifications and Remarks	Prepared from Sn and So both containing - 0, 03 impurities; supplied by Baker: specimen 10 cm long, 1, 9 cm diaceletural enductivity at 22 C, \(\pi\) (22C) - 3, 46 x 10 ⁴ obn 3 cm 4.	Similar to the above specimen except $\sigma(220)$ ± 4, 00 x 10 ⁴ ohm ¹ cm ¹ ,	Similar to the above specimen except $\sigma(220)\approx 4.59\times 10^4$ obta $^{-1}$ cm $^{-1}$	Similar to the above specimen except σ (22C) = 5, 23 x 10 ⁴ obt $^{-1}$ cm $^{-1}$.	Specimen ~4 mm dia, ~10 cm long; annealed for several months; electrical resistivity 2, 142 and 1, 605 point cm at 4, 2 and 300 K, respectively; measured in a 560 gauss magnetic field; in normal state.	Similar to the above "pecumen except electrical resistivity 3, 483 and 1, 491 polyn cm at 4, 2 and 300 K, respectively.
veight percent)	20	ү Э	310	50	. e . g	6, 15
Composition (weight percent)	0.5	93	0.5	0.4	97. 03	93, 85
Name and Specimen Designation					7	Ŋ
Reported Error, 7c					21	21
Curve Rel, Niethod Year Temp. Reported No. No. Used Year Rungo, K. Error, 7,	306. 2	330. 2	330, 2	3.10, 2	2. 3.4. 2	1. 9-4 2
Year	1925 306.2	1925	1925	1925	1957	1957
sed		ت	-1	ا		4
Ret. N	085	2:30	230	230	315. 456	315. 456
Curve No.	~	21	m	7	ın	ထ

DATA TABLE NO. 210 THERMAL CONDUCTIVITY OF [TIN + ANTIMONY] ALLOYS

(Sn + Sb $\approx 99, 50\%$; impurity $\approx 0, 20\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

330, 2

330, 2 0, 305

CURVE 2

CURVE 3

330, 2 0, 352

CURVE 4

330, 2 0, 39%

CURVE 5

0, 0268 0, 0339 0, 0406 0, 0427 0, 0491 0, 0544 2, 20 2, 2, 20 3, 2, 23 4, 3, 60 4, 17

CURVE 6

0, 0134 0, 0198 0, 0198 0, 0219 0, 0233 0, 0277 0, 0277 0, 0277 0, 0277 0, 0277 0, 0277 0, 0277 0, 0377 0, 0325 0, 0332

SPECIFICATION TABLE NO. 211 THERMAL CONDUCTIVITY OF [TIN + BISMUTH] ALLOYS

(Sn + Bi + 99, 50%, impurity + 0, 20% each)

[For Data Reported in Figure and Table No. 211]

Curve No.	Ref.	Ref. Method Year No. Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent) Sa Bi	sight percent) Bi	Composition (continued), Specifications and Remarks
7	456	נ	1958	1.5-4.2	81		98.08	1.92	Specimen ~4 mm dia, ~10 cm long; unnealed for several months; measured in a 560 gauss magnetic field; in normal state.
~1	460		1957	373.2			61	61.	
m	460		1957	373.2			60	20	
4	460		1957	373.2			98	ဌ	
Ŋ	514	_1	1962	358-553	ςΣ		90	20	Prepared from 99, 94 pure Sn; measured across melting point.
9	837	٦	1961	3.1-4.7	.	Bi 3	58. ∉6	T	Prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99, 999 pure Sn and Bi, extruding into 1, 5 mm dia wire annealed at ~200 C for several days; electrical resistivity 0, 796 and 13, 31 yohn em at 4, 2, and 273 K respectively; TC 3700 K; normal-state data were taken at temperatures below Te with a longitudinal magnetic field applied to the sample.
(-	837	J	1967	1, 9-3, 4		Bi 3	98.46	3	Same as the above specimen except the magnetic field was removed so the superconducting-state data were taken.
20	836	ı	1958	1, 4-5, 0	4-5	च	99. 47	0. 53	Prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99, 999 pure Sn and Bi, casting into 1 mm dia x 12 cm long wire; electrical resistivity 0, 230 pohm cm; a magnetic field was applied when taking normal-state data at temperatures below Tc.
Đ	8:36		1958	1958 1.4-3.1	4-5	4	99. 47	0.53	Same as the above specimen except the magnetic field was removed so the super conducting-state data were taken.

DATA TABLE NO. 211 THERMAL CONDUCTIVITY OF LIN + BISMUTH, ALLOYS

The second secon

1

(Sn + Bi | 99, 50%; impurity | 0, 20% each)

[Temperature, T. K; Theraial Conductivity, k. Watt em $^4\,\mathrm{K}^{*4}]$

×	CURVE 9 (cont.)	0,401 0,425 0,436 0,441	0,459 0,466 0,:777		
۲	CURVE	2.22 2.23 2.65 2.65	2, 41 3, 0, 65 3, 0, 65		
×	(conf.)	0, 288 0, 275 0, 317 0, 301	0, 335 0, 345 0, 345 0, 406 0, 419 0, 452 0, 519 0, 514	0,559 0,594 0,629 0,652 0,701 0,701	0.0725 0.0727 0.0826 0.0824 0.0824 0.0824 0.0824 0.0824 0.0844
۲	CURVE 8 (cont.)	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	포 교 중 문 등 품 등 중 등 수 지 지 지 이 이 지 전 전 전 전	2 9 22 8 8 म 8 8 8 इ.स.च न न न न	CUNVE 9 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2
. ¥	(cont.)	0,0990° 0,1105 0,1139° 0,1142	0, 1252 0, 1266 0, 1291 0, 1391 0, 1393 0, 1393 0, 1454 0, 1463 0, 1463		0.0618 0.0752 0.0921 0.1115 0.1115 0.1115 0.1147 0.120 0.210 0.226 0.212 0.232 0.232 0.243
۰	CURVE 6 (cont.)	21 C C C C C C C C C C C C C C C C C C C	8 6 6 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4, 43 4, 55 4, 61 4, 61 4, 67 CURVE	CURVES 1, 58 1, 1, 58 1
¥	1 1	0, 0503 0, 0578 0, 0637 0, 0712	0 0729 0 0 0846 0, 0980 0, 109 0 121 0, 133 0 142	0.2×0 0.2×0 0.345	1. 523 0. 523 0. 1343 0. 1343 0. 1344 0. 1344 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355 0. 1355
+	CURVE	1, 51 1, 54 1, 93 1, 93 1, 18	0 42 94 0 0 42 94 0 0 42 95 0 0 45 95 0 0 45 95 0 0 0 45 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	373, 2 0 CURVE 373, 2 0 CURVE	258.2 0.338.2 0.338.2 0.428.2

Not shown on plot

SPECIFICATION LABLE NO. 212 THERMAL CONDUCTIVITY OF TIN + CADMICM ALLOYS

(Sn. Cd. 19, 500); supportly 0, 200) each)

For Data Reported in Figure and Table No. (212)

	Composition (v.125) perform (composition (continued), Specifications and Remarks on Sn	Prepared from Sn containing (0, 0) impurities: supplied by Baker, specimen 10 cm long (1, 9 cm day); electrical conductivity at 22 C (σ (22 C) 9,98 x 10^{4} obm [cm].	Similar to the above specimen except 6 (22 C) -9.44×10^{4} above $^{\circ}$ cm $^{\circ}$	Similar to the above specimen except σ ($22(C) = 9.15 \times 10^3$ ohm $^4 \mathrm{cm}^{-1}$.	Similar to the above specimen except \(\sigma \) (22 C) = 8.09 \(\mathbf{N}\) (0) (0) (0) (1)	Similar to the above specimen execupt σ (22 C) $= 7,753\times 10^{3}$ obta 4 cm 2	Similar to the above specimen except $\sigma((22/C)-7.54\times 10^4)$ obta 1 cm 1 .	Propured from 99, 94 pure Sn. in Equid state above 225 C. Propued from 99, 94 pure Sn. in Equid state above 215 C.
1	Compression (winglet percent) and Cd	e,	Ę.	9.	÷ 51	ē.	17	4, 9 15, 80
	Compression of Sn	ę	9 3	Ē.	- ,	Ξ.	£	- % - % - 4
	Red, Method Year Temp, Reported No, Used Year Ringe, K Error,	98	975	326	920	950	326	013-663
	Year	5261	1965	1985	11935	1925	1925	1962 1962
	Ret. Method No. Used	<u>۔</u>	نـ	نـ	ij	ر	.:	د د
		9. 11	. 2 21	ā.	20	2. 2.1	0000	514
	Curve No.	-	e i	11	→	٠,	ی	t- X

DATA TABLE NO. 312 THERMAL CONDUCTIVITY OF [TIN + CADMIUM] ALLOYS

(Sn + Cd :: 99, 50%; impurity :: 0, 20% each)

[Temperature, T. K. Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 8	353, 2 0, 669	, o	o :	503 2 0.337	1 A C	0.6	568.2 0.377	,																				
		र्भे च			8			ii.	•		12		10			~1	.							-				-
CURVE 1	0,699	CURVE 2		0.00.	CURVE ?	;	0.644	CURVE 4	0.594	CURVE 3	0, 557	CURVE 6	0, 536	CURVE 7	0,515	ن ن	္	0,527	်ဆ	æ'	j	oʻ	o'	÷	o ·	oʻ:	. .	_
Ol	326	Ç		925	S	•	326	O	326	O	326	O	326	OI	313.2	11.13.2		3.03.2	408.2		4:18.2	448.2	46:1, 2	438.2		523.2		603.2

Not shown on plot

SPECIFICATION TABLE NO. 213 THERMAL CONDUCTIVITY OF UTN 4 COPPLIES ALLOYS

The second control of the second control of

 $(Sn+Cu-99,50\%; impurity \pm 0,20\%; cach)$

Composition (continued), Specifications and Remarks		9,75 Cest and turned.	24, 95 Cast and turned.	
Composition (weight percent)		90,25	24,95	
but with X			Ed as a plant	Surs Chas
Curve Ret. Method . Temp. Reported	No. No. Used Tell Range, K Error,		459 R 1905 255	2 459 R 1905 287
Curve	o.		-	÷ı

DATA TABLE NO. 213 THERMAL CONDUCTIVITY OF FILM + COPPURE ALLOYS

(Sn + Cu - 99, 50%; impurite ? 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt ent 1]

T k
CURVE 1
246.7 0.518
CURVE 2
286.7 0.684

SPECIFICATION TABLE NO. 214 THERMAL CONDUCTIVITY OF JUN-INDIEM ALLOYS

(Sn + In + 99, 50%; impurity = 0, 20% each)

[For Data Reported in Figure and Table No. 214]

Composition (weight percent) Composition (continued), Specifications and Remarks on Sn	99.65 0.35 Cast; single erystal with tetragonal axis 82° to rod axis; in superconducting state.	50, 65 0, 35 The above specimen measured in a longitudinal field of 400 gauss, in normal state.	96,9 3.1 Cast. single crystal with tetragonal axis 73% to rod axis: measured in a longitudinal field of 450 gauss: in normal atate.	56.9 5.1 The above specimen measured after switching off the magnetic field.	96, 9 3, 1 The above specimen measured in a longitudinal field of 300 gauss; in normal state.	96.9 3.1 The above specimen in superconducting state.	96, 9 3, 1 The above specimen annealed at 210 C for 14 days, in super- conducting state.	96.9 :., 1 Polycrystal, grain size about 0.3 mm, cast, strained and annealed for 17 days, in superconducting state.	97.99 2.02 Prepared from spectroscopically pure Sn and 99.9 pure In: single crystal, angle between tetragonal axis and specimen axis forientation) = 90°.	97.98 2.02 Similar to the above specimen except orientation > 77°; in normal state.	97, 89 2.14 Similar to the above specimen except orientation + 70°; in normal state.	97,55 2,45 Similar to the above specimen except orientation +85°; in normal state.	97.16 2.84 Prepared from spectroscopically pure Sn and 99.9 pure In: single crystal with about 5% of volume being inclusions of foreign orientation: orientation : 78°: in normal state.	96, 04 3, 96 Prepared from spectroscopically pure Sn and 99, 9 pure In: coarse polycrystal with grain size about 2-3 mm; in normal state.
Name and Specimen Designation	Sn 7 JM 4600 + In	Sn 7 JM 4600 · In	Sn × JM 4600 - In	Sn 8 JM 4600 · In	Sn 5 JM 4600 · In	Sn 8 JM 4600 + In	Sn 8 JM 4600 · In	Sn 9 JM 4600 • In	Sn 2	Sn 2.	Sn 2. 1	Sn 2, 5	S. 51 . 52 . 53	Sn 4
Reported Error, % 8	51 4	7 -	4. 	4-5	51 4.	2-4	2-4	2-4	0.1.0	×1.0	< 1.0	< 1, 0	< 1.0	× 1, 0
Temp. Runge, K	0, 5-4, 3	1955 1, 3-2, 1	1955 0, 35-2, 1	1, 6, 2, 0	0, 31-0, 91	1955 0.22-4.0	0, 36-1, 1	1955 0, 45-1,3	2, 0-21	3, 8-21	2.0-21	2.0-21	2. 0- 21	2.0-22
Year	1955	1955	1955	1955	1955	1955	1955 (1955	8.28. 18.28.	195×	1958	1958	1958	195 к
Method	<u> -</u> :	ے	٦	- 2		_		د	ı.i	<u>.</u> :	L)	د	-	<u></u>
R. I. No.		55.	45.2 2.2	725	725	453	252	452	453	453	453	453	4 53	453
Curve No.	-	71	::	す	10	9	t-	æ	σ.	90	11	13	n	14

SPECIFICATION TABLE NO. 214 (continued)

Curve No.		Ref. Method Year No. Used	1	Temp. Range, K	Reported Error, "	Name and Specimen Designation	Composition (weight percent)	verght percent) In	Composition (continued), Specifications and Remarks
16	453	٦	8061	2, 0-21		Sn 3. ;	12 13.	5,65	Similar to the above specimen.
13	£13	<u></u>	1958	2, 0-21	e. 1	Sn % 2	<u>x</u> 5))	Prepared from spectroscopically pure Sn and 99, 9 pure In: fine grained polycrystab, in normal state.
ï	7.7	<u></u>	1968 8	1958 - 0, 375 - 0, 90	e ni	e #	6.7. o	e ri	Specimen 1, 48 mm in diameter, cast, homogenized by annealing in vacuo for 2 weeks at 320 C, electro polished, angle between tetred axis and specimen axis \pm 80°, surface roughness 0,00 μ .
<u>5</u>	#C#	٦	1955	195 - 0, 40. 1, 0	= ;;	B 4	0.77.	0,11	Similar to the above specimen except the diameter 0, 875 mm and surface roughness 0, 15 μ_{\odot}
20	1	ت	1958	1958 0, 39-1, 0	5 ;i	13.1	97.0	0 ::	Similar to the above specimen except the diameter 1.48 mm, surface roughness 1.0 $\mu_{\rm c}$ (ethed.
51	707		1353	1958 0, 39-1, g	5 21	8.5	6.7, 0	3, 0	Similar to the above specimen except the diameter, 0, 875 mm.
27	4. 15.	ت	1953	1953 0,23-1,2	10-25	Sn IX	t-	F9	Specimen 2. 8 mm in diameter; polycrystal; east in tube: crystals size of the order of the diameter, in superconducting state.
23	455	٦	1953	1953 0, 18-6, 67	10-25	Sn N	5	m	Similar to the above specimen except the size of crystals being a fraction of the diameter.
# 83	155	ű	195.1	1953 0, 15-1, 2	10-25	Sn W	7 (9) 7	ů.	Similar to the above specimen except crystals size of the order of the diameter.
65	456		19.54	1958 2.3-4.2	ני?		0.7.0	÷.	Specimen annealed for several months: measured in a longitudinal magnetic field of about 560 gauss; in normal state.

DATA TABLE NO. 214 THERMAL CONDUCTIVITY OF [TIN + INDIGM] ALLOYS

all title a with the

(Sn + In 199, 50%; Impurity 10, 20% each)

	,·z	(cont.)	0.0134	0.013*	0.010	0.0166	0.0216	0. 0230	0.0238	0.0275	0.0296	0.0318	0, 0323	0.001	61	1	0.0051	0.0056	0.007	0. 0072.5	0,000.5	0.01	0.0111	0.015	0.0178	0.0219	0.024	0.027	0.030	0.0351	0.030	5	06.3	3	0.00323	0.005	0.00522	0.0065	0, 00858	0,0093	0.0107	0.0142	0.0181	
	T	CURVE 16 COUL.	0.487	0. 198	20.00 20.00 20.00	0.0	0.61	0.628	0.65	0. 698	0.718	0.00	0 9 0 9	D. 30	PI BYRLD	1	495. 0	0.400	0.445	0.455	0. 468	0.485	0.520	ი, შმა	0.6+8	0.71	0, 725	0. 79	7 : 20 :	0.60 0.60	1.015	3	10115	2000	0, 392	0.415	0.430	0, 465	0. 50	0.517	0.548	0.618	669 0	
	4	(T 1014	1:1:1:	•	- : - :	017	087	1.140	0. 160	U. 165	2:	9	061 :	9 5		٠.	: :				f. 51 .	0.00	y. a7a	٠:٠٠٠	0.	0. Iso	tt. 15e	ر. او. د	0. 170	0 1 90	0. 150		67	0.00538	0.00627	0.0075	0.0087	J. 90915	U. 0972	0, 0413	0.0122	0. 0128	0.0132	
	۳	CURVE POST	÷. 00	90.0	00.0	3 3	11.50	12, 40	14.50	15.00	16.00	17.00	18.00	00.07	04:11	CHE		90 0	i ei	7.2.7		7.00	3.00	10. 00	11.00	15.00	17.00	19.00	20. 40	21.00	21.20	. 1 (3.1)	1000	0.363	0.385	0, 405	0, 42	0. 427	7 - 0	9. 46	0. 472	0. 474	0.48	
	æ	(Tagis)	0.048	0. 100	0. 150	5 5	0, 21c	£ 23.	.u. 240	0.260	0.268	0.280	0.283	767.0	0.300		21.3	31	0.023	020	0.038	0.045	0. 052	090.0	0.073	0.082	0. 095	0.100	0. 120	0.135	0.160	0.180	0.200		0. 222	0.235	0. 236	0.240		E 16), , ,	0.020	0. 033	
s cm 1K1)	۲	CHARTE 14 CORE	3.00	9	0 7	98 - 1	12. 50	14. 50	15.00	16. 40	17. 60	18.50	19, 00	07.61	0.02		30112	3	1.80	05.6	3, 20	3.80	4.40	4, 75	5.80	6. 50	7. 50	8.00	9. 20	11:00	13. 00	14. 30	16.50	00.71	18.80	20.00	20, 50	21.20		CURVE 16		5.00	3.00	
ity, k, Watt	צב	ā ā	0.050	02.70	0.143	051	0.210	0, 225	0. 255	0.280	0.315	0, 330	0.350	0.570	0.590	3 -	0.4.0	0.450		7.1	<u>:</u>	0.050	0.070	0.115	0.160	0.210	0, 235	0, 245	0, 255	0. 290	0.310	0.303	0.330	0.350	088	0.400	0.410	0.420		E 14	i :{	0:030	0.040	
of Conductiv	۲	สารีกันกัก	2.00	ž.	ر بر بر بر بر) - -	3. 30	9.00	19.30	11.50	13.00	14.00	15, 50	16.50	20.01	10.00	30.00	20.00		V4111-7		2.00	3.00	j. 00	o 0	9. 00	10. +0	10.50	11.40	13.00	14.00	14.40	15.00	15.00 17.00	18.00	19. 70	20.70	21, 20		CURVE 14		2, 00	2.50	
[Temperature, T. K. Thermal Conductivity, k, Watts cm 1K1	æ	6.3/	0.010	0.140	0.230	0.010	0 ++0	0.515	0.570		2; 10		0. 130	9000	0.2.0	2 2 2	0.200	0.340	0.465	2	0.080		E 11		0.062	0.0%0	0.120	0.160	0. 182	0.205	0.230	0.230	0.275	00000	360	0.380	0.420	0.440	0.450	0.465	0.430			
zerature, T.	t-	CURVE 9	2.0	4 (n c	, <u>.</u>	0.41	18.0	21.0		CURVE 10	,	3.75	4.40	90	0 0	00.00	10.00	9 e e e	9 9	21, 40		CURVE 11	1	2.00	3.00	-t -	5.00	6. co	6.80	7.80	9. 40	9. 20	10.00	12.50	13.50	16.00	18 00	19.00	20.02	20.10	3		
[Tem	×	E 6(cont.)	0.032	0. 0355	0.041	0.0351	0.040	0.037	0.0381	0. 0355	0.0345	0.0311	0.033	0.037	0.0415	0.043	0.0353	0.030	0.069			RVE 7	}	0. 00735	0. 9102	0.0135	0. 0202	0.025	0. 0355	0.0435	0.0525	0.049		HVE D	0.00963	0.0045	0.00535	0 (107.)	0.0086	0.000	0.0113	0.017	0. 0242	
	۰	CURVE	0. 77	0. R7	96		- 24	6		1. 5	۲- ۱-								ب ن د.		÷	CUR	!	0.36	9. 40	0.44	0. 30	0.54	09.6	69 '0	0.80	1. 10		HO3.	0.45		98 0	0 66	0.72	2 2 2	0 a	ê -	1.3	
	¥	J(cont.)	0.0101	0.0111	0.0112	0.0127	0.0222	0.0232	0.0270	0.0295	0, 037	0.0385		٠ ١ ١	2000	1020.0	0.00		21	10100	0.0025	0, 00359	0.0040	0.0067	d. 0065	0.0071	0.0077	0.0086	0 0112		/E 6		0. 00074	0.00091	0.00102	0.00243	0 00415	0.0078	0.0100	0.0138	0.0118	0.028	0.028	
	٢	CURVE 3(cont.)	0.58	0.61 0.51	0. e6						1.9			CORVE		9 0	o Si	Č	C TANDA	15.0	1 7 C	0.47	0. 50	0.66	0.68	6.71	92.0	0.81	0.91		CURVE		0. 22	6 . 23	67.0	5 6	5 5	8 6	0.50	9	0.01	56	0.77	
	- 2	1 3	0.0274	0. 0353	0.0430	0.030	0.069	0.086	0.017	0. 083	0.083	0.083	0. 100	0. 111	0.125	7	0.151	97.0	0.192		0, 275	0. 292	0.335	0.48	0.48	0. 53	0.57	0.60		0. 73		VE 2	•	0.186	107.0	0.250	0.220	0.305		7.5	اد	0 0065	0.0097	
	۰	CURVE 1	0. يَى	ون . د	0.61	7 G) d	. r.	0.83	1.0			90 ·	i- :	20 d -i d		7.	7 : 1			; ;;				3.5		3. 7		2.			CURVEZ		-i -	. .		· ·	- - - -	i	CHRVER	בן מ	0.35	3. 3.	

0. 755 0. 022 0. 1448 0. 000939 0. 755 0. 0228 0. 215 0. 00185 0. 822 0. 02263 0. 345 0. 00185 0. 902 0. 0229 0. 345 0. 00042 0. 908 0. 0322 0. 435 0. 00420 0. 408 0. 0322 0. 435 0. 00420 0. 450 0. 0041 0. 46 0. 0041 0. 46 0. 0041 0. 46 0. 0041 0. 508 0. 00730 0. 46 0. 0041 0. 508 0. 00730 0. 508 0. 00730 0. 508 0. 00730 0. 508 0. 00745 0. 508 0. 00745 0. 508 0. 00745 0. 508 0. 00745 0. 508 0. 00745 0. 508 0. 00746 0. 508 0. 00746 0. 508 0. 00746 0. 508 0. 00746 0. 508 0. 00746 0. 608 0. 00746 0. 508 0	CURVE	20(cont.)	CURVE	VE 24
822 0.0263 0.345 0.345 0.0852 0.0284 0.345 0.345 0.0284 0.0285 0.345 0.345 0.0286 0.0285 0.0285 0.0285 0.0285 0.0285 0.0286 0.02	35		2.1	00093
9822 0.0284 0.345 0.989 0.0295 0.0385 0.389 0.0322 0.470 0.041 0.580 0.0470 0.041 0.580 0.0470 0.041 0.050 0.041 0.050 0.041 0.0023 0.041 0.700 0.044 0.0023 0.041 2.80 0.041 2.	82		3	9000
90 0,0295 0,385 0, 389 0, 0322 0,1435 0, 410	3		÷.	0051
CURVE 21 0 . 435 0 . 475 0 . 475 0 . 475 0 . 475 0 . 470 0 . 470 0 . 470 0 . 470 0 . 470 0 . 470 0 . 470 0 . 470 0 . 470 0 . 46 0 . 40025 0 . 640 0 . 46 0 . 40025 0 . 640 0 . 46 0 . 40025 0 . 640 0 . 46 0 . 40025 0 . 46 0 . 40025 0 . 46 0 . 40025 0 . 46 0 . 40025 0 . 40 0 .	8		8	? 00 00
CURVE 21 0.470 0.470 0.470 0.470 0.041 0.0550 0.0550 0.0544 0.0550 0.0550 0.0550 0.0550 0.00545 0.00545 0.00545 0.00545 0.00545 0.00545 0.00545 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.011 0.40 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.0055 0.015 0.005	66		÷	00
CURVE 21 0 550 0 0 540 0 0 540 0 0 540 0 0 540 0 0 0			Ç	
29 C. 00323 0. 6440 0. 446 0. 00341 0. 700 0. 446 0. 00345 1. 150 0. 446 0. 00345 1. 150 0. 446 0. 00345 1. 150 0. 446 0. 00345 1. 150 0. 446 0. 00345 1. 150 0. 446 0. 00345 2. 34 0. 652 0. 0131 2. 80 0. 462 0. 0135 2. 80 0. 462 0. 0135 2. 80 0. 462 0. 0135 2. 80 0. 462 0. 0135 2. 80 0. 462 0. 4	CUR	~1	n	
29 6, 00323 0, 640 0, 000 42 0, 00341 0, 700 0, 009 46 0, 00549 0, 000 45 0, 00630 CURVE 25 5508 0, 00630 CURVE 25 5508 0, 00135 2, 34 0, 035 662 0, 0131 2, 80 0, 045 662 0, 0131 2, 80 0, 045 663 0, 0131 2, 80 0, 045 663 0, 0131 2, 80 0, 045 663 0, 0131 2, 80 0, 045 663 0, 0131 2, 80 0, 045 664 0, 0260 3, 29 0, 045 665 0, 0131 2, 80 0, 045 665 0, 0131 3, 40 0, 045 665 0, 0131 3, 40 0, 045 665 0, 0135 3, 60 0, 045 666 0, 0244 3, 34 0, 045 667 0, 0135 3, 60 0, 045 668 0, 0244 3, 23 0, 072 670 0, 00440 4, 23 0, 072 671 0, 00100 2, 24 0, 00440 671 0, 00120 2, 24 0, 00440 672 0, 00440 4, 23 0, 072 673 0, 00120 2, 24 0, 00440 674 0, 00120 2, 24 0, 00440 675 0, 00440 4, 23 0, 045 676 0, 00440 4, 23 0, 045 677 0, 00440 4, 23 0, 045 678 0, 00440 4		l	58	
42 0.0041 0.700 0.009 44 0.00435 1.150 0.022 45 0.00539 CURVE 25 5508 0.00743 547 0.0063 2.34 0.045 6502 0.0131 2.40 0.045 6602 0.0135 2.80 0.045 671 0.0163 2.40 0.045 80 0.0260 3.29 0.045 80 0.0260 3.29 0.045 80 0.0260 3.29 0.045 80 0.0260 3.29 0.045 80 0.0260 3.29 0.045 80 0.0260 3.29 0.045 80 0.0260 3.29 0.045 80 0.0260 3.29 0.065 80 0.0260 3.40 0.065 80 0.0260 3.40 0.065 80 0.0260 3.40 0.065 80 0.0260 3.40 0.065 80 0.0260 3.40 0.065 80 0.0260 3.40 0.065 80 0.0260 3.40 0.065 80 0.0260 3.40 0.065 80 0.0260 0.0260 3.40 0.065 80 0.0260 0.0260 3.40 0.005 80 0.00100 0.00120 0.00120 80 0.00120 0.00120 0.00120 80 0.00120 0.00120 0.00120 80 0.00120 0.00120 0.00120 0.00120 80 0.00120		0032	3	00
46 0. 00525 1. 150 0. 02 46 0. 00536 46 0. 00536 508 0. 00748 50 0. 00536 517 0. 0055 2. 34 0. 0. 03 71 0. 0153 2. 89 0. 04 662 0. 0134 2. 89 0. 04 662 0. 0135 3. 40 0. 03 662 0. 0250 3. 29 0. 05 662 0. 0250 3. 29 0. 05 662 0. 0250 3. 29 0. 05 663 0. 0250 3. 34 0. 0. 05 67 0. 0250 3. 34 0. 0. 05 67 0. 0230 3. 40 0. 05 67 0. 0230 4. 23 0. 06 67 0. 0230 4. 23 0. 07 67 0. 00440 150 0. 00403 67 0. 00416 67 0. 00416 67 0. 00416 67 0. 00416 67 0. 00417 67 0. 00416 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417 67 0. 00417		00	6	600
46 0.00549 45 0.00630 CURVE 22 602 0.0011 2.40 0.0652 0.0111 2.40 0.0153 2.80 0.0156 0.229 0.329 0.329 0.0290 3.29 0.0290 3.29 0.0290 3.29 0.0290 3.34 0.0290 3.29 0.0290 3.39 0.0230 0.0290 0.0315 0.0290 0.0315 0.0290 0.0315 0.0290 0.0315 0.0290 0.0315 0.0290 0.0315 0.0290 0.0315 0.0290 0.0315 0.0290 0.0315 0.0290 0.00230 0.23 0.0230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.0290 0.00230 0.002	7	J 0052	15	8
45 0 00630 CURVE 2 508 0 00745 2.34 0.0 652 0 0111 2.40 0.0 652 0 0115 2.83 0.0 71 0 0163 2.83 0.0 71 0 0169 2.83 0.0 86 0 0290 3.29 0.0 86 0 0291 3.40 0.0 946 0 0290 3.34 0.0 50 0 0315 3.60 0.0 20 0 0315 3.60 0.0 20 0 0315 3.60 0.0 20 0 0315 3.60 0.0 21 0 0 0315 3.60 0.0 22 0 0 0315 3.60 0.0 22 0 0 0315 3.60 0.0 22 0 0 0315 3.60 0.0 22 0 0 00230 4.23 0.0 22 0 0 00073 4.23 0.0 22 0 0 00073 2.0 23 0 0 00073 2.0 24 0 0 00073 2.0 25 0 0 00073 2.0 27 0 0 00072 3.0 27 0 0 00073 2.0 27 0 0 0 00073 2.0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*7	0054		
5508 0.00745 2.34 0.065 2.34 0.065 0.011 2.40 0.0165 2.83 0.0111 2.40 0.0165 0.0135 2.80 0.0111 0.0165 2.83 0.0111 0.0165 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.29 0.0260 3.20 0.00135 4.03 0.0260 3.20 0.00123 4.23 0.0260 3.20 0.00123 4.23 0.0260 3.20 0.00123 4.23 0.0260 3.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00123 2.20 0.00125 2.20 0.00126 2.2		.0063	CUR	2
547 0.0065 2.34 0.662 0.011 2.80 0.011 2.80 0.011 2.80 0.011 2.80 0.011 2.80 0.011 2.80 0.011 2.80 0.011 2.80 0.011 2.80 0.025		0074		
602 0 0111 2.40 0 0 652 0 0135 2.80 0 0 652 0 0135 2.80 0 0 652 0 0135 2.80 0 0 652 0 0135 2.80 0 0 652 0 0 0260 3.29 0 0 652 0 0 0250 3.29 0 0 652 0 0 0250 3.24 0 0 0250 0 0250		006		S
652 6.0135 2.80 0. 71 0.0169 2.83 0. 86 0.0266 3.29 0. 87 0.0266 3.29 0. 946 0.0290 3.34 0. 50 0.0315 3.60 0. 20 0.0315 3.60 0. 20 0.0315 3.60 0. 20 0.0315 3.60 0. 225 0.00133 4.03 0. 225 0.00133 4.03 0. 225 0.00133 4.03 0. 225 0.00133 4.03 0. 225 0.00133 4.03 0. 225 0.00133 4.03 0. 225 0.00133 4.03 0. 226 0.00133 4.23 0. 227 0.00140 2.20 1.23 0. 220 0.00123 4.23 0. 220 0.00123 2.00 0.00222 2		0.11		ő
71 0.0169 2.83 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.29 0.00260 3.20 0.0		013		9
80 0.0260 3.29 0. 86 0.0244 3.40 0. 946 0.0234 3.40 0. 95 0.0315 3.60 0. 20 0.035 3.69 0. 20 0.035 3.69 0. 22 0.0013 4.03 0. 225 0.0013 4.03 0. 225 0.0013 4.03 0. 375 0.00230 4.23 0. 370 0.004+0 1.23 0. 150 0.0150 0.0150 1.23 0. 270 0.00100 2.20 0.00123 1.20 0.00123 1.20 0.00123 1.20 0.00123 1.20 0.00123 1.20 0.00123 1.20 0.00123 1.20 0.00120 1.20 0.20 0	-	016		
86 0.0244 3.40 0.0946 0.0990 3.54 0.0990 3.54 0.0990 3.54 0.0990 3.54 0.0990 3.54 0.0990 3.54 0.0990 3.54 0.0990 3.54 0.0990 3.69 0.0990 0.09230 4.23 0.0990 0.0990 3.69 0.099		026		
946 0.0290 3.54 0.055 3.60 0.0315 3.60 0.0315 3.60 0.0015 3.80 0.0		024		
05 0 0315 3.60 0.02 20 0 035 3.69 0.02 20 0 035 3.69 0.02 21 0 0035 3.89 0.02 225 0 00135 4.03 0.03 375 0 0 00230 4.23 0.03 370 0 00420 4.23 0.03 270 0 00073 2.70 0 00073 2.70 0 00126 2.7	ぁ	633		
20 0.035 3.69 0. CURVE 22 3.89 0. 225 0.00135 4.03 0. 225 0.00135 4.03 0. 3.97 0.00230 4.23 0. 3.70 0.00230 4.23 0. CURVE 23 CURVE 23 CURVE 23 5.0 0.00100 5.0 0.00100 5.0 0.00123 5.0 0.00124 5.0 0.00126 5.0 0.00205 5.0 0.00205 5.0 0.00205 5.0 0.00205 5.0 0.00205 5.0 0.00205 5.0 0.00205	0	031		
CURVE 22 3.80 0.225 0.00135 4.03 0.375 0.00230 4.23 0.406 0.00530 4.23 0.00530 150 0.00100 CURVE 23 150 0.00100 220 0.00126 220 0.00203 220 0.00203 230 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203 250 0.00203	Ň	93		
CURNE 22 3.89 0. 225 0.00135 4.03 0. 225 0.00230 4.23 0. 4.03 0. 570 0.00440 1.03 0. 570 0.00440 1.00 0.0150 150 0.0150 220 0.0073 220 0.00123 220 0.00223 520 0.00223 520 0.00223 520 0.00223 520 0.00223 520 0.00223 520 0.00223 520 0.00223 520 0.00223				
225 0 00135 4. 03 0. 225 0 00135 4. 03 0. 375 0 0.00230 4. 23 0. 370 0.004+0 150 0.0150 CURVE 23 150 0.00105 270 0.00102 270 0.00123 270 0.00128 270 0.00128 520 0.00205 520 0.00205 520 0.00205 520 0.00205 520 0.00205 520 0.00205	CUR	?·1		
225 0 00135 4. 03 0. 375 0 00230 4. 23 0. 4. 23 0. 5400 0. 0.00230 4. 23 0. 5400 0. 0.00440 0. 0.00440 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		١.	- D	
315 0.00230 4.23 0. 400 0.00533 4.23 0. 400 0.00540 150 0.0050 CURVE 23 150 0.00100 220 0.00100 220 0.00123 150 0.0023 150 0.0025 150 0.0020 150 0.0020 150 0.0020 150 0.0020 150 0.0020 150 0.0020 150 0.0020		0013	4	
400 0.00553 570 0.00440 150 0.00440 150 0.00150 220 0.00100 220 0.00173 270 0.00173 520 0.00176 520 0.00176 520 0.00176 520 0.00176	0.335	005	. 2.	
CCRVE 23 0 0 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90:00	į		
CURVE 23	000	3		
CURVE 2 150 0. 220 0. 270 0. 120 0. 520 0. 520 0. 520 0.	1. 150	2		
150 220 270 670 670 670 670 670 670	CUR	C1		
220 270 270 270 270 270 270 270 270	<u>.</u>	.00		
270 270 520 530 670 670 670	~	000		
120 6 120 6 120 6 120 6	1	0017		
520 G 5.00 G 6.70 G		3		
0 0:0	7	0.02		
0 (1:4	. 3			
	4			

SPECIFICATION TABLE NO. 215 THERMAL CONDUCTIVITY OF [TIN + LEAD] ALBOYS

(Sn + Pb + 99, 50%; impurity - 0, 20% each)

[For Data Reported in Figure and Table No. 215]

Curve	. S. S.	Ref. Method Year No. Used	Year	Temp. Range, K	Reported Error, ".	Name and Specimen Designation	Composition (weight percent)	ught percent)	Composition (continued), Specifications and Remarks
~	230	1	1925		:		30	30	Approx. composition: 0.03 total impurity in each metal; specimen 1.9 cm in dia and 10 cm long; supplied by Baker; electrical conductivity 6.47 x 104 ohm ⁻¹ cm ⁻¹ at 22 C.
61	230	₊ i	1925	327.2			0:9	Ç.	Similar to the above specimen except electrical conductivity 6, 92 x 101 ohm "lem "4 at 22 C.
ຕ	230	٦	1925	327.2			0 ×	. 03	Similar to the above specimen except electrical conductivity 7,62 x 10! ohm [em] at 22 C.
4	13	.i	1923	313-693			. 629	3	Specimen 1.5 cm in dia and 12 cm long; melting point 180 C.
ıs	229	_1	1955	2.0-90		Soft solder	0.0	07	No other defuils reported.
æ	5.	.	1961	3.5-4.6	-	Pt. 3	. 95.30	1.70	Prepared by v.coum-melting appropriate amounts of Johnson-Matthey 99.999 pure Sn and Pb. extruding into 1.5 mm. dia Aire, unnealed at ~200 C for several days, electrical resistavity 0.00478 and 10.55 µohm em at 4.2 and 273 K, respectively, Te 3.52 K, normal-state data were taken at temperatures below Te with a longitudinal magnetic field applied to the sample.
t-	537		1961	1.3-3.6	-	Pb 3	95.30	1.70	Same as the above specumen, except the magnetic field was removed so the superconducting-state data were taken.
ဘ	936	ᆈ	1958	1.64.4	क ह-	e	99, 54	0.46	Prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99, 999 pure Sn and Pb. custing into 1 mm dia x 12 cm long wirre with pyrex capillary; electrical resistivity of 112 godin cm; a magnetic field was applied when taking normal-state data at temperatures below T _G .
ø	836	a	1958	1958 1.6-3.3	4-5	t-	99.54	0.46	Sume as the aixive specimen except the magnetic field was removed so the superconducting-state data were taken.

DATA TABLE NO. 215 THERMAL CONDUCTIVITY OF LTIN + LEAD, ALLOYS

(Sn + Pb 299, 50%; impurity: 0, 20% each)

(Temperature, T. K. Thermal Conductivity, k, Watt cm-1K-1)

. ¥	CURVE 9 (cont.)		0.420	0.425	0.479		0.522	0.544	0.554	0.652	0.632	0.658	0.672	0.702	U. 726*	0.800	0.791	0.807	0. x44																										
۲	CURVE	1, 690	1, 723	1, 770	2, 021	2, 050	2, 141	2. 188	2, 248	2, 470		2,616	2,682	2.775	3.008	3,062	3, 127	3, 186	3, 265																										
¥	CURVE 7 (cont.)	0.265				0.340		VE &		0. 188		0. 227			0.311	0, 320	0,360	0.378	0.415	0.4§	0.507	0.532	0.567	0.613	0.719	0.698	0. 736	0.757	0.800	1.009	0.908	0.992	1.016	1. 039	1, 130	1.038	1. 191	1, 176	1.151		/E 9		0.383	0,397	
۲	CURVE	3, 124	3, 242	3, 367	3, 518	3, 565		CURVE		1,635	1.683	1. 794	1, 851	1, 934	2, 043	2.094	2, 211	2, 285	2, 373	2, 501	2, 593	2,617	2,762	2,872	3,016	3,080	3, 137	3, 203	3, 283	3.545	3, 633	3, 723	3,842	3.967	4. 266	4, 322	4.358	4.406	4. 440		CURVE		1.604	1,630	
¥	<u>/E 6</u>	0.142		0. 131		0, 237	0.255	0, 255	0.278	0.300	0.308	0.331	0, 339	0.347	0,360	0.367	0,379	0.389	0.393*	0.415	0.415*	6. 426		0,427		0.449	c. 454	0.462	0.469	0.457		/E 7		0.014		0.056	0.081	0.098	0.101	0.162	0. 192				
٢	CURVE	1, 537	1.815	2. 030		2,488	2.677	2, 716	2. 923	3, 116	3, 201	3, 439	3.491	601	3, 728	3, 795	3,868	3,942	3,988	4. 193		4, 292	4.337	4.372	4.419	4.482	4. 537	4.578	4.619	4.620		CURVE		1, 346	1. 526	1.636	1.856	1, 997	2, 093	2,445	2.657	2, 745	2, 83 4	3,078	
×	IVE 1	0,464		VE 2]	0.430		CURVE 3	1	0.544		IVE 4		0.493	0, 492	0.471	0,469	0, 468	0,467	0, 231	0, 223	0, 255	0.257	0, 297		IVE 5		0,050	0, 115	0. 160	0. 220	0, 265	0, 365	0.425	0.510	0.560	575	265	0.525	0.520		0,520			
←	CURVE	327. 2		CUIVE	ļ	327, 2		CUR		327. 2		CURVE		313.2	343.2	375.2	396, 2	397.2	412.2	509.2	512.2	583.2	€09.2	693.2		CURVE		0	٣	4	s	9	œ	10	15	30	35	38	9	9	2	02	: 8	8	

Not shown on plot

SPECIFICATION TABLE NO. 216 THERMAL CONDUCTIVITY OF [TIN + MERCURY] ALLOYS

(Sn + Hg $^\circ$ 99, 50%; impurity \leq 0, 20% each)

[For Data Reported in Figure and Table No. 216]

Composition (continued), Specifications and Kemarks	Homogeneous solid solution with few large crystals supplied by Johnson-Matthey (J. 2356); in normal state, measured in a longitudinal magnetic field.	The above specimen in superconducting state. Specimen in two phase state with few large crystals; supplied by Johnson-Matthey (J. 2356); in normal state; measured in a longitudinal magnetic field.	The above specimen in superconducting state. Prepared by vacuum-melting appropriate acounts of Johnson-Matthey 99.999 pure Sn and Hg. extrading into 1.5 mm dia wire, anneaded at ~200 C for several days; electrical resistivity 0.475 and 13.35 µohm cm at 4.2 and 273 K, respectively, T _c 3.646 K; normal-state data were taken at temperatures below T _c with a longitudinal magnetic	Same as the above specimen, except the magnetic field was removed so the superconducting-state data were taken.	Prepared by vacuum-melting appropriate amounts of Johnson-Matthey 99,999 pure Sn and Hg, casting into 1 mm dia x 12 cm long wire with pyrex capillary; electrical resistivity of 71 µohm cm; a magnetic field was applied when taking normal-state data at temperatures below T _C .	Same as the above specimen except the magnetic field was removed so the superconducting-state data were taken.
Composition (weight percent)	0.33	6.33	4.1	1.85	0.53	0.53
Composition (99.67	99.67 35.9	95.9	98,15	99.47	99.47
Name and Specimen Designation	9 &	9 & &	Sn 9 Hg 3	Нg 3	-	1
Reported Error, ".	3.0	3.0	3.0		♣ %	4-5
Temp. Range, K	1.44.3	1.4-3.5	1.9-2.5	1.5-3.5	1.6-4.4	1.6-4.3
Year	1950	1950 1950	1950	1967	1958	1958
Ref. Method Year No. Used	٦	11	ר ר	7	ب	-1
% Fe .	4.	थ थ (- (-	4 t t t t t t t t t t t t t t t t t t t	837	836	836
Curve No.	-	0 B	ብ ለን	9	t•	œ

DATA TABLE NO. 216 THERMAL CONDUCTIVITY OF [TIN + MERCURY] ALLOYS

(Sn + Hg > 99.50%; impurity < 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

т *	CURVE 7 (cont.)	3.30 0.609 3.35 0.628 3.71 0.609			4,35 0,305		CURVE 8	4 58 0 309							2.02 0.312	2.06 0.396											8 8		3.32 0.654	3.72 0.669	4.26 0.800						
*	CURVE 6	0.059 0.065 0.065	0.086	0.104 0.105*	0.122	0.148	0.142	0.155	0, 172	0.184	0.186	0.187	0, 215*		CURVE.		707.0	0.182	0.101	0.174	0.180	0.184	0, 195	0.192	0.234	0.253	0.271	0.285	0,361	0.395	0.400	0.425	0.450	2.454	0.512	0.548	0.590
H	티	1.46 1.58 1.72	2. 07 2. 14	2,36	2.61	2.77	2.79	5 . c	3.06	3, 21	3, 21	3, 31	ب يخ	į	51	•	70.1		1.6	2.70	1.72	1.76	1.81	2	2. U3	2.11	2.17	2.2	2,30	2.58	2.66	2.75	2.79	2,82	3.11	3.16	3.25
אַב	CURVE 4	0.0195 0.0225 0.0270	0.0315	CURVE 5	000	0.116	0, 132	0.140	0.153	0,165	0.168	0.178	0.190	0.195	0.204	0.214	0.215	0.218	0.219	0.222	0.226	0. 231	0.234	0. 238	0.244	0.248	0.229	0.263	0.266	0.276	0.281	0.289	0.238	0.299	0.307		
٢	히	2.21	2.51	밁	95	1.86	2. 15	5.26	2.51	2.74	2.77	% %	3.11	3.17	3.35	3,43	3.52		3.58	3.63	3.66	3.77	3.83	3.87	ج ه	4.00	4.15	4.24	4.28	4.39	4.52	4.55	4.71	4,75	4.83		
×	CURVE 2 (cont.)	0.183 0.213 0.212	0.233	0.255	0.264	0.285	0.327	0.363	0.376	0.420	0.46	0.475	0.508	0.528	0.550	0.571		CURVE 3		0.0220	0.0235	0.0265	0.0300	0.0340	0.0345	0.0370	0.0415	0.0460	0.0525	0,0615	0.0725	0.0770	0.0910	0.107	0.127	0 152	1
۲	CURV	2,88	2.03	2.12	2,5		2.50	 B	7. c2	8 8	8	3.08	3.18	3.27	3.3	3.45		됤		1.83	1.91	2.03	2.21	2.43	2.52	2.63	2.85	2.98	3.16	8. 8.	3.48	3.67	3,82	3.38	S ~		;
¥	CURVE 1	0.198 0.229 0.267	0.300	0.305 0.306	0.322	0.343	0.352	0.348	0.359	0.276	0.403	0.424	0.445	0.463	0.478	0.483	0.516	0.525	0.550	0.560	0.588	0.593	0.612	0.622	0.648	0.646	0.664	0.682	0.721	0.730		CURVE 2		0110	9110	155	0.199
۲	딍	1.51	1.2	1.97	2.02	2, 13	2.16	8 S	2.2.		2.51 2.51	3	2.70	8	2.88	3.00	3.08	3.13	3.27	3.37	3.46	3.5	3.65	3.73	 20.	3.92	4.03	4.12	4.24	4.32		55		1 44	: :	100	1.79

Not shown on plot

SPECIFICATION TABLE NO. 217 THERMAL CONDUCTIVITY OF | TIN + SILVER, ALLOYS

(Sn + Ag $\approx 99.50\%$; impurity $\leq 0.20\%$ each)

Curve	Ref.	Ref. Method	7007	Temp	Reported	Name and	Composition (weight percent)	ight percent)	Composition (continued), Specifications and Remarks
انو	Š	Used		Range, K	Error, %	Specimen Designation	Sn	AR	
_	230	نہ	1925	333.2			60.09	0.04	Impurities < 0.03.
٠,	30		1925	333.2			70.0	30.0	Impurities < 0.03.
1 17	230	ı _1	1925	333.2			80.0	20.0	Impurities < 0.03.
. 4	230	٠	1925	333,2			90.0	10.0	Impurities < 0.03.

DATA TABLE NO. 217 THERMAL CONDUCTIVITY OF | TIN + SILVER! ALLOYS

(Sn + Ag > 99, 50%; impurity < 0.20% each)

{Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1}

T k

CURVE 1*

333.2 0.611

CURVE 2*

333.2 0.611

CURVE 3*

333.2 0.611

^{*} No graphical presentation

SPECIFICATION TABLE NO. 214 THERMAL CONDUCTIVITY OF | TIN + THAILLIUM | ALLOYS

(Sn + Tl > 99, 50%; impurity < 0.20% each)

Composition (continued), Specifications and Remarks			•	.,	ور	
Composition	Impurities 0.03.	Impurities < 0.03.	Impurities 6.03.	Impurities (0.03.	Immitties < 0.03.	
Composition (weight percent)	46.2	40.0	30.0	0 02	0 01	
Composition	5.3.8	0.09	5	0.00	0.00	30.0
ted Name and						
Reported Error, %						
Temp. Range, K	6 36.2	7.000	336.2	336.2	336.2	336.2
Year	1006	6761	1925	1925	1925	1925
Method Year Used		1	_	1	1	,.i
Curve Ref.		230	230	230	230	230
Curve No.		~	7	n	4	c)

DATA TABLE NO. 218 THERMAL CONDUCTIVITY OF (TIN + THALLIUM) ALLANYS

(Sn + Tl ~ 99, 50%; impurity < 0.20% each)

[Temperature, T. K. Therinal Conductivity, K. Watt cm-1K-1]

T k
CURVE 1*
336.2 0.385

336.2 0.418 CURVE 3*

336.2 0.435

CURVE 4*

CURVE 5*

336.2 0.557

SPECIFICATION TABLE NO. 219 THERNAL CONDUCTIVITY OF (TIN + ZINC) ALLOYS

(Sn + Zn \simeq 99, 50%; impurity \leq 0.20% each)

Composition (continued), Specifications and Remarks	
Composition (weight percent)	95.0 8.0
ted Name and	
Temp. Reported Runge, K. Error, 7	308-706
Curve Ref. Method year Ta	1923
et. Method	1 61
Curve R No. N	-

DATA TABLE NO. 219 THERMAL CONDUCTIVITY OF | TIN + ZINC| ALLOYS

 $(Sn+Zn+99,50\%,\ imparity \le 0.20\% \ cach)$

[Temperature, T, K: Thermal Conductivity, k, Watt cm-1K-1]

T k CURVE 1º

0.596	0.615	0.617	0.626	0.630	0.238	908.0	36.7
308.2	337.2	364.2	388.2	421.2	48.8	616.2	6 902

SPECEICATION TABLE NO. 220 THERMAL CONDUCTIVITY OF | TITANIUM + ALUMINUM) ALLOYS

(Ti + Al $^\circ$ 99, 50%; impurity $\le 0.2\%$ each.)

Commention (continued). Specifications and Remarks			Melted in a nonconsumable are furnace.	
Servent	Al	တ	t-	
400000	Ti Al	35		9
	Name and Specimen Designation			
	Temp. Reported Range, K. Error, %			
	Temp. Range, K		317.4	403.2
	Year		19	1956
	Method			Ç
	No. No.		ţ	555
	Curv		74	2

DATA TABLE NO. 220 THERMAL CONDUCTIVITY OF | TITANIUM + ALUMINUM! ALLOYS

 $(T_1+A) \geq 99.50\%; \ impurity \leq 0.20\%; \ each)$

{Temperature, T, K; Thermal Conductivity, k, Watt $cm^{-1}K^{-1}$ }

T k

CURVE 1°
31°.4 0.092

CURVE 2 401.2 0.0883

SPECIFICATION TABLE NO 221 THERMAL CONDUCTIVITY OF LITANBEM - MANGANESE, ALLOYS

(Ti + Mn | 99, 50%; impurity | 0, 20% each)

[For Data Reported in Figure and Table No. 221]

Roman land and Bottation	Composition (continued), Specializations and recination		Nominal composition; formerly designated as (C-130'A: 10'A) mill-annialed condition; measured in vacuum of 2×10^5 mill-annialed condition; measured in 10'A)	min fig. electrical resistivity 93, 400, 500, 120, 421, 431, 146, and 151 µ ohm cm at 3.11, 366, 422, 477, 533, 549, 644, 700, 755 and 811 C respectively. Armoo need as comparative material.	0, 20 Fe. 0, 177 O. 0, 0069 H. 0, 05 C and 0, 034 N; specumen over in Alamoter.	April manager (1)	diameter disks. density 4, 59 g cm.
	Composition (weight percent) Tri		£		6.3		æ. (∸
	Composition Ti		92		93, 23		91,81
	Name and Specimen Designation		Ti-4Mn		Ti-130A	•	Ti-sMn
			(3 V		5	2	10
	Curve Ref. Method Year of France Reported	Kunge, n	118-115 8331 0			350-746	1961 534-1446
	Year		3 3			1956	1961
	Methox	Used	,	ر		نہ	œ
	Pef.	Š.		153		340	61,
	Curve	Š		-4		5	m

Land the second of the second

A . W. W. W. S.

DATA TABLE NO, 221 THERMAL CONDUCTIVITY OF [TITANIUM + MANGANESE] ALLOYS

(Ti + Mn $\approx 99,\,50\%$, impurity $<0,\,20\%$ each)

[Temperature, T. K. Thermal Conductivity, k. Watt cm¹⁴ K¹⁵]

	CURVE 3 (cont.)	 	~	0	.0																												
•	E	1222	1254.	134	144																												
£	VE 1	0, 110					0, 140			0.160	0, 167	VE 2	0.148								0,145		- 2		VE 3	0.0855	0.0000	0.0917	0.0330		0.108		
	CURVE	11:	199	6.6.7	1 (- 1 (- 1 (-	127	589	79	700	755	811	CURVE	349,8	351,6	390, 1	405.4	429.0	429.0		517.9				745.7	CURVE	533.7	560.9	674.8	813.7	2.826	1050	1036.5	1167.1

SPECIFICATION TABLE NO, 222 THERMAL CONDUCTIVITY OF (TITANIUM) OXYGEN) ALLOYS

(Tr. + O + 99,50 %; impurity < 0,20 % each)

(For Data Reported in Figure and Table No. 222.)

fications and Remarks	081 Ni, 0, 14 C; specimen sers Johnson-Matthey and or 5 hrs to wacuo; al resistivity 70 µ ohm em
Composition (continued), Specifications and Remarks	9,024 Mg. 0.13 St. 0.05 Fe. 0.084 Nt. 0.14 C; specimen 3 mm nodia, supplied by Messrs Johnson-Matthey and Co., Led annested at 550 C for 5 hrs to vacuo: \$\rho = 23.6 \text{ \text{\$\mu\$ ohn cm, electrical resistivity } 70 \text{\$\mu\$ ohm cm, at 293 K.}
Composition (weight percent) Ti	1,63
Composition	ć
Name and Specimen Designation	DSS ML
Temp, Reported Spec	
Temp. Runge, K	4,3-96
Year	1, 1936 4,3-96
Curve Ret. Method Year R	بہ
Ret.	ş.
Our.	_

THERMAL CONDUCTIVITY OF (TITANIUM + OXYGEN) ALLOYS DATA TABLE NO. 222

 $(T_1+O)\cdot 99,50\%$ inspurity $\approx 0,20\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm 'lK'l]

CURVE 1

0.0080 0.0225 0.0314 0.0370 9.0370 9.0504 0.1606 0.164 0.164 0.169 4,30 10,51 15,75 19,25 25,65 29,56 56,40 65,90 77,50 90,50

THERMAL CONDUCTIVITY, Wall

855

SPECIFICATION TABLE NO. 223 THERMAL CONDUCTIVITY OF [TUNGSTEN + RHENIUM] ALLOYS

(W.) Re (99,50%); imparity (9,20%) each)

[For Data Reported in Figure and Table No. 223]

Composition (continued), Specifications and Permarks	0.0023 C. 0.0014 O. 0.001 Fe and 0.0005 N impurities: specimen 1.9195 cm in dia and 0.0766 cm long; avg grain size 0.216 mm dia; density 19.73 g cm ⁻³ ; thermal conductivity was derived from the temp distribution on the flat surface of the cylindrical disc specimen heated in high account (0.3 nm Hg) by high frequency induction generating localized heating within 0.003 in. of the surface at current frequency of 500000 cps with heat lost only by radiation; the cylindrical surface being assumed isothermal, and the temp gradient along the radius was analytically correlated to the thermal conductivity.	6.0025 C. 6.0022 O, and 0.0002 II; cut from the same har as the above specimen; specimen 1.9298 cm in dia and 0.2163 cm long, avg grain size 0.041 mm dia; density 19.19 g cm ⁻¹ ; measuring method same as that for the above specimen.	Specimen made from an ingot subjected to rolary swaging 7.8 mm in dia and 65 mm long; ground to a surface-finish class of 8; mnesided in vacuum at 220° K for 2 hrs locker the measurements; mething point 3300 K; measured in vacuum with electronic heating at 1-5 x 10° mm Hg; electronal resistivity 60. 4, 67.3, 73.9, 79.9, 85.7, 91.1, 96.8, 102.8 and 109.2 x 10°6 ohm em at 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, and 2800 K, respectively.
Comp	0.0023 C Specini grain: therm: beated inducti of the heat ic being:	0,0025 C as the 0,2105 19,19 above	Specimen 7.8 ms finish 2 hrs measu 10 'n 79.9, n at 1200 2800 K
Composition (weight percent) W	70 60 81	24.5	27.0
Composition (Bal	Bal	13.0
Name and Specimen Designation			VR-27-VT
Reported Error, C			
Temp. Reported Ringe, K. Error, T.	1966 1617-2074	1625-2553	1400-2500
Year	1966	9961	1966
Ref. Method Year I		Ť	on.
Ref.	চ ব হ	849 949	928,529
Curve No.	-	¢1	n

DATA TABLE NO. 223 THERMAL CONDUCTIVITY OF [TUNGSTEN + RHENIUM] ALLOYS

 $(\mathrm{W}+\mathrm{Re} + 99.50\%)$ impurity $\pm 0.20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

۲

CURVE 1

1616, 5 0.702 1710 0.652 1887 0.660 1928 0.680 2034 0.668

CURVE 2

1625 0.640
1689 0.657
1720 0.612
1804.5 0.627
1917
1915.5 0.637
1915.5 0.638
2002.5 0.638
2003.5 0.638
2003.5 0.638
2003.5 0.638
2003.5 0.638
2003.5 0.638
2003.5 0.638
2003.5 0.638
2003.5 0.638
2003.5 0.638
2053.5 0.638

CURVE 3

1490 0.544 1600 0.563 1800 0.582 2000 0.601 2200 0.620 2600 0.6583 2800 0.657 Not shown on plot

SPECIFICATION TABLE NO. 224 THERMAL CONDUCTIVITY OF (URANIUM + ALUMINUM) ALLOYS

 $\{U+A1:99,50\%; impurity \le 0.20\% each\}$

Weth	8	Surve Ref. Method Year No. No. Used	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent) U Al	ight percent) Al	Composition (continued), Specifications and Remarks
591 C		1963	3:18.2	△ 1.6		58.4	Bal	Fc < 0.1, Si < 0.07, Ca < 0.04, and B < 0.02; prepared by the dissolution of reactor-grade Uranium (> 99.5 purity) in aluminum (99.99 purity) at approximately 100 C above the alloy liquidus temperatures and then cast in a graphite mould at 100 C.
591 C		1963	338.2	4.0		58.4	Bal	Fe < 0.1, Si < 0.07, Ca < 0.04, and B < 0.02; same as the above specimen except measured after heat-treated at 620 C for 5 days.

DATA TABLE NO. 224 THERMAL CONDUCTIVITY OF (URANIUM + ALUMINUM) ALLOYS

(U + Al > 99.50%; impurity < 0.20% each)

[Temperature, T,K; Thermal Conductivities, k, Watt cm-1K-1]

CURVE 16
338.2 0.561
338.2 0.565
GURVE 26
338.2 0.343
338.2 0.343

No graphical presentation

escense inspirit sales in

SPECIFICATION TABLE NO. 225 THERMAL COMPUCTIVITY OF [URANIUM + CHROMIUM] ALLOYS

(U + Cr \approx 99, 50%; impurity \approx 0, 24% cach)

[For Data Reported in Figure and Table No. 225]

Curve	ä	Method	Year	Temp.	Curve Ref. Method year Temp. Reported	Name and Specimen Designation	Composition (weight percent) U	Composition (continued), Specifications and Remarks
-	269	5	C 1954	273-1073	£ 5	32	94.x S.2	Biscult U. specimen 2 cm in diameter and 15 cm long; eutectic; east in cold graphite; measured in vacuum ~ 5 x 10 ⁻³ mm Hg; cast in cold graphite; measured in vacuum ~ 5 x 10 ⁻³ mm Hg; cast in mach as comparative material
				5	ت +	30-2	94. 4 S. 2	Similar to the above specimen, except specimen east in copper.
04 E	2 69	ပေပ	1954	273-1073	e us	774	94.8 5.2	Similar to the above specimen except specimen cast in warm graphite.
S	!			;	•	781	99.3 0.5	Specimen supplied by Argonne National Lab.; as rolled.
4	394	ပ	6061	34.5.	;		94.71 5.29	Eutectic.
ເກ	557	a.	1963	298.2			0.00	Thermal conductivity data obtained from the average values of
G	356	ပ	1954	293-1073				4 specimens.

DATA TABLE NO, 225 THERMAL CONDUCTIVITY OF (URANIUM + CHROMIUM) ALLOYS

(U + Cr = 99, 50%; impurity < 0, 20% each)

[Temperature, T, K, Thermal Conductivity, k, Watt cm-1 K-1]

¥	E 6	0.29 0.30 0.32 0.33 0.34 0.44 0.44 0.44 0.44 0.44 0.44			
٢	CURVE	293.2 373.2 473.2 673.2 173.2 973.2 973.2			
×	V 2 1	0, 293 0, 304 0, 319 0, 338 0, 360 0, 383 0, 415 0, 444	VE 2 0 285 0.301 0.321 0.336 0.356 0.356	VE 3 0, 295 0, 295 0, 330 0, 330 0, 350 0, 371 0, 423 0, 448	0,277 VE 5 0,306
۲	CURVE	273,2 573,2 473,2 673,2 673,2 773,2 773,2 673,2	273.2 273.2 373.2 473.2 573.2 673.2 773.2	273.2 0 377.2 0 473.2 0 573.2 0 673.2 0 773.2 0 973.2 0	343.2 (CURVE CURVE 298.2 (

*Not shown on plot

SPECIFICATION TABLE NO. 226 THERMAL CONDUCTIVITY OF (TRANTUM + IRON) ALLOYS

(C + Fe = 99.50%; impurity $\approx 0.20\%$ each)

Composition (continued), Specifications and Remarks	Eulectic.
rcent) Fe	10.1
Composition (weight percent)	89.6%
Name and Specimen Designation	
Reported Error, 5	
Temp. Runge, K	298.2
1 1	1953
Method Year Used	đ
Ref.	557
Curve No.	7

DATA TABLE NO. 225 THERMAL CONDUCTIVITY OF LURANIUM + IRON) ALLOYS

(U + Fe : 99, 50%; impurity < 0, 20% each)

[Temperature, T, K: Thermal Conductivity, k, Watt cm 1K 1]

r k

298.2 0.0917

SPECIFICATION TABLE NO. 227 THERMAL CONDUCTIVITY OF (URANIUM + MAGNESIUM) ALLOYS

 $(U+Mg \ge 99,50\%; \ imparity \le 0,20\% \ each)$

Composition (continued), Specifications and Remarks		Extruded powder specimen.	
Composition (weight percent)	U	26.5	
Town Reported Name and	Curve Ref. Method Year Range, K. Error, "Specimen Designation No. Used		1 296 1952 523,650

DATA TABLE NO. 227 THERMAL CONDUCTIVITY OF LURANIUM + MAGNESIUM | ALLOYS

($U+Mg\approx99.50\%$; impurity $\leq0.20\%$ each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE !

523.2 1.130 653.2 1.100

FIGURE SHOWS ONLY 6 OF THE CURVES REPORTED IN TABLE

THERMAL CONDUCTIVITY OF URANIUM + MOLYBDENUM ALLOYS

[U +Mo # 9950%; impurity 4 020% each3

Control of the state of the sta

THERMAL CONDUCTIVITY, Wolf cm

TEMPERATURE, K -----

F1G 228

TEMPERATURE,

16 46 7

The second section is

SPECIFICATION TABLE NO. 228 THERMAL CONDUCTIVITY OF [URANIUM + MOLYBDENUM] ALLOYS

 $\{U+Mo<99,50\%,impurity<0,20\% each\}$

 $\{$ For Data Reported in Figure and Table No. $-22 \text{M}\}$

Composition (continued), Specifications and remarks	No details reported. Measured under vacuo of ~1 x 10 ⁻⁵ mm Hg. Metastable garoma state. The above specimen amealed for 40 hrs. at 520 C; alpha state. The above specimen water quenched from 700 C; gamma state.	Specimen as rolled rod. Similar to the above specimen but annealed 2 hr. at \$50 C, then water quenched. Similar to the above specimen but annealed 2 hr. at \$50 C. furnace cooled to 200 C then water quenched.
Corposition (weight percent) U Mo	* 62 0 0 0	יט יר אס
 Compositi	9. 55 9. 55 9. 55 9. 55	9 6 9 6
Name and Specimen Designation		C-270-5 C-270-10 B C-270-10 A
Reported Error, %		o1 61 61
Curve Ref. Method tear Range, K Error, %	473-760 293-1073 398-585 393-583 398-583	
. ear	1956 1956 1945 1945	1945 1945 1945
Mett.oc Used		יי יי
Ref.	46 538 392 392 392	730 730 730
Curve No.	- 2 m 4 v	y (+ x

DATA TABLE NO. 228 THERMAL CONDUCTIVITY OF LERANIUM 4 MOLYBDENUM, ATLOYS

(U+Mo) 19, 50%, impurity > 0, 20% each)

Terriverature, T. SAThermal Conductivity, 3, Wattem¹⁴ K¹⁴J

CURVE 6 (cont.)	318, 7 0, 145	-	0,135	CURVE 7	H11.6 0, 158		\$	324, 5 0, 159	374, t - 0, 163		CUNVE 8		821,0 0,128		324, 5 0, 201	310, 6 0, 201							
(<u>a</u>	0877.0	217	0,255	ر دي د	121 '0	2,13		6, 201	0.23.5		6, 311	0,335	0 XT	CURVE 3	0, 160	G. 140	0, 205	0, 22.0	VE 4	(-164)	081-0	0, 205	0 11 0
CURVE	01 1-		11,000	CURVE 2	26.5	11	21.7	1	67.1.	27 	11.51.4	11	107.3	CUR	195, 2	27.74	61,775	2.75	CURVE 4	3.8.2	161.2	523.2	11.12.2 12.12.2

<u>.</u>	0 180 0 203 0 203 0 220	(F. 5)
CCR	3.03.2 461.2 523.2 583.2	CURVE 5

1	0, 205 0, 215 0, 230 0, 250	9 3
	398,2 463,2 523,2 583,2	CURVE 6

	u, 142	
5 19 10	3,201	311.5

Not shown on plot

SPECIFICATION TABLE NO. 229 THERMAL CONDUCTIVITY OF [URANIUM + MOBIUM] ALLOYS

(U + No | 99, 50%; impurity < 0,20% each)

Composition (continued), Specifications and Remarks		
Composition (weight percent)	U. No	96
Composit	r. T. Specimen Designation	
10 miles	Ringe, K Error,	1945 400-619
	Any No. Used Year Ringe, K. Error, T. Spec	122 1945
	10. Co.	,

DATA TABLE NO. 229 THERMAL CONDUCTIVITY OF [URANIUM + MORIUM] ALLOYS

(y + Nb > 99, 50%; inpurity < 0, 20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm"K"]

CURVE 1

399, T. 1, 230 474, 2. 0, 245 544, 3. 0, 254 " No graphical presentation

SPECIFICATION TABLE NO. 250 THERMAL CONDUCTIVITY OF TURANIUM + SILICON ALLOYS

 $(1) + S_1 - 99, 50\% \text{comparts} \times 0.20\% \text{ cach})$

For Data Reported in Figure and Table No. 230

Composition (continued), Specifications and remains		Oscidar , ode at attachment of a	Heat treated; specimen nomogeneous in the colonies.		Similar to the above specimen.		
Composition (weight percent)	is.		57			-	
Name and	if thinge, K. Erroit, T. Specimen Designation			E-10		12-3	
Reported	Ermir,			c i		7)	
Termo	Linke. K			1485 G01-040		138-433	
 	Curve Ret. Medium Year In.	ļ		0.7		1945	
	Sed Sed			1 110.		13.0	
				::	-	Ť	
	5			•	-	11	

DATA TABLE NO, 230 THERMAL CONDUCTIVITY OF (TRANTEM + SILICON) ALLOYS

 $(U+Si^{-}99,50\%; \, impurity \pm 0.20\% \, each)$

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

£.

301.0 0.159
308.8 0.159
319.2 0.179
319.6 0.132
CURVE 2

298.1 0.151 310.5 0.159 315.7 0.167 324.4 0.172 333.9 0.172 339.2 0.173

The second second

SPECIFICATION TABLE NO. 231 THERMAL CONDUCTIVITY OF CRANICM - ZIRCONIUM, ALLOYS

(t) + Zr $^{\circ}$ 39, 50%, impurity $^{\circ}$ 9, 20% each)

For Data Reported in Figure and Table No. [231]

tions and Remarks			t. %) burn up.	1 (at. ") burn up.			standard.			
Remarks of Remarks	Company of the control of the contro		(0,0 (1235 enriched) irradiated, 0,75 (at. 75) burn up.	Similar to the choice specimen except 0.21 (at. 7) burn up.	As rolled.	As rolled,	Mercured in vacuo: zircaloy -2 used as standard.	No details reported.	No details reported,	No details reported.
the percent	Zr		1,6	1.6	1.1	1. 5	1.5	= 'c	50.05	a .ot
Character Manage and Community	(a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		# 'ss	+ /s	9.50	45,00	6.76	9.55	a '0,	0,00
	Specimen Designation		ANL AA-20(hot)	ANI, AA 22(hot)	1 11 11	± ± ±				
			- 1	= .	••	• •	•			
	Temp, Reported		11	7 I	1 11 12 13	: ::::::::::::::::::::::::::::::::::::				
	Year		1955							
	Ref. Method No. Used]	ï	. :	، د	, :	, ;	ن		
	S. S.	}	Ş							:
	Curve No.		-	• :	1	: -			<u>.</u> 1	-

A TOTAL PROPERTY.

DATA TABLE NO. 231 THERMAL CONDUCTIVITY OF [URANIUM + ZIRCONIUM] ALLOYS

(U+Zr+99,50%) imparity $\sim 0.20\%$ each)

[Temperature, T. K. Thermal Conductivity, k. Watt em⁻¹K⁻¹]

٤.	(cont.)	6.34	t	0.41	∓		ر - <u>ا</u>		0.1	0, 15	0, 1;	0. 17	o. 30	0 21 21	(C) (C)	. 0	0.0	د) سا	0.07	0°0×	0, 10	0, 12	<u> </u>	. 0 . 0	7.	x .	: ii	•									
-	CURVE 6 (cont.)	873, 3	973.2	1973, 2	1173.2		CURVE 7		25.5	373.2	123.13	573.2	673.2	173.2	710.13 11.13	1073.	1173.2	CURVES	293.2	373.2	473,2	57.5.2	1 5 7 7 1	873.2	6 62.5	1073 2	1173 2										
¥	VE 1	9, 222	0, 24.5	0, 234	0.345	6.2.5		1.5 1.5		0, 226	د. د د د د د د د د د د د د د د د د د د د	0,243	0, 251	0.247	÷		6.249	VE 4	0, 239		VE O	0	977.0	0.260	0.285	011.0	0.340	6, 370	0.405	0. · t 5	VE 6	0.19	0, 21	0, 23	0.25	0.28	16.0
÷	CURVE 1	07:24	21	7	51 GE	t) (1)		CURVE :		47.5, 2	473, 2	71 11 17 17	473, 3	1737	c. 2/1011.0		343, 2	CURVE 4	345.3		CURVE 5	:	1.00	1 61 61	1 61 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.829	101	873.2	97.3, 2	1073.2	CURVE 6	293.2	373, 2	473.2	573.2	673.2	773.2
_																			•																		

THE CONTRACTOR

SPECIFICATION TABLE NO. 232 THERMAL CONDICTIVITY OF VANADIUM + IRON : ALLOYS

 $(\mathrm{V}+\mathrm{Fe}).99,50\%$ unpurity 70,20% each)

For Data Reported in Figure and Table No. 232

Composition (continued), Specifications and Remarks	9, 14 C. 9, u2 Si. 0,005 Cu. 0,002 Ti. 0,002 Mo. 0,01 Mn; single crystal; specimen obtained by the floating-cone melting of polyerystelline rod; in normal state in a field of 6200 oersteds.	0.02 St. 0.095 Cu. 0.002 Tr. 0.002 Mb. 0.01 Mn; the above specimen in superconducting state:
ight percent) Fe	16, 86 0, 2	0.2
Composition (weight percent)	83 99,561	197,00
Name and Specimen Designation	Russian ferrovanadium, 36 VI	
Reported Front		
Temp.	1937 - 423.2 1951 - 1.2-4.1	1961 0.95-4.4
d Year	1937	1.961
c: Metho	1 100	503
Curve R	- :-	n

DATA TABLE NO. 232 THERMAL CONDUCTIVITY OF [VANADIUM + IRON] ALLOYS

では、100mmので

(V + Fe ≥ 99, 50%; impurity < 0, 20% each)

(Temperature, T, K; Thermal Conductivity, k, Watt em 'lK-1)

CURVE 1

1. 29 0.516

1. 29 0.0175

1. 52 0.0215

1. 56 0.0319

2. 55 0.0319

2. 55 0.0359

2. 55 0.0359

3. 35 0.0434

3. 35 0.0475

3. 65 0.0530

CURVE 3

CURVE 3

0,95
0,95
0,031
0,97
0,0031
1,135
0,0045
1,155
0,0051
1,55
0,0055
1,94
2,16
0,0124
2,13
0,0236
3,14
0,0236
3,44
0,0347
3,59
0,0347
4,13

THE ALL PROPERTY

SPECIALICATION TABLE NO, 233 THERMAL CONDUCTIVITY OF VANADIUM (MITTRIFM) ALLOYS

 $t\mathbf{V} + \mathbf{V} = 99, 50\%$ compared y = 0, 29% each)

For Data Reported in Figure and Table No., 233.

Composition (continued), Specifications and Remarks	o og Fe, o.ot St. o.os N. o.o5 C. and O. o.ot; polycerystal; in normal state in a held of 4600 oersteds.	The above specimen in superconducting state.
Cemposition (weight percent) Composition (100,035	
Name and Specimen Designation		
Temp, Reported Ringe, K. Error,"	e: T	e: 7
Year Rang	1961 3.3-4.3	1961 n.97-4.3
Carve Hel, Method Year No. No. Used		
. Ket.	501	301
Carv.	-	S1

The first section of the

DATA TABLE NO. 233 THERMAL CONDUCTIVITY OF (VANADIUM + VITTRUM) ALLOYS

 $(\mathbf{V}+\mathbf{Y})/99.50\%$ impurity <0.20% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-4K-1]

CURVE !

0,0402 0,0441 0,0457 0,0514 0,0544	URVE :	0.00060 0.00093 0.0019 0.0019 0.0025 0.0145 0.0145 0.0145 0.0155 0.0248 0.0224 0.0224 0.0224 0.0224 0.0226 0.0227 0.0357
	CLI	- 5 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6

SPECIFICATION TABLE NO. 231 THERMAL CONDUCTIVITY OF IZINC 4 ALUMINUM ALLOYS

 $\sqrt{2n+A1} = 99\sqrt{50\%}$ inspirity (0, 20% each)

Composition (continued). Specifications and Remarks		and the second of the second o	0,037 Cu, 4,042 M, 0,000 MK, 0,000 M, 101 M, 100 M,	Imparities 0.03.	
percenti			÷. 15	F.	
Compasition (weight percent)	ermer Designation Zn		95,53	(13), 13	
Name and	ž	!	Zamuk Nr 100		
Separted	Curve Rel, Medio Year Range, K. Friver, St. No., Used		0.1		
Separate Separates	Lings N		17 R 1958 293-353 3 L.O.	*1 *1	
	Year		70 G	1925	
	Sed Sed	1	æ	230 1, 1925 323,3	
			::	Ą	
	<u>1</u> %		_	^1	

DATA TABLE NO, 231 THERMAL CONDICITIVITY OF | ZINC + ALLIMINEM | ALLIOVS

 $\mathbf{Zn} + \mathbf{A1} = 99,50^{2} \mathrm{st} \ \mathrm{imparate} = 0,20^{7} \mathrm{seach})$

[Temperature, T, K: Thermal Conductivity, K, Watt $\operatorname{cm}^{1} K^{-1}$]

2	E 1	1.17	és ju	51
H	CURVE	293.2 123.2 153.2	CURVE	6 Zel.

THE PROPERTY OF THE PARTY OF TH

And Administration of the second of the seco

SPECIFICATION TABLE NO. 235 THERMAL CONDUCTIVITY OF TAINC A CADMICAL ALLOYS

The second of the second second second second second second second second second second second second second s

 $(\mathbf{Zn}+\mathbf{Cd}-\mathbf{99},\mathbf{50}^{\mathrm{s}})_{1},\mathbf{mpart}_{1}\mathbf{A}\in [0,20]^{\mathrm{s}},\mathbf{coch})$

	Composition (continued), Specifications and Refacts		Impurities < 0.03.	Impurit es < 0.03.	Impurites < 0.03.	Taxonomic Control of the Control of	interior comments and the comments and the comments and the comments are comments and the comments are comments and the comments are comments and the comments are comments and the comments are comments are comments and the comments are com
	d percent) Cd		9.04	0.1-45	1 (16		o •
	Composition (weight percent) Zn		60.0	9-01			95.0
1	Temp, Reported Name and Research Frence, Specimen Designation						
	Reported						
	Temp.		6 96.		51 953 13	::36,2	326,2
	Vear	İ	56.01		1932	6261	1925
	Curie Rel. Method Year	2	-	נ	_	-1	1
	Fe	· ()	9.0	2	5.10	230	230
	Can.	0	•	•	24	rs	7

DATA TABLE NO. 235 THERMAL CONDUCTIVITY OF | ZING + CADMIUM ALLOYS

 $(\mathbf{Zn} + \mathbf{Cd} + \mathbf{99.50\%})$ impurity $\leq 0.20\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

7. K
CURVE 1°
32..2 i.042
CURVE 2°
326.2 l.067
CURVE 3°
326.2 l.088
326.2 l.126

No graphical presentation

SPECIFICATION TABLE NO. 236 THERMAL CONDUCTIVITY OF (ZIRCONIUM + ALJUMINUM) ALLIDYS

(Zr + A) > 99, 50%; impurity < 0,20% each)

Composition (continued), Specifications and Remarks	Melted in a nonconsumable electrode arc furnace.
Composition (weight percent) Zr	# 8
Composition (96
Name and Specimen Designation	
Reported Error, %	
Temp. Range, K	318.7
Year	1954 1956
Method Used	U
Curve Ref. No. No.	554 555
Curve No.	- 2

DATA TABLE NO. 236 THERMAL CONDUCTIVITY OF (ZIRCONTUM + ALUMINUM) ALLOYS

(Zr + Al + 99,50%; impurity + 0,20% each)

{Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1}

T k

318.7 0.0437

CURVE 2

406.2 0.0828

No gra shical presentation

SPECIFICATION TABLE NO. 237 THERMAL CONDUCTIVITY OF [ZIRCOMUM + HAFNUM, ALLOYS

 $(\mathbf{Zr}+\mathbf{Hf}+99,50\%,\text{ impurity}-9,10\%\text{ each})$

For Data Reported in Figure and Table No. 237

Method Year Range, K Error, ", Specimen Designation Composition (weight percent) Used Range, K Error, ", Specimen Designation Zr III	
Temp. Reported Name Range, K Error, " Specimer 2, 2, 2, 38	
Temp. Range, K 2,2-38	
_	
fethod Year Ssed L 1955	
8 d 2 d	
Curve Ref. No. No.	

THERMAL CONDUCTIVITY OF [ZIRCONIUM + HAF WITM] ALLOYS $(Z_{\rm F}+Hf\approx 99,50\%,~imparity<0.20\%~each)$ DATA TABLE NO. 237

(Temperature, T. K. Thermal Conductivity, k. Watt $\mathrm{cm}^{\mathrm{cl}}(K^{\mathrm{eff}})$

CURVE 1

0,0658 0,0921 0,0927 0,119 0,111 0,131 0,131 0,218 0,2

SPECIFICATION TABLE NO. 23 THERMAL CONDUCTIVITY OF LZIRCONIUM + MOBIUM) ALLOYS

(Zr + Nb + 99.50%; impurity < 0.20% each)

Composition (continued), Specifications and Remarks	0.14 Hf, 0.0k C.
ght percent) Nb	1.52
Composition (weight percent) Zr	98,26
Reported Name and Composition (weight perce Frror, ". Specimen Designation 2r N	
Reported Frror, "	
Temp. Runge, K	342-899
	1957
Curve Ref. Method year No. No. Used	441 +E 1957
Ref.	÷
Curv.	

DATA TABLE NO. 338 THERMAL CONDUCTIVITY OF [ZIRCONIUM + MORIUM] ALLOYS

(Zr + Nb > 99,50%; impurity < 0,20% each)

[Temperature, T. K. Thermal Conductivity, k, Watt cm71K71]

-

CURVE 1°
342.2 6.213
391.2 0.213
479.1 0.210
554.9 0.210
562.2 0.216
680.9 0.219
753.8 0.227
874.2 0.227
874.2 0.227

No graphical presentation

SPECIFICATION TABLE NO. 259 THERMAL CONDUCTIVITY OF ZIRCOMEM. TIN ALLOYS

(Zr., Sn., 99, 50% unpurity - 0.20% each)

For Data Reported in Figure and Table No. 229

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			Ringe, K	Error,	Specimen Designation	Congretation (weight percent)	oght percent) Sa	Composition (continued), Specifications and Remarks
	ی		223-673		313	624.70	2.510	0,005 Ng. Spection 2 cm dia. 15 cm long are-method and forged at 1700 Pt Armeo aron used as standard.
	_ _		223-673		370	97,405	3,300	0,002 N ₂ specimen 2 on dia, 15 on long are-melted and forged at 1600 P; Armon ron used as standard,
	- د		323-673		Linty	933.0	e .	Prepared from Findle grade Lenystal Dar Zr und e. p. Sn. arcenetled: Arako iron as standard.
			404,2			95	31	Melted in a nonconsumable electrode are furnace.
	· ·		407.2			36.5	15	Melted in a nonconsumable electrisde are furnace.
			E27-7#1	22		0.26	e 11	Specimen 5,938 in, Jong, 0,787 in, day supplied by Westinghouse; meltich in vacuum furnace, forged at §15 C in organ; ameraled 0,5 hr at 1000 C in vacuo.
2) T	~ :-		293-1053	· \$	Zuredoy + 2	2)	1.5	 0.13 Fr. 0.10 Cr. 0.05 Ny (nominal composition from Metals Handbook).
	_ _		2017-761	m -	12 11	93	· -	induction melled from low-halmon Bureau of Mines; spenge in graphite mold; lorged in 1800 F in air.
9 591	 د	5961	338, 2	-	Zurcaloy - 2	95,5	ī. ī	Hot rolled; copper used as standard.
055 01	~	2 Dictor - 6	659-1793		Zircaloy - 1	a Z	19.°0	Typical composition with impartities as received 0.23 Fe. 0.16 Mg. 0.086 Cr. 0.0156 Cu. 0.91 cach of fit and W. 0.0045 Mg. 0.0045 Cr. 0.0024 cach of Al. Min and St. 0.004 - Th. 0.0012 Nh. 0.0015 Ch. 0.0014 Ch. 0.0015 Nh. 0.0015 Ch. 0.0014 Ch. 0.0015 Ch. 0.0015 Ch. 0.0015 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch. 0.0016 Ch. 0.0016 Sh. 0.0016 Ch.
7 186 11	L. C 15	8 999	1965 351-105%	15	Zrreatoy - 4	Bal	1,2-1,7	0. (**) 21 Fe, 0.05-0.15 Cr (0.25-0.3) total imparities of Fe Ni ** Cr); mekel used as comparities weren!

DATA TABLE NO. 239 THERMAL CONDUCTIVERY OF [ZIRCONIUM + TIN] ALLOYS

(Zr+Sn+99,50%) impurity $^{\circ}$ 0,20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt $\mathrm{cm}^{-1}\,\mathrm{K}^{-1}_{\mathrm{J}}$

æ.	CURVE 11 (cont.)	0, 163	0, 145	0, 183	0, 158	9, 176	0. 185	0 192	101			6				0 203	0, 217																												
(-	CURVE	1 05.5	476.5	0 970	553.6	6117 6	100	0.00	035.1	: : ::::::::::::::::::::::::::::::::::	133.2	770.3	812.1	826.5	982. 1	1000.9	1058, 1																												
. 4	U (cont.)	300	547		744		0.00	0 0	U. 733	0. 808 0. 808	0.820	0, 933	36 .0	, s91°	0.975	9,891	0.925	0.971	0.471	200	200.0	0.00	0.00	1. 033	0.0 0.0	1.029	1, 013	1.063	1.029	1, 059	1, 109	1, 301	1, 322	1,364	1.460	1, 556	1,569	1, 494	1, 732	1. (6)	7E 11		0.147	0. 138	0. 136
Ţ	CURVE 10 (cont.)	•	10.1	1 1070	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	305.	300.			963.2	963, 2		990. 2	999. 2	1034, 2	7 701	1055	1063.2	0 9001	1 0 0 0	1001	111.5.2	1129, 2	1147. 2	1158, 2	1171.2	1182.2	1253.2	1263. 2	1275. 2	1353.2	1497.2	1512, 2	1600, 2	1603.2	1607.2	1648.2	1648.2	1779. 2	1793. 2	CURVE 11)	350.9	397. 0	493 493
×	(cont.)		0. 128 :	0.133	0, 137	0.140	0. 143	0.152	0.157	0. 160	0. 168	0, 183		1.5		36.1.0	0.120	* C. C.			0.1.0	0. 134	661.0		0. 231		æ æ	1	0, 084	0. 686	0.00	0.094	0,095	9. 09 к	0, 103	0.104	0.107		6 3/		0.142	E 10		0.686	0.674
1	CURVE 6 (cont.)		427.50	411.20	514, 20	551.20	616,00	661, 80	695, 00	766, 60	737, 40	273, 20		CHRVE			293, 2	35.5.2	47.5.2	57.4. 2	67.3. 2	773.2	873.2	973.2	1073.2		CURVER		248.2	323.2	373. 2	415.2	423.2	473.2	523, 2	533.2	573. 2) } :	CURVE 9		338.2	CURVE 10		6.59, 2	693, 2
÷	 (e:		0.127	0, 126	0, 126	0, 127	0, 127	u, 128	0, 139	0, 131		6.1	; <u> </u>	131	0,161	U. 152	0.124	0. 126	O. 128	9, 131	0, 134	0, 137		E 3		0.0856	0.0900	X4.00 0	101 0	101 0	4.1	172	12.0	101.0	4 17		0.6745		CURVE 5	1	0.0937	9 30000		0.117	0.124
ţ -	CURVE		323, 20	37.3. 20	05 574	473, 20	523, 20	513, 20	623, 20	061 110		CHARLS		00 000	353.50	363.20	423, 20	473, 20	523, 20	573, 20	623, 20	673, 20		CURVE 3		06 202	20.00	20.00	20.00	623 20	01.00	600 00	07. 07.	01.3. 20	TIRVE		6 101	41)4. 6	CUR		407.2	a 11.5		347, 50	383.60

Not shown on plot

SPECIFICATION TABLE M). 240 THERMAL CONDUCTIVITY OF (ZIRCONIUM + TITAMIUM) ALLOYS

 $(Z_T+T) \simeq 99.50\%; \ impurity \approx 0.20\% \ each)$

Composition (continued), Specifications and Remarks	
Composition (weight percent)	
rted Name and r.ಇ Specimen Designation	
Temp. Reported Range, K. Error. %	319.7
thod Year R	1954 319.7
Curve Ref. Method year No. No. Used	1 554

DATA TABLE NO. 240 THERMAL CONDUCTIVITY OF (ZIRCONDIM + TITANDM) ALLOYS

(Zr + T) + 99,50%; impurity 3 0,20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt $cm^{-1}K^{-1})$

CURVE 1

319.7 0.130

SPECIFICATION TABLE NO. 241 THERMAL CONDUCTIVITY OF (ZIRCOMUM + URANIUM) ALLOYS

 $(2r+U)(99,50\%) \ unpurity < 0,20\% \ cach)$

 $\{\rm For~Data~Reported~in~Figure~and~Table~No.--241~\}$

School School School Remarks	Solition (Communed), Observation	Extruded; specimen 0,75 in. dia; 9 in. long.	ical resistivity 11, and 102. 5 mohm cm at 25, and	260 C, respectively, by the total of the office of the off	cetrical resistivity, 35.5, and 116.0 µohm cm at 25, and 260 C, respectively, 4, 400 0 pohmon at 25, and	No details reported.	No details reported.	No details reported.	
,	E 0.0	Extra	Flects	260	Electr 260	No de	No de	No de	
	Composition (weight percent)	F. 52	et	•	7	30	-	. ~	>
	Composition (50.3	Ş	5	98	0.5	Q y	. 'e	ō
	Name and Specimen Designation		1	7	۳				
	teported frror.%		a 	η. 10					
	Curve Ref. Method Year Temp. F		543-913	298-573	295-573		293-1173	293-573	293-673
) ear		1952	1951	1951		1924	1954	1954
	Method		J	ن					
	و نج		295	21 4	÷1		396	396	396
	Curve		-	51	~		-7	ıc	٠

MERCHANIS CONTRACTOR OF THE STATE OF THE STATE OF THE CONTRACTOR OF THE STATE OF TH

 $(2r + U \times 99, 50\%; impurity \approx 0.20\% each)$

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

0.14 0.14 0.14 0.15 0.15 0. 11 0. 12 0. 12 0. 13 CURVE 6 CURVE 5 293, 2 373, 2 473, 2 573, 2 673, 2 293. 2 373. 2 473. 2 573. 2 0.111 0.113 0.115 0.115 0.120 0.123 0.123 0. 140 0. 141 0. 142 0. 143 0. 144 0. 145 0. 145 0. 106 0. 130 0. 170 CURVE 3 CURVE 2 CURVE 1 298. 2 323. 2 373. 2 4 15. 2 4 25. 2 4 73. 2 523. 2 573. 2 298. 2 373. 2 415. 2 473. 2 473. 2 523. 2 533. 2 573. 2 549.2 723.2 913.2

CURVE 4

293.2 373.2 473.2 573.2 673.2 773.2 873.2 973.2 1073.2

* Not shown on plot

The rest of the section

SPECIFICATION TABLE NO. 242 THERMAL CONDUCTIVITY OF [ALUMINUM + COPPER + Σx_i] ALLOYS

(Al + Cu < 99, 50% or at least one $X_1 > 0.20\%$

[For Data Reported in Figure and Table No. 242]

1															
55 PL 1928 353-523 Bar 779 12.0 3.0 55 PL 1928 353-473 Bar 792 12.0 2.0 55 PL 1928 353-473 Bar 752 12.0 2.0 2.0 55 PL 1928 353-473 Bar 752 8.0 1.0 2.0 2.0 55 PL 1928 353-473 Bar 852 9.0 1.0 2.0 2.0 55 PL 1928 353-473 Bar 856 9.0 1.0 2.0 2.0 55 PL 1928 353-473 Bar 856 8.0 1.0 2.0 2.0 55 PL 1928 353-473 Bar 758 8.0 1.0 2.0 2.0 55 PL 1928 353-473 Bar 758 8.0 1.0 2.0 2.0 55 PL 1928 353-473 Bar 758 8.0 2.0 2.0 2.0 </th <th>Curve No.</th> <th>ج ج ج ج</th> <th>Method</th> <th>Year</th> <th>Temp. Range, K</th> <th>Reported Error, %</th> <th></th> <th>Ĉ</th> <th>Co Fe</th> <th>mposition Mg</th> <th>n (weight Mn</th> <th>per cent)</th> <th>ŝ</th> <th>Zn</th> <th>Composition(continued), Specifications and Remarks</th>	Curve No.	ج ج ج ج	Method	Year	Temp. Range, K	Reported Error, %		Ĉ	Co Fe	mposition Mg	n (weight Mn	per cent)	ŝ	Zn	Composition(continued), Specifications and Remarks
5.6 FL 1326 333-473 3.0	-	13	4	1928	353-523		Bar 779	12.0				3.0			Cast and annealed.
5.6 FL 1928 333-473 Bar 785 8.0 2.0 55 FL 1926 333-473 Bar 785 8.0 1.0 1.0 55 FL 1926 353-473 Bar 886 8.0 1.0 2.0 55 FL 1928 353-473 Bar 886 8.0 1.5 2.0 55 FL 1928 353-473 Bar 886 8.0 2.0 2.0 55 FL 1928 353-473 Bar 886 4.0 2.0 2.0 55 FL 1928 353-473 Bar 886 4.0 1.0 2.0 55 FL 1928 353-473 Bar 786 4.0 1.0 2.0 55 FL 1928 353-473 Bar 7	. 4	13	4	1928	353-473			12.0				2.0			Cast and annealed.
55 FL 1926 353-473 Bar 762 8.0 1.0	ب	33	4	1928	353-473			9.0				2.0			Cast and annealed.
55 #L 1928 353-473 Har 1835 9.0 1.0 2.0 2.0 55 #L 1928 353-473 Har 1835 9.0 1.0 2.0 2.0 55 #L 1928 353-473 Har 1836 9.0 1.0 2.0 2.0 55 #L 1928 353-473 Har 1836 4.0 1.0 2.0 2.0 2.0 55 #L 1928 353-473 Har 1836 4.0 1.0 1.5 2.0 2.0 55 #L 1928 353-473 Har 1836 4.0 1.0 2.0 2.0 2.0 55 #L 1928 353-473 Har 1836 4.0 2.0 2.0 3.0 3.0 55 #L 1928 353-473 Har 1836 4.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 <th< td=""><td>+</td><td>55</td><td>1</td><td>1926</td><td>353-523</td><td></td><td></td><td>8.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Cast and annealed.</td></th<>	+	55	1	1926	353-523			8.0							Cast and annealed.
55 #1 1928 353-473 Har 889 9.0 1.5 2.0 55 #1 1928 353-473 Har 889 8.0 1.5 2.0 2.0 55 #1 1928 353-473 Har 889 8.0 1.5 2.0 2.0 55 #1 1928 353-473 Har 789 8.0 1.0 2.0 2.0 55 #1 1928 353-473 Har 789 8.0 2.0 2.0 2.0 2.0 55 #1 1928 353-473 Har 789 8.0 2.0 0.5 1.0 2.0 55 #1 1928 353-473 Har 789 8.0 2.0 0.5 1.0 2.0 55 #1 1928 353-473 Har 789 8.0 2.0 0.5 1.0 2.0 55 #1 1928 353-473 Har 3896 4.0 2.0 0.5 2.0 2.0 10<	S	જ	4	1928	353-473			9.0							Cast and annealed.
55 FL 1928 353-473 A Bar 888 8.0 1.5 2.0 2.0 55 FL 1928 353-473 A Bar 985 4.0 1.5 2.0 2.0 55 FL 1928 353-473 A Bar 785 8.0 1.0 1.5 2.0 2.0 55 FL 1928 353-473 A Bar 789 8.0 1.0 1.5 2.0 2.0 55 FL 1928 353-473 A Bar 789 8.0 1.0 3.0	φ	3	1	1928	353-473			9.0		1.0		2.0			Cast and annealed.
55 FL 1928 353-473 A Bur 810 8.0 1.5 2.0 2.0 55 FL 1928 353-473 A Bar 785 8.0 1.5 2.0 2.0 55 FL 1928 353-473 A Bar 785 8.0 1.0 3.0 55 FL 1928 353-473 A Bar 786 8.0 1.0 3.0 55 FL 1928 353-473 A Bar 786 4.0 7.0 A 1.0 A <td>-</td> <td>ß</td> <td>•</td> <td>1928</td> <td>353-473</td> <td></td> <td></td> <td>9.0</td> <td></td> <td>1.5</td> <td></td> <td>2.0</td> <td></td> <td></td> <td>Cast and annealed.</td>	-	ß	•	1928	353-473			9.0		1.5		2.0			Cast and annealed.
55 4L 1928 353-473 A Bar 1985 4.0 1.5 2.0 55 4L 1928 353-473 A Bar 185 8.0 1.0 3.0 55 4L 1928 353-473 A Bar 185 8.0 2.0 3.5 55 4L 1928 353-473 A Bar 1896 4.0 2.0 3.5 55 4L 1928 353-473 A Bar 1896 7.0 2.0 3.5 54 4L 1928 353-473 A Bar 2311 4.0 7.0 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.0 3.0 4.1 3.0 4.1 3.0 4.1<	æ	ß	4	1928	353-473			8.0		2.0		2.0			Cast and annealed.
55 FL 1928 353-473 Amary 88 8.0 1.0 55 FL 1928 353-473 Amary 88 8.0 2.0 3.0 55 FL 1928 353-473 Amary 88 8.0 2.0 3.0 55 FL 1928 353-473 Amary 88 8.0 7.0 7.0 3.0 55 FL 1928 353-473 Amary 88 8.0 7.0 7.0 3.0 55 FL 1928 353-573 Amary 196 7.0 7.0 7.0 3.0 34 1.0 3.0 4.1 4.0 7.0 4.2 7.0 3.0 39 1.0 3.0-4.0 Yahloy 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0 40 1.0 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 4.0 3.0 20 1.0 3.0	6	જ	11	1928	353-473			4.0		1.5		2.0			Cast and annealed.
55 4. 1 13.68 35.3-473 3.0 4.0 2.0 3.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 4.0 5.0 4.0 5.0 4.0 4.0 4.0 5.0 4.0	2	55	1	1928	353-473			9.0	1.0						Cast and annealed.
55 41 928 353-473 31 Bar 686 4.0 2.0 6.5 1.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.	: =	55	•	1928	353-473			9.0	2.0						Cast and annealed,
55 # L 1928 153-473 A Bar 198 7.0 A 1.0 A	12	55	4	1928	353-473			4.0	2.0	0.5					Cast and annealed,
55 #L 1928 353-473 T Bar 2311 4.0 T 3.0 4.1 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 3.0 3.0 4.0 3.0	13	3	7	1928	353-473			8.0			1.0				Cast and appealed.
55 F1 1926 353-573 Bar 2311 4.0 1.5 0.6 3.0 154,587 L 1956 3.3-81 <5.0	14	55	1	1928	353-473			7.0							1. 0 Ag; cast and annealed.
154, 587 L 1956 3.3-81 <5.0 4.4 1.5 0.6 93 L 1931 87 -476 3.0-4.0 Y-Alloy 4.0 1.5 2.0 93 L 1931 87 -476 3.0-4.0 Y-Alloy 4.0 1.5 2.0 93 L 1931 87 -476 3.0-4.0 Nelson- 4.0 1.5 2.0 20 L 1931 87 -476 3.0-4.0 Nelson- 4.0 1.5 2.0 20 L 1951 87 -476 3.0-4.0 Daralumin 3.0 4.1 0.1 1.5 2.0 20 L 1951 324-526 <3.0	15	S	4	1928	353-573			4.0					3. 0		Cast and annealed.
93 L 1931 67 -476 3.0-4.0 Y-Alloy 4.0 1.5 2.0 2.0 93 L 1931 87 -476 3.0-4.0 Y-Alloy 4.0 1.5 2.0 2.0 93 L 1931 87 -476 3.0-4.0 N-Bloon-Right 4.0 1.5 2.0 2.0 20 L 1931 87 -476 3.0-4.0 Duralumio 3.0/3 1.5 2.0 2.0 20 L 1951 324-526 <3.0		154, 58		1956	3.3-81	<5.0		4.4		1. 5	9.0				Urannealed.
93 L 1931 87 -476 3.0-4.0 Y-Atloy 4.0 1.5 2.0 2.0 93 L 1931 87 -476 3.0-4.0 Nelson- Rebtenleg10 4.0 1.5 2.0 1.5 2.0 20 L 1931 87 -476 3.0-4.0 Duralumin 3.0/5.0 4.1 0.1 1.63 7.0 0.05 </td <td>11</td> <td>93</td> <td>٦</td> <td>1931</td> <td>87 -476</td> <td>3.0-4.0</td> <td>Y-Alloy</td> <td>4.0</td> <td></td> <td>1. 5</td> <td></td> <td>2.0</td> <td></td> <td></td> <td>As cast,</td>	11	93	٦	1931	87 -476	3.0-4.0	Y-Alloy	4.0		1. 5		2.0			As cast,
93 L 1931 87 - 476 3.0-4.0 Nelson- Mebbenleg 10 4.0 1.5 2.0 20 L 1951 87 - 476 3.0-4.0 Duralumin 3.0/ 0.5 20 L 1951 324-526 <3.0	18	93	1	1931	87 -476	3.0-4.0	Y-Alloy	4.0		1.5		2.0			Annealed.
33 L 1951 67-476 5.0-4.0 Duralumio 3.0/5.0 0.5 0.5 0.6 0.05	13	93	٦	1931	87 -476	3.6-4.0	Nelson- Kebbenleg 10			1. 5	2.0				Cast
20 L 1951 324-526 <3.0 2 4.1 0.1 1.63 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05 0.01 0.05 0.01 0.02 0.10 20 L 1951 324-526 <3.0	20	93	ı	1931	87 -476	3.0-4.0	Duralumia	3.0 5.0							
20 L 1951 324-526 <3.0 3 4.33 0.06 1.37 0.02 0.10 20 L 1951 324.374 <3.0	21	20	1	1951	380-575	<3.0	61	4, 1	0.1	1.63			90.0	0.05	0, 004 TI; annealed at 300 - 500 C.
20 L 1951 324.374 <3.0 3a 4.33 0.06 1.37 0.02 0.16 0.16 20 L 1951 343-626 <3.0	22	30	ı 	1951	324-526	<3.0	e	4, 33	90.0	1. 37			0.02	0. 10	0, 005 TI; heated to 500 C and quenched in water.
20 L 1951 343-626 <3.0 4 4.25 0.36 1.59 0.01 0.16 0.02 91 C 1951 140-552 245-T4 4.5 1.5 0.6 104 L 1951 15 - 85 1 Duralumfn 4.10 0.42 0.5 36 L 1935 273 1.0 4.0 0.5 36 L 1935 273 1.0 0.5 0.5 36 L 1935 1.0 0.5 0.5 0.5 36 L 1935 1.0 0.5 0.5 0.5	23	20	_	1921	324. 374	<3.0	38	4, 33	90.0	1.37			0.05	o. 1c	0.005 Ti; water-quenched from 500 C; drawn at 550
91 C 1951 140-552 24S - T4 4.5 1.5 0.6 91 C 1951 119-731 24S - T4 4.5 1.5 0.6 104 L 1951 15 - 85 Duralumfn 4.10 0.42 0.57 36 L 1935 273 1.0 3.0 0.5 36 L 1935 273 1.0 0.5 36 L 1935 1.73 1.0 0.5	24	20	- 1	1951	343-626	<3.0	4	4.25	0, 36	1. 59	0.01		0.16	0, 02	0. 007 TI; heated at about 300 C.
91 C 1951 119-731 245 - 74 4.5 1.5 0.6 104 L 1951 15 - 85 Duralumfn 4.10 0.42 0.57 36 L 1935 273 1.0 3.0 0.5 36 L 1935 81, 272 1.0 7.0 0.5	52	91	υ	1351	140-552		24S - T4	4.5		1.5	9.0				As received.
104 L 1935 273 1.0 Duralumin 4.10 0.42 0.57 36 L 1935 273 1.0 4.0 0.5 36 L 1935 273 1.0 5.0 0.5 36 L 1935 81, 272 1.0 7.0 0.5	26	91	ပ	1981	119 -731		24S - T4	4.5		1.5	9.0				After beated to 300 C.
36 L 1935 273 1.0 4.0 0.5 36 L 1935 273 1.0 5.0 0.5 36 L 1935 81, 272 1.0 7.0 0.5	27	ş	1	1981	15 - 85		Duralumin	4. 10	0.42	0.57					94.0 Al; as stamped.
36 L 1935 273 1.0 5.0 0.5 36 L 1935 81, 273 1.0 7.0 0.5	88	38	_	1935	273	1.0		4 .0		0.5					Aged at 215 C.
36 L 1935 81, 273 1.0 7.0 0.5	28	8	_1	1935	273	1.0		ن. 0		0.5					Aged at 215 C.
	8	36	1	1935	81, 273	1.0		7.0		0.5					Aged at 215 C.

SPECIFICATION TABLE NO. 242 (continued)

Composition(continued), Specifications and Remarks	Chill-cast,	The above specimen annealed for 2 hrs at 371 C, then cooled to 316 C at 14 C per br, and then cooled in furnace.	Chill-cast.	The above specimen annealed for 2 hrs at 371 C, then cooled to 316 C at 14 C per hr, and then cooled in furnace.	Cast in green sand: quenched from high-temperature solution treatment; aged at room temperature.	The above specimen annealed for 2 hrs at 371 C, then cooled to 316 C at 14 C per hr, and then cooled in furnace.	Forged and quenched from high-temperature solution treatment, and then given a low-temperature precipitation treatment.	The above specimen annealed at 371 C for 2 hrs, cooled to 316 C at 14 C per hr, and cooled in furnace.	Forged and quenched from high-temperature solution treatment, and then given a low-temperature precipitation treatment.	The above specimen annealed at 371 C for 2 hrs, couled to 316 C at 14 C per hr, and then cooled in furnace.	Forged and quenched from high-temperature solu- tion treatment.	The above specimen annealed at 371 C for 2 hra, cooled to 316 C at 14 C per hr, and then cooled in furnace.	Sand-cast,	The above specimen annealed at 371 C for 2 hrs, cooled to 316 C at 14 C per hr, and cooled in furnace.	Cast.	Cast.	Cast.	Cast.
υZ													2.22	2. 22			0.03	
St	65.0	0.59	0.55	0.55	99 '0	99 .0	0.55	0.55	0.85	0.85	0. 15	0. 15	0.75	0, 75	0.31	0.23	0. 23	
Composition (weight per cent)			2. 14	2.14			1.96	1.96										
Weight Mn									0.76	9. 76	0.39	0. 59			0.35	0.36	0.41	
mposition	0. 29	0. 29	1. 52	1. 52			1.29	1. 29			0.49	0.49						
Fe Co	1.40	7	0.63	0.63	0.13	0.73	0.80	0.80	0. 30	0.50	0.96	96.0	1.21	1.21	9: 0	0.58	0.59	0.63
70	10.40	10.4	3.94	3.94	4.39	4.39	3.84	3.84	4. 45	4. 45.	3.79	ਦੇ ਦੇ	90.4	1.06	7.61	6.78	7.30	8.04
Name and Specimen Designation	7543	7543	7544	7544	7626	1626	7640	1640	764 3	7643	7644	7644	7678	7678	13	12	12	77
Reported Error, "	+ 3.0	3.0	+ 3.0	က်	9.0	+ 3· 0	1 3.0	0 +1	0 £ +1	÷ 3. 0	1+3.0	1 3. 0	+ 3.0	0 · 6 · 1				
Temp. Range, K	298, 473	298, 473	298.473	298, 473	298.473	298, 473	298,473	298, 473	298, 473	298, 473	298, 473	298, 473	298, 473	298, 473	436	447	445	428
year Year	1937	1937	1937	1937	1937	1937	1937	1937	1937	1937	1937	1937	1937	1937	1923	1923	1923	1923
Method	د	-1		-1	د	٦	د	-3	٦	٦	-1	1	-1	n.i		_	-1	-1
Re f.	223	223	223	223	223	223	223	223	223	223	223	223	223	223	224	224	224	224
Cu No.	3	32	33	* *	35	98	37	8	39	Ŝ.	±	42	£	\$	45	46	41	\$

SPECIFICATION TABLE NO. 242 (continued)

Composition (continued), Specifications and Remarks	Annealed for 3 hrs at 300 C.	0.02 Ti, 0.01 Cr; as reported by ALCOA.	0.07 Ti; wrought, heated at 525 C for 2 hrs and quenched, and heated at 170 C for 16 hrs and quenched, and again heattreated at 300 C.	Wrought: heated at 511 C and quenched in fairly hot water, then agod at room temperature.	The above specimen again heat- treated at 300 C.	Original composition reported as 98.99 Al (containing 0.21 Fe and 0.29 Si); as east.	Original composition reported as 94.94 Al (containing 0.21 Fe and 0.29 Si); as cast.	Original composition reported as 92.80 Al (containing 0.21 Fe and 0.29 Si); as cast.	Original composition reported as 88.45 Al (containing 0.21 Fe and 0.29 Si); as cast.	Original composition reported as 84.54 Al (containing 0.21 Fe and 0.29 Sl); as cast.	Original composition reported as 98.99 Al (containing 0.21 Fe and 0.29 Si); annealed at 500 C.	Original composition reported as 94.94 AI (containing 0.21 Fe and 0.29 SI); annealed at 500 C.
Zn		0.01										
iS.		6.13	0.88	0.45	0.45	0.287	0.275	0.269	0.257	0.245	0.237	0.275
cent) Ni	2		1.20	1.85	1.85							
ght per		99.0										
ion(wei	1.5	1.47	1.46	1.33	1.33							
Composition(weight percent) Fe MR Mn N		0.34	1.23	9.40	0.40	0.209	0.199	0.195	0.186	0.175	0.209	0.199
υ υ	4	4.49	2.31	3.76	3.76	1.01	5.06	7.20	11.51	15,46	1.01	5.06
¥						98.49	94.47	92.34	88.05	79.52	98.49	94.47
Name and Specimen Designation	'Y' Alloy	248	RR 59	"Y" Alloy	"Y" Alloy	ю	ဟ	ø	30	o.	3 A	S.A.
 Reported Error, %		< 2.0										
Temp. Range, K	373-623	25-296	293-573	293 473	293-573	338,438	338, 438	338,438	338,438	338,438	338,438	338,438
Year	1928	1981	1949	1949	1949	1932	1932	1932	1932	1932	1932	1932
Method Used	1	ı	ħ	J	1	,3	7	ı	ı	ı	-1	ח
Ref.	225	226	227	227	227	29	19	29	67	67	67	67
Curve No.	49	20	15	52	53	54	55	99	57	88	63	09

SPECIFICATION TABLE NO. 242 (continued)

Composition (continued), Specifications and Remarks	Original composition reported as 92, 80 Al (containing 0.21 Fe and 0.29 51); armealed at 500 C.	Original composition reported as 88.49 Alcontaining 0.21 Fe and 0.29 S1); annealed at 500 C.	Original composition reported as 84.54. Alcontaining 0.21 Fe and 0.29 Si); annealed at 500 C.	Original composition reported as 79.92 Al (containing 0.21 Fe and 0.29 Sl); annealed at 500 C.	Original composition reported as 74,40 Al (containing 0.21 Fe and 0.29 Si); annealed at 500 C.	Original composition reported as 69, 54 Al (containing 0.21 Fe and 0.29 Si); amealed at 500 C.	Original composition reported as 79, 92 Al (containing 0, 21 Fe and 0, 29 Si); as cast.	Chill-cast.	The above specimen annealed for 30 min at 450 C.	Chill-cast.	The above specimen annealed for 30 min at 450 C.	3.29 Sn; chill-cast.	3, 29 Sn; the above specimen annealed for 30 min at 450 C.	Chill-cast.	The above specimen annealed for 30 min at 450 C.	Chill-cast.
Zn																
ī	0.269	0.257	0.245	0.232	0.216	0.202	0.232	0.30	0.30	0.22	0.22	0.34	c.34	0.27	0.27	0.38
cent) Ni												1.04	1.04			
ight per Mn										96.0	0.98			0.71	0.71	
Composition(weight percent) Fe Mg Mn Ni																
Compos Fe	0.195	0.186	0.178	0.168	0,156	0.146	0.168	0.62	0.62	0.64	0.64	0.84	0.84	0.70	0.70	. 0.63
2	7.20	11.51	15.46	20.08	25.60	30.46	20.08	12.21	12.21	12.17	12.17	10,52	10.52	8.42	8.42	8.07
7	92.34	88.05	84.12	79.52	74.03	69.17	79.52									
Name and Specimen Designation	6A	8 A	9A	10A	11A	12A	01	British L-8	British L-8	Japanese 2E-8	Japanese 2E-8	ĺte	ĹĿą	Japanese M-1	Japanese M-1	No. 12
Reported Error, %								\$ 0 >	\ 0.5	<0>5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
Temp. Range, K	333,438	338,438	338,438	338, 438	338,438	338,438	338	305.2	307.2	304.9	298.2	302, 2	304.2	302.2	296.	305.2
Year	1932	1932	1932	1932	1932	1932	1932	1925	1925	1005	1925	1925	1925	1925	1925	1925
Method Used	1	ы	ų	'n	ы	1	ų	Ĺ	я	μ	n M	(c)	ы	ía	ıю	ш
Ref.	53	63	દ	29	e	64	હ	408	408	90	408	408	408	8 0 7	408	408
Curve No.	61	62	63	49	9	66	67	ď	69	ć	3 2	33	73	7.4	75	75

SPECIFICATION TABLE NO. 242 (continued)

£ 0.7	No. 12 No. 12	. 0.5 No. 12	io (c) O V	302,2 < 0.5 299,2 · 0.5 303 / 0.5	1925 299.2 0.0.5 1935 299.2 0.0.5	E 1925 202.2 < 0.5 E 1925 299.2 < 0.5
0.65	6,56 6.86	British 2411 6.56 British 2111 6.46	. 0.5 British 21-11 6.36	. 0.5 British 21-11 6.36	306.2 0.5 British 21-11 6.86 304.2 0.5 British 21-11 6.86	1925 306.2 - 0.5 British 21-11 6.86 1925 304.2 - 0.5 British 21-11 6.86
2 K . D 2 K . D 2 K . D	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17	17 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 (4), 5 (4), 5 (4), 5 (4), 5 (5), 27 (6), 5 (6), 5 (7), 27 (8), 27 (9), 5 (9), 5 (9), 5 	362.2 < 0.5 D 5.27 299.2 < 0.5 D 5.27 398.2 < 0.5 D 5.27	1915 302.2 < 0.5 D 5.27 1915 299.1 < 0.5 D 5.27 1915 298.2 < 0.5 D 5.27
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 52.2 0 72.2 0 72.2 0 72.2	27	(0,5 D 5,27 (0,5 D) 5,27 (0,5 D) 5,27 (0,5 D) 5,27	308.2 < 0.5 D 5.27	1925 301.2 < 0.5 D 5.27	E 1925 301.2 < 0.5 D 5.27 E 1925 308.2 < 0.5 P 5.27
	(zeppelm) 4, 32 (zeppelm) 4, 32 (zeppelm) 4, 32 (zeppelm) 4, 32	28 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 0 3 B(zeppelm) 4,32 . 0,3 D(zeppelm) 4,32 . 0,5 D(zeppelm) 4,32 . 0,5 D(zeppelm) 4,32 . 0,5 D(zeppelm) 4,32	306.2 (0.) Dizeppelin 4.32 (300.2 (0.) Dizeppelin 4.32 (303.2 (0.) Dizeppelin 4.32 (303.2 (0.) Dizeppelin 4.32 (303.2 (0.) 0.) Dizeppelin 4.32	1925 306.2 '0.5 Dizeppelin 4.32 1925 300.2 '0.5 Dizeppelin 4.32 1925 303.2 '0.5 Dizeppelin 4.32 1925 303.2 '0.5 Dizeppelin 4.32	E 1925 306.2 * 0.0 D(zeppelin) 4.32 E 1925 300.2 * 0.5 D(zeppelin) 4.32 E 1925 303.2 * 0.5 D(zeppelin) 4.32 E 1925 303.2 * 0.5 D(zeppelin) 4.32
	2, 53 2, 53 2, 53	British Y-1 2, 53 British Y-1 2, 53 British Y-1 2, 53	305,2 0.5 British Y-1 2, 53 302,2 0.5 British Y-1 2, 53 299,2 0,5 British Y-1 2, 53	0.5 British Y-1 2, 53 0.5 British Y-1 2, 53 0,5 British Y-1 2, 53	305,2 0.5 British Y-1 2, 53 302,2 0.5 British Y-1 2, 53 299,2 0,5 British Y-1 2, 53	1925 305,2 0 5 British Y-1 2, 53 1925 302,2 0,5 British Y-1 2, 53 1925 299,2 0,5 British Y-1 2, 53
3 0, 97 4 0, 66 5 0, 95 5 0 95	British Y-1 2, 53 0, British Y-2 4, 44 0, N 1, 85 0	ह्य क्षा क्षा १८ १५ १८ के के किए हैं १८ के के ही हैं	309.2 0.5 British Y-1 2.53 309.2 0.5 British Y-2 4.44 311.2 0.5 British Y-2 4.44 306.2 0.5 N 1.85 301.2 0.5 N 1.45	. 0.5 British Y-1 2, 53 . 0.5 British Y-2 4, 44 . 0.5 British Y-2 4 44 . 0.5 N 1,85 . 0.5 N 1,85	309.2 0.5 British Y-1 2.53 309.2 0.5 British Y-2 4.44 311.2 0.5 British Y-2 4.44 306.2 0.5 N 1.85 301.2 0.5 N 1.45	1925 308.2 - 0.5 British Y-1 2.53 1925 309.2 - 0.5 British Y-2 4.44 1925 306.2 - 0.5 Ratish Y-2 4.44 1925 306.2 - 0.5 N 1.85 1925 301.2 < 0.5

SPECIFICATION TABLE NO. 212 (continued)

Composition (continued), Specifications and Remarks	The preceding annealed specimen heated for 30 min at 500 C, then quenched in water at about 8 C, and then measured after 4 to 5 hrs.	0. 97 Cr; chill-cast.	0.87 Cr; the above specimen annealed for 30 min at 450 C.	Chill-cast.	The above specimen annealed for 30 m in at 450 C.	The above annealed specimen heated for 30 min at 500 C, then quenched in water at about 8 C, and then measured after 4 to 5 hrs.	Stamped and annealed at 180- 210 C for several brs.	Cast and annealed at 180-210 C for several hrs.	Trace Co; cast and annealed at 180-210 C for several hrs.	0.10 Cr, 0.15 (Max) Ti; 0.15 total others; heat treated.	0.1 Ga, 0.1 V, 0.05 Cr, 0.01 Sn, 0.001 Ca, 0.001 Zr, 0.001 Ag, 0.01 Tr, grain-size 0.08 mm x 0.052 mm (iongitadinal) and 0.048 mm (transverse).	0.1 Ti; as cast.	0.1 Ti; annealed at 175 C for 24 hrs.	0.1 Ti; annealed at 250 C for 24 hrs.	0.06 Zn, 0.04 Ti, 0.02 Cr.
Zn									0.03	0.25 Max	0.1				
Si	0.12	0.38	0.38	0.28	0.28	0.28	0.21	0.30	0.12	0.5/	0.1	1.25	1.25	1.25	0.88
ent)				1.01	1.01	1.01	1.94	1.84	1.10			1.3	1.3	1.3	
ght per							0.01	0.10		0.4/	0.1				0.93
ion(wei Mg	1.48			1.56	1.56	1,56	1.57	1.45	0.30	0.2/	1.7	1.6	1.6	1.6	0.45
Composition(weight percent) Fe Mg Mn Ni	9.95	0.92	0.92	0.55	0.55	0.55	0.22	0.25	0.01	1.0 Max	0.1	1.4	1.4	1.4	0.44
ر ت	1.85	1.78	1.78	1.38	1.78	1.78	4.91	8.	10.73	3.9/	4.58	2.25	2.25	2, 25	4.57
¥							92.4	31.5	87.71						92.61
Name and Specimen Designation	z	œ	; æ	×	: ×	×	-	2	က	2014-T6	2024-T4	RR 53	BB 53	8.8 S.	A1-2014-T6
Reported Error, %	6.0	\$ 000	< 0.5	5	0,5	< 0.5	7.0	7.0	7.0						
Temp. Range, K	301.2	٠, ٥٥٤	294.2	306	299.2	303.2	323-623	323-623	323-623	311-645	4.0-120	398, 488	000	000,000	20-573
Year	1925	1005	1925	1005	1925	1925	1938	1938	1938	1958	1960	1935	9601	561	1965
Method Used	ш	Ĺ	3 EJ	Ĺ	ग ल	ம	7	7	1	٦	ŋ	-			4 4
Ref. No.	4 08	9	408 804	9	408 408	4 08	525	525	525	528	524	63	3 6	25.	913
Curve No.	100		101		103	105	106	107	103	109	110	=	111	7 1 :	114

SPECIFICATION TABLE NO. 242 (continued)

Composition (continued). Specifications and Remarks Nominal composition; cast; lefetrical conductivity 48.1, electrical conductivity 48.1, 19.3, 15.89 and 12.69 x 10 ⁴ ohm "lem "1 at 87, 273, 373 and 476 K, respectively.	0.01 Cr, 0.02 Ti, 0.10 V, 0.16 Zr.
uz	0.05
S. 0.6	0.13
Name and Compusition(weight percent) Si Specimen Al Cu Fe Mg Mn Ni Designation Al Cu Fe Mg Mn O.6 0.6	0.01 0.2×
Compusit Fe 0.6	.21
Cu 15.0	5.9)
Al 82.9	93.12
\ \ \ ×	Al-2219-TS1 93.12 5.9) .21 (
Year Range, K Error, % 1931 87-476 3-4	
Year Temp. Range, K	48-573
Year 1931	1964 4
Curve Ref. Method No. No. Used 115 93 L	J
Ref. No.	913
Curve No.	116

DATA TABLE NO. 212 THERMAL CONDUCTIVITY OF LALUMINUM + COPPER + $\Sigma \chi_1^{-1}$ ALLOYS

(AI + Cu < 99, 50% or at least one $X_i > 0.20\%$)

	н ж	CURVE 42.	298.20 1.791 473.20 1.883		CURVE 43*		473.20 1.582	CHOVE 44*	T T T T T T T T T T T T T T T T T T T	298.20 1.703	413. 20 T. 102	CURVE 45	100 1 00 301		CURVE 46	-	446, 70 1, 423	CHRVE 47		445.20 1.381	CURVE 48*		427.70 1.464	CHRVE 49*			623, 20 1, 590	CURVE 50		25. 43 0. 226						136. 01 0. 824 141. 17 6. 823
	۲ ۲	CURVE 32+	298. 20 1. 757 473. 20 1. 799		CURVE 33*		473.20 1.577	OIRVE 344		298.20 1.662		CURVE 35"	200 20 1 440	473 20 1.440		CURVE 36*		473 26 1 425 473 26 1 425		CURVE 37	298. 20 1. 473			CURVE 38*	298.20 1.866		CURVE 39*		473, 20 1.787	0.0 2 VIGHT	CONVETE	238, 20 1, 975	473, 20 2, 025	CURVE 41*	{	298. 20 1. 469 473. 20 1. 720
cm ⁻¹ K ⁻¹]	T A	CURVE 26 (cont.)	413, 10 1, 900 429, 60 1, 887	-i	510, 20 1, 933 543, 90 1, 946	i ⊸ i	-	589, 90 1, 879	i -i	-i -	-	∹	730, 80 1, 690	CHRUE 27		15, 83 0, 240		10.79 0.212		75, 70 0, 909	84. 10 0. 971	CURVE 28	ľ	273. 20 1. 992	CURVE 29	273, 20 1, 925		CORVE. 30	81.20 1.837	273, 20 1, 854	CHRUE 21#		293, 20 1, 431			
conductivity, k, Watt c	. ⊬	CURVE 25 (cont.)	391, 50 1, 427		395, 50 I, 389			414, 10 1, 448		2 5	427, 50 1, 435	29		437.40 1.481				457, 40 1, 699		30 1.	473.00 1.745*	300	80	521.30 1.774*	551.90 1.845*	CURVE 26		119, 20 1, 485 147, 80 1, 544		9	220, 20 1, 686	3 3		358, 20 1, 812 370, 40 1, 950		396, 00 1, 782 396, 60 1, 912
(Temperature, T. K. Thermal Conductivity, k, Watt	⊢	CURVE 21	380, 20 1, 962 472, 20 1, 996		CHRVE 22			374, 20 1, 561		526, 20 1, 958	CURVE 23	ļi .	324, 20 1, 870		CURVE 24*	İ	_; .	415. 20 1. 724	i ii	-i -	565. 20 1. 862	i		CURVE 25	o o		227. 40 1. 109		-	ᆧ.	349, 00 L. 318	80 1.		367, 80 1, 389 374, 50 1, 351	i	383, 60 1. 377 387, 10 1. 372
[Tempera	⊢	CURVE 16 (cont.)	5. 20 0. 0879 5. 95 0. 0971	0	8, 0 0, 137 10 4 0 172	ó	21	19.4 0.293	່ເກ		39. 0 0. 386 50. 5 0. 749	, vo		2010	וויייייייייייייייייייייייייייייייייייי			373.00 1.711*		CURVE 18	87.00 1.381			476.00 1.803	CURVE 19			373.00 1.715 475.00 1.867		CURVE 20	00 00 00 00 00 00 00 00 00 00 00 00 00	<i>⊶</i>		476.00 1.946		
	H	CURVE 9.	353.00 1.674		*01 BARLO	ol .		423.00 1.715		CURVE 11	353, 00 1, 590		473.00 1.632	011BWE 138	CONVE 16	353.00 1.715		473.00 1.632	CURVE 13*		353, 00 1, 674 423, 00 1, 674			CURVE 14		423. 00 1. (15) 473. 00 1. 757		CORVE 15	00		473. 00 1. 799*	38		CURVE 16		3.90 0.0619 4.22 0.0703
	H A	CURVE 1	353. 00 1. 590 423. 00 1. 632		523.00 1.715	CURVE 2*		353.00 1.590			CORVES			473, 00 1, 715	CURVE 4	ļ		423.00 1.715	523.00 1.757		CORVED			473.00 1.799	CURVE 6*	-	-i	473.06 1.632	CURVE 7*		353.00 1.632 493.00 1.715			CURVE 8		423.00 1.506 473.00 1.548

Not shown on plot

THE RESIDENCE OF THE PARTY OF T

	. ¥	CURVE 114(cont.)	1.88	1.98	CURVE 115	1,138	1,502	CURVE 1164		0,56	0.0	0,83 0,93	00.1	1.07	7.1.	1.33	1,39	1.49	1.54										
	Ļ	CURVE	473.2	573.2	CUR	57.0	373.0	CUR	} :	13.2	123.2	173.2	198.2	223.2 248.2	273.2	373.2	423.1	523.2	573.2										
	*	CURVE 110	0.0315	0.0661	0.117	0.203	0.325	0.452 0.50x	0.557	0,727	CURVE 111	1.32	1.44	CURVE 112:		6.1	CUBVE 113		1,39	CURVE 114		0.82	1.07	1.25	1.35	1.56	1.66	1.81	
	H	CLIR	च्य	r =	<u> </u>	2 7 5	.	9 6	D 10	120	CURV	398.2	438.2	CT. RV	1 00	395.2 458.2	CUBA		398.2 488.2	CURV	6	1 01 0 1 01 0 1 01 0	198,2	173.2	198.2	248.2	323.2	423.1	
	×	E 103	1.47	E 104	1.64	E 105	1.45	E 1116.	65.4	3 92	ş ş -: -:	7. F.	;	F. 107	\$; 	. 55 . 55	3 € *	.63	1,63	E 108	1,63	92.1	9.7	SE	E 109	1,54	39.1	1.73	
	-	CURVE 103	306.2	CL RVE 104	2.69.2	CL RVE 105	303, 2	CURVE 198.	323 2	423.2	473.2	573.2 623.2		CURVE 107	323.2	423.2	473.2	573.2	623.2	CURVE 108	323.2	423.2	523.2	623.2	CURVE 109	311.0	122.2 10.2	616, 4 616, 4	
(continued)	¥	CURVE 91	1.73	CURVE 92	1.44	CURVE 93	1,63	CURVE 94	7 20 	C1 RVE 95	1.32	CURVE 96		1.29	CURVE 57	1.45	S XM BAR IS		1.55	CURVE 99	1.65	CURVE: 00	1,39	E 101	1.04	CURVE 102	1.09		
242	L	CUR	204.2	CUR	305, 2		302.2	CLTR	2.19.2	2 H	307.2	CLIR		309.2	~ 	311.2	1.3	:; :i	306.2	2 L	301.2	CLIN	301.2	CURVE 101	300.2	CCIR	294.2		
DATA TABLE NO.	4	CURVE 79	1.32	CURVE 30	1,47	CURVE 51	1,65	CURVE \$2	1.18	CURVE X3	1.51	CURVE 84		1.23	CURVE S5	1,22	CT RVF 36		1.36	CURVE ST	1.59	CURVE Sh	1.22	CURVE 89	1.52	CURVE 90	£		
DAT	H	C1.R	303, 2	CUR	306, 2	EL L	304, 2	CITR	302.2	CL.R	299.2	CUR		29%, 2	5	301.2	8.1.3		308.2	CUR	306.2	CUR	301.2	200	300.2	CUR	303.2		
	~	CURVE 67	1.4.1	CURVE 68	1,23	CTRVE 69	1.45	CURVE 70	0.933	CURVE 71	1.33	CURVE 72:		7.34	CI'RVE 73	1.59	CURVE 74	::	1.02	CURVE 75	1.35	CURVE 76	1,39	CURVE 77	1.67	VE 78"	1.32		
	Ļ	C1.18	334.2	20	303.2	C1.R	307.2	SIL	304.2	CCR	298.2	CUR		302.2	E. L.	304.2	E CE		302.2	CCR	2.946.2	C1.18	305.2	CUR	302.2	CT.RV	299.2		
	4	CURVE 55	1971	85 9/a.10	3	99.1	CURVE 39	2.05		CLKVE 50	1.93 1.97	CURVE 61		₹.T	<u> </u>	CC NVE 62	4 5 5 7 7 8		CURVE 63	1.82	e andio	<u> </u>	1.76	CURVE 65:	1.64	CURVE 66	69-1	1.59	
	-	CU.R.	33×.2	3.1.0		438.2	SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN	335.2			338.2 438.2	CLE		308.2 438.2	Š	<u>د</u> ا اد	338.2		CUR	338.2	ra:10	40)	438.2	CUR	338.2 438.2	CUR	6 32.6	4.50 4.51 4.51	
	z	CURVE 50 (cont.)	904.0	1.00	60.1	51.7	1.24	CURVE 51 °	1.69	1.5 2.4 2.4	T, T	/E 52	1.35	1,30		CORVE 33	1, 8, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	26.1	1.94	CURVE 54	1.81	OF STREET	3	88.2	CURVE 56	1.69	<u>.</u>		
	Ţ	CURVE	157.1	189.0	230.3	267.5	296.1	CURA	293.2	973.2 473.2	573.2	CURVE	293.2	373.2 476.2	3	N O N	293.2	473.2	573.2	ST ST ST ST ST ST ST ST ST ST ST ST ST S	338.2	7.00th	0 300	438.2	CUR	338.2 438.2	<u>.</u>		

Not shown on plot

The Control of the Co

SPECIFICATION TABLE NO. 243 THERMAL CONDICTIVITY OF ALL MINEMATING STATEMENTS

(Al + Re (99,50) or at heast one N₁ (9,20).)

(For Data Reported in Figure and Table No. 213)

Composition (weight percent) Al Fe Cr Cu Mg Ma Si Ti Specification and Remarks	80° 0 05° x6	99.1 9.7 0.4	10'0 88 0 50 0 92'0 65 0 10 0 95'0 21'86	Bal 0.53 0 32 0 10 Cast, bot-rolled above 750 F, annealed at 80 F for 4 brs, cold-rolled by a 10% reduction, and then aged at 390 F for 5 brs.	Bal	
Name and Specimen Designation	AI		151	Cond-Ai	1100-0	
Reported Error, %	£1.5		< 2.0			
Year Temp. Reported	302,347	291,373	29-297		4.0-120	0
Year	1922	1300	1931	1953	1960	1000
Method	1	ш	J		1	-
Ref.	493	7.7	526	528	52 4	29.4
Curve Ref.	-	73	က	•	ro C	ų

DATA TABLE NO. 242 THERMAL CONDUCTIVITY OF [ALUMINUM + IRON + EX.] ALLOYS

(A) * Fe : 99, 50% or at least one $N_{\rm F}\!\sim\!0.20\%$

Temperature, T. K; Thermal Conductivity, 8, Watt cm 1K-1;

4	CURVE 5	0.459	000000	2.27 2.12 CURVE 6*	1.966
F	E I	4.08.01	7 0 7 0 ° 2 ° 2 ° 3 ° 3 ° 3 ° 3 ° 3 ° 3 ° 3 ° 3	100 120 CUE	410.2
¥	VE 1	1.94 2.04 VE 2	2.010 2.060 VE 3	2.351 2.607 2.774 2.812 2.733	
۲	CURVE	391.8 347.2 CURVE	291.2 373.2 CURVE	28.66 33.72 40.46 55.09	62.02 62.02 10.48 85.51 10.2.26 115.12 116.13 116.13 1175.17 1190.17 1190.17 123.16 224.05 224.05 2290.98 2290.98 2290.98 2290.98 230.26 231.2

Not shown on plot

CONTRACTOR OF THE PROPERTY AND A

SPECIFICATION TABLE NO. 244 THERMAL CONDUCTIVITY OF ALUMENTM 1 MAGNESHTM 1 21, ALLONS

(A) + Mg -99, 50% or at least one $N_{\rm f} \times 0.20\%)$

[For Data Reported in Figure and Table No. 244]

:	Composition (continued). Specifications and Remarks	0.1 Ga, 0.01 V. 0.001 Ca, 0.001 Db; grain size 0.052 nm x 0.048 mm (longitudinal) and 9.052 mm (transverse); precipitation heat-treated.	0.1 Ga, 0.01 V, 0.001 Ca, 0.001 Zr; grain size 0.056 inm x 0.032 mm (longitudinal) and 0.040 mm (transverse); an- nealed in vacuum for 1 hr at 350 C.	0.01 V, 0.01 Zr, 0.001 Ca, 0.001 Pb; grain size 0.036 mm x 0.028 mm (longitudinal) and 0.032 mm (transverse): :un- nealed in vacuum for 1 hr at 350 C.	Average crystal grain size 0.74 mm x 0.21 nm (longludinal) and 0.54 mm x 0.14 min (transverse); sancaled in vacuum (or 1 hr at 350 C.	Average crystal grain size 0.061 mm x 0.022 mm (longitudinal) and 0.056 mm x 0.620 mm (transverse).		1,20 Nt, 0,25 Co; cast; heated for 10 hrs at 160-170 C and cooled in air.	0.40 Fe and Si, 0.15 others.
	Zu	0.01	0.1	0.01		0.1		0.45	0.25
	i,	0.01	0.0	e.		0.03	0.01	0.12	0.20
	ont)	9.38	7.0	0.1	0.1	. °	0.38	0.50	
-11	Composition(weight percent) Cr Cu Fe Mn S	0.1	0.1	0.1	0.0	0.28 0.51	0.56 0.02	0.30 0.44	6.0
1	n(weig Fe	0.1	0.1	0.1	0°.				
	sosition Cu	0.01	1 0	0	6 40.	0.07	6.29	0.30	0.10
	Comp	0.01	0.22	0.21	0.1	9.1	0.0	0.18	0.13
10814	MR	0.65	2.46	3.33	4. 4	4.10	0.56	1.33	<i>3</i> .
	¥	Bal	Bal	Bal	Bal	Pal	98.17	94.87	92.87
(For Data Reported in Figure and Light wo.	Name and Specimen Designation	#-6003 TS	5052-0	5154-0	5083-0	3080-F	J 51	RR 131D	AJ 5456- H343
	Reported Error, %						7.3.0		
	Temp, Range, K	4-120	4-120	4-120	6-120	4-120	29-297	293-573	20-573
	Year	1960	1960	1960	1960	1960	1981	1949	1964
	Method	ii ii		u	1	7	ب	ij	,i
	Ref.	524	524	524	524	524	226	227	913
	Curve No.	-	ei	က	4	1.5	æ	t-	n

DATA TABLE NO. 244 THERMAL CONDUCTIVITY OF (ALUMINUM + MAGNESIUM + DX_{i}) ALLOYS

(Al + Mg < 99.50% or at least one $X_i > 0.20\%$

- K
g
Watt
7
Conductivity.
Thermal
Ä
Ŧ,
Temperature,

M	8 (cont.)	1, 28	1, 31	1.32	1.35	1. 36																																											
۲	CURVE 8 (cont.	373.2	423. 1	473.2	523.2	573.2																																											
м	VE 6	2, 351	2.607	2, 774	2.812	2, 753	2,661	2,469	2,264	2 105	050	1		1. 330	7. OP	2.00 4	2.004	2.017	2,063	2 067	0.0	2 00%	112		2.125		VE ?		1,067	1, 192	1,318	1.423		α JΛ		20		;	Ž,	0.65	0.72	0.79	0.85	3 6	0.9Z	96.0	1. 03	1. 09	1. 20
۲	CURVE	28. 66	33, 72	40.46	8 4	55. 69	62, 02	70.48	85.51	102 28	115 15	120 51	100	110.00	100.18	175, 17	190, 17	190.17	218, 55	233.05	24.8 07	262.05	100	20.30	28. 38.		CURVE		293. 2	373. 2	473.2	573. 2		CIRVE		20.3		9 0	73.2	98. 2	123.2	148.2	173.2	1 0	198.2	223. 2	248.2	273.2	323.2
ĸ	CURVE 3 (cont.)	0.521	0.591	0.649	0.699	0. 790	0.872		CIRVE 4		0 0486	0,0669	300	7 60 6	6. 122	0. 173	9, 206	0. 254	0.332	0.395	0.451	501	24.5	200	0.627	0. 683		CURVE 5	Ì	0.0302	0.0469	0.0544	0.0820	3210	22.	200	96.0	707	0.337	0.407	0.462	0.513	0.559	3 6	0.000	0.698			
(CURVE	8	9	20	80	100	120		CITE		4	•	•	Q :	*	20	*	8	9	5	3 5	2 2	2 6	2	8	120		CC		•	9	oc	2	2 -	7 6	3 7	5 6	2	•	S	09	20	: œ	2 5	001	120			
м	CURVE 1	0.351	0.522	0.697	9,868	1, 215	. 70	2 00	2,35	89 6	32.6	22.6		7. 7.	7	2, 13	96 7		CIPVE 2		0 0452	0.0698	0000	70.00	0. 121	0.174	0.250	0.30	0.379	0.487	0.578	0.719	912.0	25.0	9	0.00	5		CURVE 3		0.0412	0.0630	0.0857	202.5	6. 103 0.	0.156	0.228	0.272	0.337
H	8	•	ω.	œ	10	*	20	24	8	\$: 5	3 3	3 6	2 6	2	8	120		IIC	3	•		, 0	0 ;	9	14	20	2	30	9	2	9	102	2 2	3 2	3 5	3				*	œ	oc		2	1	20	ភ	ຄ

TIME BATES H

AI-MP SSS K-

THERMAL CONDUCTIV;TY OF ALUMINUM + MANGANESE +ΣΧ; ALLOYS

[At + Mh < 99.50%, or at least one $X_i > 0.20\%$]

THERMAL CONDUCTIVITY, Watt em" K"!

THE PERSON NAMED AND ADDRESS OF THE PARTY OF

SPECIFICATION TABLE NO. 245 THERMAL CONDUCTIVITY OF [ALUMINUM + MANGANESE + ΣX_i] ALLOYS

では、100mmので

at least one $X_i > 0.20\%$

;	
50% of at least one A	
5	
Ď	
<u>ਤ</u>	
ਕ =	
0	
Š	
ai.	
ö	
86	
. Mn < 99	
11 + Mn < 99	
(Al + Mn < 99.	
(Al + Mn < 99	
(Al + Mn < 99	
(Al + Mn < 99	
(Al + Mn < 99	
(Al + Mn < 99	
(Al + Mn < 99	
(Al + Mn < 99	
(Al + Mn < 99	
(Al + Mn < 99)	
6 > Wu + Wu > 36	
(AI + Mn < 99	

	Composition (continued),	Specifications and Remarks	Specimen ~6 cm long with cross-	section 0.3 cm ² ; supplied by Aluminum Co. of America; electrical conductivity 23.30 × 10 ⁴ ohm ⁻¹ cm ⁻¹ at 23 C.	0. 02 Ti.	0. J Ga. 0. 01 each Ca. Ti. V and Zn. 0. 001 each Bi. Po and Zr. specimen 0. 001 each Bi. Po and Zr.; specimen drawn to 3.66 mm in dia; supplied by Aluminum Co. of America; in "as fabricated" condition; average grain size 0. 016 x 0.008 mm in longfundinal and 0.012 mm in the second rections.
		Mg			1.02	ਜ •ੇ
	9	on C			0.05	0.02
	1	Composition(weignt percent)	6	7 0	0.13	\$1 °0
No. 245]		osition(we Cu	3	o *	91 0	1 0
and Table		Compo	וַי	99 .0	ç	0.52
in Figure		;	Z.	1. 07	•	1.23
from page page 1 in Figure and Table No. 245]	For Data nepore	Specimen	Designation			3003-F
		Reported	Error, %			24
		Temp	Year Range, K Error, %	336. 2		26-300 4. 0-120
		}	Year	1925 336.2		1951
		Popper N	Used	13		1 1
			Curve Met. A	230		226 524
			Curve No.	-		N 60

THERMAL CONDUCTIVITY OF [ALUMINUM + MANGANESE + ΣX_{i}] ALLOYS DATA TABLE NO. 245

(Al + Mn < 99, 50% or at least one $X_{\rm j}>0,\,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K-1]

T k

336.0 1.695

CURVE 2								1. 477	
SO								291.44	

CURVE 3

0.107								1.06						
4	9	æ	01	7,	20	7	9	\$	8	9	20	8	<u>8</u>	120

SPECIFICATION TABLE NO. 246 THERMAL CONDUCTIVITY OF JALUMINUM + NICKEL + Σx_j ALLOYS

(Al + Ni < 99.50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 246]

Curve No.	% %	Metho	dYear	Curve Ref Method Year Temp. Reported No. No. Used Year Range, K Error, %	Reported Error, %	Name and Specimen Designation	Ž.	ວ້	Compo	eition (Fe	Composition (weight per cent) Cu Fe Mg Mn	er cent) Ma	Σ.	F	Composition (continued), Specifications and Remarks
-	227	٦	1949	293, 373		RAE 40 C	9.0	0.5	2.0	S .0	ç. ;	3.0	0.3		0.4 Be, sand-cast; heated 6 hrs at 570 + 5 C and quenched in cold water, and then beated 20 hrs at 150 C and cooled in air.
8	227	-1	1949	293-573		RAE 40 C	9.0	0.5	2.0	0.5	0.5	3.0	0.3		0.4 Be; the above specimen again heated at 300 C.
n	22	د	1949	293-573		RAE 47 &D	4.0		1. 0	0.5	0.5	3.0	0.2	0.2	Sand-cast; heated at 300 C.
4	227	_	1949	293-573		RAE 47 &D	4.0		1.0	0.5	0.5	3.0	0.2	0.2	Chill-cast; heated at 300 C.
Ŋ	227	1	184	293-473		RAE 55	2.90	0.15	1.89	0. 43	0. 56	1. 55	0.21	0.01	Chill-cast: heated in solution 4 hrs at 570 C and quenched in boiling water, and then heated 12 hrs at 260 C and cooled in air.
φ	227	H	1949	293-573		RAE 55	2.90	0.15	1.89	0.43	0.56 1.55		0.21	0.01	The above specimen again heat-treated at 300 C.
-	227	J	1949	293-573		RAE 55	2.90	0. 15	1.89	0. 43	0.56	1.55	0.21	0. 37	The above specimen again heat-treated at 400 C.
æ	227	1	1949	293-573		RAE 46 C	5.0	6.5	2.0	3.	9. 5	3. 0	0.3		Wrought, heated 6 hrs at 570 + 5 C and quenched in coid water, then heated 20 hrs at 150 C and cooled in air, and again heat-treated at 300 C.
Ø,	227	-	1949	293-573		RAE 47 D	÷.0		1.0	. S	9. 9	3.0	0.3		0.4 Be: wrought: heated 6 hrs at 570 + 5 C and quenched in cold water, then heated 20 hrs at 160 C and cooled in air, and again best-treated at 300 C.
10	227	-	1949	293-473		RAE 55(Bar 33 A) 2.85	2.85	0. 49	1.67	0. 41		2. 02	0. 17	0.02	Wrought, heated in solution 4 hrs at 570 C and quenched in boiling water, and then aged 40 hrs at 160 C and cooled in air.
11	227	ı	1949	293-573		RAE55(Bar33 A) 2.85	2.85	0.49	1.67	0.41		2. 02	0. 17	0.04	The above specimen again heat-treated at 300 C.
ង	237	ı	1949	293-573		RAE 55 (Bar 39 A)	3.01	0. 17	1. 63	0. 40	0. 49	1. 41	0.15	0. 03	Wrought: heated in solution 4 hrs at 570 C and quenched in boiling water, then aged 40 hrs at 160 C and cooled in air, and again heat-treated at 300 C.

DATA TAPLE NO. 246 THERMAL CONDUCTIVITY OF [ALUMINUM + NICKEL + ΣX_1] ALLOYS

(A) + Ni < 99, 50% or at least one $X_i > 0.20\%$)

[Temperature, T. K. Thermal Conductivity, k. Watts cm⁻¹K⁻¹]

T 4	CURVE 8	293. 20 1. 339 373. 20 1. 402 473. 20 1. 464 573. 20 1. 506	293. 20 1. 443 373. 20 1. 569 473. 20 1. 569	URVE 10	293, 20 1, 172 373, 20 1, 297 473, 20 1, 423 CHEVE 119	293.20 1.297 373.20 1.381 473.20 1.464 573.20 1.548		
×	VE 1	1, 004 0, 983 VE 2		ിപ്പ്	1, 025 1, 130 7E 4*	0. 837 0. 941 1. 025 1. 109	1, 088 1, 172 1, 423	1, 172 1, 276 1, 381 1, 443 1, 443 1, 316 1, 381 1, 506
←	CURVE	293, 20 373, 20 CURVE	293, 20 373, 10 473, 20 573, 20	293. 20 373. 20	473.20 573.20 CURVE	293, 20 273, 20 473, 20 573, 20	293, 20 373, 20 473, 20 CURVE	293. 20 473. 20 473. 20 573. 20 CURVE 293. 20 373. 20 473. 20 573. 20

Not shown on plot

SPECIFICATION TABLE NO. 247 THERMAL CONDUCTIVITY OF [ALUMINUM + SILICON + ΣX_{\parallel}] ALLOYS

(Al + Si < 99. 50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 247]

Composition (continued), Specifications and Remarks	Annealed at 300 - 500 C; molten metal not fluxed with gases.	Water-quenched from 520 C; molten metal not fluxed with gases.	Water-quenched from 520 C, then drawn at 550 C; molten metal not fluxed with gases.	Annealed at 300 - 500 C; molten metal strongly fluxed with gases.	Water-quenched from 520 C; molten metal strongly fluxed with gases.	Water-quenched from 520 C, then drawn at 550 C; molten metal strongly fluxed with gases.	Chill-cast	Cast, solution-treated, and aged.	Forged, solution-treated, and precipitation-treated.	Forged, solution-treated, and precipitation-treated.	Annealed at 700 F.	Annealed at 700 F.	Annealed at 700 F.	Annealed at 700 F.	Cast; heated 10 hrs at 160 - 170 C and atr-cooles, and then heat-treated at 300 C.	Cast, heated 2 hrs at 530 C and water-quenched, and again heated 15 hrs at 160 - 170 C.	The above specimen again heat-treated at 300 C.	Cast; heated 4 hrs at 510 - 518 C and quenched in cold water and then heated 16 hrs at 150 - 165 C, and again heat-treated at 300 C.	0.2 Co; chill-cast; heated 3 hrs at 495 - 500 C and quenched in cold water, and then aged 16 hrs at 165 C and air-cooled.	0.2 Co; the above specimen again heat-treated at 300 C.	0.3 Co; chill-cast; heated 3 brs at 495 - 500 C and quenched in cold water and then aged 16 hrs at 165 C and air-cooled.
۳.	0.14	0. 14	0. 14	0. 14	0.14	0.14															
Ē	0.04	0, 04	0.04	0.0	0.04	0.04									0. 19	0.15	0.15		0.05	0.05	0. 1
Cent)							2, 45			0.92	2.45			0.92	0.90	0.87	0.87				
ight per Mn	Ú. 27	0.27	0.27	0. 27	0.27	0.27												0, 29	*		4 .0
Composition (weight per cent) Fe Mg Mn Ni	0. 42	0.42	0. 42	0.42	0.42	0.42	1.18	0.34	0.5	1. 96	1. 18	0.34	0. ن	1.06	0. 12	0. 50	0.50	0.35	9.0	9 .0	0.5
omposi: Fe	0.41	0, 41	0.41	0.41	0.41	0.41	1.09	0.36	0.58	0.76	1.09	0.36	0.58	0.76	1. 18	1. 12	1.12	0.28	6.5	0.5	5. 0
O PO	1. 43	1.43	1. 43	1.43	1.43	1.43	0.75	0.95	0.5	0.84	0.75	0.95	0.5	o.	1. 40	1. 33	1. 33		5.0	5.0	٥ ن
Ñ	5. 5	5.5		5.5	. S	s. s	13.8	5.04	0.91	11.78	13.3	5.04	0.91	11.78	2.25	2. 42	2.42	12.0	11.0	11.0	11.9
Name and Specimen Designation	S	9	63		0 0	ଷ	7542	1628	7642	6191	7542a	7628a	7642a	7679a	RRSO	RR53c	RR53c	Alpax Gam:ma	SA 1	SA 1	SA 44
Reported Error, %	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	4.0	+ 4.0	+ 4.0	4.0	+ 1	4.0	4.0	4,0					+ 7%	%L + 1	+ 4 4%
Temp. Range, K	324-523	325-524	373	373-426	323-523	323-373	298, 473	298, 473	298, 473	298, 473	298, 473	298, 473	298, 473	298, 473	293-573	293-473	293-573	293-573	293, 373	293-573	293, 373
Method Year Used	1981	1921	1981	1981	1951	1981	1937	1937	1937	1937	1937	1937	1937	1937	1949	1949	1949	1949	1949	1949	1949
Metho	1	- 1	H	1	7	a	د	-1	.1	-1	T	-1	د	J	J	7	1	h	ų	7	Г
Ref.	20	20	20	20	20	20	223	223	223	223	223	223	223	223	227	22.1	227	227	227	227	227
Cury's	-	8	m	4	S	۵	-	œ	o	10	11	2	13	7	15	91	17	18	19	20	12

SPECIFICATION TABLE NO. 247 [continued]

Curve No.	Ref.	Method	year	Temp.	Reported Error, %	Name and Specimen	, z	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	mpositi Fe	on (weig	Composition (weight per cent) Fe Mg Mn Ni	cent)	ļ	Zu Zu	Composition (continued), Specifications and Remarks
												 	!		
22	227	٦	1949	293-573	+ 4%	SA 44	11.0	5.0	9.0	0.5	• .		0.1		0.3 Co; the above specimen again heat-treated at 300 C.
83	227	ı	1949	293-473		ន្ត	11.80	1.03	0.50	0.91	0.03	7.92	0.02		Wrought: heated 12 hrs at 522 C and aged 4 hrs at 135 C and cooled in air, and again aged at 200 C and cooled in air.
24	227	H	1949	293-473		Lo Ex	11.80	1.03	0.50	0.90	0.03	1.02	0.02		Wrought; heated 12 hre at 522 C and aged 4 hrs at 135 C and cooled in air, and then aged at 200 C and cooled in air, and again heat-treated at 300 C.
. 25	227	ı,	1949	293-372	+ 4%	SA 1	11.0	5.0	0.5	9.0			0.05	-	0.2 Co. wrought; heated 3 hrs at 495-500 C and quenched in cold water, and then aged 16 hrs at 165 C and cooled in air.
56	227	ı	1949	293-573	+ 4%	SA 1	11.0	5.0	9.5	9.0			0.05		0,2 Co; the above specimen again heat-treated at 300 C.
12	227	.ı	1949	293-273	1 + 1	SA 44	11.0	5.0	0.5	0.5	0.4		0.1		0.3 Co: wrought; heated 3 hrs at 495-500 C and quenched in cold water, and then aged 16 hrs at 165 C and cooled in air.
28	227	ı	1949	293-573	**************************************	SA 44	11.0	9.0	0.5	0.5	9 .0		0.1		0, 3 Co; the above specimen again heat-treated at 300 C.
29	408	ω	1925	304.2	< 0.5	×	6.13	3.8	0.92	1.58	0.58				Chill-cast.
30	10 8	ш	1925	296.2	< 0.5	×	6.13	80	0.92	1,58	0.58				The above spectmen annealed for 30 min at 450 C.
31	60	ω	1925	296.2	< 0.5	×	6.13	e. 8	0.92	1.58	0.38				The above annealed specimen heated for 30 min at 506 C, then quenched in water at about 8 C, and then measured after 4 to 5 hrs.
32	. 804	ш	1925	311.2	< 0.5	¥	6.13	3.8	0.92	1.58	0.58				The above quenched specimen measured after aging for $2\ \mathrm{weeka}$.
88	408	ш	1925	302.2	< 0.5	S	11.88		08.0						Chill-cast.
34	408	M	1925	301.2	< 0.5	တ	11.88		08.0						The above specimen annealed for 30 min at 450 C.
35	408	ω	1925	300.2	< 0.5	ø	11.88		0.80						The above annealed specimen heated for 30 min at 500 C, then quenched in water at about 8 C, and then measured after 4 to 5 hrs.
36	4 08	(a)	1925	304.2	< 0.5	ω	11.88		0.80						The above quenched specimen measured after aging for 2 weeks.
37	525	1	1937	323-623	7.0	•	11.0	0.95	0.25	0.95	0.04	0.93			85.87 Al, 0.01 Co; stamped and annealed at 180-210 C for several hrs.
88	525	.1	1937	323-623	1.0	s	12.45	1.21	0.35	0.74	0.05	0.94			84, 26 Al; cast and annealed at 180-210 C for several hre.
33	525	ı	1937	323-623	1.0	9	17.36	1.47	0.61	19.0	1.73	1.48		0.05	75, 44 Al, 1.18 Co; cast and annealed at 460 C.
\$	527	ב	1935	398,488		RR 50	2.2	1.3	1.0	0.1		1.3	0.18		Cast.
7	527	-1	1935	398,488	•	R.R. 50	2.2	1.3	0::	0.1		1.3	0.18		Annealed at 175 C for 24 hrs.

SPECIFICATION TABLE NO. 245 (continued)

Composition (continued). Specifications and Remarks	Amended at 250 C for 24 hrs.	Tempered.	Tempered and annealed at 175 C. for 24 hrs.	Tempered and annealed at 250 C for 24 hrs.	0, 06 Na; sand-cast; porous rod; specific weight 2, 57,	0, 00, Na; sand-cast; porous rod; specific weight 2,67,	0. 1 Ca, 0. 1 V, 0. 02 Cr, 0. 01 Pb, 0. 01 Ca, 0. 001 Zr, 0. 01 Ca, 0. 001 Zr, drawn specimen 3. 66 mm da; avg grain size 0. 024 mm x 0. 093 mm (longitudinal) and 0. 012 mm (transverse).	Nominal composition, east; electrical conductivity 27, 5, 12, 5, 9, 9 and 8, 0 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K respectively.	1, 2 Co; similar to the above specimen except electrical conductivity 27, 8, 9, 61, 8, 0 and 5, 54 x 10 ⁴ ohm ⁻¹ cm ⁻² at 87, 273, 373, and 476 K respectively.
Zu									
1	1, 3 0, 15						0. 0}		
N. N.	7							1. 5	
Composition (weight percent) Fe Mg Mn Na		e, .	:: :::		0.5) n D	0. 993	0.0	
Sition(v	O. 1	6.0	 Š	G. 3	0, 3	· ·	9.	6.	o.
Compo	. .						e		
Cu	-:	1. 2	7) -2	<u>-</u> :	7.	2	 	्त च	io -
35	21 21	12.0	12. 0	9.7.	12.0	2 2 1	e 	-	23
Nitre and Specimen Designation	RR 50	7 Schrann modified 12.0	y-Silumin modified	y-Silumin, modified [12, 0]	Silemne sodium modified	Silamin sodum modified	1390 F	K-S alloy 245	K-S alloy 240
Reported Eron, "								а 4.	4
Tenapa. Range, h	398, 488	395, 458	398, 438	398, 488	398, 488	398, 458	4, 0-120	87-476	87-476
Yeur	1935	1935	1935	1935	1935	1935	1960	1831	1931
Меthod Uned	1	7	⊒	-1	1	٦	٦	a a	- 1
Ref.	527	527	527	527	527	527	522 4	83	ခ ်
Curve No.	42	43	4	4 ئ	46	4.1	2	6	09

DATA TABLE NO. 247 THERMAL CONDUCTIVITY OF [ALUMINUM +SILICON + ΣX_{j}] ALLOYS (Ai + Si < 99.50% of it least one X_{j} > 0.20%)

[Temperature, T. K; Thermal Conductivity, k, Watts cm⁻¹K⁻¹]

۰	24	۲	#	۲	بد	۴	×	H	ж	. +	×	۲	×
CURVE	<u>E</u> 1	CURVE 9	VE 9	CURVE	CURVE 17 (cont.)	CURV	CURVE 25.	CURVE 35.	E 35•	CUR	CURVE 42*	CURVE	E 49
324. 2	1.883	298. 2	1.866	473.2	1. 736	293.2	1, 297	300.2	1.732	398.2	1.615	87.0	0.996
423. 2	1.812) :		4	CURYE 36*	E 36.	7.30		373.0	1. 117
473. 2 523. 2	L 833	CURVE	/E 10	CUR	CURVE 18	CURV	CURVE 26*	204	1 813	CUR	CURVE 43.	476.0	1. 184
	:)	298. 2	1. 674	293. 2	1.883	293. 2	1. 799	;		398.2	1.410	CURVE	20
CURVE 2	E 2	473. 2	1. 690	373.2	1.883	373. 2	1. 757	CURVE 37	E 37	488.2	1.454		
325. 2	1. 577	CURVE	E 11	573.2	i. 841	573. 2	1. 757	323.2	1.34	CURV	CURVE 44.	273.0	0, 996 0, 996
373.2	1. 611	200	360	Fario	01 376110	Arc avery	* 0.00 G	373.2	1.34	9		373.0	1.059
475.2	1 753	473.2	1. 389	Y S	15.13		, 7 7	473.2	000	488.2	1.498	476.0	1.105
524. 2	1. 824	i		293. 2	1.381	283. 2	1. 339	523.2	1.46)		
CURVE 3+	E 3*	C. RVE	72 13	373.2	1. 590	373. 2	1. 423	573.2	1.46	CURV	CURVE 45.		
ļ 	!	298. 2	1. 900	CUR	CURVE 20	CURVE 28*	E 28*		2	398.2	1.583		
373.2	L 791	473.	1. 946		1			CURVE 28.	E 28.	488.2	1.586		
	;		; ;	293. 2	1. 632*	293. 2	1. 632						
CURVE 4	‡	CURVE	ET 3	373.2	1. 632*	373.2	1.674	323.2	1.34	CURY	CURVE 46*		
477 0	1 820	29R 2	, 09k	593.0	1.02	473.2	1.715	373.2	r. 38	6			
475.2	1, 799	473.2	2, 142	3	1. 330	7 :	7. 17.	423.2	9 4 -: -	398.2	1.305		
436.2	1.820	!		CURVE 21	/E 21	CURVE 24	E 24	523.2	4.0		7.		
		CURVE	/E 14*				**	573.2	1.42	CURV	CURVE 47*		
CURVES	S.		1	283. 2	1. 255	304.2	966.0	623.2	1.46		,		
		296. 2	1, 778	373.2	1. 339					398.2	1.406		
323, 2	1.615	473. 2	1. 749	Č		CURY	CURVE 30.	CURVE 39	- ਰੂ 39•	488.2	1.523		
373. 2 424. 2	1.619	CURVE	1E 150	CORVE ZZ	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	208.2	356	401 0		CHBUT 48	£ 40		
472. 2	L 689			293. 2	1. 632*			373.2	21	1	2		
523. 2	L 782	293. 2	1.611	373.2	1.548	CURY	CURVE 31.	423.2	1.26	•	0.554		
		373.2	1. 674	473. 2	1.548			473.2	1. 26	9	0.823		
CURVE	₽ ₩	473.2	1. 715	573. 2	1. 548	296.2	1.163	523.2	1.30	œ	1.107		
	;	573. 2	1. 757			,		573.2	1.34	9	1.395		
323, 2	1.774	479.5	9	CUR	CURVE 23	CURVE 324	E 32.	623.2	1.38	T (1.96		
4		200	21	6 6 6			•		444	9 3	2.10		
CURVE 7	E 7	293. 2	1. 339	373.2	1.61!	311.6	1.135	LURYE W	- 40-	. 8	3,58		
	1	373. 2	1. 433	473.2	1. 674	CURVE 33•	E 33•	398.2	1.477	ş	3.89		
298.2	L. 158	473.2	1. 569					486.2	1.636	20	3.78		
473. 2	L 288			CUR	CURVE 24*	302.2	1.310			9	3,40		
0.000	•	CURVE	E 17.	ě				CUBYE 410	14:	80	2.74		
CONA		0 630	1 690	973.2	1.736	CURVE 34	34.0	900	•	100	2.38		
288.2	1 498	373.7		479.2	1 357		344	336.2	1.306	170	2.73		
473, 2	1.778	4 ;	3	573.2	1. 841	301.6		7.004	1. 308				
Not show	Not shown on plot												

Not shown on pl

SPECIFICATION TABLE NO. 248 THERMAL CONDUCTIVITY OF IALUMINUM + ZINL + ΣX_1^{\dagger} ALLOYS

(Al + Zn < 99.50% or at least one $X_1 > 0.29\%$)

248]	
[For Data Reported in Figure and Tahle No.	

Composition (continued), Specifications and Remarks	After heated at about 275 C. After heated at about 275 C. Nominal composition. Wrought; 2 hrs@olution heattrestment at 450 C and quenched in water at 70 C, and then aged 4 hrs at 135 C and cooled in air. The above specimen again heated at 300 C.	1	The above quenched appearance in the state of the state o
F	Trace		0. 20
Si.	Trace 0.26	0.39 0.39 0.37 0.37	0.37 0.32 0.32 0.50
Composition (weight percent) Cu Fe Mg Mn	2.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	•	Trace 0.46 Trace 0.46 Trace 0.46 2.1 0.30 2.9
sition ('Fe	0.31	0.57 0.57 0.57 0.57	0.84 0.84 0.84
Compo	0,3 1,6 1,6 1,5 2,20	2.20 2.70 2.57 2.57 2.57 2.57	2, 53 2, 53 2, 53 2, 53
Cr	0.3		0.18 40
Zu	13.0 5.6 5.6 10.0 5.5 5.5	4.96 12.02 12.02 20.32 20.32 20.32	20.32 2.55 2.55 2.55 5.1
Name and Specimen Designation	Bar 661 7075 7075 7075 RR 77	RR 77 British L-5 British L-5 A A A	A G G G
Reported Error, %	\ \range \.	<pre></pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp. Range, K	353-473 1125-609 117-702 301,346 26-250 293,373	293-573 307 301 300 300	305 364 301 302 122-221
Year	1928 1951 1951 1921 1951 1949	1949 1925 1925 1925 1925	1925 1925 1925 1925 1963
Method Used	400 11	чемеме	ы ымы ч
Curve Ref. Method No. No. Used	255 226 227	408 408 408 408 408	80 40 40 80 80 80 80 80 80 80 80 80 80 80 80 80
Curv.	- 4 2 4 5 5	7 9 9 10 11 12	13 14 15 16

DATA TABLE NO. 248 THERMAL CONDUCTIVITY OF (ALUMINUM + ZINC + TX) ALLOYS

(Ai +Zn < 99.50% or at least one $X_i > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, K, Watt $\,\mathrm{cm}^{-1}\,\mathrm{K}^{-1}_{\mathrm{l}}$

		CURVE 11	300.2 1.08		CURVE 12	300.2 0.579		CURVE 15		305.2 0.975	•	CURVE 14		304.2 1.26		CURVE 15		301.2 1.45	CURVE 16	302.2 1.32		CURVE 17	•	j (196 1.00	4 -4											
·	٠ -	CURVE 5	0.251		70 24 0 607	0.682	0.745		0.858	0.912			1.088	1.113	.i .	249.86 1.163	,	CORVE	293.20 1.255		CURVE	Ì	1.632	CI: 1	1.757	573.20 1.757	*.	CONVER	307.2 1.32		CURVE 9		301.2 1.33		CURVE 10		301.2 1.07			
د		/E 3			1.389												1.770	1.770		1.715	1.807						1.736	1.795	782	77.4	1, 736	1,715		1.665		CURVE 4		1.452	1.527	
	-	CURVE		-	1.548 177.30			0.803 269.30		321.							. 297 360.40			- •	•	•	•		•				1.544 583.30	01.013								795 301.00		.766
(;	CURVE 1	353.00 1.		473.00 1.	CITETT		125, 10 0.			_	-	8	 	_	٦ 01	305.10 1.		~	 -	380,50 1.	•	_	_	_	-	_			262.50					_	2		~i	- 7	609.30 1.

Not shown on plat

Andrew Comment of the

SPECIFICATION TABLE NO. 240 THERMAL CONDUCTIVITY OF LAUMINUM + $\Sigma x_{i,j}$ ALLOYS Al + $\Sigma x_{i,j}$

A STATE OF THE STA

Composition (continued), Specifications and Remarks	Commercial purity.		Sp density (20°C) = 2, (0.	Tarned from a rod supplied by Jonnson, Matthey and Co.; density 2, 70 g cm ⁻³ at 20 C; electrical resistivity	2, 72 ohm cm 3 at 0 C.	Cast at fou C and molded at 200 C; drawn to 5,5 mm dia.
Camposition (weight percent) Al	36		66	66		5.5
Name and Specimen Designation						
Temp. Reported Range, K Error, 70						1.0
Temp. Range, K	25.05		356-827	113-291		399-623
Year		1177	15.31	1903		1540
Curve Ref. Method Year F	1	¥	٦,			_
No.		7	·2	30		405
Curve No.		-	ņΙ	ກ		7

DATA TABLE NO. 249 THERMAL CONDUCTIVITY OF ALIMINUM (Σ_{N_1} ALLOYS ($AU \in \Sigma_{N_1}$

(Temperature, T. K; Thermal Conductivity, k. Watt em 21 K 21)

×	CURVE 3 (cont.)	2, 963	5.0 % 5.0 %	2, 190	2, 110			7E. 4		2, 057	7,062	2. Jo5	2, 092	2, 161	2, 219	
۳	CURVE	195, 20	24%, 20	27.3, 20	291, 20			CURVE 4		399, 2	410.2	428, 2	505.13	591. 2	623, 2	
. 4	CURVE 2 (cont.)*	2, 210	i: 180 2, 167	2, 170	2, 120	2, 095	2, 063	2, 075	2, 105		CURVES		2, 150	2, 125	2, 055	2, 058
T	CURVE	595, 20	665, 20	676, 20	120, 20	771, 20	771.20	792, 20	827, 20		CUR	İ	113, 20	123, 20	145, 20	173, 20
*	CURVE 14	2.050	2, 720	3.130	3,682	4, 225		CURVE 24	į	2, 205	2, 125	2, 137	2, 218	2,247	2, 260	2. 23.4 4. 23.4
۲	CURV	373, 20	473, 20 573, 20	673, 20	773, 20	873, 20		CUR		356, 20	373, 20	393, 20	452, 20	477, 20	511, 20	569, 20

No graphical presentation

SPECIFICATION TABLE NO. 250 THERMAL CONDUCTIV. TY OF [ANTIMONY + BERYLLIUM + $DX_{[\cdot]}$] ALLOYS

्राप्तिक के किया है। जो क्षिप्तिक के किया के किया के किया के किया के किया के किया के किया के किया के किया किया

(Sb + Be < 99, 50% or at least one $X_i > 0.20\%$)

[For Data Reported in Figure and Table No. 250]

Composition (continued), Specifications and Remarks	Single crystal; specimen ~9 mm long with cross section ~0.25 cm²; heat flow measured parallel to c-axis.
Composition (weight percent) Sb Be Pb	64.5 35 0.5
Reported Name and Error, % Specimen Designation	
Curve Ref. Method Year Benge K	J860 I. 1964

 $\mathbf{Sb} + \mathbf{Be} + \Sigma \mathbf{X_1}$ 250 THERMAL CONDUCTIVITY OF [ANTIMONY + BERYLLIUM + Σ_{i}] DATA TABLE NO.

[Temperature, T, K, Thermal Condoutivity, k, Watt cm -1 K-1]

¥

28.9 7.03 45.9 7.63 53.1 3.10 58.4 2.90 61.6 2.72 65.4 2.59 69.3 2.53 75.7 2.46 79.7 2.46 79.7 2.45 104.8 2.55 123.0 2.59 148.5 2.20 158.1 2.92 198.7 3.00 198.7 3.00 198.7 3.39 278.3 3.39 288.0 3.31

SPECIFICATION TABLE NO. 251 THERMAL CONDUCTIVITY OF [BERYLLIUM + FLUORINE + EX;] ALLOYS

(Be + F < 99.50% or at least one X_1 > 0.20%)

[For Data Reported in Figure and Table No. 251]

	Composition (continued), Specifications and Memarks		0.53 Fe and 0.34 Mg in the form of MgFZ; other impurities C, Ca, Al, and Mn.	The above specimen after heat treatment at 700 C.
***	it percent)	Specimen Be Fe Al Mg Mn	0.34	0.04
	Composition (weight percent)	Fe Al	0.53	0.53
		Be	Bal	Bal
	Name and	Specimen Designation	Xi A.R.	Xi H. T.
		Range, K Error, %		
	Temp.	Range, K	1953 323-573	1953 323-673
		Year	1953	1953
	Method	Used	ပ	ပ
	Pof	No. No.	=	111
			-	8

DATA TABLE NO. 251 THERMAL CONDUCTIVITY OF [BERYLLIUM + FLUORINE + EX,] ALLOYS

Salah Carana Car

(Be + F < 99, 50% or at least one $X_1 > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt $cm^{-1}K^{-1}$]

H

CURVE 1 323.2 1.81 373.2 1.63 473.2 1.40 573.2 1.25

CURVE 2 923.2 1.93 973.2 1.70 473.2 1.77 573.2 1.27 673.2 1.17

SPECIFICATION TABLE NO. 252 THERMAL CONDUCTIVITY OF [BERYLLIUM + MAGNESIUM + EX,] ALLOYS

(Be + Mg < 99.50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 252]

Curve No.	Curve Ref. No. No.	Method Used	Year	Temp. I Range, K	Reported Error, %	Name and Specimen Designation	28	₩.	Composit Al	Composition (weight percent)	t percent C	ot) F	Fe	Composition (continued), Specifications and Remarks
-	111	ပ	1953	1953 323-573		II A.R.	96.5	1.81	90.0	96.5 1.81 0.06 0.035 0.032 1.52 0.55	0.032	1.52	0.55	Traces of Cu and Mn; chill-cast and machined.
8	111	ပ	1955	323-573		пн.т.	96.5	96.5 1.81	0.06	0.035 0.032 1.52 0.55	0.032	1.52	0.55	Traces of Cu and Mn; the above specimen after heat treatment at about 760 C.
က	111	ပ	1953	323-573		V A.R.								Approx. the same as the specimen II A. R.
4	111	ပ	1953	323-973		V H.T.								The above specimen after heat treatment at 700 C.

DATA TABLE NO. 252 THERMAL CONDUCTIVITY OF [BERYLLIUM + MAGNESIUM + Σx_1] Alloys

(Be + Mg < 99.59% or at least one $X_1 > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1

CURVE 2

323.2 373.2 473.2 573.2

323.2 373.2 473.2 573.2 CURVE 4

873.2 873.2 873.2 873.2 873.2 873.2

323.2 373.2 473.2 573.2

CURVE 3

当是我的心思教

SPECIFICATION TABLE NO. 253 THERMAL CONDUCTIVITY OF [BISMUTH + CADMIUM + EX;] ALLOYS

 $(B_1+Cd<99,50\%$ or at least one $X_1>0,20\%)$

[For Data Reported in Figure and Table No. 253]

i	••	. D	2.835, and 64.9,	, 0, 486, , 0, 420 ;3. 3,	. 0. 724. t 40. 3.
Composition (continued), Specifications and Remarks	Calculated composition; electrical conductivity 1.449 1.399, 1.376, 1.337, 1.325, 1.261 and 1.222 x 10 ohm ⁻¹ cm ⁻¹ at 30, 5, 44.8, 55.0, 62.1, 77.9, 96.3 and 108.4 C, respectively.	Calculated composition; electrical conductivity 1, 507 1, 479, 1, 468, 1, 391, 1, 361, 1, 328, 1, 298, 1, 273 1, 233 x 10 ⁴ obm ⁻¹ cm ⁻¹ at 34, 5, 46, 5, 48, 0, 82, 6, 89, 6, 101, 7, 119, 0, 120, 125, 2 C, respectively.	Calculated composition; electrical conductivity 2, 923 2, 797, 2, 722, 2, 633, 2, 601, 2, 555, 2, 478, 2, 353 2, 352 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 24, 7, 35, 0, 39, 9, 50. 4, 70. 6, 80, 0, 91, 1, 108, 9 and 109, 8 C, respectively	Calculated composition; electrical conductivity 0.494 0.478. 0.467, 0.467, 0.464, 0.448, 0.441, 0.424 and 0.423 x 10 ⁴ obm ⁻¹ cm ⁻¹ at 27.1, 34.2, 53.4, 676.3, 86.1, 94.5, 99.6, 109.4, 113.8 and 125.8 C respectively.	Calculated composition; electrical conductivity 0.736, 0.724, 0.721, 0.682, 0.666 and 0.623 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 40.3, 62.9, 70.5, 194.8, 103.6 and 14.6 C, respectively.
ercent) Pb	1.57	1.5	1.21	1.94	1.81
don (weight p Cd	21.4	24.8	39. 3	හ ෆ්	9.6
Composit	77, 03	73.7	59. 49	94. 86	88. 59
Name and Specimen Designation					
Reported Error, %					
Temp. Range, K	304-382	308-398	298-393	300-399	314-388
d Year	1956	1956	9561	1956	1956
. Metho		m	m	E	æ
No. No	1 38	ති ස	3	4. 50.	5 383
	Composition (weight percer	Name and Composition (weight percent) Specimen Designation Bi Cd Pb 77, 03 21.4 1.57	Name and Composition (weight percent) CoSpecimen Designation Bi Cd Pb Pb T7, 03 21, 4 1, 57 Cal T3, 7 24, 8 1, 5 Cal	Name and Composition (weight percent) Column Specimen Designation Bi Cd Pb Cd Pb Cd 77,03 21.4 1.57 Ca 73.7 24.8 1.57 Ca 59.49 39.3 1.21 Ca	Name and Composition (weight percent) Bi Cd Pb Pb T7,03 21.4 1.57 T3.7 24.8 1.5 59.49 39.3 1.21 54.86 3.2 1.94

DATA TABLE NO. 253 THERMAL CONDUCTIVITY OF [BISMUTH + CADMIUM + \(\times\xi_1\)] ALLOYS

(Bi + Cd < 99, 50% or at least one $X_1 > 0$, 20%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm 4 K $^{-1}$]

	7			. est																								-												
	CURVE 4 (cont.)	0.0682	0.067	99.0		CORVES	•	0.109	801 o	3	0. 101	0.0987	0.092																											
1	CURVE	382. 6	387. 0	399. 0	1	3		313.5	336. 1	ż	368.0	376.8	387.8																											
1	1	9, 174	0. 169	0.166	. T.	0. 160	0.152	0. 147	6	2		0.219	0.215	0.214	0. 203	0. 200	30.	0.1.0		C. 180	0. 179	3	0.317	0.308	0.303	0. 295	0.285	0, 282	0. 277	0. 269	0.254	0. 2.7	184	0.0795	0.0782	0.0782	0.0749	0.0749	0. 0778	
	CURVE 1	4	•	328. 2	?		369. 5	c^.		COBVE		307. 7	٠.	64	355.8	00		100	i c	333. 2	₩ œi	CURVE 3	297.9	308. 2	313.1	3.6	338. 1	343.8	353.2	on '	382. 1	ي و	CURVE 4	8 8	307.4	326. 6	336.5	349.5	353.3	

Specification table no. 254 thermal conductivity of (bismuth + lead + $\Sigma x_1^{}$) alloys

(B1 + Pb < 99, 50% or at least one $X_i > 0.20\%$)

[For Data Reported in Figure and Table No. 254]

Composition (continued), Specifications and Remarks	Near cutectic; in superconducting state at zero gauss.	Near cutectic; at 721 gauss (also superconducting).	Near eutectic; in normal state at zero gauss.		Nominal composition; state unspecified.	Data cover both solid and liquid states.	Data cover both solid and liquid states.		
Sn	25	25	25	14	13	9.80	8.80		
ght percent Cd				11	13	9. 70	9. 70	1.00	1. 50
Composition (weight percent)	25	25	25	25	56	31.20	31. 20	1.98	1.97
Ř	S	20	20	20	48	≈50.35	≈50.35	97.62	36 . 53
Name and Specimen Designation	Rose Metal	Rose Metal	Rose Metal	Lipowitz alloy	Wood's Metal				
Reported Error, %						±3.0	±3.0		
Curve Ref. Method Year Temp. Reported No. No. Used Range, K Error, "	2.6-8.3	2, 6-8.3	15-276	111-295	2.0-90	319-714	387-822	292-381	305-396
Year	1936	1336	1936	1908	1955	1950	1950	1956	1956
Method Used	-1	1	1	1	7	¥	ы		
₹	228	228	228	30 80	229	247	247	383	383
Curve No.	-	87	e	*	S	œ	۲۰	œ	6

DATA TABLE NO. 254 THERMAL CONDUCTIVITY OF [BISMUTH + LEAD + Σx_1] ALLOYS

 $\langle Bi+Pb<99,50\%$ or at least one $X_{i}>0.20\%\rangle$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

!	VE 8	0.0674	0.0674	0.0674	0.0678	0.0678	0, 0669	0.0669		VE 9		0.0766	0.0766	0.0761	0. 0757	0.0715	0, 0707																									
ı	CURVE	292, 3	301.7	311.7	321.9	341.6	372.0	380.7		CURVE		304.5	312.3	331.1	355.0	374.5	386.3																									
	(cont.)				0. 238		0.523		0.653	0.820	0.929		E 7				0, 218		0.259						0.280		0.506		0.598	0.607	0.565	0, 573	0.661		0.958	1.092	1.318	1.858*				
1	CURVE 6 (cont.	428.40	452.70	513.90	535, 40	571.80	572, 50	C18. 70	651.50	678.80	714.40		CURVE		387, 20	390. 20	393, 00	410.60	421, 50	425.30			485, 30	507.20	530, 10 531, 70	553.60	568.40	571. 20	599, 70	602, 70	626.40	629. 80	639, 40	649.40	712, 50	739. 40	785.80	821.70				
ı	(cont.)	0.184	0.184	0.186		E 5	\	0.010	0.024	0.040	0.026	0.073	0.100	0.120	0.155	0.170	0.180	0.130	0. 200					0. 230	9 3	0.079	0.092	0.0795	0.0418	0.092	0.0544	0. NS88	0.0544	9.0544		0.176			0.268			000
ı	CURVE 4 (cont.)	273. 20	291. 20	295. 20		CURVE		?; 80	3.00			e. 00	8.00	10 . C0	15.00	20.00	25.00	30.00	40.00	20 .00	60.00	7C. 00	80.00	90.00	CURVE	319, 10	327.40	331, 20	336, 50	339.80	342.40	358.80	363, 00	370.50	380.10	381.80	396. 10	388. 10	388, 20	391.30	393.60	
•	<u>E 1</u>	0.00476	0.00581	0.00658	0.00794	0.00917	0.0113	0.0160	0.0225	0.0269	0.0280		/E 2		0.00474	0.00588	0.00654	0. 00794	0.00926	0.0112	0.0161	0. 0223	0.0259	0.0280	Æ 3	0.0418	0.0448	0.0485	0.0532	0.0847	0.164		/E 4			0.176			0.176	0.180		
•	CURVE	2.60	2.88	3. 20	S	3.85	4. 26	5.33	6.74	7, 52	8. 26		CURVE		2.60	2.88	3.20	3.53	3.85	4. 26	5.31	6. 73	7. 52	8. 26	CURVE	14.70	16, 10	17.90	20. 10	82, 00	276.00		CURVE		111, 20	113.20	123, 20	148.20	173.20	198, 20	223. 20	

Not shown on plot

SPECIFICATION TABLE NO. 255 THERMAL CONDUCTIVITY OF [CADMIUM + BISMUTH + \(\mathbf{L} \mathbf{L}_1 \) ALLOYS

(Cd + Bi < 99, 50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 255]

Curve No.	No. No.	Method Year Used	ear F	Temp. tange, K	Temp. Reported Range, K Error, %	Name and Specimen Designation	Compost	Composition (weight percent) Cd Bi	ercent) Pb	Composition (continued), Specifications and Remarks
1	383	H	1956	306-393			61.3	37.93	0.77	Calculated composition; electrical conductivity 4. 99, 4. 69, 4. 59, 4. 44, 4. 42, 4. 18, 4. 14 and 3. 97 x 104 ohm ⁻¹ cm ⁻¹ at 32, 8, 46, 8, 60. 3, 73. 8, 77. 0, 95. 0, 98. 1 and 120. 0 C, respectively.
81	383	ä	9561	299-370			80.0	19.6	o. 4	Calculated composition; electrical conductivity 7.38, 7.19, 6.62, 6.51, 6.42, 6.26 and 6.14 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 25.6, 31.5, 58.9, 63.6, 77.5, 80.8 and 96.3 C, respectively.

DATA TABLE NO. 255 THERMAL CONDUCTIVITY OF [CADMIUM + BISMUTH + EX;] ALLOYS

(Cd + B₁ < 99, 50% or at least one $X_1 > 0, 29\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-! K-1]

£..

206.0 0.510 320.0 0.481 333.5 0.469 347.0 0.452 350.2 0.452 368.2 0.427 371.3 0.423

CURVE 2

298. 8 0. 741 308. 7 0. 720 332. 1 0. 661 336. 8 0. 653 356. 7 0. 644 354. 0 0. 628 369. 5 0. 615

SPECIFICATION TABLE NO. 256 THERMAL CONDUCTIVITY OF [CHROMIUM + IRON + Σx_i] ALLOYS

(Cr + Fe < 99.50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 256]

	3	100		Temp.	Reported	Name and	ပိ	Composition (weight percent)	eight percen		Composition (continued), Specifications and remarks
2	No. No. Used	Used	Year	Year Range, K	Error, %	Specimen Designation	C	Fe	٥	គ	
						Formochrom um 24	53.37	45.37	0.18	1.08	
	204	H	1937	302.9		Ferrochromium 25	62.94	34.39	0.11	2.56	
83	204	u	1937	338.0			404	0.67	0.20	0.40	
က	204	ı	1937	380.5		Ferrochromium, 25			0.45	2.30	
4	50	H	1537	378.8		Ferrochromium, 27	# · · ·	3 3	200	1.12	Obtained from fusion of iron with ferrochromium.
ĸ	204	H	1937	323.2		Ferrochromium, 28	53.73	16.5	17.0	6	
9	202	-1	1937	379.4		Ferrochromium, 29	56.12	15.14	4 45	0.45	
-	204	u	1987	299.6		Ferrochromium, 30	53.8 8.83	41.3	36.39	0.45	
œ	204	1	1987	305.7		Ferrochromium, 31	92.7		3		

(Cr + Fe < 99, 50% or at least one $X_1 > 0.20\%$)

[Temperature, T. K; Thermal Conduct.vity, k, Watt cm-1K-1]

CURVE 1

302.9 0.545

CURVE 2

338.0 0.490

CURVE 3

380.5 0.499

CURVE 4

378.8 0.508

323.2 0.573 CURVE 5

CURVE 6*

379.4 0.501 CURVE 7 299.6 0.521 CURVE 8 305.7 0.489

Not shown on plot

SPECIFICATION TABLE NO. 257 THERMAL CONDUCTIVITY OF [COBALT + CHROMIUM + Σx_i] Alloys

を 100mm では、100mm では、100mm では、100mm では、100mm では、100mm では、100mm では、100mm できた。

(Co + Cr < 59, 50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 257]

Composition (continued), Specifications and Remarks	0.52 St, 1.4 Nb, 3.0 V.	Lead used as comparative material.	Lead used as comparative material.	Specimen 6.75 in. in dia and 1.50 in. thick; as received.	1.5-2.0 Nb + Ta, 0.04 P, 0.04 S, 0.5 S1.	1.5-2.0 Nb + Ta, 0.04 P, 0.04 S, 0.5 Sl; Armoo Iron used as comparative material.	1. 5-2.0 No + Ta, 0.04 P, 0.04 S, 0.5 Si, specimen coated with chromium; Armoo fron used as comparative material.	Wrought; density 8.3 g cm -1.	Density 8.3 g cm-J.	Density 8.54 g cm 4.	Density 8.61 g cm ⁻³ .
M	0.77				0. 5 Max	o. 5 Max	0. 5 Max				
ŝ	2.2			5. 42				6.5	4. 5/ 6. 5		
Composition(weight percent)	0.27		0. 53	0.258	0.4/	0.4/	0.4/	0.2/	0.2/	0.35/ 0.5	0.45/ 0.6
weight W			7.5		10/ 12	10/	10/			≯ ∼	96
sition(Ni	10.5	20.0	10. 5	2. 38	1.0 Max	1.0 Max	1. 0 Max	1. 5/ 3. 5	1.5/	1. 5 Max	9,
Compo	15.64 10.5	15.0	2.0	1. \$	1.5/ 2.5	1. 5/ 2. 5	2.5	2.0 Max	2.0 Max	2.0 Max	1.5 Max
Ç	19.1	20.0	25. 5	26. 69	20/ 22	20/	20/ 22	25/ 30	25/ 30	23/ 29	23 / 28 /
ပိ	46, 6	45.0	45.0	60.49	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Ba!.
Name and Specimen Designation	British G-32	S 816	× 7 0	Haynes stellite alloy	W1-52	WI-52	WJ-52	Haynes stellite 21 Bal.	H.S. No. 21	H. S. No. 23	H. S. No. 31
Reported Error, %		₩.0	4 .0	5.0							
Temp. Range, K	373-1073	404-828	377-826	849-1356	478-1366	388-1341	388-1341	473-873	473-873	473-873	473-873
Year	1953	1981	1981	1958	1960	1960	1960	1947	1947	1947	1947
Method Used	¥	O	ပ	1		O	O				
Ref.	181	37	37	£	376	376	376	616	616	616	919
Curve No.	*1	8	က	4	က	9	(-	ac	თ	01	==

DATA TABLE NO. 257 THERMAL CONDUCTIVITY OF [COBALT + CHROMIUM + ΣX_i] ALLOYS

(Co + Cr < 99, 50% or at least one $X_i > 9, 20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt em-tK-1]

×	CURVE 9	0 145	ė	2 0, 175	÷			CURVE 10			o.	0.180	csi	2 0, 212		CURVE 11			o	ð	0, 194	0, 219																		
1	ଠା	473.9				873. 2		ΩO.	j		573. 2			873. 2		밁		473.			773. 2	873. 2																		
אר	CURVE 4	305	i c	ن ن		Ö	0	0		URVE 5		Ö	Ö	0.404		CURVE 6		Ö	Ö		8 0.280		0.330	oʻ	CURVE 7		2 0 198	o		e 0.235	o				CURVE 6	2 u. 170	-	o	2 0, 224	
H	OI.	8 78			1127.7	1149.8	1264.			F		477.6	310.9	1366. 5		ات		388. 2	533.7	632.]	₹96 796	1088. 2	1225. 4	1341	5		388.	533.7	632.	×.		٠.	1341		Οl	473.2	573.	673, 2	773. 8	873. 2
×	CURVE 1	371 0	-			-			0.259		CURVE 2		0, 157				0.21%	0.230	6, 242	0, 253	0.263			CURVE 3	0. 130	0.146	0. 138	0.152	0, 149	0.156	0. 164	0. 192	0.188	0.208	0.215					
۲	5		473.4	573.2	673.2		873.2	973. 2	1073, 2		CD	1	404.0	422, 0	477.6	533.2	588.7	644.3	699.8		810.9	827.6		링	377.2	386.3	408.4	433, 1	464.8	514. 2	524.3	651.2	670. 1	752, 2						

Not shown on plot

SPECIFICATION TABLE NO. 258 THERMAL CONDUCTIVITY OF [COBALT + IRON + Σ_{i}] ALLOYS Co + Fe + Σ_{i}

(Co + Fe < 99, 50% or at least one $X_{\rm i} > 0,\,20\%$

Remarks	Composition (weight percein) Composition (continued), operations and continued Co. Cu.		20, 72 0 195 0 086 0,093 Mn, 0.77 NI, 0.003 F. 0.006 S. 0.131 M.		0,058 0,062 Mn, 0,88 Ni, 0,006 P, 0,003 S, 0,134 St.		0.059	1 1 K = 14 Si	
	veignt per		501 0		0.21	;	0, 225		\$ 7 ()
	sition (v Fe				20.45		11.18	•	e -i
	Compt Co		200	000.10	30 66	200.11	78, 402		97. 12
	Name and Specimen Designation			Co-Fe 9		Co-Fe 10	11 23 7	CO-FC 11	Co-Fe-Ni 12
	Reported Error. %								
	Temp.			202		303. 2		303. 2	303. 2
	Year			2010	7464	1919		1919	1919
	Method			ú	ú	Œ	;	ند	Ħ
	1	ģ		9	503	XO.	2	503	208
	Curve	2			-	•	,	n	*

DATA TABLE NO. 258 THERMAL CONDUCTIVITY OF [COBALT + IRON + Σ_{i_1}] ALLOYS $c_0 + Fe + \Sigma_{i_1}$

(Co + Fe <99, 50% or at least one $\rm X_1>0,\,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

T k

303.2 0.720

CURVE 2

303. 2 6. 512

CURVE ₹ 303.2 0.402

CURVE 4*

No graphical presentation

255 THERMAL CONDUCTIVITY OF [COBALT + NICKEL + Σ_{k_1}] ALLOYS $C_0 + N_1 + \Sigma_{k_1}$ SPECIFICATION TABLE NO.

(Co + Ni < 99, 50% or at least one $X_j \geq 0, 20\%$

	Composition (continued), Specifications and Remarks	Nickel obtained from Mond and Co. containing 0.1 Fe, 0.037 C. 0.019 S, 0.013 Cu, 0.006 Si. trace Cr. P, Al, and Mn impurities; coball obtained from Sugbayasi and Co. containing 0.20 Fe, 0.220 C, 0.05 Al, 0.034 S, 0.032 Si, 0.003 P, trace Ni, and Mn impurities; cast and machined; heated at 800 C for \$6 min and slowly cooled.
	Composition (weight percent)	ς 6
	Name and Specimen Designation	
i	Reported Error."	
	Temp. Reported Na	303. 2
	Year	1927
	Curre Ref. Method year R.	ы
	₹ §	236
	Cur	

DATA TABLE NO. 259 THERMAL CONDUCTIVITY OF [COBALT + NICKEL $^{\perp}$ ΣX_{i}] ALLOYS Co + NI + ΣX_{i}

(Co + Ni $\leq\!99,50\%$ or at least one $N_1>0,20\%)$

(Temperature, T. K; Thermal Conductivity, k, Watt cm-t K-1)

T k
CURVE 1*

303, 2 0, 523

SPECIFICATION TAFLE NO. 260 THERMAL CONDUCTIVITY OF [COPPER + ALUMINUM + \$\Sigma\xi_1\$] ALLOYS

(Cu + Al < 99, 50% or at least one $X_1 > 0.20\%)$

[For Data Reported in Figure and Table No. 260]

Curve	urve Ref.	Method	Year	Year Temp.	Reported		,	:	Composition (weight percent)	on(weigh	t percent	ŭ	đ	Composition (continued), Specifications and Remarks
ġ	d Z.	Csed		nange. n	Error,	Designation Cu At Fe min	3	ا 	re	imi		5		
							90 00	61 5 90 na	80		4,98 0.74	0.74		Quenched from 850 C.
_	135	u	1935	293,473		Daro	02.60	;						Appealed at 850 C
	0	-	1935	293, 473		Bar 67 B	80.68	5.11	0.08		4.98	4		
v	200	: <u>-</u>	1935	293 473		Bar 49	89.38	9.41	0.52		0.31		0.38	Annealed at 750 C.
n	C . T	د	3				31 10	0 07	Trace	2 77				Cast.
4	215	,,	1939	373,673	2.0	Aluminum bronze; 1 67:10 5:31	97.10	0.0	2011				;	*****
¥.	215	J	1939	373,673	2.0	Aluminum bronze; 2 81.69	81.69	9.77	2.96	1.95			5.11	
, vc	215	н	1939	373,673	2.0	Aluminum bronze	89.56	8.66	Trace	1.75			,	Mollod.
۰ ،	224	L	1923	513		Aluminum bronze	89.84	9.09					0.47	

DATA TABLE NO. 260 THERMAL CONDUCTIVITY OF [COPPER + ALUMINUM + Σx_i] alloys

(Cu+Al < 99.50% or at least one $X_j \geq 0.20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1
293.00 0.448
473.00 0.661
CURVE 2
293.00 0.661
473.00 0.895
CURVE 3
293.00 0.603
475.00 0.603

CURVE 4
373.00 0.586
673.00 0.799
CURVE 5
373.00 0.527
CURVE 6
373.00 0.603
373.00 0.603
673.00 0.603

513.00 0.728

CURVE ?

261 THERMAL CONDUCTIVITY OF [COPPER + BERYLLIUM + Σx_i] alloys $c_u + Be + \Sigma x_i$ SPECIFICATION TABLE NO.

(Cu + Be < 99, 50% or at least one $X_1 \geq 0, 20\%$

1	Quenched from 815 C and followed by reheating to 300 C. Quenched from 815 C and followed by reheating to 300 C.
Composition (weight percent)	97. 49 2. 24 0. 06 0. 27 97. 49 2. 24 0. 06 0. 27
Name and Specimen Designation	Bar 140 Bar 141
Carve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error. %	

data table no. 261 thermal conductivity of [copper + beryllium + Σx_{i}] alloys c_{u} + Be + Σx_{i}

(Cu + Be < 99.50% or at least one $\rm X_{i} > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

T k

CURVE 1*
293.0 0.858
473.0 1.04

CURVE 2*
293 1.03
473 1.17

No graphic presentation

SPECIFICATION TABLE NO. 262 THERMAL CONDUCTIVITY OF [COPPER + CADMIUM + ΣK_{i}] ALLOYS Cu + Cd + ΣX_{1}

(Cu + Cd < 99.50% or at least one $X_1 > 0.20\%$)

Composition (continued), Specifications and remains	0 02 St 0 59 Sh; approx composition; annealed at 750 C	for 1.5 hrs. electrical conductivity 32, 74 and 23, 30 x for 1.5 hrs. electrical conductivity 32, 74 and 23, 30 x 104 phm -1 cm -1 at 20 and 200 C respectively.	
Composition (weight percent)	1	98.41 1.07 0.02	
Name and	Specimen Designation	Bar 70	
Method Temp. Reporte	No. No. Used Year Range, K Error, %	1 135 L 1935 293, 473	

data table no. 262 thermal conductivity of [copper+cadmium + Σx_1] alloys $c_u + cd + \Sigma x_1$

(Cu + Cd < 99.50% or at least one $X_1 > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

H

CURVE 1*

293. 2 2. 33 473. 2 2. 690

SPECIFICATION TABLE NO. 263 THERMAL CONDUCTIVITY OF [COPPER + COBALT + IX,] ALLOYS

(Cu + Co $<\!99,50\%$ of at least one $X_1\!>\!0,20\%)$

[For Data Reported in Figure and Table No. 263]

Commeigion (continued). Specifications and Remarks	Composition (composition)	23. 12. 26. 35. 28. 12. 26. 35. 23. 18, 20. 95,	18.9, 17.1, 15.33, 14.1, 12.68 and 10.95 x 10 ⁴ obm ⁻¹ cm ⁻¹ 18.9, 17.1, 15.9, 145.8, 214.8, 281.8, 346.4, 436.6, 508.6, and 219. 21.3, 31.5, 51.8, 281.8, 346.4, 436.6, 508.6,	Electrical conductivity 17. 48, 15. 67, 13. 96, 13. 51, 13. 75, 13. 85, 12. 25 and 11. 30 × 10° dnm ⁻¹ at 68. 6, 150. 3, 13. 85, 14, 416, 8, 467, 523 and 562. 5 C, respectively.	0.14 Mo; electrical conductivity 17.15, 15.41, 14.0, 13.26, 14.5, 14.53, 13.12, 12.42 and 11.8 x 104 ohm -1 cm -1 at 67, 23.5, 1.313.6, 390, 438.3, 533.8, 570.6 on 6.00 C. reprectively.	Electrical conductivity 25, 0, 21.8, 19.5, 17.12, 16.13, 14.9, 14.04, 13, 12.23 and 10.86 x 10°0 ohm "1 cm "1 at 56.3, 117, 190, 291, 390, 421, 681.3, 530, 566.5 and 619 C, respectively.	Normalized at 1000 C for 30 min.
	Zr	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ო ი		0. 27		
(Justice of the	Ag			1.0		μ	
woight	Be			9. 15		\$.0.5	o. s
(Mesian (weight percent)	Composition (weight France)		o. 3	1.7	 	2.	2.2
	<u>.</u>		99.4	97. 15	99. 29	97. 2	97.3
N' mar	Specimen	Designation					
	Reported Error, %						
	Curve Ref. Method Year Temp. Reported	4.07	321-975	342-336	341-573	330-892	293-473
	Year		1957	1957	1957	1957	1966
	Method	Osea					
	Ref.	No.	377	377	377	377	588
	Curve	No.	-	81	က	4	S

DATA TABLE NO. 263 THERMAL CONDUCTIVITY OF [COPPER + COBALT + Σ_{X_j}] Alloys

(Cu + Co < 99, 50% or at least one $X_1 \geq 0,\, 20\%)$

[Temperature, T, K; Teermal Conductivity, k, Watt cm-1 K-1]

(cont.)	25.55	, i	8:	7. 51	2.36		آء اع		1.40	1 70	; ,	1. 3																													
CURVE 4 (cont.	694.2	2.00	803.2	839. 7	892. 2		CURVE		293. 2	373 9		7 :0: 7																													
Ε 1	2, 62						2,95				7 9		F. 2		5		· ·	S :	1. 97	2, 32	2, 52	2.40			/E 3	1.	1.61	1. 76	1.92	2.35	2.55	2.61	2, 59	8	VE. 4	2 03	3 6	2. 03	2. 23	2, 39	2. 4 8
CURVE	320.5	389. 1	419.0	488.0	555.0	613.6	8.602	2 (32	6.50	3 20	891. 0	974.8	CIRVE		241.8		6.53	520. 7	587.2	690.0	740.2	90.2	7 (62)	835.7	CURVE	341.0	419.9	508.3	8 385	6633		H07.0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	873. 2	CURVE	9 1166	3.53. 0	390. 2	463.2	564.2	623. 2
-			_	_					- .	-		*****		-	•••	_	_	-		•		-	_																		

SPECIFICATION TABLE NO. 264 THERMAL CONDUCTIVITY OF [COPPER + IRON + ΣX_i] ALLOYS Cu + Fe + ΣX_i

(Cu + Fe $<\!99,50\%$ or at least one $X_1>\!0,20\%)$

Composition (continued), Specifications and Mentalina		o 047 St 0, 023 C; annealed at 800 C.		
Composition (weight percent)	Cu Fe iviii		50, 75 48, 6 0, 47	
Name and	Sp		Bar 137	170
Donath	Curve Ref. Method Year Pange K Error, %			1 135 L 1935 29.3, 473

264 THERMAL CONDUCTIVITY OF [COPPER + IRON + ΣX_1] ALLOYS Cu + Fe + ΣX_1 DATA TABLE NO.

(Cu + Fe < 99, 50% or at least one $X_1 > 0,\,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

T k

293.0 0.992 473.0 1.134 No graphical presentation

一种文化的一种中央

SPECIFICATION TABLE NO. 265 THERMAL CONDUCTIVITY OF [CUPPER + LEAD + Σ_{X_1}] ALLOYS

(Cu + Pb < 99, 50% or at least one $X_i > 0, 20\%$

[For Data Reported in Figure and Table No. 265

No.	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Cu	ပိ ရ	ompositio Sn	Composition(weight percent)	percent) Si	Fe	ß.	Composition (continued), Specifications and Remarks
-	224	7	1923	503. 2		SAE Bearing alloy - No. 66	85.29	85.29 8.26	5. 56	0.89				
81	135	h	1935	293,473		Bar 98	88.07	88.07 3.83	3.77	3.7	9.0	0.03		Arneales, at 700 C for 2 hrs; electrical conductivity 11, 53 and 9, 80 x 10 ⁴ ohm - cm ⁻¹ at 20 and 200 C, respectively.
m	529	O	1958	292-504	S #	80-10-10	79. 0 10. 2	10. 2	ස න්	0, 27	0. 43	0.01 0.26	9. 26	0.01 P; average composition; density 6.38 g cm ⁻² , M. P. 929 C; electrical resistivity reported 17.01, 17.53, 18.00, 18.38, 18.76, 19.15, 19.53 and 19.92 µohm cm at 20, 66, 93, 121, 149, 177, 204, and 232 C, respectively.
খ	529	O	1958	292-504	ਲ ਜ	85-5-5-5	85.0	5. 1	4, 4	4. G	0.7	0.11 0.17	0. 17	0.01 P; avorage composition; density 8.82 g cm ⁻¹ ; M. P. 1009 C; electrical resistivity reported 11.43, 11.87, 12.13, 12.42, 12.70, 12.99, 13.28 and 13.59 µohm cm at 20, 66, 93, 121, 149, 177, 294 and 232 C,

The state of the s

DATA TABLE NO. 263 THERMAL CONDUCTIVITY OF (COPPER + LEAD + EN; ALLOYS

(Cu + Pb < 99, 50% or at least one $N_{\rm l}>0.20\%)$

[Temperature, T, K, Thermal Conductivity, k, Watt cm-1 K-1]

S03.2 9.741 CURVE 2 293, 2 0, 900 473, 2 1, 155

473.2 1.15 CURVE 3 2992. 2 0. 476 309. 9 0. 479 337. 7 0. 498 365. 3 0. 570 421. 1 9. 549 476. 6 0. 558 504. 4 0. 613

CURVE 4

292.2 309.9 0.734 305.5 305.5 0.745 393.3 0.745 421.1 0.739 448.8 0.745 504.4 0.945

SPECIFICATION TABLE NO. 265 THERMAL CONDUCTIVITY OF (COPPER + MANGANESE + EX,) ALLICYS

(Cu + Mn < 99, 50% or at least one $X_1>0, 20\%$)

[Lor Data Reported in Figure and Table No. 246]

-5 Manganin NM Miss 65.0 12.0 3.0 NS Bar 64 95.61 4.51 0.0 Manganin 84.0 12.0 4.0 Sp Manganin 84.0 12.0 4.0 Tu 95.45 3.65 0.9 An 93.63 5.47 0.9 Sir 91.8 7.3 0.9 Sir 89.91 9.12 Sir	Curve No.	3 2	Method	Year	uree Ref. Method year Temp.	Reported Error, %	Name and Specimen Designation	Compc	Composition (weight per Cu Mn Ni	Composition (weight percent)	%	Composition (continued), Specifications and Remarks
1935 293,473 Bair 64 95,61 4,51 0. 1900 291,373 Manganin 64,0 12.0 4.0 Sp 1908 113-295 Manganin 64,0 12.0 4.0 Tu 1958 326-1014 95,45 3.65 0.9 An 1958 362-963 91.8 7.3 0.9 Sir 1958 353-981 89,91 9.12 Sir Sir	-	33	1	1356		S .	Manganin NM Mis	85.0	12.0	3.0		NMMTs mangarin; spectmen 3 mm in dia; una; nealed.
E 1960 291, 373 Manganin 64, 0 12.0 4.0 L 1308 113-295 Manganin 64, 0 12.0 4.0 1958 226-1014 95, 45 3.65 0.9 1958 348-946 93.63 5.47 0.9 1958 362-963 91.8 7.3 0.9 1958 353-981 89.91 9.12	٤.	135	٦	1935	293, 473		Bur 64	95. 61	4.51			0.11 Fc. annealed at 700 C, electrical conductivity 5.95 and 5.793 x 20^4 ohm $^{-1}$ cm $^{-1}$ at 20 and 200 C, respectively.
L 1308 113-295 Manganin 64.0 12.0 4.0 1958 326-1014 95.45 3.65 0.9 1958 348-246 93.63 5.47 0.9 1958 362-963 91.8 7.3 0.9 1958 353-981 912	က	7.	ட	1960	291, 373		Manganin	94. 0	12.0	4.0		Specimen 1, 806 cm in dia and 27 cm, long; drawn; density 8, 44 g cm -8,
1958 326-1014 95,45 3,65 0.9 1958 348-946 93,63 5,47 0.9 1958 362-963 91,8 7,3 0.9 1958 353-981 89,91 9,12	4	£	_	1308	113-295		Manganin	84.0	12.0	4.0		Turned from a bay; density 8, 42 g cm ⁻¹ at 22 C.
1958 348-946 93.63 5.47 0.9 1958 362-963 91. x 7.3 0.9 1959 353-981 89.91 9.12	S	286		1958	326-1014			95, 45	3, 65	Ö	G.	Annealed after heating in vacuum at 300 C for 6 hrs.
1958 362-963 91.8 7.3 0.9 1958 353-981 89.91 9.12	9	586		1958	348-946			93, 63	5, 47	0	a,	Similar to the above specimen.
1953 353-981 9.12	: -	286		1958	362-963			91.8	٠. د.	Ö	6	Similar to the above specimen.
	80	286		1959	353-981			89.91	9.12			Similar to the above specimen.

DATA TABLE NO. 266 THERMAL CONDUCTIVITY OF COPPER + MANGANESE + Σ_{i} ALIOYS

f(Cu+Mn)=99,50% or at least one $X\approx 0,20\%)$

[Temperature [T. K] Thermal Conductivity, K. Watt. cm⁺¹K⁺¹.

.2	CURVE	± 11.	Ξ΄	٠,		≓ ·	; ;	٠,	<i>z</i> ′	=	Ξ΄ 1)		,																										
.2	(cont)	177	21,	:4:	5	=			G (2)		1.15	1.10	CURVE S	17.46	1:::		-		:: =	17 m	7. 7. 6. t			77.5		L :				=			11, 11, 11		- :: · :	77. '-	7		15.7
F	CURVE 5 CON	11	7	- 1 - 1 - 1	2.614	1.4.1	17 17	7.5.	17	n G		1014°	픱	11/1	in G	11 11 7	1) 1 T I				1) * (;	14 22 7				11111	- ! - : - :	÷.	·;	7.7.7.	7)	17.7	0.155	7	1.04	91 3	n T
æ	CURVE 1	5. 1.00	18 (1881 ° 0	ti ton 'a	10, 0003099.	54 To 14	#21 m To	1771.12	0,006.1	(1) a (2)	0 130	171	C1 RV E. 2.	1:37 13	1		<u>-11871</u>	177	7. :		+ 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	:-		:-						•	- 		CLEATE		102 1	0,685	#71. o	a, 776	
⊢	탕	8	-	-	Ξ, (·	7· -	, T1	÷	ء ج	 	î.	1.	ξi	0 1346	:		ڌ١	17.1	- 1 1:		Σi	:::11		17.7	771		- 1 - 1 - 1 - 1	5) 4)	51 17 15	11 	·,		51		356, 2	165, 2	7.7	11.7	

SPECIFICATION TABLE NO. 266R RECUMMENDED THERMAL CONDUCTIVITY OF (COPPER + MANCANESE + £X;) ALLOYS

[For Data Reported in Figure and Data Table No. 266R]

	15% near room temperature and ±5 to ±10% at other temperatures.
Nominal Composition (weight percent) and Remarks	44 Cu, 12 Mn, and 4 Ni
Name and Designation	Manganin
Curve No.	<

DATA TABLE NO, 266R RECOMMENDED THERMAL CONDUCTIVITY OF [COPPER + MANGANESE + £X₁] ALLOYS

[Temperature, T, in K and T, in F; Thermal Conductivity, k, in Watt em-1 K-1 and k2 in Btu hr-1ft-1F-1]

	т, т,	_	<u>ب</u> د ع	ĸ,	T_2	٦,	ī	ኢ.	Т,
			CURVE A (cont.	(cont.)			CURVE A (cont.	(cont.)	
-459.	7 15		0,0232	F. 3	432.7	00 1	0, 133	7.68	-279.7
-457	91 6		0.0250	7: 7:	430.9	8	0.156	10.6 10.6	-189.7
-436,		.,	0,0235	1.65	-427.3	200	0.172	9.94	- 99.7
57	30	_	0,0322	1.86	-423,7	250	0.193	1.3	- 9.7
-452.			0.0410	2.37	17.7	273.2	0.206	11.9	32.0
-450.7		_	0,0497	5. S.	-105.7	160	0.222	12.8	80.3
6.81			0,0543	75.37	-:36:-	901	0.250	÷.;-	176.3
47.	·	_	0.067	3. 47	-387.7	400	(0.279)	(16, 1)	260.3
-445.3	•		0.075		-378,7	200	(0, 338)	(19, 3)	440.3
443.5	Ŝ	_	0,082	4.7.4	-369,7	600	(0.337)	(22.9)	620.3
-441.7	_	_	0.697	5.60	-351.7				
-439.		_	0.110	6,36	-338.7				
¥.		_	0.130	6.93	-315,7				
-436.	•	_	0, 127	7.34	-297.7				
7	ď								

1 Values in parentheses are extrapolated,

र कर राज्य का काम तथा

Specification table no. 267 — Thermal conductivity of Icopper + nickel+ Σx_{j} alloys

 $(Cu + Ni < 99, 50\% \text{ or at least one } X_1 > 0.20\%)$

[For Data Reported in Figure and Table No. 267]

					Name and						;			
Curve Ref.		Pod Yes	Method Year Range, K	Reported Error, %	Specimen Designation	ਹ	ž	C Fe	ton (weigh	C Fe Mn Pb	Si	Sn Zn	Composition (continued), Specifications and Remarks	ecifications and Remarks
131	C	1953	3 323-1173	3 2.0	Advance	54.79	4.04	0.035	1.2		0.003		Annealed at 900 C.	
2 135		1935	5 293,473		Bar 32	74.07	19.96	0	0.09 0.57	-3		ເກ	5.31 Annealed at 700 C.	
3 135	5. 1.	1935	5 293, 473		Bar 35	64.15	29. ₺	0	0.07 0.52	ķ		5.	5.69 Annealed at 700 C.	
4 135		1935	5 293,473		Bar 6	63.37	19.89	0.	0.14 0.23	4.9 6.4		3.31 9.22	2 Sand-cast.	
5 135	S	5661	5 293,473		Bar 23	64.14	18.38	0.023 0.	0.19 0.3			17.06	6 Annealed at 750 C.	
6 152		1949	0 10-20			63.0	20.02					17.0	Severely cold-worked.	
7 193	3 T	1939	9 18-290		Cupronickel	77.44	20.48					1.99	6.	
8 531	1	1936	5 293,473		ĸ	62.16	20, 22	0.012 0.	0.05 0.13	3 0.005	0.003 trace	ace 17.44	4 0,005 S; cast and machined.	
9 531	1 T	1936	5 293,472		9	96.19	25.56	0.02 0.	0.07 0.10	0 0.004	0.004 trace	ace 12,13	3 0,005 S; cast and machined.	
10 531	1 L	1936	6 293,473		7	62.02	29, 17	0.019 0.0	0.09 0.14	4 0.003	0.007 trace	race 7.93	13 0,002 S; cast and machined.	
11 377	7	1957	2 321-1002	21		99.03	9.0						0.27 Zr, 0.1 P.	
12 577	7	1957	7 334-884			98,99	9-0				_	0.15	0.26 Zr.	
13 378	"	1957	7 336-948			99.0	9.0						0.2 Tt.	
14 378	•	1957	7 329-774			98.85	6.0						0.25 P.	
15 378	æ	1937	7 370-920			98.5	1.2				0.3			
16 379	ar.	1957	7 331-815			98.73	8.0						0.33 Zr, 0.14 Be.	
17 378	æ	1957	7 333-910			98.53	1.6						0.33 Zr, 0.14 Be.	
18 378	er.	1957	7 345-923			99.28	0.55						0.17 Zr.	
19 378	30	1957	7 326-974			99.13	0.62						0.25 Zr.	
20 378	ar.	1957	7 533-853			99.3	0.28						0.24 Zr, 0.18 Be.	
21 433	ت ت	1940	78.2		φ	50, 153 49, 451	49, 481	Ö	0.06 0.0	0.05 trace			0.264 Co, 0.01 Al, 0.008 Sb, 0.004 S; calculated compo- sition.	b, 0.004 S; calculated comp
22 433	ت ت	. 1940	78.2		4	60.08	39.6		0.066 0.0	0.02 trace			0.211 Co, 0.008 Al, 0.009 Sb, 0.004 S; calculated compo- ention.	Sb, 0.004 S; calculated con
23 532	 		1960 0, 28-4.0		Cupronickel 69.6		30.0	0	0.40				Nominal composition; amealed and drawn to a 30% reduction in area from super-nickel 702 supplied Anacondo.	ominal composition; annealed and drawn to a 30% reduction in area from super-nickel 702 supplied by Anaconda.

DATA TABLE NO. 267 THERMAL CONDUCTIVITY OF (COPPER + NICKEL + ΣX_1) ALLOYS (Cu + NI < 99.50% of at least one X_1 > 0.20%)

T k t T k T k T K T K T K T K T K T K T K T K			(Temper	[Temperature, T. K. Thermal Conductivity, k, Watt cm 1K-1]	Conductivity, k, W	/att cm 1 K]
VE 1 CURVE 8 CURVE 13 CURVE 13 CURVE 17.2 CURVE 20.2				¥	H	×
0.194	CURVE 1	CURVE 8	CURVE 13	CURVE 17	CURVE 2	0(cont,)*
0.223						2.61
0.253 0.289 0.289 0.289 0.289 0.289 0.480 0.481 0.482 0.483 0.482 0.482 0.483 0.484 0.283 0.482 0.482 0.483 0.484 0.284 0.482 0.482 0.483 0.484 0.383 0.482 0.484 0.384 0.482 0.484 0						2.54
0.289 CURVE 9 690.7 2.16 555.2 2.31 CURVE. 0.387 293.2 0.205 7135.7 2.66 715.2 2.65 718.2 2.44 70.20 0.403 713.2 0.221 713.5 2.75 910.2 2.48 CURVE. 0.403 473.2 0.221 713.7 2.75 910.2 2.48 CURVE. 0.404 CURVE.10 691.2 2.45 CURVE.14 70.2 2.48 CURVE. 0.385 CURVE.11 22.9 947.5 2.73 940.2 2.45 CURVE. 0.485 320.5 2.87 792.0 1.81 644.2 2.59 0.275 0.400 0.485 2.82 773.7 2.86 644.2 2.74 0.335 0.276 0.305 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.405 0.400 0.4						
0.328 0.405 0.406		CURVE 9				21
0. 457 233.2 0. 205 713.5 2. 56 715.2 2. 65 718.2 2. 65 0. 403 2. 473.2 0. 251 735.7 2. 42 818.0 2. 518 2. 518.2 0. 403 2. 473.2 0. 251 735.7 2. 45 818.0 2. 518 2. 45 0. 443 2. 2. 64 2. 2. 473.2 0. 132 2. 2. 45 0. 132 2. 2. 473.2 0. 132 2. 2. 473.2 0. 132 2. 2. 473.2 0. 132 2. 2. 473.2 0. 132 2. 2. 473.2 0. 132 2. 2. 473.2 0. 235 2. 2. 474.2 2. 59 0. 275 0. 485 2. 2. 80 2. 2. 8						
0.405 473.2 0.251 73.7 2.42 819.0 2.51 0.403 CURVE 10 811.5 2.73 910.2 2.48 CURVE 18 0.431 CURVE 10 893.5 2.73 910.2 2.48 CURVE 18 VE 2 473.2 0.234 CURVE 11 473.2 2.53 CURVE 18 78.2 VE 2 473.2 0.234 CURVE 11 473.2 2.53 CURVE 18 78.2 VE 2 473.2 2.37 474.2 2.73 0.245 CURVE 14 474.2 2.73 CURVE 14 474.2 2.73 CURVE 18 7.73 0.355 VE 3 350.5 2.87 392.0 1.81 474.2 2.73 0.355 VE 4 478.7 2.93 CURVE 13 474.2 2.73 0.400 0.366 556.7 2.94 408.8 1.36 2.84 0.400 0.576 52.94 CURVE 15 404.7 2.48 1.85	ó					0.162
0.493 CURVE 10 811.5 2.73 910.2 2.48 CURVE. 0.720 293.2 0.192 947.5 2.73 CURVE.18 78.2 CURVE. 0.285 CURVE.11 22.94 47.5 2.73 545.0 2.45 CURVE. 0.485 CURVE.11 329.2 1.64 604.2 2.74 0.325 0.275 0.285 627.5 2.90 47.5 2.77 808.0 2.89 0.275 0.365 627.5 2.90 47.5 2.77 808.0 2.89 0.275 0.365 627.5 2.97 773.7 2.56 848.2 2.82 0.475 0.365 627.5 2.97 773.7 2.56 848.2 2.82 0.475 0.395 0.276 833.7 2.99 CURVE.15 692.7 2.79 0.475 0.386 627.5 2.97 773.7 2.56 848.2 2.82 0.475 0.390 0.386 627.5 2.97 773.7 2.56 848.2 2.82 0.475 0.390 0.386 627.5 2.97 773.7 2.56 848.2 2.82 0.475 0.390 0.386 889.5 2.87 773.7 2.56 848.2 2.82 0.475 0.390 0.386 627.5 2.99 773.7 2.94 608.0 2.84 1.36 922.7 2.70 0.390 0.390 CURVE.12 1.92 908.9 2.93 4.00 0.386 624.5 2.79 913.8 1.83 974.3 2.85 2.74 2.90 0.390 0.0085 604.5 2.79 913.8 1.83 974.3 2.85 0.485 604.5 2.79 913.8 1.83 974.3 2.85 0.485 604.5 2.20 913.8 1.83 92.7 2.18 913.8 1.83 92.7 2.1						
0.481 CURVE 10 853.5 2.75 CURVE 11 953.5 2.75 VE 2 473.2 0.234 CURVE 14 431.9 2.45 CURVE 18 78.2 0.385 CURVE 11 20.234 CURVE 14 431.9 2.52 0.275 0.385 CURVE 11 229.2 1.64 604.2 2.74 0.235 0.485 320.5 2.90 474.2 2.03 644.2 2.74 0.485 320.5 2.94 474.2 2.03 644.2 2.74 0.286 468.1 2.94 474.2 2.03 644.2 2.86 0.386 627.5 2.94 369.8 1.36 922.7 2.06 0.440 0.586 556.7 2.94 468.0 1.54 404.7 2.46 0.460 0.588 928.3 2.84 458.0 1.54 404.7 2.46 0.46 0.588 928.3 2.84 458.0 1.54 404.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>. 22</td></t<>						. 22
0. °20 293.2 0.192 947.5 2.145 CURVE.14 78.2 VE.2 473.2 0.234 CURVE.14 431.9 2.55 CURVE.18 78.2 0.385 CURVE.11 329.2 1.64 604.2 2.74 0.355 VE.3 320.5 2.87 392.0 1.81 664.2 2.74 0.355 VE.3 367.2 2.96 474.2 2.03 664.2 2.74 0.355 VE.3 367.1 2.96 474.2 2.03 664.2 2.67 0.355 VE.4 705.3 2.97 474.2 2.73 746.8 2.88 0.440 0.286 464.2 2.97 473.7 2.56 848.2 2.82 0.440 0.276 653.5 2.77 808.0 2.82 0.440 0.440 0.276 653.5 2.77 2.86 848.2 2.82 0.440 0.276 653.5 2.77 2.86 464.2		CURVE 10			!	
VE 2 293.2 0.192 947.5 2.73 345.0 2.45 CURVE 14 411.9 2.55 0.275 0.385 ÇURVE 14. 729.2 1.64 604.2 2.59 0.275 0.465 320.5 2.87 392.0 1.64 604.2 2.74 0.325 0.285 320.5 2.87 392.0 1.64 604.2 2.67 0.375 0.285 320.5 2.94 392.0 1.81 664.2 2.67 0.355 0.286 484.2 2.99 474.2 2.03 674.6 2.89 0.405 0.286 484.2 2.95 473.7 2.94 0.460 0.446 0.446 0.276 883.5 2.97 408.8 1.35 2.74 0.445 0.276 883.5 2.94 408.8 1.43 2.74 0.446 0.276 883.5 2.94 408.8 1.43 2.74 0.446 0.56 2.94				CURVE 18	78.2	0.178
WE 2. 473.2 0.234 CURVE 14. CURVE 14. 474.2 2.52 CURVE 2.74 CURVE 14. 474.2 2.52 0.275 0.485 2URVE 14. 329.2 1.64 664.2 2.74 0.325 0.485 320.5 2.87 329.2 1.64 664.2 2.74 0.325 0.285 428.7 2.99 474.2 2.03 674.6 2.87 0.440 0.285 464.2 2.99 474.2 2.55 695.2 2.77 686.2 2.87 0.400 0.386 466.7 2.97 474.7 2.56 889.2 2.87 0.400 0.276 835.7 2.97 474.7 2.82 0.840 0.440 0.276 835.7 2.99 CURVE 15 408.8 1.43 335.8 2.87 0.440 0.586 928.3 2.84 408.8 1.43 335.8 2.38 1.70 0.586 928.3 2.84 408.8						
CURVE 11 431.9 2.52 0.385	CURVE 2					673
0.385			CURVE 14			
UVE 3 320.5 1.64 604.2 2.74 0.325 UVE 3 320.5 2.87 392.0 1.81 664.2 2.74 0.325 Q 285 484.2 2.99 47.2 2.23 746.8 2.87 0.40 0.285 484.2 2.94 589.2 2.77 808.0 2.89 0.440 0.286 585.7 2.94 589.2 2.77 808.0 2.89 0.440 0.276 633.7 2.94 73.7 2.89 7.76 0.80 0.276 839.5 2.87 73.7 2.89 0.460 0.460 0.286 889.5 2.84 468.8 1.36 2.38 1.70 0.930 QVE 5 1007.2 2.77 408.8 1.46 0.46 0.460 VE 5 1007.2 2.77 408.8 1.46 0.46 0.46 QUBVE 1 408.8 1.46 0.46 0.46 0.46 0.46		CURVE 11				0.0001714
VE 3 320. 5 2.87 392.0 1.81 664.2 2.67 0.355 428.7 2.99 474.2 2.03 674.6 2.88 0.440 0.286 464.2 2.95 695.2 2.73 608.0 2.84 0.460 0.386 556.7 2.97 773.7 2.56 848.2 2.82 0.475 0.36 627.5 2.97 773.7 2.56 848.2 2.82 0.475 0.276 627.5 2.94 369.8 1.36 922.7 2.76 0.840 0.368 889.5 2.87 409.8 1.43 325.8 2.38 1.70 0.368 889.5 2.87 409.8 1.43 325.8 2.38 1.70 0.35 CURVE 12 666.2 2.15 677.0 2.90 2.95 0.418 334.2 2.57 766.2 2.14 807.1 2.97 3.80 0.425 554.7 2.97 765.2 2.14 807.1 2.97 3.80 0.465 604.5 2.97 409.8 1.83 974.3 2.85 0.0465 604.5 3.19 396.2 2.23 490.0 2.35 0.0572 844.2 3.20 409.0 2.35 0.0572 605.5 2.43 656.2 2.49 0.0572 606.5 2.79 469.0 2.35 0.0572 606.5 2.79 469.0 2.35 0.0572 606.5 2.79 469.0 2.35 0.0572 606.5 2.79 606.5 2.49 0.0572 606.5 2.79 606.5 2.49 0.0572 606.5 2.79 606.5 2.75 0.0572 606.5 2.79 606.5 2.75 0.0572 606.5 2.79 606.5 2.75 0.0572 606.5 2.79 606.5 2.75 0.0572 606.5 2.75 606.5 2.75 0.0572 606.5 2.75 606.5 2.75 0.0572 606.5 2.75 0.0572 606.5 2.75 0.0572 606.5 2.75 0.0572 2.75 606.5 2.75 0.0572 606.5						0.000240*
WE 3 367.2 2.90 474.2 2.03 674.6 2.82 0.440 0.285 48.7 2.94 589.2 2.77 808.0 2.84 0.440 0.286 48.7 2.94 589.2 2.77 808.0 2.84 0.440 0.360 627.5 2.97 773.7 2.56 840.2 2.82 0.440 0.276 627.5 2.94 773.7 2.56 840.2 2.82 0.475 0.276 633.7 2.94 369.8 1.36 404.7 2.48 1.51 0.276 889.5 2.87 408.8 1.43 325.8 2.38 1.70 0.276 889.5 2.84 458.0 1.54 404.7 2.48 1.51 0.368 889.5 2.87 408.8 1.43 325.8 2.38 1.70 VE 5 2.87 408.8 1.54 404.7 2.48 1.70 O.418 334.2 2.57 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000250</td>						0.000250
428.7 2.94 589.2 2.23 746.8 2.88 0.440 0.285 484.2 2.95 695.2 2.77 808.0 2.84 0.460 0.360 637.5 2.97 773.7 2.56 848.2 2.89 0.475 0.276 637.5 2.94 CURVE.15 7.76 2.84 0.930 0.276 893.7 2.94 369.8 1.36 2.38 1.70 0.276 893.7 2.94 468.8 1.43 325.8 2.38 1.70 0.588 928.3 2.84 458.0 1.54 404.7 2.48 1.85 0.588 928.3 2.84 458.0 1.54 404.7 2.48 1.85 0.488 1.87 552.2 1.67 498.6 2.61 2.40 0.335 CURVE.12 686.2 2.15 670.1 2.94 1.85 0.418 334.2 2.57 466.2 2.15 670.1 <td< td=""><td>CURVE 3</td><td></td><td></td><td></td><td></td><td>0.000295*</td></td<>	CURVE 3					0.000295*
0.285 484.2 2.95 695.2 2.77 808.0 2.84 0.460 0.360 0.360 0.356 0.356.7 2.97 773.7 2.56 848.2 2.82 0.475 0.405 0.360 0.360 0.360 0.399 CUBVE.4 705.3 2.99 CUBVE.15 CUBVE.19* 1.07 0.368 0.895.5 2.87 408.8 1.43 0.25.8 2.38 1.70 0.385 0.418 0.335 CUBVE.2 2.77 408.8 1.43 0.25.8 2.38 1.70 0.335 CUBVE.2 2.77 408.8 1.43 0.418 0.335 CUBVE.2 2.77 406.3 1.76 598.5 2.74 2.46 1.85 0.418 0.335 CUBVE.2 2.31 709.1 2.97 3.50 0.418 0.0255 554.7 2.57 766.5 2.14 807.1 2.97 3.80 0.0455 604.5 2.79 919.8 1.83 974.3 2.85 0.0455 604.5 3.03 CUBVE.16 0.335 CUBVE.2 2.31 0.005 0.215 0.0065 0						0.000310*
Q.360 556.7 2.97 773.7 2.56 848.2 2.82 0.475 Q.276 627.5 2.97 CURVE 15 2.97 CURVE 19 0.08.0 Q.276 627.5 2.94 369.8 1.36 CURVE 19 0.08.0 0.268 889.5 2.87 400.8 1.43 325.8 2.38 1.70 Q.276 889.5 2.87 400.8 1.43 325.8 2.38 1.70 Q.368 889.5 2.87 400.8 1.54 404.7 2.48 1.51 Q.368 889.5 2.87 400.8 1.54 404.7 2.48 1.50 Q.335 CURVE 12 606.3 1.76 598.5 2.74 2.40 Q.418 334.2 2.57 762.2 2.31 607.1 2.97 4.00 Q.418 334.2 2.57 469.2 2.15 908.9 2.93 4.00 Q.418 334.2 2.57 469.2						0.000360*
WE 4 705.3 2.97 CURVE 15 2.76 0.8.0 0.276 765.0 2.94 369.8 1.36 CURVE 19** 0.930 0.276 833.7 2.94 369.8 1.36 2.38 1.07 0.368 889.5 2.87 400.8 1.43 325.8 2.38 1.70 0.368 889.5 2.87 400.8 1.54 404.7 2.48 1.70 WE 5 1007.2 2.77 606.3 1.67 498.5 2.74 2.40 0.335 CURVE 12 686.2 2.15 677.0 2.90 2.85 0.418 334.2 2.57 762.2 2.31 709.1 2.97 3.80 WE 6 379.7 2.67 843.2 1.92 908.9 2.93 4.00 0.0255 554.7 2.97 919.8 1.83 974.3 2.85 4.00 0.0485 60.65 3.19 396.2 2.23 968.9						0.000400
WE 4 705.3 2.99 CURVE 15 0.930 0.276 833.7 2.94 369.8 1.36 CURVE 12* 1.51 0.368 889.5 2.87 400.8 1.43 325.8 2.38 1.70 0.368 889.5 2.87 400.8 1.43 325.8 2.38 1.70 0.358 928.3 2.84 458.0 1.54 404.7 2.48 1.70 0.335 CURVE 12 666.2 2.15 404.7 2.48 1.85 0.418 334.2 2.77 552.2 1.67 404.7 2.48 1.85 0.418 334.2 2.77 666.2 2.15 677.0 2.97 2.65 0.418 334.2 2.57 766.5 2.14 807.1 2.97 3.50 QCDS 554.7 2.97* 913.8 1.83 974.3 2.85 4.00 QC0255 554.7 2.97* 2.13 974.3 2.85						0.000695
0.276 833.7 2.94 CURVE.19* 1.07 0.368 885.5 2.84 458.0 1.54 404.7 2.48 1.51 0.368 928.3 2.84 458.0 1.54 404.7 2.48 1.85 0.335 CURYE.12 666.3 1.76 588.5 2.74 2.05 0.418 334.2 2.57 766.5 2.14 807.1 2.97 3.50 0.0455 554.7 2.97* CURVE.16 508.9 2.93 4.00 0.0465 604.5 3.03 CURVE.16 2.15 606.9 2.85 0.0485 604.5 3.03 CURVE.16 2.15 333.0 2.15 0.055 554.7 2.97* CURVE.16 2.15 333.0 2.15 0.0987 884.2 3.20 469.0 2.31 575.8 2.45 0.0987 884.2 3.20 469.0 2.31 575.8 2.45 0.0272 2.75 815.2 2.75 815.2 2.75 815.2 2.75	CURVE 4		CURVE 15		0.930	0.000000
0.276 833.7 2.94 369.8 1.36 1.35 0.368 889.5 2.87 400.8 1.43 325.8 2.38 1.70 928.3 2.84 458.0 1.54 404.7 2.48 1.85 928.3 2.84 458.0 1.54 404.7 2.48 1.85 0.418 334.2 2.77 565.2 1.87 498.6 2.61 2.05 0.418 334.2 2.57 766.2 2.13 709.1 2.97 3.80 0.025 554.7 2.67 766.2 2.31 709.1 2.97 3.80 0.025 554.7 2.97 843.2 1.92 908.9 2.93 4.00 0.048 334.2 2.57 766.2 2.14 807.1 2.97 3.80 0.055 554.7 2.97 843.2 1.92 908.9 2.93 4.00 0.048 334.2 2.57 766.2 2.14 807.1 2.97 3.80 0.048 317.2 3.19 310.2 2.12 333.0 2.15 0.048 84.2 3.20 409.2 2.23 392.7 2.21 0.0987 665.2 2.49 665.0 2.35 0.0272 666.2 2.49 666.2 2.49 1.490 756.2 2.75 465.0 2.31 575.8 2.45 0.0272 766.3 2.75 766.2 2.49 0.0987 766.2 2.49 766.2 2.49 0.0987 766.2 2.25 766.2 2.49 0.0272 766.2 2.75 766.2 2.49				CURVE 19		0.000990*
0.368 889.5 2.87 400.8 1.43 325.8 2.38 1.70 QVE.3 2.84 458.0 1.54 404.7 2.48 1.85 QVE.3 1.007.2 2.77 552.2 1.67 404.7 2.48 1.70 QV.2 2.77 606.3 1.67 496.5 2.74 2.05 QV.418 334.2 2.57 686.2 2.15 677.0 2.90 2.85 QV.418 334.2 2.57 762.2 2.31 702.1 2.97 3.80 QV.418 334.2 2.57 765.2 2.31 702.1 2.97 3.80 QV.5 379.7 1.83 974.3 2.95 4.00 2.93 4.00 QV.025 554.7 2.97* CURVE 16 CURVE 20* 2.95 4.00 QV.0485 60.65 3.19 331.2 2.12 333.0 2.15 QVE.7 317.2 3.19 396.2 2.23						0.00150
QSE-3 2.84 458.0 1.54 404.7 2.48 1.85 QUES. 1.77 552.2 1.67 498.6 2.61 2.05 0.335 QURVE.12 686.2 2.15 677.0 2.90 2.85 0.418 334.2 2.57 766.5 2.14 907.1 2.97 3.50 RVE 379.7 2.67 846.2 2.74 908.9 2.93 4.00 QO.255 554.7 2.79 919.8 1.83 974.3 2.85 4.00 0.0465 604.5 3.03 CURVE.16 CURVE.20 CURVE.20 CURVE.20 0.0711 755.2 3.18 331.2 2.12 393.0 2.15 3.75. 3.18 331.2 2.12 392.7 2.21 0.0987 884.2 3.20 2.35 490.0 2.35 0.0272 884.2 3.20 2.15 3.257 1.490 785.2 2.79 2.21						0.00173*
WE 5. 1007.2 2.77 552.2 1.67 498.6 2.61 2.05 0.335 CURYE 12 666.3 1.76 586.5 2.74 2.40 0.418 334.2 2.57 702.2 2.13 709.1 2.97 2.59 0.418 334.2 2.57 766.5 2.14 807.1 2.97 3.50 WE 6 379.7 2.67 843.2 1.92 908.9 2.93 4.00 0.0255 554.7 2.97* 1.83 974.3 2.85 4.00 0.0485 604.5 3.03 CURVE 16 CURVE 20* 4.00 4.00 0.0485 604.5 3.18 331.2 2.12 333.0 2.15 1.52. 3.19 396.2 2.23 392.7 2.21 1.52. 3.12 3.23 2.45 460.0 2.35 0.0987 84.2 3.2 4.40 2.35 4.65 2.49 0.272 3						0.00195
0.335 CURVE.12 666.2 1.76 598.5 2.74 2.40 0.418 334.2 2.57 762.2 2.31 702.1 2.97 3.50 0.025 379.7 2.67 765.2 2.44 807.1 2.97 3.50 0.025 554.7 2.97 919.8 1.83 974.3 2.85 0.0485 604.5 3.03 CURVE.16 CURVE.20 0.0711 715.2 3.19 331.2 2.12 333.0 2.15 0.0987 884.2 3.20 409.2 2.23 399.0 2.35 0.272 668.2 2.79 815.2 2.23 392.7 2.21 0.0987 668.2 2.49 666.2 2.49 1.490 756.2 2.49 1.490 756.2 2.75 1.50 2.7	CHRVES					0.00210*
0.335 CURVE 12 686.2 2.15 677.0 2.90 2.85 0.418 334.2 2.57 765.2 2.31 709.1 2.97 3.50 IVE 6 379.7 2.67 765.2 2.14 807.1 2.97 3.80 IVE 6 379.7 2.67 843.2 1.83 904.9 2.93 4.00 0.0255 554.7 2.97* 1.83 974.3 2.85 4.00 0.0485 604.5 3.03 CURVE 16 CURVE 20* 2.15 4.00 0.0711 715.2 3.18 331.2 2.12 333.0 2.15 1.55.2 3.19 396.2 2.23 392.7 2.21 0.0987 884.2 3.20 469.0 2.35 490.0 2.35 0.272 60.272 563.5 2.43 656.2 2.49 1.49 1.490 766.2 2.75 2.75 2.75 2.75						0.00255*
0.418 334.2 2.57 702.2 2.31 709.1 2.97 3.50 NVE 6 379.7 2.67 766.5 2.14 807.1 2.97 3.50 O.0255 554.7 2.97 913.8 1.83 974.3 2.85 4.00 0.0255 554.7 2.97 913.8 1.83 974.3 2.85 4.00 0.0485 664.5 3.03 CURVE 16 CURVE 20* CURVE 20* 0.0711 755.2 3.19 331.2 2.12 333.0 2.15 1/E.T 317.2 3.19 396.2 2.23 392.7 2.21 884.2 3.20 469.2 2.25 490.0 2.35 490 0.272 469.2 2.25 490.0 2.35 490 2.45 0.272 469.2 2.25 43 656.2 2.49 1.490 778.3 2.75 48 2.60 728.3 2.57 460.2 2.		CURVE 12				0.00310*
XVE 334.2 2.57 766.5 2.14 807.1 2.97 3.80 379.7 2.67 843.2 1.52 908.9 2.93 4.00 466.2 2.79 919.6 1.63 974.3 2.93 4.00 0.0255 554.7 2.97* 919.6 1.63 974.3 2.85 0.0485 604.5 3.03 CURVE 16 CURVE 20* 0.0711 715.2 3.19 331.2 2.12 333.0 2.15 1/E.j 3.19 396.2 2.23 392.7 2.21 84.2 3.20 409.2 2.35 490.0 2.35 0.0987 864.2 3.20 409.0 2.35 49 0.272 689.0 2.31 575.8 2.49 1.490 778.2 2.75 86.5.2 2.75						0.00410
WE 6 379.7 2.67 843.2 1.92 908.9 2.93 4.00 0.0255 554.7 2.97* CURVE 16 CURVE 20* 9.04.3 2.95 4.00 0.0485 604.5 3.03 CURVE 16 CURVE 20* CURVE 20* 4.00 0.0711 715.2 3.19 331.2 2.12 333.0 2.15 NE.T 3.19 396.2 2.23 392.7 2.21 NE.T 3.12 469.0 2.35 490.0 2.35 0.0987 884.2 3.20 469.0 2.31 575.8 2.45 0.272 565.5 2.43 656.2 2.49 1.490 776.2 2.75 865.2 2.75			-			0.00450
466.2 2.79 919.8 1.83 974.3 0.025 554.7 2.97* 0.0485 604.5 3.03 CURVE 16 CURY 0.0711 715.2 3.18 331.2 2.12 333.0 1.450 884.2 3.20 409.2 2.25 490.0 0.272 884.2 3.20 678.8 2.60 728.3 1.450 766.2 2.75 815.2 2.75	CURVE 6					0.00520
0.0255 554.7 2.97* 0.0485 604.5 3.03 <u>CURVE 16</u> <u>CURX</u> 0.0711 715.2 3.18 331.2 2.12 333.0 1.VE_T 817.2 3.19 396.2 2.23 392.7 0.0987 884.2 3.20 409.2 2.25 490.0 0.272 60.05 63.5 2.43 656.2 1.490 776.2 2.75						
0.0485 604.5 3.03 CURVE 16 CURY 15.2 3.13 715.2 3.13 331.2 2.12 333.0 715.2 3.18 331.2 2.23 332.0 884.2 3.20 409.2 2.23 392.7 409.0 2.31 575.8 0.272 884.2 3.20 409.2 2.25 490.0 0.272 563.5 2.43 656.2 1.490 776.2 2.75 815.2 2.75						
0.0711 715.2 3.18 331.2 2.12 333.0 175.2 3.18 331.2 2.12 333.0 175.2 3.18 331.2 2.23 392.7 884.2 3.20 409.2 2.25 490.0 0.272 684.2 3.20 469.0 2.31 575.8 0.272 656.2 1.490 676.2 2.75 815.2 2.75			CURVE 16	CURVE 20		
155.2 3.18 331.2 2.12 333.0 17.2 3.19 396.2 2.23 392.7 17.2 3.20 409.2 2.25 490.0 17.2 3.20 409.2 2.25 490.0 17.2 3.20 409.2 2.25 490.0 17.2 3.20 656.2 17.2 2.75 656.2 2.75 17.2 2.75 656.2 2.75 17.2 2.75 656.2 2.75 17.2 2.75 656.2 2.75 17.2 2.75 656.2 2.75 17.2 2.75 656.2 2.75 17.2 2.75 656.2 2.75 656.2 2.75 17.2 2.75 656.2 2.75						
WE_i 817.2 3.19 396.2 2,23 392.7 864.2 3.20 409.2 2.25 490.0 0.0987 864.2 3.20 409.2 2.25 490.0 0.272 563.5 2.43 656.2 1.490 678.8 2.60 728.3 156.2 2.75 815.2 2.75						
884.2 3.20 409.2 2.25 490.0 0.0987 469.0 2.31 575.8 0.272 563.5 2.43 656.2 1.490 776.2 2.75 815.2 2.75	CURYE					
0.0987 469.0 2.31 575.8 0.272 563.5 2.43 656.2 1.490 678.8 2.60 728.3 766.2 2.75 815.2 2.75						
0.272 563.5 2.43 656.2 1.490 678.8 2.60 728.3 766.2 2.75 815.2 2.79						
1.490 678.8 2.60 728.3 766.2 2.75 815.2 2.79						
2.75						

Not shows on plot

The state of the s

MERCHANIA SA

SPECIFICATION TABLE NO. 268 THERMAL CONDUCTIVITY OF [COPPER + SILICON + EX.] ALLOYS

ستاها فيافتانا فالتفاقي بعدماها والزائمة بالمراجع فيحرب فالمقارق فالاجتماع والانتفاق والمتعارض والمتعادمة والمتعادمة والمتعادمة

 $(Cu+Si<99,\,50\% \ or \ at least one \ X_1>0,\,20\%)$

[For Date Reported in Figure and Table No. 268]

Composition (continued), Specifications and Remarks	Annealed at 700 C for 2 brs; electrical conductivity 6.611 and 6.022 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.	Annealed at 750 C for 1-1/2 bre; electrical conductivity 3.773 and 3.611 x 104 ohm 4 cm 3 at 20 and 200 C, respectively.	1.12 Annealed at 700 C for 2 hrs; electrical conductivity 4.586 and 4.228 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.	0.001 each Cd, Cr, Ag, 0.001 > each B, Ca, Al, Pb, Sn; turned and ground from a bard temper rod.
Zn Z			1. 12	1.0
percent)	0.3	0.99		1.13
Composition (weight percent) Cu Si Fe Ma	98.1 1.5 0.06 0.3	95.69 3.23 0.16	0. 02	0.001
opositio Si	' '\$'	3, 23	3. 11	3.15
Con	98.1	95. 69	95. 83 3. 11	≈94.72 3.15 0.001 1.13
Name and Specimen Designation	Bar 136	Bar 72	Bar 135	Silicon bronze-A
Reported Error, %				
Turve Raf. Method Year Temp. Reported No. No. Used Year Range, K Error,%	L35 L 1935 293,473	293, 473	293, 473	16-91
Year	1935	1935	1935	1957
Method	٦	٦	٦	ı.
Ref.	135	135	135	4 32
Curve No.	1	~	e	4

DATA TABLE NO. 26* THERMAL CONDUCTIVITY OF [COPPER + SILICON + Σx_1] ALLOYS

(Cu + Si < 99, 50% or at least one $X_i \geq 0,\,20\%$

[Temperature, T, K; Thermal Conductivity, k, Watt cm $^{\text{-1}}\,K^{\text{-1}}]$

293. 2 0, 540 473. 2 0, 732 CURVE 2 293, 2 6, 126 473, 2 0, 448 CURVE 3

293, 2 0, 372 473, 2 0, 518

CURVE 4

15,5 0.0256 20,0 0.0345 30,0 0.0546 40,0 0.0546 60,0 0.095 80,0 0.117

SPECIFICATION TABLE NO. 269 THERMAL CONDUCTIVITY OF [COPPER + TIN + EX;] ALLOYS

(Cu + Sn \leq 99, 50% or at least one $-X_1 \geq 0, \, 20\%$

[For Data Reported in Figure and Table No. 269]

Composition (continued), Specifications and Remarks	Cast.	Cast.	Cast.		Annealed at 650 C.				Sand-cast.	Sand-cast.	Cast.	Cast.					Annealed at 650 C.		Cast.	 0.005 Sb; cast, after air cooling annealed at 625 C, cold-rolled; machined. 	<0.005 Sb; cast, after air cooling ameraled at 625 C, hot-rolled at 300 C and ameraled for 2.5 hrs at 625 C, and again hot rolled at 300 C and ameraled for 2.5 hrs at 625 C, and then cold-rolled and machined.	Composition not reported; in wire form, 40 \mu in dia.
Zn	1.65	96.0	1.0	1.86		2.0	2.0	2.0	1.9	3.05	2.13	5.04	4.92	2.81								
£				0.16	1.16						0.35	96.0	5.01	0.04	9,58			0.04		< 0.005	0.01	
rcent)				0.013	90.0	0.15	0.15								0.3	0.3	0.4	0.33	0.35	0.39	0.38	
Composition(weight percent) Fe Ni P	4,96	9.67	10.29																	0.01		
os:tion(Fe			1		0.03				0.07	0.03	0.21	0.21						0.03	0.17	0.01	0.02	
Cornp	5.44	90.91	30.71	13.07	4.88	5.0	10.0	10.0	9.55	8.83	10.02	8.72	5.14	10.55	10.83	8.0	12.4	4.18	11.28	3.09	4.	
رة ت	87.93	73.28 1	58.n 3	84.89 1	94. 02	97.8	87.8	88.0	88.35	87.89	87.24	85.03	84.93	86.6 1	79.04 1	91.7	87.2 1	95.56	87.82 1	96.5	92.2	
Name and Specimen Designation		2	က	Phosphor Branze	42	Bronze; bar 1	Bronze; bar 2	Bronze; bar 5	Bar 15 A	Bar 9	Admiralty Gun-Metal	Gun-Metal (ordinary)	SAE Bearing Alloy No.40	SAE Bearing Alloy No.62	SAE Bearing Alloy No.64	Phosphor bronze; bar 3	Bronze; dar 6	* 40	Phosphor Bronze	Phosphor bronze; 2	Phosphor bronze, ↓	Phosphor Bronze
Reported Error, %	2.0	2.0	2°. L		2.0						< 2.0	< 2.0						2.0	2.0			~ 10
Temp, Range, K	373,673	373,673	373,673	18-290	324-512	299-525	293-523	293-523	293,473	293,473	357-692	361-692	909	521	518	293-523	293-523	331-514	368-704	293,473	293,473	1.2-2.8
Year	1939	1939	1939	1939	1931	1928	1928	1928	1935	1935	1925	1925	1923	1923	1923	1928	1928	1931	1925	1941	<u>194</u>	1954
Method Used	1	1		1	٦	Ŀ	Ĺų	Ĺz,	Ĺų	ű,	н	ı	ħ	H	J	Ĺ	į,		h	ب	ı	ï
Ref. No.	215	215	215	193	134	35	55	55	135	135	30	30	224	224	224	55	55	134	30	516	516	530
Curve No.	-	2	က	4	S	ç	(~	x 0	6	10	=	12	13	7*	.:	16	17	18	19	50	21	22

فالمالية الطالية البياميان أرفو سيسمعو فاشته البالكالية ماله المستميدية للتفلية المالية والمنافظ والمنافئة والمنافئة والمنافئة والمنافظ والمنافظة

trains white fall & feet

SPECIFICATION TABLE NO. 269 (centinued)

Ccmposition (continued),	90ccilications and Remarks 0.13 S3; average composition; density 8. 64 g cm ⁻³ ; M.P. 938 C; electrical resistivity 12.04, 12.46, 12.71, 12.97 13.29; µ on me at 20, 66, 93, 12). 149, 177, 204, and 232 C, respectively.
	2n 4 . 4
	Z =
Comp tition(weight percent)	88.0 5.7 0.07 0.6 0.01 1.4 4.4
(weight	3.0
np. citton	9.0 70.0
Co	
3	0.38 7.30
Name and Specimen Designation	Navy "M"
Year Temp. Reported Range, K Error, %	5.0
Temp. Range, K	292-594
Year	1958
Method Used	U
Curve Ref. No. No.	529
Curve No.	23

Data table no. 269 Thermal conductivity of (copper + τ in + $\pm x_{i}$) alloys

3	
5	
7	
;	
^	
A, > 0.2U%)	
_	
2	
Ö	
iea gr. one	
7	
=	
=	
6	
Ź	
".	
2	
(Cu + 25 < 39. 50% or 81	
n	
+	
₹	
۲	

t cm 1 K 1	.	21*	0.460		77	0,0040	0.0043	0.0052	0.0066	6,000	0.0154	0.0202	0.0250		ន	į	0.696	0,704	0.122	0.741	707.0	107	0.019	0.833	4																
tivity, k. Wat	۲	CURVE 21*	293.2 0.474.2 0		CURYE 22	1.2 0.						2.6			CURVE 23					365.5																					
ermal Conduc	×	CURYE 17	0.364	0. 414	0.448	0.536		CURVE 18	•	0.618	0.685	0.736	0.749	0.795	0.799	0.864	:	CURVE 19		0.540	0.00	0.577		0.300	0.003	603	0.615	0.636	0.649	0.636	0.657	0.874	0.711	0.729	CIRVE 20	3	699.0	0.962			
T. K. Th	H	EII O	203.2	373.2	423.2	523.2		85	•	331.2	3.00.0	404.2	405.2	454.2	456.2	514.2				367.7	7.50	415.2	7.07	469.	477 0	4.88.2	514.2	519.7	537.2	550.2	578.2	628.2	674.7	704.2	2775		293.2	473.2			
[Temperature, T, K; Thermal Conductivity, k, Watt cm 'K-1	4	CURVE M (cont.)	0.678	0.715	0.720	CURVE 12	1	0.715	0.724	0.728	0.732	0.749	0.741	0,753	0.766	0.757	0.774	0.752	0.2.0	0.782		808.0	9 4 44 44 4	27.3	080	306.0	CURVE 14		0.594		CURVE 15		0.456	AL SVETT	*	0.452	0.498	0.523	695.0	0.615	0.661
	۲	CURVI	578.2	560.2	691.7	CUR		361.2	391.7	406.	450.7	455.7	467.2	488.7	508.2	208.7	529.7	561.7	282.2	629.7		691.7	9	4	903	900	CUR		521.0		en3		518.0	917	3	293. 2	348.2	373.2	423.2	473.2	523.2
	×	CURVE 6[cont,)	1.138	7.5.7	0 427		0.494	0.540	0.582	0.420	8 42	Š	0, 494	0.527	0,548	6.594	0.636	0.678		CURVE 3		0.502	0.033	01 3 A 3 A 3 A	2	0.540	0.715		CURVE 11		0.573	0.50	0.507	0.613	0.632	0.636	0.649	0.649	0.657	0.686	0.657
	۲	CURVE	523.2	CURVE 7	0 400	348.2	373.2	423.2	473.2	523.2	CIRVE		293.2	348.2	373.	423, 2	473.2	523. 2	į.	3		2.683.	413.5			293. 2	473, 2		CUE		356.7	973.7	402.2	1.62	7 67	466.2	487.2	512.2	514.7	534.2	551.2
	ж.	VE 1	0.464		CURVE 2	0.364	0.502		CURVE 3	9	0.310		CURYE 4	;	0.0853	0.20	1.883		7	9	0.00	200.0	96.0	96.6	2 200 0	0.937	0.941	0.921	1.000	1.004	1.075	1.079	1.172	1.101	8 12 2	1	161.0	0.870	0.908	0.963	1.059
	H	CURVE	373.2	1.20	CUR	273.2	673.2		M COR	•	873.2		CUR		9	78	280		e TAUNA	•	324. 2	2.428	353.2	341.2	7.7.7	359.2	360.2	361.2	404.2	404.2	454.2	454.2	512.2	217.7	CIRVER		293.2	348.2	373.2	423.2	473.2

. Not shown on plot

SPECIFICATION TABLE NO. 270 THERMAL CONDUCTIVITY OF (COPPER + ZINC + Σx_i) ALLOYS

(Cu + Zn < 99. 50% or at least one X_1 > 0. 20%)

[For Data Reported in Figure and Table No. 270]

Composition (continued) Specifications and Remarks		0.25 P; annealed at 700 C.	Annealed at 700 C.	4.0 Si; chill cast.	Sand-cast,	Annealed at 650 C.	Annealed at 750 C.	Annealed at 750 C.	0. 011 C; annealed at 750 C.		Annealed at 700 C.	0. 04 Mg; annealed at 700 C.	Annealed at 700 C.		Sand-cast.	Chill cast	Annealed at 650 C.		Annealed at 700 C.	Annealed at 700 C.	Anneaied at 700 C.	Annealed at 700 C.	Annealed at 700 C.	Cast	Cast	Cast	Rolled.				
Sn	0.5	3.76			2.23										1.48	L 03	0.98		0.2	1. 02	0.7		0.1	0.35	0.26	0. 78	0.85			0.3	
£		3.8	1.88		10.44						4.02			3, 29		1, 12	0.13				0.01	1. 32	2.01	0.34		0.1	0.28			2.2	
r cent)					13.24		16.29		10.36	17, 95	0.9	10.13	5, 41					1, 02										13.0	16.0		Trace
Composition (weight per cent)	6.3			0.5		3, 34	0. 18		0.18			0.15			0.21		0. 12								2, 33	0.76	99.0				7 race
stition (v Fe		0.02	0.05	o. S	0.1	1.78	0.14	0.01	9. 08	0.08	0.01	0.04	0.05	0.01	0.73	0.02	1.06	0.49	0.02	0.02	6 . 02	0.02	0.03	0.31	1.84	1.24	1.09			0.1	
Comp						4.44		1.98							0.04	0.18									6.95	0.48	0.48				1.96
2n	38.5	4.09	12, 97	14.21	17.65	17.76	19. 79	22, 22	23.86	25, 93	29. 18	29.88	30.5	34, 79	36, 46	37.09	38. 36	42, 34	18.63	27.77	39. 36	9.51	37.88	28. 71	37.48	37.68	37.78	41.0	20.6	39. 2	Ba
5	60.7	88.08	85. 1	81,55	≈ 56. 57	72.49	≈63.76	75.79	65, 51	55.01	62. 88	59. 76	64. 04	61.65	60.54	60.41	59, 35	56, 13	81.18	1 T 09	59.85	89. 15	59.98	70.29	57, 14	58,91	58,85	46.0	64.0	58. 1	: 77.27
Name and Specimen Designation	Bronze; bar 4	Bar 133	Bar 97	Bar 131	Bar 5	Bar 60	Bar 28	Bar 122	Bar 26	Bar 24	Bar 129	Bar 126	Bar 127	Bar 96	Bar 10	Bar 132	Bar 59	Bar 61	Bar 55	Bar 56	Bar 57	Bar 52	Bar S4	7:3 Brass	Bras, high tensile	Cast Brass	Rolled Brass	Silber Bronze	German silver	Brass MS38	Brass MS76 '22/2 77. 27
Reported Error, %																			<2.0	6.0	<2.0	6 2.0	<2.0	6 2.0	<2.0 B	45.0	<2.0			1.0	7.0
Temp. Range, K	293-523	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	293,473	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	293, 473	405-515	321-508	321-517	507 -490	320-500	363-702	355-598	373, 673	373, 673	4.8- 23	3, 1-21, 8	293-353	293-353
Year	1928	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1935	1930	1930	1930	1930	1930	1925	1925	1939	1939	1939	1939	1958	1958
Method Used	4	4	-	-1	1	~1	ᆸ	-1	1		-1		-1	-1	-1	٦.	٦		- i	٦	J	J	د	-1	7	J	-1	-1	_	4	4
Ref.	જ	135	135	135	135	135	13€	135	135	135	135	135	135	135	135	135	135	135	133	133	133	133	133	30	30	215	215	81	81	17	11
Curve No.	-	81	٣	4	'n	•	٠	æ	o s	10	11	ង	13	14	15	16	11	18	61	20	21	22	23	24	52	26	27	28	59	30	31

SPECI-MCATION TABLE NO. 270 (continued)

Composition (continued), Specifications and Remarks			Density at 22 C 8.66 g cm ⁻³ .	Density at 22 C 8.66 g cm ⁻³ .		As received.	0.75 impurities; as received.	 75 impurities; heated to a dull red; heated for ten min and cooled slowly. 	Trace Si; annealed at 650 C for 1.5 hrs.	Machined nearly to size, then amealed in air, followed by final light cut.	0.007 C, 0.003 S; 0.009 Si cast and machined.	0.007 C, 9.003 S; 0.009 Si; cast and machined.	0.014 C, 0.004 S; 0.003 Si;cast and machined.	0.008 C, 0.003 S; 0.004 Si;cast and machined.	0.01 Bi. 0.01 Cd. 0.01 Ag. 0.001 Sb. 0.001 In. <0.001 In. <0.001 As. <0.001 Co. and <0.001 Mg. 0.001 Si; hard tempered and ground.	Annealed for 17 hrs at 500 C at ordinary atmosphere.	Specimen 20 mm in dia and 18 mm long; steel used as comparative material.	Specimen 20 mm in dia and 18 mm long; pure Ni used as comparative material.
æ		6.33									Trace	Trace	Trace	Trace	1.0		8	81
£	3.0					2 0	2.0/ 3.5	2.0/ 3.5	0.25	2.0	9.002	0.005	0.003	0.004	3.27	2.03	4	4
ent) Ni		0.59	15.0	15.0	12.55	9.0			Trace	8.6	10.05	12.33	15.35	x. 4.	0.01	0.10		
zht perc Mn										0.02	0.13	0.13	0.10	0.12				
on(weig Fe									0.24	0.15	0.04	0.04	0.04	0.07	0.01	0.01		
Composition(weight percent) Al Fe Mn Ni															< 0.001			
Co Zn	35.5	7.15	22.0	22.0	40.45	41.0	Bal	Bal	28.43	42.1	27.14	24.31	22.08	19.36	35.7	8, 85	22	22
Z.	61.5	85.7	62.0	62.0	47.0	47.0	55.0/ 60.0	55.0/ 60.0	71.00	45.9	62.62	63.17	62.43	62.05	≈:60.01	89.02	72	72
Name and Specimen Designation	Втавв	German red brass	Platinoid	Platinoid	Argentan	German Silver	B.S. 249 Brass	B.S. 249 Brass		Mickel Silver	Nickel Silver 1	Nickel Silver 2	Nickel Silver 3	Nickel Silver 4	Free-cutting leaded bruss	210	Yellow brass	Yellow brass
Reported Error, %	4.0																¥3.0	± 3.0
Temp. Range, K	366-589	291,373	432-688	110-298	18-290	2.1-94	2.0-90	2.0-90	373-973	7	293,473	293,473	293,473	293,473	4-124	1.44.0	313-328	305-325
Year	1951	1900	1931	1908	1939	1951	1955	1955	1936	1948	1936	1936	1936	1936	1957	1960	1960	1960
Method Used	ပ	ω	IJ	1	_	H	1	ı	<u>α</u>	1	7	1.	- 1	T	Ħ	-1	ပ	υ
Ref. No.	37	12	9	88	193	6	229	229	175	. 71	531	531	531	531	432	518	618	819
Curve No.	32	, E	, 2 6	32	36	3,	8	99	ę	41	42	43	44	45	4 6	7.4	8	4 9

SPECIFICATION TABLE NO. 270 (continued)

Composition (continued), Specifications and Remarks	Specimen 20 mm in dia and 18 mm long; yellow brase used as comparative material.	Specimen 20 mm in dia and 18 nm long; Al used as comparative material.	Specimen 1.400 cm in dia; manu- factured by Erba Co.	Thermal comparator loaded with 100 gram weight applied on the plane lapped surface of the specimen.	Free cutting yellow brass; 0.1877 in. dia and 2.224 in. long; hrmed down from a 0.375 in. dia rod obtained from nommercial atock of J. M. Tull Metal and Supply Co.; data corrected for rise in temperature during measurement.	Specimen 0,25 in. in dia and 7,875 in. long; prepared from half-hard tempered drawn brass.
S.	61	οι	3/~4			
£	4	₽	2/~1		0.	3.0
Composition (weight percent) Al Fe Mn Ni						
Co Zu	22	22	~12/		35.0	35.0
Ç	72	72	~80,′		62.0	0.:39
Name and Specimen Designation	Yellow brass	Yellow brass	Red brass	Brass	Вгавя	Brass
Reported Error. %	÷ 3.0	+3.0			10	\$ 0.5
Temp. Range, K	361-320	306-318	296.3	298.2	80~275	85-118
Year	1960	1960	1918	1957	1960	1959
Method Used	v	Ü		o	ħ	٦
Ref. No.	819	618	511	765	821	970
Curve No.	20	51	25	SS	%	25

STATE OF THE PARTY

DATA TABLE NO. 2:0 THERMAL CONDUCTIVITY OF [COPPER + ZINC + Σx_j] ALLAYS (Cu + Zn < 99.50% or at least one X_j > 0.20%)

Planta India Market in the State of the Stat

	×	4.0	1.414 1.155	1, 143	1.030	. 231	1.671	1,033	1,028	. 109	1.049	1. 033	1. 013	;	∓ ∤	10000	0. 00:351	0.00460	0.00540	0,00760	0.00345		# 17 14	ć.	0.372		43,	1 201	0.377	i	44*	036	0. 339		اج اح	(0.226	1	
	H	CURVE 40	20	20	538.20 1	202							973.20		CUKVE	7 07 1				2,45			CURVE		473.2		CURVE 43		נסו		CURVE		473, 2 (CURVE		293, 2 (0.473, 2		
	*	33	0. 00267* 0. 00314	0.00377	0.00480	0. 30677	0.00543	0.0107	0, 0254 0, 0455	0.0751	6. 107	0, 152		38		0.013	0. 029 0. 029	0.037	0.046	0.064	7. 082 7. 130	0.175	3.215	0.255	400	0.460		0,530		39	510 0	0.023	0.034	0.044	0.054	0.075	0. 096 0. 146	0.193	0, 540
	۲	CURVE 37			3.23							57.30		CURVE 38		2.00					15.00			30.00				80.00		CURVE 39		36						8	90.00
	*	(cont.)	0. 977 1. 036		32*	1, 157	1. 715	1. 272	1, 332		33	200	0.710	;	£.	7 7 6	0, 383	0.435	0. 456	0.452	0.440	0.490		135	921 0	0.180	6. 184	0. 188	0.205	0.213	0.226	0.227	0.250		-89 38	0070	0.0490	0.895	
$m^{-1}K^{-1}$	۲	CURVE 31 (cont.	323, 20 353, 20		CURVE		422, 00		533, 20		CURVE	00. 100	73, 20		CURVE		432, 20					688, 20		CURVE	0, 011	2 2	20	148.20		223, 20			202		CURVE 36	4		290, 00	
. k. Watt cm ⁻¹ K ⁻¹	*	(cont.)	0.837 0.858	0.870	0, 895	5.26		0. 774	0.971	E 27		0.787	7: 000	82.3		0.0102	0.0231	0.0253	0.0307	0.0471	0.0480		62.3	00000	0.00889	0.0449	0.0653	0.100	0, 155	0.176	400	5	1.084	1. 132	1. 180		31•	0.922	
K; Thermal Conductivity,	H	CURVE 25 (cont.)	584, 70 632, 20	665, 20	697.70	CHRVE		373.00	673.00	CURVE		373.00	913.00	CURVE 28	;	4.0 .00 .00	9. 6. 6. 6. 6. 4.	9.84	11. 50	14. 20	23. 10		CURVE		. IS	36.9	10.88	13.90	20.80	21.80		2000	293. 20	323, 20	353.20		CURVE 31	293. 20	
K; Thermal	*	CURVE 23+	1, 121	1.142	1.151	1.180	1. 230	1.243	1.237	1.372	1.385		1 7 7	1.013	1. 046	1. 054	1, 054	1.096	1, 096	1, 105	1.113	1.117	1, 138	1. 146	1.159	1, 172		E 25	0.716	0.732	0.732	0.73	0.757	0.753	0.778	0. 770	0.795	0.812	
Ĥ	(-	CURV	320, 20 321, 40	338.00	338, 50	356.50	392. 40	393, 70	442.80	199.00	500.50		2	363.20	399. 20	408.20	431, 70	463.70	474. 20	501. 20	510.70	540.70	541.70	587. 70	634.20	702, 20		CURVE 25	354.70	390, 70	397. 20	463.70	443, 20	469, 70	496, 20	503, 70	518.70	552, 70	
(Temperature,	,	19 (cont.)	1.686		E 20	138	1. 167	1, 192	1,255	1. 326	1.335	1.406	7	E 21		1. 197	1.218	1. 201	1.238	1. 222	1.259	1. 259	1.318	1.314	1.318	1.377	1.361	6	77 2	1.812	1.866	1.862	1. 895 1. 912	1.925	1.975	2.000	2.067	2. 172	2.146
	-	CURVE 18	457, 40		CUPVI	22.1 0.0	338.60	357.29	398, 80	450.10	450.10	507.40	301.10	CURVE		320.50	320.50	338.00	355.90	356.00	395, 40	401.40	447.60	448, 50	156.60	506 10	517.20		4	316.80	326. 50	329. 70	343, 30	346.00	389.80	389, 90	438.00	436. 10	490, 50
	¥	E 10	0.297		E 11	105	1.318		E 12	0.423	0.565	9	3	0.586	0.774	;	E 14	1.080	1. 326	•	E 15	0.962	1. 159	;	E 16t	1 004	1. 197			1.008	1. 234		- P	1, 138	1. 297		61 3	1.603	
	L	CURVE 10	293.00 473.00		CURVE 11	00 200	473.00		CURVE 12	293.00	473.00		CONVETS	293. 00	473.00		CUHVE 14	293.00	473. 60	1	CURVE 15	293.00	473.00		CURVE 164	00 8.66	473.00	45.	200	293.00	473.00		CORVETS	293.00	473.90		CURVE 19	405.00	
	*	VE 1	0.787	0.879	0.937	1.036		VE 2	0.557	0.762		E 3	1.603	1.858		VE 4	0.285	0,402		VES	500.0	0.427		VE 6	c c	0.578		VE 7	0.339	0.448		اد اد	1.004	1.247		VE 9	0.460	0.611	
	٢	CURVE	293.00 348.00	373, 00	423,00	523.00		CURVE	203 00	473.00		CURVE	293 00	473, 00		CURVE	293 00	473, 00		CURVE	00 600	473.00		CURVE	000	473 00	;	CURVE	293.00	473, 00	Ċ	COMVE	293.00	473,00		CURVE	00 600	473.00	

Not shown on plot

THE PERSON NAMED IN

Not shown on plot

THE REPORT OF

SPECIFICATION TABLE NO. 271 THERMAL CONDUCTIVITY OF [COPPER + ZIRCONIUM + ΣX_j] ALLOYS

 $(Cu+2r\in 99,\, 50\% \ or \ at least one \, N_j > 0,\, 20\%)$

(For Data Reported in Figure and Table No. 271]

İ	8	83 N 6,	5 x 31. 8,	.79, ectively.
	Composition (continued), Specifications and Remarks	Electrical conductivity 28, 34, 26, 94, 23, 25, 20, 75, 19, 10, 16, 5, 15, 85, 14, 45, 12, 93, 12, 55 and 10, 83 x 10 ⁴ ohm ⁴ cm ⁻¹ at 54, 6, 77, 1, 142, 8, 234, 1, 273, 6, 366, 6, 427, 1, 507, 1, 587, 6, 618, 6 and 708, 6 C, respectively.	Electrical conductivity 33, 55, 28, 12, 26, 35, 23, 18, 20, 35, 18, 9, 17, 1, 15, 33, 14, 10, 12, 68 and 10, 95 x 10f ohm ⁻¹ cm ⁻¹ at 47, 25, 115, 9, 145, 8, 214, 8, 281, 8, 346, 4, 436, 6, 508, 6, 567, 618, 3 and 701, 6 C, respectively.	Electrical resistivity 4.0, 4.77, 5.32, 5.5, 5.56, 5.79, 6.26, 6.9 and 7.95 polim cm at 67, 176.4, 277.2, 283.8, 439.5, 506, 565, 637.1 and 740.6 C, respectively.
	Çr			0. 2
	percent) Al	0.2		
	Composition (weight percent) Cu Zr Co Al Cr	99,26 0.29 0.25 0.2	0.3	
	nposition Zr	0.29	.:	27. 0
	S no	99, 26	99.4	72.8 27.0
	Name and Specimen Designation			
	Curve Ref. Method Year Temp, Reported N. No. Used Year Range, K. Error, S. Speci			
	Temp. Range, K	1957 328-982	321-975	1957 .346-1014
	Year 1	1957	1957	1987
	Method			
	Ref.	377	377	378
	Curve No.	-	61	m

deserted of the second

THE PROPERTY OF THE PARTY.

THERMAL CONDUCTIVITY OF [COPPER + ZIRCONIUM + ΣX_j] A LLOYS DATA TABLE NO. 271

Walder Land Breeze 1

(Cu + Zr $<99,\,50\%$ or at least one $X_1>0,\,20\%)$

[Temperature, T. K. Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

				2, 73	
				860.8	

CURVE 2

					1 2 2
20. 89.	19.	55.	6 6	78	891. 5 974. 8

CURVE 3

		3.41		
		779.2		

THERMAL CONDUCTIVITY OF LANTHANUM+ NEODYMIUM+ EX; ALLOYS

(10 + Nd < 9950%, or at least one X, > 020%.

THERMAL CONDUCTIVITY, Woth cm"

FIG 272

TEMPERATURE, K

SPECIFICATION TABLE NO. 272 THERMAL CONDUCTIVITY OF (LANTHARUM + NEODYMEM + ΣX_k)

(1.5 $^{+}$ Nd < 99, 50% or at least one $X_{i} \geq 0, 20\%$

[For Data Reported in Figure and Table No. 272]

Composition (continued), Specifications and Remarks	polycrystalline with a hexagonal structure; obtained from lot 499; electrical resistivity reported as 32, 2, 60, 5, 59, 2, 68, 0, 74, 0, 79, 7, 84, 6, and 88, 8 µ ohm cm at 39, 152, 203, 253, 301, 348, 399, and 448 K, respectively; measured in a vacuum of 10 ⁻⁴
Ta	0.13
Fe	0.04
Composition(weight percent) Fe Ta	0.5 0.25 0.1 0.005 0.04 0.15
weight Ce	0.1
mpesition	ð. 25
Nd Co	
ដ	
Name and Specimen Designation	
Reported Error, %	12 2 2 7
Year Temp.	81-401
Year	1966
Method	-1
Curve Ref. No. No.	932,933
Curve No.	-

DATA TABLE NO. 272 THERMAL CONDUCTIVITY OF ILANTHANUM + NEODYMIUM + EX,) ALLOYS

(La + Nd < 99, 50% or at least one X, > 0, 20%)

(Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1)

CURVE 1

Not ehows on plot

SPECIFICATION TABLE NO. 273 THERMAL CONDUCTIVITY OF [LEAD + ANTIMONY + $\Sigma_{i,j}$] ALLOYS Pb + Sb + $\Sigma_{i,j}$ (Pb + Sb $<\!99.\,50\%$ or at least one $X_{j}>\!0.\,20\%)$

The second of th

Composition (continued), Specifications and Kemarks		63. 94 Pb. 28. 84 Sb. and 7. 07 Cu.	
Composition (weight percent)			
	Specimen Designation	,	SA " 'caring Ay. No. 12
Reported	Range, K Errer, %		
Temp.	Range, K		8 4 8
	Year		1923
Moth	Used		1
100	No. No.		224
}			-

DATA TABLE NO. 273 THERMAL CONDUCTIVITY OF [LEAD + ANTIMONY + Σx_1] ALLOYS Pb + Sb + Σx_1

(Pb + Sb < 99, 50% or at least one $X_1 > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm $^{-1}$ K $^{-1}$)

T k

348.0 0.318

SPECIFICATION TABLE NO. 274 THERMAL CONDUCTIVITY OF [LITHTUM + BORON + Σx_i] ALLOYS

(1.1 + B < 99.50% or at least one $X_i > 0.20\%$)

[For Data Reported in Figure and Table No. 274]

Cerv.	₹.	Method Year Used	Year	Temp. Range, K	Reported Error. %	Name and Specimen Designation	Composition (Composition (weight percent)	Composition (continued), Specifications and Remarks
-	353	נו	1950	553-606	± 10		99. 22	0.2	0.1 Ca, <0.1 Hg, <0.1 P, 0.1 Al, 0.02 Cr, 0.04 Cu <0.01 K, <0.1 Na, <0.01 Ni; measured in liquid state, apparatus in open air at room temperature.
8	243	ų	1960	491-505	± 10		99. 22	0.2	0.1 Ca, <0.1 Hg, <0.1 P, 0.1 Al, 0.2 Cr, 0.04 Cu, <0.01 K, <0.1 Na, <0.01 Ni; measured in liquid state, apparatus in heated oven.

وبيد ع يعجم بالتفيية للبايط التعويني ركور أند لايونين ضائصا بالللانيو الميدون مسليف برواندك م

DATA TABLE NO. 274 THERMAL CONDUCTIVITY OF [LITHIUM + BORON + EX,] ALLOYS

(1.1 + B < 95.50% or at least one $X_1 > 0.20\%$)

[Temperature, T. K. Thermal Conductivity. k, Watt cm-1 K-1]

Ŧ

CURVE 1

553.2 0.494 558.2 0.477 568.2 0.414 568.2 0.414 568.2 0.414 572.2 0.413 572.2 0.473 573.2 0.456 505.2 0.456 CURVE 2
491.2 6. 335
493.2 0. 318*
501.2 0. 356
501.2 0. 331
501.2 0. 318*
501.2 0. 318*
501.2 0. 318*

SPECIFICATION TABLE NO. 275 THERMAL CONDUCTIVITY OF [11THIUM + SODIUM + Σx_l] ALLOYS

(Li + Na $\leq\!99,50\%$ or at least one $\rm X_1\!>\!0.20\%)$

[For Data Reported in Figure and Table No. 275]

Composition (continued), Specifications and Remarks	0.19 Fe, 0.13 Mg, 0.08 C, 0.06 Cu, 0.052 Ni, 0.05 Cr, 0.032 Ph, 0.023 Sn, 0.016 Ti, 0.01 Ce, <0.01 Sb, <0.01 Zn, 0.006 Ba, 0.058 Me, 0.0046 Ca, 0.0044 N, 0.0042 V, 0.0037 Al, 0.003 K, 0.0029 Mn, 0.002 Bi, <0.001 Re, 0.001 Cd, 0.001 In and <0.003 Ag; (iltered through a capillary with an I. D. of 15 mm, poured in a vacuum of ~1 x 10 ² mm Hg into a thinwalled steel (1 Kb 18N 9T) tube 8.6 mm in dia, 230 mm long and 0.2 mm wall thickness; measured in vacuum.
Composition (weight percent) Li	e. 3
Composition (v	36.86.
Name and Specimen Designation	
Temp. Reported Range, K Error, 70	
Temp. Range, K	623-1273
Year	95 2 2 2 2
Curve Ref. Method	ā.
Ref.	769, 866
Curve	-

All the second of the second o

THERMAL CONDUCTIVITY OF (LITHIUM + SODIUM + ΣX_i) ALLOYS DATA TABLE NO. 275

(Li + Na < 99, 50% or at least one $X_i > 0, 20\%$

[Temperature, T. K. Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

0,469 0,490 0,527 0,561 0,594 0,623 0,644 0,669 623.2 673.2 773.2 873.2 973.2 1073.2 1173.2

THE PERSON NAMED IN

SPECIFICATION TABLE NO. 276 THERMAL CONDUCTIVITY OF [MAGNESIUM + ALUMINUM + 5X₁] ALLOYS

(Mg + Al \leq 99, 50% or at least one $N_1 > 0.20\%$

 $\widehat{\mathbb{C}}$ For Data Reported in Figure and Table No. [276].

Composition (continued), Zn Specifications and Remarks	0 As cast; electrical conductivity 9.98, 7.24, 6.31 and 5.75 x 104 ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.	2.0 As east, electrical conductivity 9.15, 6.42, 5.53 and 5.19 x 104 ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.	2.0 As cast; electrical conductivity 8.83, 6.28, 5.16 and 4.70 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.	2.0 As cast; electrical conductivity 8.71, 6.20, 5.10 and 4.62 x 104 ohm ⁻¹ cm ⁻¹ at 87, 273, 373 and 476 K, respectively.	3 0.7/ 0.3 total other impurities; 1.3 specimen 2 cm in dia and 15 cm long; bot-rolled parallel to the heat flow direction; annealed for 1 hr at 600 C; Armeo iron used as comparative material.	3 0.7/ 0.3 total other impurities; 3.3 specimen 2 cm in dia and 15 cm long; hot-rolled perpendicular to the heat flow direction; amealed for 1 hr at 600 C. Armeo iron used as comparative material.	Forged.	1.0 1.0 Cd, 1.0 Sn.	3.0	0.5 2.0 Cd, 1.0 Sn.	3.0 Cd, 1.0 Sn.	45 0 c P3 0 c
nr) Ni Si	2.0	જાં	ei	2,	0.005 0.3	0.005 0.3						
Composition(weight percent) ('u Fe Mn Ni					0.005 0.2	0.005 0.2			0.4			
Compositi					9.05	0.05	0.2					
₹	 0	O. 7	e. a	12.6	\$ 18.50 \$ 18.50 \$ 18.50	3.5	4.0	4.0	6.0	4.0	0.4	•
Mg	92.0	0.06	88.0	%E.0	Paril Paril	Bal	94.0	93.0	90.6	92.5	92.0	6
Name and Specimen Designation					AN-M-29	AN-M-29		Flokton 2	Dow metal 3	Dow metal 4	Dow metal 5	
Reported Error, 7	ж •	Ť	T	† n			1.0	£ 1.3	+1.3	£1.3	+ 1.3	
Temp. Range, K	87 A 78	87.476	87 L 76	£ 4.	130-605	134 -607	373	2.95.2	301.6	295.3	305.3	6
Year	1931, 1929	1931, 1929	1931,	1931, 1929	1951	1951	1927	1932	1932	1932	1932	
Method Used	ı,	٦	.2	H	C	U	ш	ы	ы	ப	ы	,
Ref. No.	93,850	93,850	93,850	93, 350	ŗ.	16	53	673	673	673	673	į
Curve No.	-	01	e	4	က	œ	t-	æ	6	10	=	•

DATA TABLE NO. 276 THERMAL CONDUCTIVITY OF [MAGNESIUM + ALUMINUM + $\Sigma X_{i,j}$ ALLOYS

(Mg + Al \leq 99.50% or at least one $X_1 > 0.20\%$)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

H	CURVE 11*	0.695	VE 12*		0.556																																			
		305.3	CURVE		303. 3																																			
×	5 (cont.)	0.975		1.013	1.063	1.071	CURVE 6		0. SH8	674	٣.							0.950	1.033	1.033	1.063	1.100		VE 7	210 0		VE 8*		0.556		VE 9		0, 611*		E 10		0. 632			
Ħ	CURVES	431.10		506.80		604.80		3			223, 60								435, 70		470.70	606.80		CURVE	27.7	ς.	CITRVE		295. 2		CURVE	1	301.6		CURVE	;	295. 3			
×	ш	0.481	0.787			E 2	0.377		0,720	0.778		E 3		0.289		0.682		E 4	ı	0.276	0.536	0.661	0.728		ا ا		0.510				989.0	0.711		0.858	0.879	0.900	0.941	0.925	976.0	
۲	CURVE	87.00	373,00	373,00 476,00		CURVE	87.00	273.00	373,00	476.00		CURVE		87.00	273.00	373.00	476.00	CURVE		87.00	273.00	373,00	476.00		CURVE	00.00	171.50	207 70	222, 30	239, 90	240, 10	257.09	273, 20	354.80	374, 40	377.90			421.60	

Not shown on plot

Miller of the second of the se

THE RESERVE OF THE PERSON OF T

SPECIFICATION TABLE NO. 277 — THERMAL CONDUCTIVITY OF (MAGNESIUM + CERIUM + Σ_{X_1}) ALLOYS

 $(M_{K}+C_{C})/99,\,50^{0}$ or at least one $N_{j}>0/20^{0}$.

For Data Reported in Figure and Table No. 277,

Composition (continued), Specifications and Remarks	Mg containing 0.07 impartities; specimen ~30 cm long and 1.4 cm in dia; density 1.7% g cm 3; forget at elevated temperature; electrical resistivity 6, 25, 6, 8, 8, 5 and 10, 25 gohin cm at 20, 50, 150 and 250 C, respectively.	Similar to fine above specimen except density 1, 87 g cm ⁻³ and electrical resistivity 6, 1, 6, 65, 8, 5 and 10, 4 μ bm cm at 20, 50, 150 and 250 C. respectively.
		• ਜ
Composition (weight percent) Mg Co	,	
sit.on (we	94, 96 3, 17 1, 4	9. 0
Compo Ng	94, 96	87,44
Name and Specimen Designation	W. 1662	N. P. L. P2
Reported Error, ".	FT	:
Curve Rei, Method Year Temp, Reported	857-253	323-523
Year	6561 7	1939
Method	-1	
Ref.	397	397
Curve No.	-	÷1

CONTRACTOR OF THE

State State of the Control of the State of

data table no. 277 Thermal conductivity of [magnesium + cerium + Σx_1] alloys

(Mg + Ce < 99, 50% or at least one $X_i > 0, \, 20\%$

[Temperature, T. K; Thermal Conductivity, k, Watt cm-4 K-1]

CURVE 1

323. 2 423. 2 523. 2

323, 2 423, 2 523, 2

CURVE 2

SPECIFICATION TABLE NO. 278 THERMAL CONDUCTIVITY OF [MAGNESIUM + COBALT + ΣX_i] ALLOYS $Mg + Co + \Sigma X_i$

(Mg + Co < 99, 50% or at least one $X_1 > 0, 20\%$)

Composition (weight percent), Specifications and Remarks	93.73 Mg. 2.4 Co. 2.2 Cc, 1.6 M, and 0.07 impurities; forged at elevated temp.
Reported Name and Error, % Specimen Designation	W-1702
Reported Error, %	< 3.0
Temp.	,23-523
Year	1939
Method Used	J.
Ref.	397
CULTO	7

278 THERMAL CONDUCTIVITY OF [MAGNESIUM + COBALT + Σx_{i}] ALLOYS $M_{m{g}}$ + $C_{m{o}}$ + Σx_{i} DATA TABLE NO.

(Mg + Co < 99, 50% or at least one $X_{j} > 0, 20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

323.2 1.32 423.2 1.32 523.2 1.32 No graphical presentation

THE PROPERTY OF THE PARTY.

الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية والماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية الماسية

THE PROPERTY OF THE

SPECIFICATION TABLE NO. 279 THERMAL CONDUCTIVITY OF [MAGNESIUM + COPPER + £X_i] ALLOYS

(Mg + Cu < 99.50% or at least one $X_i \geq 0.20\%$

For Data Reported in Figure and Table No. 279]

Composition (continued), Specifications and Remarks	As cast. Forged.
ισ.	က
ž	
percent)	
Composition(weight percent)	
position(Al	84
Com	20
MR	E 3.
Name and Specimen Designation	
Reported Error, %	3.04.0
Temp. Range, K	87 4 76 373
Year	1931 19 <i>2</i> 7
Method Used	ച ല
Curve Ref. No. No.	93
Curve No.	1 2

DATA TABLE NO. 279 THERMAL CONDUCTIVITY OF [MAGNESIUM + COPPER + Σ_{i}] ALLOYS

TO THE RESIDENCE OF THE PARTY O

(Mg + Cu < 99, 50% or at least one $X_j \geq 0, 20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 2 373

0.891 1.079 1.146 1.192

87 273 373 476

CURVE 1

1.130

SPECIFICATION TABLE NO. 280 THERMAL CONDUCTIVITY OF (MAGNESIUM $^{+}$ NICKEL $^{+}$ ΣX_{j}) ALLOYS $Mg + Ni + \Sigma X_{j}$

 $(M_{\rm g}+N_{\rm i}<99,\,50\%~{\rm or}~{\rm at~least~one}~N_{\rm i}>0,\,26\%)$

Composition (continued), Specifications and Remarks	0.06 impurities; forged at elevated temp; density 1.87 g cm ⁻³ .
Composition (weight percent) Mg Ni Ce	91, 93 5, 36 2, 65
Name and Specimen Designation	W-1648
Reported Error, "	-3.0
Temp. Range, K	323-523
Year	1939
Curve Ref. Method Year No. No. Used	1
Ref.	397
Curve No.	1

280 THERMAL CONDUCTIVITY OF (MAGNESIUM + NICKEL + ΣX_{\parallel}) ALLOYS $= Mg + Ni + \Sigma X_{\parallel}$ DATA TABLE NO.

(Mg + Ni < 99, 50% or at least one $X_1 > 0, 20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

H

CURVE 1

323, 2 1, 30 423, 2 1, 30 523, 2 1, 30 No graphical presentation

A STATE OF THE PARTY OF THE PAR

Specifications table no. 281 Thermal conductivity of (manganese + 180n + z_{X_j}) alloy (Mn + Fe < 99, 50% or at least one $X_1 > 0.20\%$)

281)
Š.
Table
and a
Figure
丘
Rejorted
Date Date
For

Composition (continued), Specifications and Remarks				From blast furnace.	From blast furnace.	Heat flow perpendicular to the thickness.			Highly crystalline specimen.
int) Si	3.06	1.75	2.98	 6	0.52	2.02	1.69	1.69	17.34
ht perce	1.12 3.06	2.36	1.38	4.7		6.92	6.62	6.65	0.55 17.34
Composition (weight percent)	25.28	17.89	17.46	15.5	26.48	13.73	16.67	15.36	18.09
Compo	70.54	19.0	78.18	78.0	73.0	77.33	73.02	77.3	64.02
Name and Specimen Designation	Ferromanganese, 12	Ferromanganese,	Ferromanganese, 14	Ferromanganese, 15	Ferromanganese, 16	Ferromanganese,	Ferromanganese,	Ferromanganeae.	Sillcomanganese.
Reported Error, %									
Year Temp.	317.7	316.4	314.6	382.9	275.1	303.3	318.8	308.0	315.1
Year	1937	1937	1937	1937	1937	1937	1937	1937	1937
Ref. Method No. Used	-1	1	ı	ı,	J	٦	1	٦	1
	204	Ŕ	8	8	8	8	82	204	204
Curve No.	-	84	n	•	vo	ဖ	1	oc)	6

DATA TABLE NO. 281 THERMAL CONDUCTIVITY OF IMANGANESE + IRON + Σ X, I ALLOY

(Mn + Fe < 99, 50% or at least one $X_1^{}\!>\!0,\,20\%$)

[Temperature, T, K : Thermal Conductivity, k, Watt $\, \mathrm{cm}^{-1} \mathrm{K}^{-1}$

CURVE 1 317.7 0.493

CURVE 2 .

316.4 0.494 CURVE 3 314.6 0.486

CURVE 4

382.9 0.500

CURVE 5 375.1 0.504

CURVE 6

303.3 0.434 CURVE 7

318.8 0.464

CURVE 6

308.0 0.500 CURVE 9

315.1 0.434

Not shown on plot

SPECIFICATION TABLE NO. 282 THERMAL CONDUCTIVITY OF [MANGANESE + SILICON + $\Sigma_{i,j}$ ALLOYS Mn + Si + $\Sigma_{i,j}$

 $\left(Mn+S_{I}<99,\,50\%\text{ or at least one }X_{j}>0,\,20\%\right)$

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	63.7 Ma, 17.8 Si, and 1.05 C.
Тетр. Reported Name and Range. K Error. % Specimen Designation	Silicomangenese, 20
Reported Error, %	
Temp. Range. K	310.2
Year	1937
Method	1
Ref. No.	202
Curve No.	-

DATA TABLE NO. 282 THERMAL CONDUCTIVITY OF [MANGANESE + SILICON + Σ_{i}] ALLOYS Ma + Si + Σ_{i}

(Mn + Si < 99, 50% or at least one $X_1 > 0$, 20%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

310.2 0.468

. ,

* No graphical presentation

SPECIFICATION TABLE NO. 283 THERMAL CONDUCTIVITY OF (MOLYBDENUM + HON + Σx_1] ALLOYS $-M_0 + Fe + \Sigma x_1$

(Mo + Fe $\odot 99, 50\%$ or at least one $X_{j} \odot 0, 20\%)$

Composition (confinued), Specifications and Remarks	2,41 Si.	0. 26 St.	0 021 Ti, 0.013 Cu, and 0.0003 Cr; after test the contents of Si and C changed to 0.063 and 0.008, respectively, hollow cylindrical specimen of 2 in. O.D. and 0.375 in. I.D.; supplied by Climax Molybdenum Co.; arc-melted unalloyed; density 10.22 g cm ⁻³ .
ent)	2.0	60.0	0.003
Composition (weight percent) Mo Fe Si C	81 [4.59 2.41 2.0	0.26 0.09	0.25 0.073 0.007
sition (we Fe	14.59	67.77 31.88	0.25
Compo	×	67.77	
Name and Specimen Designation	Ferromolybdenum, 34	Ferromolybdenum, 35	
			ഗ
Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K. Firor, "a	332, 8	380.4	1080-2795
Year	1937	1937	1956
Method Used	Г	-	~
Ref.	204	204	<u>.</u>
Curve No.	1	61	m

DATA TABLE NO. 283 THERMAL CONDUCTIVITY OF [MOLYBDENUM + IRON + ΣX_i] ALLOYS No + Fe + ΣX_i

(Mo + Fe \leq 99, 50% or at least one $X_1 > 0, 20\%)$

(Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K-1)

CURVE 1°

332, 8 0, 585

CURVE 2

380.4 0.596 CURVE 3* 1080.3 1.007 1222.6 1.026 1358.6 0.929 1474.2 1.006 1612.1 0.954 2137.6 0.897 2488.2 0.936 2651.5 0.835 2795.3 0.865

No graphical presenation

SPECIFICATION TABLE NO 234 THERMAL CONDUCTIVITY OF (NICKEL + ALUMINUM + $\Sigma X_{j,1}$ ALLOYS

(Ni + Al + 99, 50% or at least one $X_j \geq 0, 20\%)$

(For Data Reported in Figure and Table Ne. 284)

Composition (continued), Specifications and Remarks	Specimen 2 cm in dia and 15 cm long; supplied by Hoskins manufacturing Co.; machined and hot-rolled to 3/4 in. in dia; lead used as comparative material.	0 25-1.0 Ti, 0.01 S, wrought, annealed, density 8.26 g cm ⁻³ ; electrical resistivity 290 ohms per cir mil ft.	0, 25 - 1.0 Ti. 0, 01 S, wrought, age- hardened; electrical resistivity 260 ohms per cir mil ft.
r. Cr		0.25	0.25
Composition (weight percent) A! Mn Si Fe C Cu		0.3	0.3
ht percen Fe		9. 6	9.6
ion(weigl Si	1. 0	1.0	1.0
Composit Ma	5.0	ç; ç	0.5
ĕ	9 %	4, 4,	4.4/
ž	95.0	93, 0 Min.	93. 0 Min.
Name and Specimen Designation	Ny Alumel 95.0 2.0 2.0 1.0	Duranuckel 93.0 4.4/ 0.5 1.0 (Min. 4.75	Duranickel 93.0 4.4/ 0.5 1.0 0 Min. 4.75
Reported Error, %	3-3		
Year Range, K Error,	1933 363-773	323. 2	323. 2
Year	1933	1936	1956
Method	၁		
Curve Ref.	123	218	218
Curve	2 ~	51	n

DATA TABLE NO. 284 THERMAL CONDUCTIVITY OF UNICKEL + ALIMINUM + ΣX_{1} , ALLOYS

 $(N_1+A) \in 99,\, S0\%$ or at least one $N_1 = 0,\, 20\%)$

(Temperature, T, K; Thermal Conductivity, k; Watt cm $^{-1}$ K $^{-1}$)

CURVE 1

0, 293 0, 297 0, 301 0, 307 0, 359 0, 359 0, 381 0, 412 363.4 389.2 405.1 441.3 473.2 573.2 673.2

0.185CURVE 2 323. 2

CURVE 3

١.

0.198

323.2

SPECIFICATION TABLE NO. 285 THERMAL CONDUCTIVITY OF [NICKEL + CHROMIUM + ΣX_1] ALLOYS

(Ni + Cr < 99, 50% or at least one $X_1 > 0, 20\%$)

[For Data Reported in Figure and Table No. 285]

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	ž	Cr Al	Composition(weight percent)	eight pe	rcent) F e	Ν	เร	Composition (continued), Specifications and Remarks
-	213	 	1950	3.9-88	2.0	Chroman	61.4	18.5			14.5	3.0	9.0	2.0 Mo.
· 01	ة ة	U	1981	128-1189		Inconel	78.92	14.62	0.09	9 0.12	r.) av	0.23	0.19	0.007 S; hot-rulled; annealed at 871-982 C for 3 hrs.
ø	16	v	1951	131 -1170		Inconel X	72.94	14,65 0,93	0.03	3 0.02	6.97	0. S 2	9.46	0.007 S; 1.01 Nb, and 2.44 Ti; hot-rolled; solution-treated at 1149 C for 3 hrs. aged at 843 C for 24 hrs and at 704 C for 20 hrs and air cooled.
•	214	1	1952	373-1173		Nimonic 80	72.8	21.4 0.38	ωç		3.08			2.34 Ti; heated to 1086 C for 8 hrg and aged at 700 C.
42	37	ပ	1921	377-845	4 .0	Income! X	73.4	14.6 0.7	0.05		6.9			2.3 Ti, 1.0 Nb.
9	37	ပ	1921	376-837	٥. ٠	Nimonic 80	74.2	21.2 0.63	3 0.04	_				2.4 Ti.
2	155	ħ	1921	2.6-77		Inconel; i								Commercial incorel; hard- drawn tubing.
ø	155	.1	1951	2.6-77		Inconel; 2								Commercial Inconel; annealed tabing.
6	155	1	1921	2.6-78		Incopel; 3								Commercial inconel; bot-rolled rod.
10	€	H	1958	876-1348	5.0	Hastelloy C	56.07	15.83	0.07	2	4.94			4.41 W, 14.57 Mo.
11	215	-1	1939	373,473	2.0	Inconel	80.08	12.97	0.67	7 0.18	6.31	0.24	0.15	Hot-rolled.
12	216		1959	323-1173		Inconel X	69.0 Min	14.0 / 0.4/ 17.0 1.0	/ 0.08 Max	8 0.5 Max	5.0/	1.0 Max	0.5 Max	2.25-2.75 Ti, 0.7-1.2 Nb, 0.61(Max) S, 1.0 (Max) Co.
6	162	ပ	1936	273-1073		Nichrome	77.28	20.98	6.12	~	0.59	0.65	0.38	Forged and drawn.
14	3	1	1936	303-1473		German chromin; 20	82.25	12.38	0.09	•	3.05	0.88	0.75	Rolled.
15	39	J	1936	303-1373		Cerman chromin; 21	75.15	19.93	0.04		<u>z</u> .	18.1	1.13	Rolled.
16	217	ပ	1959	405-1044	4 .0	Inconel	75.92	15.38			8.70			Obtained from commercial source in wrought form.
17	218		1956	323		Incomel	72.0 Min	14.0/ 17.0	0.15	5 0.5	6.0/ 30.0	1.0	0.5	0.015 S; armealed.
13	218		1956	323		X lenconi	70.0 Min	14.9/ 0.4/ 17.0 1.0	0.08	9 0.5	5.0/ 9.0	1.0	0.5	2.25-2.75 Ti, 0.01 S; age- bardened.

SPECIFICATION TABLE NO. 285 (continued)

Composition (continued), Specifications and Remarks	0.015 S, as cast.	Annealed at 950 C.	0.30 Co; annealed at 1050 C.	Section of the first or the first of the fir	Commercial alloy produced by INCO.	Trace P. density 8.35 g cm ⁻³ .	S S Mo 2 S Co. 1.0 St. nominal	composition; specimen (composed of 15 disks) 0.625 in. 1.D., 3.0 in. 0.D. and 9 in. long.	0,2-0,6 Ti.	1.8-2.7 Ti.	15-20 Co, 1.8-2.7 Ti.		15-20 Co, 2.75-2.95 Ti.	Provided by International Nickel Co.	Composition not reported.			2.5 Ti; nominal composition:	2.45 Ti, 16.5 Co.	2.91 Ti, 16.5 Co.	2.28 Tl.	2.28 TI; tempered at 850 C for 100 hrs.	2.26 Tl; tempered at 850 C for 2000 hrs.	0.49 Tl, 1.67 Nb; heat at 1100 C for 5 hrs and water-quenched.
Si	0.5	1.44	0.33			9.0			1.0 Max	1.0 Max	1.0	Max	1.0 Max			4	6	0.20	0.65	0.65	0.70	0.70	0.10	0.42
Mo	1.0	90.0	0.32			0,03	•	9:	1.0 Max	1.0 Max	1.0	Max	9.3 Max			,	0.21	0.60	0.03	90.0	94.0	97.0	0.46	0.50
cent) Fe	6.0/	0.036	6.33	,		0.17		0.01	5:2.4	2,5.0	0.5	•	1.0 Max	y				0.50	0.4]	0.38				
Cu Cu	0.5								0.5 Max	0.2 Max		Max	0.2 Max				ŝ		0.14	0.06				
Composition(weight percent)	0.15					0.31		0.16	0.08/	0.1	1 -	Nax XX	0.12 Max				0.126	0.04	90.0	0.10	0.05	0.05	0.05	0.02
mpositi A								0		0.51	0 3	1.8 1.8	1.6/					1.20	1.40	1.99	4.0	4.0	4.0	0.55
ပီ	14.0/	19.87	2	10.04		19.33		15.5	3.30	27	ć	077	61%	2	:		20.53	21.0	19.5	19.1	20.9	20.9	20.9	15.4
ž	72.0 Min	27.		78.13		70 53	3.05	62.34	3 4 7 E	£2		ZÇ≈	98	S	3		77.87	73.66	58.86	57.71	74.5	74.5	74.5	80.95
Name and Specimen Designation	Inconel	Wichmondo, W	A CHICAGO	Inconel	Inconel	2000	80 NI-20 CE	Hastelloy R-235	French nimonic 75	French nimonic	V 02/08	Nimonic 90	Nimonic 95	[anomal	THEORIES .	Inconel	Nimonde 75	Nimonic 80	Nimonic 90	Nimonic 95	Russian Kh80T	Russian Kh80T	Russian Kh80T	E1-607
Reported Error. "		•	7.0	2.0		;	10.0	5.0							6.2 >	<2.0					•	9.0	3.0	3.0
Temp. Range, K	323	;	323-1173	323-1173	373-1073	!	700,1367	536-1544	373,1173	373,1173		373, 1173	373,1173		26-232	373-973	323-1073	323-1173	323-1073	929-1079		373-973	373-973	973.2
Year	1956			1953			1958	1958	1955	1955		1955	1956	į	1951	1956	0961	1960	1960	98	3	1958	1958	1958
Method Used			ပ	ပ	ပ		ပ	œ							ų	7	O	U	ı C	, (ונ	न ल	M	M
Net.	218		131	181	5 6		195	68	187	187		181	187		219	883	492	492	499		76#	ž ž	\$	3
Curve	19		22	16	: 8		23	2	35	56		27	82		53	8	67		; ;	3 2	\$	က ရ	ક્ર	8 0

SPECIFICATION TABLE NO. 285 (continued)

Curve	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Ŋ	r C	ompositi Al	Composition(weight percent) Al C Cu Fe	Ma	Š	Composition (continued), Specifications and Remarks
88	\$3	ω	1958	973.2	8.0	E1-607	80.95	15.4	0.55	0.02	0.5	0.42	9.49 TI, 1.67 Nb; the above specimen heated again at 1000 C for 2 hrs and sircoled.
Q	\$2 •	ш	1958	973.2	8.0	EI -607	80.95	15.4	0.55	0.02	o.s.	0.12	0.49 Ti, 1.67 Nb; the above specimen heated again at 900 C for 1 hr and again at 800 C for 2 hrs.
‡	3	ш	1958	8	3.0	EI-607	80.95	15.4	0.55	0.02	0.5	0.42	0.49 Tl, 1.67 Nb; the Llynve specimen heated Lasto at 750 C for 20 hre.
4	\$3	ω	1958	973.2	9.0 0.0	E1-607	80.95	15.4	0.55	0.02	0.5	0.42	0.49 Tl, 1.67 Nb, the above specimen heated again at 700 C for 48 hrs.
\$	ā	ш	1958	373-973	3.0	E1-607	80.95	15.4	0.55	0.02	0.5	0.42	0.49 T1, 1.67 Nb; the above specimen.
‡	88	M	1958	973-973	3.0	E1-607	80.95	15.4	0.55	0.02	9.5	0.42	0.49 Tl, 1.67 Nb; the above specimen tempered at 700 C for 50 hrs.
45	200	ω	1958	373-973	3.0	E1-607	90.98	15.4	0.55	0.03	0.5	0.42	0.49 Tl, 1.67 Nb; the above specimen tempered at 700 C for 200 hrs.
9+	534	ω	1958	373-973	3.0	E1-607	80.95	15.4	0.55	0.02	6.5	0.42	0.49 Tl, 1.67 Nb; the above specimen tempered at 700 C for 1000 hrs.
ţ	\$	М	1958	373-973	3.0	E1-607	80.95	15.4	0.55	0.02	0.5	0.43	0.49 Tl, 1.67 Nb; the above specimen tempered at 700 C for 2000 hrs.
₩	\$34	ω	1958	973.2	3.0	E1-607	80.95	15.4	0.55	0.02	9.5	0.42	0.49 Tl, 1.67 Nb; tempered at 650 C for 1000 hrs.
49	3	EL	1958	973.2	3.0	E1-607	80.95	15.4	0.55	0.02	0.5	0.42	0.49 Tl, 1.67 Nb; tempered at 650 C for 2000 hrs.
20	\$3 4 3	M	1958	973.2	3.0	E1-607	80.95	15.4	0.55	0.02	0.5	0.42	0.49 Tl, 1.67 Nb; tempered at 700 C for 1000 hrs.
23	\$	ណ	1958	973.2	3.0	209-13	80.95	15.4	0.55	0.02	0.5	0.42	0.49 Tl, 1.67 Nb; tempered at 700 C for 2000 hrs.

SPECIFICATION TABLE NO. 285 (continued)

Composition (continued),	Specifications and memorine	0.49 Tl, 1.67 NB; tempered at 750 C for 1000 hrs.	0.49 Tl, 1.67 Nb; tempered at 750 C for 2000 hrs.	0.49 Tl, 1.67 Nb; tempered at 800 C for 1000 hrs.	0.49 T1, 1.67 Nb; tempered at 800 C for 2000 hrs.	Nominal composition from Metals Handbook.	Nominal composition from Metals Handbook.	Nominal composition from Metals Handbook.	0.007 S; annested at 2050 F followed by cooling in quiescent air; Rockwell superficial hardness (15 T scale) = 78.	0.007 S; annealed at 2050 F followed by cooling in quiescent air; Rockwell superficial hardness (15 T scale) = 80.	0.007 S; annealed at 2050 F followed by cooling in quiescent air; Rockwell superficial hardness (15 T scalc) = 83.	0.007 S; cylindrical bar 0.3175 cm in radius and 30 cm long.	Others are Mn, C, Si and Fe; forged; commercial heat resistant alloy; measured in the boiling nitrogen bath.	Rolled.
	ž.	0.42	6.42	0.42	0.42				0.17	0.19	0.21	0.33	1	0.51
	Mn	6.5	0.5	0.5	0.5				0.28	0.26	0.33	0.47	Ť	1.00
2	Fe					5.0	5.0	5.0	8.87	7.89	8.17	6.99	1	12
t percer	J.								0.22	0.15	0.19	0.03		
n weigh	S	0.02	0.02	0.02	0.02				0.02	0.07	0.11	0.03	t	0.12
Composition (weight percent)	V	0.55	0.55	0.55	0.55							0.83		ю
1 5	3 5	15.4	15.4	15.4	15.4	15.0	15.0	15.0	14.48	14.96	15.32	14.38	û 50	16.95
	ž	80.95	80.95	80.95	80.95	90.0	90.0	80.0	75.99	76.45	75.64	73.19	76.98	62.85
Name and	Specimen Designation	EI-607	E1-607	E1-607	205-13	le no out	leconel	Inconel	Inconel	Inconel	Inconel	Inconel	Nichrome	19
	Reported Error, %	3.0	, c	, c	· ·	0 0) C	о	± 7.0	£5.0	+ 5.0			+ 1.3
	Temp. Range, K	020	1.0.6	3.5.	9:3.6	973.2	317-407	7 T	366-1033	366-1033	366-1033	173		303-1373 309.6
	Year	1			1.80 80 80 80 80 80 80 80 80 80 80 80 80 8	1958	1953	195	1958	1955	1955		1950	1936
	Method	,	ы	មា	គ	Œ			ч ч	n	n		<u>şı</u> .	'nМ
	Ref.	<u> </u>	3	3	\$	5 3	467	467	585 536	536	%		\$2 73	163
	Curve	2	52	83	\$	25	26	57	S9 S8	09	61		89 89 89	4 9

SPECIFICATION TABLE NO. 285 (continued)

Curve No.	Ref	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	ž	Cr.	ompositi	Composition(weight percent)	ht perce Cu	rnt)	Mn	Si	Composition (continued), Specifications and Remarks
1	965	٦	1962	473-1473		Inconel 702	79.3	17.0	9. 13.	0.066 0.14	0.14	0.36	0.04	0.19	at NBS from the solution an- nealed hot-rolled plate into the form of a right circular cylinder 2.539 cm in dia and 7.5 cm long with recesses at either end; the solution ameal- ing for this alloy is to hold the
	989		1983	323-973	+ 2.0	OKh 20 N 60 B	59.64	20.4		90.0		17.7	1.59	0.25	material at 1080 C for one or, followed by rapid air cooling. 0.58 Nb and 0.004 S; quenched in water from 1050 C and then tempered in air at 720 C for one hr.
	989		1963	323-1123	± 2.0	E1-435	77.33	21.1		90.0	Trace	0.56	0.49	0.32	0.23 Tl, 0.006 S and 0.005 P; quenched in water from 1100 C.
	614	æ	1961	486-1501	۷ دی	INCO 713C	71.53	11.0	6.5	0.20		5.0	1.0	1.0	1.0 Nb + Ta, 3.5 Mo, 0.25 Tl; specimen contained 5 one-in. dia diska.
	614	æ	1961	386-1427	ا د د	M252	57.15	18.65 1.17	1.17	0.12	9.75	< 0.30	0.07	90.0	9.98 Mc, 2.74 Ti; specimen contained 5 one-in. dia disks.
	614	æ	1961	406-1617	\$ >	Rene 41	54.60	18.60	18.60 1.49	0.11 10.73	10.73	1.5	90.0	0.07	9.63 Mo, 3.14 Ti; specimen contained 5 one-in. dia disks.
	973	H	1966	326-513	9 V	Nimocast 713C	Bal	13.5	6.04	0.11					0.008 B, 4.65 Mo, 2.3 Nb, 0.35 Tl, and 0.10 Zr; specimen 1.27 cm in dia and 15 cm long; as cast;
													•		electrical resistivity 145.5, 144.1, 146.2, 149.3 and 151 µohm cm at 20, 50, 100, 200 and 250 C,

DATA TABLE NO. 285 THERMAL CONDUCTIVITY OF (MICKEL + CHROMIUM + $\Sigma \chi_1$) ALLOYS (Ni + Cr < 89.50% or at least one χ_1 > 0.20%)

[Temperature, T, K; Thermal Conductivity, k, Watt $\,\mathrm{cm}^{-1}\mathrm{K}^{-1}\mathrm{J}$

.4	CURVE 28*	0, 12 5 0, 289	9	2	0.0657	0.0920	. 108 108	0. 120	0, 122	0. 124	0. 126	0, 129	0. 131	0. 130	0. 132	0. 135	0.13	0.149	6. 151	0.154		e S H	0, 136	0.149	0.164	0.180	0.183	0.240	į	TO TABLE	c. 132	0.139	0.157	0.173		226	0.245	0.260	
H	CURV	373.2	Š	CORVEZE	25.48	37.94	50.58	86, 20	95, 18	109.88	126.97	153, 44	164.92	174.49	181.06	199.87	214.13	256.92	281.59	295.38		CURVE 30	373.2	473.2	573.2	673.2	173.2	973.2	Č	7077	323.2	373.2	473.2	573.2	278.2	27.6.2	2.50	1073.2	
×	CURVE 22.	0.163	0. 180	0.188	0.209	0.218	0. 226	CURVE 23		0.140	0. 231	CHRVE 24*		0. 111	0.118	0. 127	0. 152	0. 200	0.214	0.251	0.272	0, 292	CIIBVE 254	2	0.134	0.297	CHBVE 264		0. 121	0. 283	CURVE 27*		0. 126	0.283					
۲	CUS	373.2	573. 2	673. 2	873.2	973. 2	1073.2	COF		6 688. 8	1366. 5	CIII		336. 2	378.8	452.1	598.3	669. I	1073. 5	1237.7	1416.8	1543.7	110		373.2	1173.2	=		373.2	1173.2	CO		373.2	1173.2					
×	CURVE 16 (cont.)	0. 192	0.201	0. 230	0.255	0.247	0. 272	CHPVE 17		0.150	9	CURVE 18	0, 147		CURVE 19		0.144	04.5.30	COUNTE	0, 103	0.112	0. 130	0.148	0. 183	0.201	0.220	0.238		CURVE 21*	•								0.251	
- (-	CURVE	637.8	725. 7	804.1	905. 4	924. 9	1043.6	110	51 51	323. 2		3	323, 2		io O	· ·	323. 2			323. 2	373.2	473. 2	573.2	773.2	873.2	973. 2	1073.2	9	3		323. 2 373. 2	473.2	573.2	673. 2	773.2	673.2	36.5.6	1173.2	
.	CURVE 13 (cont.)	0.247		CURVE 14	0.176	9, 180	0. 180	0. 188	0.213	0. 226	0.247	0.264	0.301	0.322	0.343	0.364		CURVE 15*	0.151	0.155	0. 163	0.176	0. 188	0.213	0. 226	0.243	0.255	0. 297	0.331	,	CURVE 16*	0.155	0.155	e. 163	0.176	0. 184	1.04	0. 188	
H	CURVE	973.2	3	3	303. 2	323. 2	373.2	573.2	673.2	773.2	873.2	1073.2	1173.2	1273.2	1373.2	1473. 2		3	303 2	323.2	373. 2	473.2	573.2	773.2	873.2	973.2	1073.2	1273.2	1373. 2		3	404.8	440.3	479.5	516.2	551.3	266.8	677.0	
	CURVE 9 (cont.)	0.0935	0.0965	9. 100		CURVE 10.		0. 192	0.254	0.277	0. 277	0.284	207.0	0.299		CURVE 114		0. 155	0.188	CHRVE 12		0.15	0. 16	0.18	0, 23	0.25	0.27	0.31	0.37		CURVE 13	0.126	0.140	0.157	0.174	0. 188	0.213	0.230	
; ;	CURVE	63.3	70.6	76.2	9.	COF		676. 0 1005.0	1006. 7	1072.3	1072. 3	1150.4	1220.4	1348.3		COL		373.2	473.2	1110		323. 2	373.2	473.2	673.2	773.2	873.2	1073.2	1173.2		Ö	273.2	373 2	173.2	573.2	673.2	773.2	873.2	
٠.	6 (cont.)	0.216	0.234	0.241	\$	IRVE 7	:	0.00108	0.00265	0.0087	0.0143	0.0248	0.0744	0.0910		RVE 8			0.00483	ė			0.0963		0.0966	0.110		RVES			0.00489			ö			o (0.0935	
۲	CURVE	644.3	755. 4	810.9	920	CUR		9 ; 0	4 64	9	14. 0	8. 8.	93.3	77.0		CUF		2.55	4. 25	20.5	20.5	22. 1	0.4.0	63.3	3 6	77.0			2. 59	2, 59	4, 25	10.1	14.0	14.0	58.0	58.7	59.2	63.0	
¥	CURVE 3 (cont.)	0. 176	0. 222	0. 238	VE 4		0. 121	0. 138	0.167	0.184	0. 209	0. 234	0. 233	0. 7.	VE S*		0.161	0.165	0. 179	9. 19.	0. 188	0.188	0. 191	0.197	0.216	0. 222	0.233	0.229	0.240	0.256	0.249	CURVE 6.		0.163	0.174	0.186	0.196	0.207	
۲	CURVE	769. 1	997.9	1169.8	CURVE		373.2	473.2	573.2	773.2	873.2	973.2	1073. 2	4113. 4	CURVE		376.6	419.9	457.0	401.9	504. 4	525. 1	538.9	559.1	677 4	692. 4	733.7	75L 6	786.1	837.8	844. 9	CUB		376. 1	422.0	477.6	533. 2	588. 7	
×	(2)	0.0026	0. 120		2	0.130	0.130	0.146	0.133	0.146	0.142	0.146	0.151	0.155	0, 159	0.172	0.192	0. 192	0 0	0.530	0. 272	0.289		<u> </u>	0.0962	0. 109	0, 109	0. 11:	0. 130	0.130	6, 130 0, 126	0, 134	0.138	0.151	0.146	0, 159		0. 167	
۲	CURVE	6 6 6 6	88.00		COKA	128.3	175.2	220.5	243 1	265. 6	265.8	287. 6	327.3	70.7	38.0.8	459. 1	593. 1	599. 5	725.6	841 1	1015.7	1189.1	į	CORVE	131 1	180. 1	226.0	269. 9	349.5	373.5	390. 4	426.9	485.4	55L 8	573.7	573.8	657.6	664. 4	

*Not shown on plot

DATA TABLE NO. 285 (continued)

	CURVE 67 (cont.)					0.214				CURVE 68	0 141						2 0.192								2 0.240		2 0.258		CURVE 69			721.0									CURVE 70		9 0,100			
	CUR	673.	723.		823	×7:3, 2		973	7	51	6 2.52	373. 2	423.2	47:3.	523, 2	57.3, 2	62:3, 2	67:3	723.	.773,	K2:3, 2	₹7:3	92.3	97:3	1023, 2	1073.2	1123	•	5∤	10	400.0	200		800.9	1000.9	1144.8	1272, 1	1400, 9	1500.		ว		385.9	602.	.069	
×	CURVE 64	0.176*					0.210		0.259	0.280	0.301	0.363	0.385		CURVE 65		1, 176		CURVE 66		0, 142	0.142	0, 145	0. 175	0, 176	0.194	0.215,	0.218	0.238,	0,260	0.282	0.361,	0.304	0,324	0.340		CURVE 67		0. 126	0, 137	0.147,	0, 156	0, 165,	0.173	0.181	
۴	Sm	303.2	323. 2	373.2	473.2	573.2	4	773.2	873.2	973.2	1073.2	1773 2	1373.2		CUR		309.6		CUR		473, 2	479, 2	497.2	671.2	675, 2	775.2	873.2	875, 2	980.2	1078, 2	1177.2	1273, 2	1273, 2	1375, 2	1473, 2		CUR		323, 2	373, 2	423.2	473.2	523, 2	573.2	623, 2	
×	CURVE 59(cont.)	0.199	9.221	0.243	0.255	**************************************	. A C . A .	•	0.150	0.165	0, 134	20.00	0, 246			CURVE 61*					0.206	0.227	0.249	0.260		CURYE 62.		0.134	0.159	0.180	0.201	0.226		0.272					CURVE 63		0.092					
۴	CURY	699.2	811.2	921.2	1033.2	2	אַראַ		366.2	477.2	288.2	811.9	921.2	1033, 2		CUB	ł İ	366.2	477.2	588.2	689.2	811.2	921.2	1033.2		CUB		273.2	373.2	473.2	573.2	673.2	773.2	873.2	973.2	1073, 2	1173.2		3		78.2					
. ¥	E 54	0.283	;	3		0.291		30		0.136	0.137	0.145	0.150		E 57*	i	0.135	0.134	0.141	0.142	0.149		E 56*		0.210	0.228	0.218	0.233	0.238	0.242	0.248	0.252	0.256	0.255	0.262	0.268	0.273	0.273	0.276		CURVE 59*		0.150	0.162	0.181	
۲	CURVE 54	973.2 0.283		CURVE 55		973.2 0.291		CURVE 35		316.6	344.2	979.6	407.0		CURVE 57		317.4	337.4	359.0	380.5	417.0		CURVE 56*		818.2	841.2	847.2	898.2	898.2	912.2	914.2	959. 2	961.2	970.2	1009.2	1047.2	1072.2	1083.2	1149.2		CURY		366.2	477.2	588.2	
.	CURVE 45*	0.126	0.167	0.218	0.255	407 4/4	2	•	0.126	0.167	0.213	0.233	CURVE 47*		0, 126	0.167	0.509	0.251		CURVE 48.		973.2 0.268		CURVE 49*		0.274		CURVE 50*		0.264		CURVE 51*		973.2 0.253		CURVE 52.		0.272		CURVE 53*		0.253				
۲	CUR	373.2	573.2	773.2	973.2				373.2	573.2	773.2	3.0.6	CUR		373.2	573.2	173.2	973.2		CUB		973.2		CUR		973.2 0.274		CUB		973.2 0.264				973.2		CUE		973.2		COR		973.2				
æ	CURVE_36(cont.).	n. 161	0.209	657.0		7E 37		0.14G	0.167	0.209	0.200	75.380		0.259		7E 39◆		0.259		7E 40*		0.262		15 41•		0.255		/E 42*		0.254	:	/E 43*		0.146	651.0	0.530	0.268		£#.		0.126	0.167	0.213	0.251		
(+	CURVE	573.2	773.2	973.2		CURVE 37		373.2	573.2	773.2	973.2	CIRVE 38		973.2		CURVE 35		973.2		CURVE 4		973.2		CURVE 4		973.2		CURVE 4		973.2		CURVE 4		373.2	573.2	773.2	973.2		CURVE 4		373.2	573.2	773.2	973.2		
ж	CURVE 32*	0.114	0.121	0.138	0,155	0.158	* 10 °	0.210	0.235	0.255	0.276	CIRVE AND		0.121	0.130	0.146	0.165	0.184	0.200	9.218	0.237	0.253		CURVE 34		0.117	0.125	0.141	0.160	0.175	0.188	0.203	0.221	0.241		CURVE 35		0.135	0.177	0.220	0.268		CURVE 36.		0.132	
۲	CUR	323.2	373.2	473.2	573.2	673.2	7.5.2	873.2	973.2	1073.2	1173.2	5		323.2	373.2	473.2	573.2	673.2	773.2	873.2	973.2	1073.2		CUR		323.2	373.2	473.2	573.2	673.2	773.2	873.2	973.2	1073.2				373.2	573.2	773.2	973.2		CM		373.2	

. Not shown on plot

¥	70 (cont.)					0,267		
۲	CURVE 7	765.9	872.6	992. 1	1106.5	1255.9	1427.1	

CURVE 71

0.122						
405.9				1392, 1	1534.8	1617.1

2							0, 120		
CONVE							436.2		

SPECIFICATION TABLE NO. 285R RECOMMENDED THERMAL CONDUCTIVITY OF [NICKEL + CHROMIUM + 5X_[] A LLOYS

The second secon

[For Data Reported in Figure and Data Table No. 285R]

Curve	Name and	Month of Dancelston (ministry managed and Dancels	Setimpted France
No.	Designation	ACHINAL COMPOSITION (WORKING MAIN ACHINALAS	
<	Inconel X-750	73.0 Ni, 15 Cr, 6.75 Fe, 2.50 Ti, 9.85 Nb, 0.89 Al, 0.70 Mn,	+ 10% below 100 K, ± 5% from 200 to 1000 K, and ± 10%
	(previously designated as Inconel X)	0, 30 Si, 0, 05 Cu, 0, 04 C and 0, 007 S; fully heat treated.	above 1400 K.

DATA TABLE NO. 285R RECOMMENDED THERMAL CONDUCTIVITY OF | NICKEL + CHROMIUM + DX; | ALLOYS

[Temperature, T₁ in K and T₂ in F; Thermal Conductivity, k₁ in Watt cnr¹K⁻¹ and k₂ in Btu hr⁻¹ft⁻¹F⁻¹]

Ţ,	2240 2420 2537		
k ₂	(19.0) (20.0) (20.7)		
k ₁ k ₂	(0, 324) (0, 346) (0, 354)		
Ţ	1500 1600 1665		
Ę	80.3 170.3 260.3 350.3	440.3 620.3 800.3 980.3	1340 1520 1700 1880 2060
k _t k ₂ SURVE A (cont.)	6.75 7.28 7.80 8.26	8.78 9.82 10.9 11.8	13.9 14.9 15.9 (18.0)
k ₁ CURVE	0.117 0.126 0.135 0.143	0, 152 0, 170 0, 188 0, 205 0, 223	0.240 0.258 0.276 (0.293)
Ę	300 350 460 450	500 600 700 800 900	1000 1100 1200 1300
T.	-459.7 -457.9 -454.3 -450.7	-441.7 -414.7 -369.7 -324.7 -279.7	189.7 - 99.7 - 9.7 38.0
κ ΈΑ	0 (n. 0139) (b. 0838) (0. 191)	(0.555) (1.96) (3.31) (4.62) (5.00)	5,55 5,95 6,36 6,53
k ₁ CIRVE A	0 (0, 0, 00024)* (0, 00145) (0, 0033)	_	0, 696 0, 105 0, 113 0, 113
Ţ	0 4 8 8	10 25 50 75 75	150 200 250 273.2

^{*} Values in parentheses are extrapolated.

SPECIFICATION TABLE NO. 296 THERMAL CONDUCTIVITY OF [NICKEL + COBALT + EX,] ALLOYS

(Ni + Co + $\Sigma X_i \ge 99.50\%$ or at least one $X_i \ge 0.20\%)$

(For Data Reported in Figure and Table No. 286

	Composition (continued).	Specifications and Remarks	0.03 C.	0.1 Si. 0.1 Cu.	0.28 Si, 0.24 C, 0.04 Cu.	1.0 (Max) Si, 0.3 (Max) C,	Electrolytic.	0.053 Cu, 0.036 P; annealed	0.35-0.50 C; density 8.21 g cm ⁻³ .	0.012 B, 0.17 C, < 0.03 Cu, 0.16 Si, 0.04 Zr; specimen 1.27 cm in dia and 5 cm long; fully heat treated; electrical resistivity 141.2, 142.9, 146.1, 149.2 and 151 u ohn cm at 50, 100, 200, 300 and 350 C, respectively.
		Ţ	3.0		1.07	0.5/	:			e.
		Mo	3.0		5.0	,0°.	:	0.705	/2/	4.07
•	Composition(weight percent)	Cr Fe Mn	18,0 18,67	0.4 1.0	0.18 0.03	3.0 1.0 Max Max	0.05	6, 26	2 Max	0.27 0.05
	ation(w	٥	13,0		11.1	14.0			ន្តិន	14.0
	Compos	Co VI	20.0 0.3		20.0 5.22	18.07 4.07	0.53 0.02	0,746	30 Min	1. 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2		Ž.	37.0	97.0	Ва	Da!	93.4	94,19	Bal	Bal
	Name and Specimen	Designation	Refralloy 26		Nimonic 100	Nimonic 105		A.N.	Haynes Stellite No. 27	Nimonic 115
	Reported	E. 100.	4.0					+ 2.0		9
	Temp.	wange, n	383-865	291, 373	323-1073	323-1273	78.2	323-1173	473-473	363-616
	Year		1351	1300	1360	1960	1940	1953	1947	1966
	Method	3	ပ	(Li	၁	U	7	ပ		ㅋ
	Ref.		37	<u>.</u>	492	492	433	131	616	973
	Curve		-	2	ຕ	4	ıs	ဗ	۲-	တ

DATA TABLE NO. 286 THERMAL CONDUCTIVITY OF [NICKEL + COBALT + Σx_i] ALLOYS

(Ni + Co + $\Sigma X_i \leq 99,50\%$ or at least one $X_j > 0,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm 4K-1]

CURVE 5	78.2 1.180	CURVE 6	;	3.2	3.2	2 0.	2 0.	3.2 0.	2 0.	3, 2 0.	973.2 0.	.2	173.	7 30 60 10	Consti	0 0	10	673 2 0 166		2.0	873.2 0.198		CURVE 8		3.2 0.1	02.2 0.1	2 0.1	0.	2 0.1	2 0.1	0.1		2 0.	2 0.13		2 0.14				
CURVE 1	4.0	6 0.17	Ξ.	.7		699.8 0.218	0.	.0	4 0.2		CURVE 2		0	N.		CONES		7.0	7.6	2.5	3.2 0.1	.0	3.2 0.1	3.2 0.1	73.2 0.2	1073.2 0.218	CURVE 4		~	Ē	~i	3.2 0.1	3.2 0.1	.2 0.1	3.2 0.1	3.2 0.2	73.2 0.23	3.2 0.2	3.2 0.2	

*Not shown on plut

SPECIFICATION TABLE NO. 287 THERMAL CONDUCTIVITY OF INICKEL + COPPER + EX, 1 ALLOYS

(Ni + Cu < 99, 50% or at least one X₁ > 0, 20%)

(For Data Reported in Figure and Table No. 287)

65.31 29.23 3.02 0.13 0.86 0.60 0.09 0.005 S; bot-rolled, and water-quench Commercial Model; Commercia	Curve No.	1	Ref. Method Year No. Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	ï	å	Compositi	Composition (weight per cent)	nt per ce Fe	nt) Mn	S	Composition (continued) Specifications and Remarks
155 1 1951 2.6 - 77 Moneti 2 Anothi 2 Anothi 3 Ano	-	9.1	ပ	1921	132-1186		"K" Mone!	65.31	29. 23	3.02	0. 13	0.86	0.60	0.09	0.005 S; hot-rolled, annealed at 1650 F for 1 brand water-quenched.
155 L 1931 2.6 - 77 Morel. 3 Mor	~	155	1	1951			Monel: 1								Commercial Musel; bard-drawn tubing.
194 1 1951 15- 93 15- 93 100eci, 3 1960 1960 1961 1961 1961 1961 1961 1962 1963 1964 1963 1964 19	6	35	٦	1951											Commercial Monel; annealed tubing.
1404 1. 1851 152- 93 Monei 67.0 30.2 3.0 4.	*	155	.,	1951											Commercial Monel; hard-drawn rod.
150 1923 365 Morel 10.0 28.0 2.0 Assistant states 10.0 Morel 67.05 29.07 3.2 2.0 Assistant states 2.0 Morel 67.05 29.07 3.2 2.6 0.36 0.36 0.3 4.2	Ø	ş	ı	1951			Monei	67.0	30.2						And other alloying elements; as forged.
30 L 1925 361-688 2.0 Monel 67.05 29.07 3.0 2.66 0.84 0.3 48-10 215 L 1939 313, 673 2.0 Monel 67.05 29.07 3.2 1.79 1.11 0.7 48-10 215 L 1939 313, 673 2.0 "K" Monel 66.73 2.94 3.2 1.11 0.71 1.11 0.71 1.10 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 1.11 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0	•	186	Δ,	1928	305		Monel	10.0	28.0			2.0			
215 L 1936 373, 673 2.0 Monel 67.04 29.07 3.2 1.11 0.07 Hotel 215 L 1936 373, 673 2.0 Monel 67.34 29.46 0.21 1.79 1.11 0.07 Hotel 215 L 1936 373, 673 2.0 "K" Monel 66.73 29.76 0.20 0.31 1.79 1.11 0.07 Hotel 215 L 1938 373, 673 2.0 "K" Monel 66.73 28.71 0.20 0.31 1.86 0.32 0.15 1.71 3.70 0.20 0.32 0.15 0.32 0.20 0.32 0.31 0.32	4	8	1	1525	361- 688		Monel	67.05	29.07			2.68	0.84	0.3	As forged.
215 1. 1939 313, 673 2.0 Monet 67.34 29.46 3.21 1.79 1.11 0.07 Hot-line 215 1. 1939 313, 673 2.0 "K" Monet 66.73 29.76 0.20 0.23 0.21 1.71 0.40 1.86 1.54 0.20 0.23 0.23 0.21 0.20	œ	215	.1	1939	373, 673	2.0	Monel	67.05	29.01			2.68	0.84	0.3	Ascast
215 L 1938 373, 673 2.0 "K" Monel 66.73 29.71 2.9 0.20 0.35 0.20 0.35 28.71 3.9 4.8 ct 2.0 3.3 28.71 3.9 0.41 1.86 1.54 2.0 0.5 215 L 1938 373, 673 2.0 "Si" Monel 66.39 28.71 0.35 2.15 1.74 3.7 3.6 215 L 1938 373, 673 2.0 "NI" Bronze 51.37 37.8 6.3 2.15 1.74 3.7 4.8 6.3 2.15 1.74 3.7 4.8 6.3 2.15 1.74 3.7 4.8 6.0 6.3 6.2 9.3 5.15 9.3 <td>ø</td> <td>215</td> <td>ı</td> <td>1939</td> <td></td> <td>2.0</td> <td>Monel</td> <td>67.34</td> <td>29.46</td> <td></td> <td>5.21</td> <td>1. 79</td> <td>1. 11</td> <td>0.07</td> <td>Hot-rolled.</td>	ø	215	ı	1939		2.0	Monel	67.34	29.46		5.21	1. 79	1. 11	0.07	Hot-rolled.
215 L 1938 373, 673 2.0 "Si" Monel 65,39 28,71 0.41 1.86 1.54 2.09 As each of the control of t	2	215	٦	1938		2.0		66.73	29. 76	2.50	0. 20	0.35	0. 21	0.25	As cast.
215 L 1939 373, 673 2.0 "NI" Bronze 51.37 77.86 A. 2 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3 A. 3	=	215	_	1939		2.0	"SI" Mone!	62, 39	28.71		0.41	1.86	1, 54	2. 09	Ascast
116 L 1939 373, 673 2.0 "NI" Bronte 51.37 37.86 <th< td=""><td>71</td><td>215</td><td>1</td><td>1939</td><td></td><td>2. u</td><td>"Si" Monel</td><td>64. B</td><td>28, 32</td><td></td><td>0.33</td><td>2. 15</td><td>1.74</td><td>3, 37</td><td>Ascast</td></th<>	71	215	1	1939		2. u	"Si" Monel	64. B	28, 32		0.33	2. 15	1.74	3, 37	Ascast
162 C 1918 303 178 92.3 4.2 0.29 2.45 0.29 2.45 0.29 2.45 0.29 2.45 0.29 2.45 0.15 1.72 0.98 0.15 0.13 162 C 1936 273-1073 Amonel 67.10 29.18 0.04 0.16 1.72 0.98 0.01 0.01 220 1 96 377-1073 Amonel 62.0 Bal 0.15 1.40 1.0 0.05 0.03 221 1 96 373-1073 2.0 Monel 62.0 Bal 0.25 4.35 1.35 0.05 1.00 221 1 954 373, 673 2.0 Monel 62.0 Bal 0.25 4.35 1.35 1.35 1.35 218 1 956 323-1173 2.0 Monel 63.0 Bal 2.0 0.25 2.0 0.35 2.2 0.35 2.2 0.35 2.2 0.35 2.2	=	215	٦	1939		2.0	"Ni" Bronze	51.37	37.86						
162 C 1936 273-1073 Monel 67.10 29.18 0.04 0.16 1.72 0.98 0.01 0.33 220 C 1936 273, 473 Correnil 6E.41 28.94 0.16 0.1 0.6 1.17 0.4 Forg 220 1 960 377-1073 Correnil 6E.41 28.94 0.16 0.15 1.40 1.0 0.03 0.0 0.03 0.0 0.03 0.0 0.03 0.0 <t< td=""><td>=</td><td>178</td><td>ш</td><td>1918</td><td>303</td><td></td><td>178</td><td>92.3</td><td>4.2</td><td></td><td>0.29</td><td>2,45</td><td>0.35</td><td>0. 15</td><td></td></t<>	=	178	ш	1918	303		178	92.3	4.2		0.29	2,45	0.35	0. 15	
162 C 1936 273, 473 Corronil 6E.41 28.94 9.16 0.1 0.6 1.17 0.4 Forg 220 1960 377-1073 R-Monel 67.0 30.0 0.15 1.40 1.0 0.7 0.03 221 1954 373, 673 2.0 Monel 66.2 30.0 0.4 1.86 0.95 3.3 (Non 222 1954 373, 673 2.0 Monel 66.2 30.0 0.4 1.88 0.919 0.135 0.40 222 1954 373, 673 Amonel 65.0 Bul 0.3 2.5 0.5 1.0 0.40 218 1956 323 Wonel 63.0 Bul 0.3 2.5 2.0 0.5 1.0 0.25 218 1956 323 Wonel 61.0 Bul 4.0 0.3 2.5 2.0 0.5 1.0 0.25 219 2.0 2.5	13	162	O	1936	273-1073		Monel	67, 10	29.18	°.	0.16	1. 72	98	0.01	0.014 S, 0.13 Mg, black surface.
220 1960 337-1073 R-Monel 67.0 30.0 0.15 1.40 1.40 1.0 0.57 3.57 (Normal 15) 221 1954 373, 673 5-Monel 68.0 Bal 0.25 <3.5	91	162	ပ	1936	273, 473		Corronil	68.41	28.94	9. 16	0.1	9.0	i. 17	0.4	Forged and drawn.
221 1954 373, 673 5-Monel 62. C/68.0 Bal 0.25 <3.5 63.5 3.5/7 1.5 3.5/7 (Non-1) 131 C 1954 323-1173 2.0 Monel 66.2 30.0 0.4 1.88 0.919 3.135 0.407 222 1954 373, 673 Cast Monel 62.0/7 Bal 0.3 22.5 0.5/7 1.0 2.24 218 1956 323 "K" Monel 63.0 Bal 0.3 2.5 2.0 0.5/7 1.0 0.25 218 1956 323 "K" Monel 63.0 Bal 0.3 2.5 2.0 1.5 1.0 0.3 218 1956 323 "H" Monel 61.0 Bull 0.3 2.5 2.0 1.5 1.0 0.25 219 L 1951 26- 285 <2.5	11	220		1960	337-1073		R-Mone!	67.0	30.0		0. 15	1.40	1.0		0.035 S; (Nominal composition).
131 C 185 323-1173 2.0 Monet 66.2 30.0 Bal 0.4 1.88 0.919 3.135 0.407 222 1954 373, 673 Cast Monel 65.0 Bal 0.35 >2.5 1.5 2.24 218 1956 323 "K" Monel 63.0 Bal 0.3 2.5 2.0 0.5 0.0 218 1956 323 "K" Monel 65.0 Bal 4.0 0.25 2.0 1.5 1.0 0.25 218 1956 323 "H" Monel 61.0 Bul 0.3 2.5 0.5 1.5 1.0 0.25 219 L 1951 26- 295 <2.5	2	221		1954	373, 673		S-Mone!	62. C/ 68. C	Bal		0.25	ري ق دي ق	0.5/	3.5/ 5.6	(Nominal composition.)
222 1954 373, 673 Cast Monel 62.0, Bal Bal 0.35 22.5 0.5/ 1.9/ 2.24 218 1956 323 Monel 63.0/ Bal Bal 0.3 2.5 2.0 0.5/ 2.24 218 1956 323 "K" Monel 63.0/ Bal Bal 0.3 2.5 2.0 1.5 1.0 0.25 219 L 1951 26- 285 <2.5	19	131	Ų	1953	323-1173	2.0	Monel	66.2	30.0		0.4	1.88	0.919	J. 135	0. 407 Co, 0. 032 Mg; annealed at 950 C.
218 1956 323 Monel 63.0/7 Bail 2.0/4 Bail 0.3 2.5 2.0 0.5 0.05 0.05 0.25 0.01 0.25 0.01 0.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0	20	222		1954	373, 673		Cast Monel	62. 0,' 68. 0	Bal		0, 35 Max	>2. 5	0.5 1.5	1. 0/2.24	
218 1956 323 "K" Monel 63.0/ Bul 2.0/ 0.25 2.0 1.5 1.0 0.25 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.1/ 0.05 2.5 2.1/ 2.1/ 2.1/ 2.1/ 2.1/ 2.1/ 2.1/ 2.1/	72	218		1956	323		Monel	6 3. 0/ 70. 0	Bul		0.3		2.0	o. 5	0.01 S; hot-rolled.
218 1956 323 "H" Mone! 61.0/68.0 Bull 68.0 0.3 2.5 0.5/7 2.7/1 219 L 1951 26-295 <2.5	ដ	2.18		1956	323			63.0/ 70.0	Bal	2.0/	0.25	2.0	1.5	1.0	0.25 - 1.0 Ti, 0.01 S; wrought; age-bardened.
219 L 1951 26-295 <2.5 Mone! 67.0 30.0 0.15 1.4 1.0 0.1 219 L 1951 26-289 <2.5 Mone! 67.0 30.0 0.15 1.4 1.0 0.1	23	218		1956	323			61.0/ 68.0	Bail		0.3		0.5/ 1.5	2.7/	0,05 S; as cast.
219 L 1951 26-289 <2.5 Monet 67.0 30.0 0.15 1.4 1.0 0.1	24	219	ı	1951	26- 295	<2.5	Mone	67.0	30.0		0.15	1.4	1.0	0.1	0.01 S; hot-rolled.
	52	219	J	1951	26- 289	<2.5	Monet	67.0	30.0		0.15	1.4	1.0	0.1	 0.01 S; cold-rolled; provided by International Nickel Cc.

SPECIFICATION TABLE NO. 987 (continued)

Curve No.	Ref	Method Used	Year	Year Temp.	Reported Error, %	Name and Specimen Designation	ž	Cu	Composition(weight percent)	percent) Fe	Ma	ī	Composition (continued), Specifications and Remarks
26	4.33	-1	1940	30 t-		No. 0	94.77	94,77 4,36	0.02	0.08	0.26		9.51 Co. 0.01 Sb, trace S, trace Pb; calculated composition.
27	4 53	ų	1940	30 (-		No. 1	90,43 8.85	8.83	0.02	60.0	0.13		0.48 Co. 0.001 Sb. trace S, trace Pb; ralculated composition.
e1 80	433	'n	1940	80 1-		No. 2	85,62 13,71	13.71	0.017	0.094	0.10		4.46 Co. 6.002 Sb. 6.001 S. trace Pb; calculated composition.
29	433	1	1340	an (-		No. 3	77.73	77,73 21,69	0.015	0.091	0.03		0.414 Co. 0.003 Sb. 0.002 S, trace Pb; calculated composition.
30	433	ų	150	82		No. 4	69.14	69,14 30,35	0.014	0.068	0.05		0.37 Co. 0.005 Sb. 0.002 S. trace Pb; calculated composition.
31	4:33	r)	1940	7.8		No. 5	58.98	58.98 40.53	0.012	0.104	0.94		0.314 Co., 0.006 Sb., 0.003 S, trace Pb; colculated composition.

DATA TABLE NO. 287 THERMAL CONDUCTIVITY OF INICKEL + COPPER + Σx_{j}) ALLOYS

(Ni + Cu < 99, 50% or at least one $X_1 > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K -1]

, t	CURVE 25 (cont.)	101, 15 0, 154 115, 14 0, 161 130, 22 0, 170			220.21 0.201	258, 13 0, 213		CONVE 20	78.2 0.464	CURVE 27*	78.2 0.333		CURVE 28*	78. 2 0. 269		CURVE 29*	78, 2 0, 213	400	CORVE 30	78.2 0.182	CURVE 31*		78. 2 0. 150						
T	CURVE 20*	373, 20 0, 268 673, 20 0, 352	CURVE 21	323, 20 0, 260	CURVE 22	323. 20 0. 188	CURVE 23	323, 20 0, 268	Z.	25 42 0 0000		_	70, 52 0, 152 84, 36 0, 160			127, 12 0, 175 142, 56 0, 181							295, 20 0, 226	CHRVE 25	1		40, 32 0, 0350 55, 32 0, 118		
¥	CURVE 15	0 0.213 0 0.243 0 0.276				VE		0.289	VE		0,272		0,352		CURVE 18		0.268		COUVE 19			0.255				0.422			
. (4		6. 331 273, 20 6. 335 373, 20 6. 335 473, 20			0.347 973.20 0.351 1073.20		666 836	351 473, 20		2.6	0.364 473.20		673, 20 1073, 20	0.193			673, 20	0.209	967	323, 20	0. 197 473. 29				0.209 973.20	276 1073, 20	1113.60		0. 349
+	CURVE 7 (cont.)	484, 70 500, 20 514, 20				(VE	ic	; o	CURVE 9		673.00 0.		CURVE 10	373.00 0.		CURVE 11		373.00		CURVE 12	373.00 0.		Are avery	24100	373.00 0.		CURVE 14		303. 20 0.
ĸ	CURVE 3 (cont.)	0, 0745 0, 140 0, 144	0, 147 0, 164	0, 168	CURVE 4	0. 00216 0. 00218	0.0045	0.0406	0. 0428 0. 0855	0. 112 0. 111	0.128	0. 148	CURVE 5	ł	0.0444	0.0661	0.0977	0.137		CURVE 6	0.348		CONNE	0. 280	0.305	0, 301 9, 3,4	0.318	0.322	0.310
4	CURVE	20, 24, 63, 63 20, 53, 53, 53	58.70	77. 00	5	2, 60	4, 20	20, 40	20, 60 51, 60	59.00 59.00	75, 50	77.00	cur		15.17	21.47	31.80	8.6	:	COR	305.00	į	5	361, 20	392, 20	416, 20	446.70	465, 20	467, 70
.	CURVE 1					0 0.230 0 0.255						0.336			0.410	CURVE 2		0.00533	_	0.0412		0.125				CORVE 3	0.00369		
(-	ଧ	131, 60 179, 30 224, 30	334.90	360, 40 384, 70	407.90 465.30	468, 10 548, 10	592, 3(597, 2(627.2	706.20	724.30 811.30	813, 60	841, 90	876. 60 011. 00	024, 10	185.70	히	•) ; •	14.00	20.40	73, 70	7. %	77.30	77,30	č	3!	2, 55	4. 25	14.00

Not shown on plot

Specification table no. 288 Thermal conductivity of [Nickel + Iron + Σx_{\parallel}] alloys

(Ni + Fe < 99. 50% or at least one X₁ > 0. 20%)

(For Data Reported in Figure and Table No. 288)

	Composition(continued), Specifications and Remarks					Hot-rolled.	0.012 P, 0.02i S; annealed at 900 C.	0.006 P, 0.019 S; annealed at 900 C.	0.003 P, 0.018 S; annealed at 900 C.	Rolled.	Annealed at 1150 C.	As forged.	Provided by G. E. Co.	0.18 Mg, 0.04 S, 0.14 SiO ₂ ; annealed.	0.01 S; annealed.	Specimen 2.54 cm in dia and 37 cm long;packed in powder and annealed in hydrogen for 5 hrs at 922.1 K, 5 hrs at 149.9 K, furnace cooled to 699.9 K, cooled in hydrogen; specimen, chemical composition and heat-treatment history provided by the International Nickel Co.; data presented as a smooth curve.
	Si		Trace				0. 133	0.141	0.144	0.51		0.14			0.35	0.19
	Mo	7.0	0. 73								19. 0		7. 20			4.20
1300	Mn		2.02	4.0			0.331	0.338	0.341	1.0	. S	1. 31	2. 14	0.27	0.35	0.71 4.20
Jan Jan	ខឹ						2. 61	3. 37	3. 75					0.2	0.25	
(weld)	្	15.0	14.92	15.0	12.0	16.0				16.95			14, 74			0,03
Composition (we(sh) per cent)	ပိ						0.208 0.142	21.91 0.227 0.189	0.266 0.213	0. 12	0.072	0.34	0.05	0.17	0.15	0.049
	Fe	16.0	23. 16	20.0	26.0	23. 0	41.14	21.91	12.27	18.57	21.4	40.71	15.82	0.3	9.4	79.24 15.283 0.049
	ź	0.09	A 59. 17	61.0	62.0	61.0	55.4	73.8	83.0	62.85	≈ 57. 1	57.5	60.05	98.70	(min)99.0	79.24
Name and	Specimen Designation	Contracid	Contractd B7M		Nichrome	Chromel C	142	15a	16a	18	Hastelloy A	5277	Contracid		٦	НуМи-80
Reported	Error, %		J. 0			3. 0-5. 0					2.0		≤2.5			
Temo.	N. No. Used Year Range, K Error, %.	2.3- 21	293- 353	373-1173	305	373- 795 3.0-5.0	303	303	303	303-1173	323-1173	15- 93	28- 300	273-923	323	123-813
, p	Year	1936	856T 7 4	1932	1928	1933	1918	1918	1916	1936	1953	1921	1981	1955	1956	1961
Metho	р Б	J	4	-1	۵,	ပ	ш	ш	ш	.7	ပ	_	_	ď		ᆈ
Ref.	Š	81	17	168	186	129	178	178	178	3	131	ğ	219	73	218	937
ā	· .	-	~	n	•	49	9	~	e O	œ	91	7	2	13	=	55

DATA TABLE NO. 288 THERMAL CONDUCTIVITY OF INICKEL + IRON + ΣX_1) ALLOYS

(Ni + Fe < 99. 50% or at least one $X_1 > 0.20\%$)

Temperature, T, K; Thermal Corductivity, k, Watt cm-1 K-1

×	CURVE 15 (cont.)	0, 167 0, 189	0. 20ч	0. 222	0.234	20.0	0.233																																	
H	CURVE	173.2 273.2	373.2	473.2	573.2	7 : :	13.7	;																																
×	E 12	0. 0366 0. 0552	0.0544	0.0695	0.0766	000	0. 0620 0. 0645	0.0874	0.0904	0.0933	0.0971	0, 100	0.104	0.108	0, 109	0. 117	0, 120		E 13		0.597	o. 597	0 . 596	0.592	0.584	0.576		5 X	0.528	3 3	85.0	0.578	0.593		E 14*	[909 0		E 15	0.153
H	CURVE 12	27.01	55.18	69.86	104 03	5.55	13. 61	149.90	154, 97	190.05	204, 13	219.69	235.02	250.04	255, 23	286. 58	300, 28		CURVE 13		273, 20	293. 20	323, 20	373, 20	423.20	473, 20	523, 20	573. 20	573, 20	77.2.20	823.50	K73 20	923.20		CURVE 14*		323, 20		CURVE 15	123.2
*	E 7	0. 236	/E 6		0.304		2	0.176	0. 176	0.180	0.188	0. 201	0. 218	0. 239	0. 259	0. 280	0, 301	0.322		0.385		E 10		0, 105	0. 114	0. 131	0, 148	0. 166	0. 183	0.201	0.236	0.253		E 11		0.351	0.0426	0.0510	0. 132)
۲	CURVE 7	303. 20	CURVE 8		303. 20		CORVE	303 20	323. 20	373. 20	473, 20	573.20	673.20	773. 20	873. 20	973. 20	1073.20	1173.20	1273.26	1373, 20		CURVE 10		323, 20	373. 20	473, 20	573, 20	673. 20	773. 20	973.20	1073 20	1173 20		CURVE 11	!	17.12	18, 20	21. 31	76. 4 0	;
¥	<u>E</u> 1	0.00135	0.00489	0.00756	0.0116	0.0129	0.0142	0.0100	Ē 2		0.105	0.112	0.120		E 3		0.119	0.122	0.126	0.128	0.129	0. 131	0.134	0.139	0.145	•	<u>.</u>		0.136	ب ن	3	0 139	0.147	0, 161	0.175	0.190	0.193		म २	0.151
۲	CURVE	2, 34	8.36	10.70	7. 50 5. 50	10. 20	7 8 2 2	27.60	CURVE		293, 20	323. 20	353, 20		CURVE		373, 20	473.20	573. 20	673. 20	773. 20	873. 20	973. 20	1073. 20	1173.20		CURVE		305.00	CIBVE	a comp	37.8 20	473, 20	373, 20	673. 20	773. 20	794.90		CURVE	303. 20

Not shown on plot

travate mallitatus tillattisaattavat omita, at omitaliika simi

SPECIFICATION TABLE NO. 289 THERMAL CONDUCTIVITY OF [NICKEL + MANGANESE + £X_i] ALLOYS

(Ni + Mn < 99.50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 289]

A C	Curve Ref.	Method	Year	Year Temp. Reported	Reported	Name and Specimen			Somposi	tion(wei	Composition(weight percent)	÷			Composition (continued),
ģ	뢷	- 1		налgе, п	Error, 76	Designation	ž	Ä	7	၁	Ni Mr Al C Co Cr Fe Si	5	Fe	Si	Specifications and Remarks
~	129	ပ	1933	363-773	3.0-5.0	Alumel	94.943 2.0 2.0	2.0	2.0					1.0	Hot-rolled.
87	131	ပ	1933	323-1173	2.0	D Nickel	92.79 4.35	4.35		0.158	0.158 1.27		1.35	90.0	Annealed at 900 C.
n	439	ı	1935	373-1073	2.0		97.5 1.9	1.9				•	4.0	0.14	
•	20	ပ	1954	423-910	6.0-19	Nickel A	99.542 0.25	0.25			0.034	•	990.0	0.03	0.034 Mg, 0.02 Ti, traces of
															cylindrical bar 2 cm in dia
															and ~15.5 cm long; Armeo
															imp used as comparative

THERMAL CONDUCTIVITY OF [NICKEL + MANGANESE + Σx_j] ALLOYS (Ni + Mn < 99.50% or at least one $X_1>0.20\%$) 289 DATA TABLE NO.

[Temperature, T, K; Thermal Conductivity, k, Watt cm-4K-1]

۲

CURVE 1

0.293 0.397 0.301 0.307 0.318 0.350 0.350 363.40 389.20 405.10 441.30 473.20 573.20 673.20

CURVE 2

0.430 0.850 0.350 0.367 0.367 0.367 0.399 0.431 323.20 373.20 473.20 573.20 673.20 773.20 873.20 973.20 1073.20

CURVE 3

0.540 0.540 0.565 0.594 0.636 0.778 0.925 373.2 583.2 673.2 773.2 873.2 973.2

CURVE 4

0.713 0.591 0.454 0.473 0.473 0.468 0.468 0.468 422.7 521.4 521.4 537.4 618.6 656.3 678.9 739.2 800.0

3.14 B. A.

FIG 290

THERMAL CONDUCTIVITY, Well

SPECIFICATION TABLE NO. 290 THERMAL CONDUCTIVITY OF [NICKEL + MOLYBDENUM + 5X₁] ALLONS

(N) + Mo < 99, 50% or at least one $X_{k} > 0,\,20\%)$

[For Data Reported in Figure and Table No. 290]

Composition (continued)	Specifications and Remarks	0 12 W 0 10 Ti 0 084 C. 0.006 S.	0.003 P. specimen (composed of 18 disks, 9 in. long) 0.5 in.	thick. 3 in. O. D. and O. 523 in. 1. D. in. operared from a hot forged bar identified by Westinghouse as heat Mi669-4.	0.06 C, 0.5 Max Al + Ti; nominal composition; specimen 6 in. long and 1 in. in dia; Armeo Iron used as comparative material.	0,02 C; specimen 6,75 in. in dia and 1,5 in. thick; "as received".
	Al	9	77 · 0			
	<u>.</u>					
	Composition(weight percent)	 	71.1 16.2 7.25 4.6 0.36 0.34		0.8 M.x	
	on(weigh Fe		9. 6		5. 0 Max	5.05
	Sompositi Or		7, 25		7.0	
	۶		16.2		17.0 7.0	23.78
	ž		71. 1		Bal.	65.57
	Name and Specimen	Designation	INGR-8		INOR-8	Hastelloy B 65.57 23.78
	Reported	E1101.76	بر ب		у Н	ري دي
	Year Temp Reported	Kange, A	1962 439-1090		431-761	823-1319
	Year		1962		1960	1957
	Method	Used	2		ပ	٦
	Curve Ref.	ď	568		695	£ 4
	Curve	ź	-		81	m

DATA TABLE NO. 290 THERMAL CONDUCTIVITY OF [NICKEL + MOLYBDENUM + \(\text{LX}_1 \) ALLOYS

All properties of the control of the

(Ni + Mo < 99, 50% or at least one $X_i > 0,\,20\%)$

[Temperature, f, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 2 (cont.)	627.6 0.183 746.2 0.196 748.2 0.203 760.9 0.188	822.5 0.175 825.2 0.177 962.8 0.215° 962.9 0.217 1094.1 0.247 1148.4 0.253 1254.5 0.265 1319.2 0.279
CURVE 1	438.7 0.123 439.2 0.124* 535.7 0.136 537.7 0.137* 599.2 0.145 637.0 0.150	# 1 1 4 1 9

*Not shown on plot

SPECIFICATION TABLE NO. 291 THERMAL CONDUCTIVITY OF (NICKEL+ ΣX_L) ALLOYS NI+ ΣX_L

A STATE OF THE PARTY OF THE PAR

Curve No.	Ref.	Ref. Method Year No. Used		Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent) Ni	Composition (continued), Specifications and Remarks
	12.7	1	1923	372-1006			99, 2	Specinien cast in 3 in. mold, hot-rolled to 1.5 in. dia, reheated and rolled to 0.875 in. dia, close-annealed at 800 C, cold drawn to 0.8125 in. dia, re-annealed and then drawn to 0.75 in. dia, and finally annealed at 750 C and 800 C; density 8.79 g cm ⁻³ at 21 C.
81	34	7	1927	80, 27.3			66	Flectrical conductivity 90, 2 and 13, 05 x 104 on m -1 cm -1 at M0 and 273 K, respectively.
m	40	-1	1956	78-1616	5.0	Grade A		Grade "A" nuckel; specimen 7 in. in dia and 1,5 in, thick; density 8, 844 g cm ³ .
4	104	-1	1951	15-93			99.4	As forged.
ß	30 30	1	1908	113-301			99.0	
9	276	ပ	1953	343, 2	3.0	Grade A		Grade "A" nickel (nominally 99, 4 Ni + Co); density 8, 8 g cm ⁻³ ; Armeo iron used as comparative material.
6	163	1	1936	348-473		-	99. 23	Data determined by using D. Hattori's method.
30	163	1	1936	588-1428		1		The above specimen using the method of K. Honda and T. Simidu; measured while increasing temp.
ဘ	163	_:	1936	468-1073		-		The above specimen; measured while reducing temp.
10	7-	1	1917	299-1130			96. н	

DATA TABLE NO. 291 THERMAL CONDUCTIVITY OF NICKEL + $\Sigma \chi_{i}$, ALLOYS Ni + $\Sigma \chi_{i}$

the contract of the least of th

[Temperature, T, K; Thermal Conductivity, k, Watt cm $^{-1}\,\mathrm{K}^{-1}$]

¥	(cont.)*	0, 477 0, 515 0, 567 0, 617	0. 661 0. 676	0, 682 0, 686	0, 690 0, 686	069.0	E 9.	0.653		0.527	0.611	10			0, 552		0.527	0.523			0, 536		0, 540						u. 530	
۰	CURVE 8 (cont.)*	693. 2 803. 2 943. 2 1074	1178 1273	1293	1338 1373	1428	CURVE	468.2	698. 2		1073	CURVE		299. 2	346. 2	482, 2	524. 2				796, 2		871.2	918.2	972.2		14.1	1085	1130	
7	E ++	0, 150 0, 221 0, 274 0, 510	· • `	اد	0 25 0 0 0 0 0 0	0, 552					0. 577	Εō#		0.636	*	- 1	0.782	0, 732	0.678	0.653	4 , 6		0.753	0,653		0, 565				0.481
(-	CURVE	15, 12 18, 15 21, 50	93, 10	CURVE	113.2	148.2	198.2	248.2	273.2		301.2	CURVE		343, 2		CORVE	348.2	378.2	433, 2	473.2	CHRVE		388.2	483.2	563.2	571.2	603.2	6.13.2		683, 2
æ	VE I*	0, 611 0, 607 0, 598 0, 598			0. 586 0. 552	0.540					0, 536 0, 536		0.540		0.615	7.E 13#		1. 114	0.839		νΕ 13.	0,458	0.505	0. 50g	0.551	0. 5K3	0.600	0.051		9.719
۲	CURVE	375.0 374.0 4.44.0 8.44.4		469. 2 469. 4	469. 6 469. 9	561.6	562,9			628.2	630.4	764. 2	764, 6	976, 5	1906, 2	CURVE	į	80	£73		CURVE	173	815	342	920	1088	1295	1380	1460	1616

No graphical presentation

THERMAL CONDUCTIVITY OF NIOBIUM + MOLYBDENUM+EX; ALLOYS

[Nb + No < 99.50%, or at least one X; > 0.20%.]

THERMAL CONDUCTIVITY, Wolf em" K"

NB-MP 2666 KT

SPECIFICATION TABLE NO. 292 THERMAL CONDUCTIVITY OF (MOBIUM \cdot MOLYBDENUM + Σx_{j}) alloys

(Nb + Mo + 99, f = or at least one $N_1 > 0, 20\%)$

[For Data Reported in Figure and Table No. 292]

Composition (continued), Specifications and Remarks	6.02× C. 0.0136 N, 0.0093 O; specimen 2 in. in dis and 1 in. long: density 8.62 g cm ⁻³ ; measured in helium almosphere; Armeo iron used as comparative material.	0.028 C. 0.0136 N. 0.0093 O. the above specimen measured by another method; thermal conductivity values were calculated from the measurement of thermal diffusivity, specific heat and density.
cent) Zr	1.13	1.13
ight per V	5. c2	5. 02
Composition (weight percent)	28 77 5, 03 5, 02 1, 13	88.77 S. 03 S. 02 1. 13
Compos	12 12 00 30	58, 77
Nume and Specimen Designation	Nb-5Mo-5V-1Zr	Nb-5Mo-5V-1Zr
Reported Error, %	7 #	क ti
Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error,"	1963 353-953	1965 1103-2508
Year	1963	
Method Used	υ	۵.
Ref.	583	583
Curve No.	-	2

THERMAL CONDUCTIVITY OF [NIOBIUM + MOLYBDENUM + Σx_i] alloys DATA TABLE NO. 292

(Nb + Mo < 99, 50% or at least one $X_{\hat{i}} > 0, 20\%)$

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

0.398 0.431 0.476 0.504 0.550 352. 6 463. 2 688. 7 822. 1 993. 1

CURVE 2

0, 561 0, 604 0, 639 0, 655 0, 720 0, 746 0, 746

1102.6 1193.2 1466.5 1660.9 1922.1 2230.4 2339.8 2508.2

SPECIFICATION TABLE NO. 293 THERMAL CONDUCTIVITY OF [NIOBIUM + TANTALUM + Ex,] ALLOYS

(Nb + Ta < 99, 50% or at least one $X_j > 0, 20\%$

[For Data Reported in Figure and Table No. 293]

Composition (continued), Specifications and Remarks	60.8 27.84 10.40 0.92 0.007 0.01 0.009 Ni, 0.005 Ti, 0.005 O, 0.004 C, and c.002 N; specimen 2 in. in dia and 1 in. long with ends ground flat and parallel; density 10.72 g cm ⁻³ ; measured in helium almosphere; Armoo iron used as comparative material.	60.8 27.84 10.40 0.92 0.007 0.01 The above specimen measured by another method.	0.005 Sn, 0.003 Pb, 0.0005 Cu, 0.0005 Ni, and 0.0001 Mg; specimer 10 cm long and 0.474 cm in dis; measured in "as received" condition; specimen from Johnson, Marine and Company of the control of the co
Si	0.0	0.01	0.02
ent) Fe	0.007	0.003	0. 03
ht perce	0.92	0.92	
tion (weig	10.40	10.40	
Composition (weight percent) Nh Ta W Zr Fe	27.84	27.84	1.0
ςς.	60. s	8 09	Bal.
Name and Specimen Designation	Nb-27Ta- 12W-0.2Zr		
1 1	# 4	#	က
Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error, %	1963 386-1044	1963 1208-2592	1963 1.7-15
Year	1963	1963	1963
Method	ပ	۵,	ا
Ref.	583 C	543	704
Curve No.	-	8	m

DATA TABLE NO. 283 THERMAL CONDUCTIVITY OF [NIOBIUM + TANTALUM + £X_j] ALLOYS

(Nb + Ta < 99, 50% or at least one $X_1>0,\,20\%$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 3 (cont.)	5. 36 0.0450 5. 50 0.0520 5. 75 0.0550 6. 10 0.0625 6. 40 0.0700 7. 90 0.0900	28688888888888888888888888888888888888	2.200.21
CURVE 1	386. 0 0. 459 530. 4 0. 467 710. 9 0. 486 869. 3 0. 502 1044. 3 0. 517		

Not shown on plot

SPECIFICATION TABLE NO. 294 THERMAL CONDUCTIVITY OF [NIOBIUM + TITANIUM + Σx_i] ALLOYS

(Nb + Ti < 99, 59% or at least one $X_{j} > 0,\,20\%$

[For Data Reported in Figure and Table No. 294]

Cerye	Ref.	Curve Ref. Method Year I	Year	Temp. I Renge, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent) Nb Ti Zr	omposition (weight percent Nb Ti Zr	percent) Zr	Composition (continued), Specifications and Remarks
-	593	583 C 1963	1963	342-1053 ±4	44	Nb-10Ti-5Zr	83.96	83, 96 10, 5 5. 5	بن د	0.0249 O, 0.0071 C, 0.0027 N and 0.0009 H; specimen 2 in. in dia and 1 in. long; denaity 7.77 g cm ⁻³ ; measured in helium atmosphere; Armco iron used as comparative material.
81	583	Δ.	1963	1963 1105-2544	#	Nb-10Ti-5Zr	83. 96	10. 5	5. 5	0.0249 O. 0.0071 C. 0.0027 N and 0.0009 H: the above specimen measured by another method; thermal conductivity values calculated from measurements of the above the another the specific beat and density

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

0, 287 0, 312 0, 339 0, 362 0, 393

341. 5 523. 2 712. 6 872. 1 CURVE 2

CURVE 1

0, 398 0, 443 0, 471 0, 498 0, 530 0, 547 0, 547

1105. 4 1447. 1 1702. 6 1916. 5 2163. 7 2349. 8 2483. 2 2544. 3

SPECIFICATION TABLE NO. 295 THERMAL CONDUCTIVITY OF [MOBIUM + TUNGSTEN + Σx_j] ALLOYS

(Nb + W < 99, 50% or at least one $X_1 > 0.20\%$)

[For Data Reported in Figure and Table No. 295]

Composition (continued), Specifications and Remarks	0.008 O, 0.004 N, 0.002 C and 0.0011 H; specimen 2 in. in dia and 1 in. long; density 9.16 g cm ⁻³ ; measured in hellum atmosphere; Armoo iron used as comparative material.	0.006 O., 0.004 N., 0.002 C and 0.0011 H; the above specimen measured by another method; thermal conductivity values were calculated from the measurement of thermal diffusivity, specific heat and density.	0.051 C, 0.0053 O, 0.0033 N and 0.0003 H; specimen 2 in. in dia and 1 in. long; density 9.03 g cm 4; measured in belium atmosphere; Armoo iron used as comparative material.	0.051 C, 0.0053 O, 0.0033 N and 0.0003 H; the above specimen measured by another method; thermal conductivity values were calculated from the measurement of thermal diffusivity, specific heat and density.	0. 0.1 Ta., 0. 0489 C., 0. 0163 O., 0. 002 N and 0. 0005 H; specimen 2 in. in dia and 1 in. long; density 9. 6 g cm ⁻³ ; measured in helium atmosphere; Armoo iron used as comparative material.	0.01 Ta, 0.0489 C, 0.0163 O, 0.002 N and 0.0005 H; the above specimen measured by another method; thermal conductivity values were calculated from the measurement of thermal diffusivity, specific heat and density.	No details reported.
t) Mo					4 <u>.</u>	4. 70	
Composition (weight percent)	2. 8	2. 8	0.95	0.95	0.84	0.84	2.5
sition (w	98.88	9.89	9.6	9 .6	15.6	15.6	10
Compo Nb	87.3	87. 3	89, 39	89. 39	78. 78	78.78	87.5
Name and Specimen Designation	ND-10W-5Zr	Nb-10W-5Zr	Nb-10W-12r-0.1C	Nb-10W-1Zr-0,1C	Nb -15W -5Mo -1Zr -0, 05C	Nb-15W-5Mo-1Zr-0, 05C	Haynes alloy Nb-752
Reported Error, %	#	#	4	# 4	# Z	± ± Z	± 10
Temp. Range, K	355-9:19	1098-2461	372-1011	1156-2455	405-915	1117-2678	533-1589
	1963	1963 1	1963	1963 1	1963	1963 1	1963
Ref. Method Year No. Used Year	ပ	C ₄	ပ	۵,	ပ	۵,	
Ref.	583	583	583	583	583	583	968
Curve No.	~	М	e)	4	חי	ø	t-

A STATE OF THE STA

DATA TABLE NO. 285 THERMAL CONDUCTIVITY OF (NICHUM + TUNGSTEN + ΣX_1) ALLOYS

(Nb + W < 99, 50% or at least one $X_{\hat{\bf i}}>0,\,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 6 (cont.)	1516, 5 0, 668	o	2483. 2 0, 758	Þ		CURVE 7		533. 2 0. 381	588.7 0.398	644.3 0.412	30	755.4 0.436	810. 9 0. 447	866. 5 0. 457	922. 1 0. 464	ي	1033.2 0.478		1199.8 0.493	1310.9 0.497	1366.5 0.498	1422.1 0.500	1477.6 0.502	1533. 2 0. 504	_										
CURVE 1	355.4 0.453		938.7 0.528		CURVE 2		1097, 6 0, 533		1643. 2 0. 599		o.	2461.0 0.675		CURVE 3			560.9 0.566			CURVE 4		0	0	Ö	Ö	1960. 9 0.787	2455, 4 0, 824	!	CURVES	405 4 0 521	i c	2.00.0		CURVE 6	1352.6 0.644
										. ~-	_	•••	•				•	 						•••			 	_				 	- -		

SPECIFICATION TABLE NO. 296 THERMAL CONDUCTIVITY OF SHAFR + CADMICM + EX,1 ALLOYS

(Ag + Cd $^{\circ}$ 99, 50% or at least one $N_{\rm t} \simeq 0.20\%)$

For Data Reported in Figure and Table No. 296.

Composition (continued), Specifications and Remarks	16.5 Drawn and annealed.
Z Zu	36.5
ı (weight percent Cu	6.6
Composition (weight percent)	50.0 14.0 15.5
ر ک	80.0
Specimen Designation	Easy-Flo Salver solder
Reported Error, "	9.0
Temp, Reported Runge, K. Error, ".	20-200 5.0
Curve Ref. Method Year Tu-	5H1 L 1953 2
Method	1 5H4 L.
	£
, č	-

DATA TABLE NO. 296 THERMAL CONDUCTIVITY OF [SILVER + CADMIUM + LX,] ALLOYS

(Ag + Cd < 99.50% or at least one $X_1 > 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-'K-1]

20 0.126 30 0.126 40 0.167 40 0.243 50 0.275 90 0.275 200 0.600

SPECIFICATION TABLE NO. 297 THERMAL CONDUCTIVITY OF [SILVER + Σ_1] ALLOYS $A_2 + \Sigma_1$

Composition (continued), Specifications and Remarks	National Bureau of Standards' melting-point standard lead used as comparative material.
Composition (weight percent)	99. 4
Name and Specimen Designation	
Reported Error. %	4.0
Temp. Range. K	310-810
Year	1951
Method	37 C
No. No.	i,
Z. 9.	-

DATA TABLE NO. 297 THERMAL CONDUCTIVITY OF [SILVER + Σ_{i}] ALLOYS A_{i} + Σ_{i}

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

¥	CURVE 1						3,805				
-	5	310	367	422	473	533	898	644	200	755	C 2

No graphical , renestation

SPECIFICATION TABLE NO. 298 THERMAL CONDUCTIVITY OF [TANTALUM + MIOBIUM + Σx_1] ALLOYS

(Ta + Nb $<\!99,\,50\%$ or at least one $X_1>0,\,20\%)$

[For Data Reported in Figure and Table No. 298]

Composition (continued), Specifications and Remarks	0.09 0.015 O . 0.0065 N; specimen 2 in. in dia and 1 in. long; density 11.55 g cm ⁻³ ; measured in helium atmosphere; Armed iron used as comparative material.	0.09 0.015 O , 0.0065 N ; the above specimen measured by another method; thermal conductivity values were calculated from the measurement of thormal diffusivity, specific heat and density.
ercent)	7.47	
weight p	7.4	7.47
Composition (weight percent) Ta Nb V C	62, 12 30, 3	30. 3
Compa	62. 12	62, 12 30, 3
Name and Specimen Designation	Ta-30Nb-7.5V	Ta-30Nb-7, 5V
Reported Error, %	#	# #
Curve Sef, Method Year Temp. Reported No. No. Used Year Range, K Error."	583 C 1963 454-1031	1246-2511
Year	1963	1963
Method	U	ō,
ž ž	583	583
Curve No.	-	64

DATA TABLE NO. 298 THERMAL CONDUCTIVITY OF [TANTALUM + NIOBIUM + EX,] ALLOYS

(Ta + Nb < 99, 50% or at least one $X_j>0,\,20\%$)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

688.7 0.355 880.9 0.391 1039.9 0.415

CURVE 1

245.9 0.467 1508.2 0.497 1772 1 0.545 1958.2 0.569 2138.7 0.583 2332.6 0.598 2511.0 0.604

SPECIFICATION TABLE NO. 299 THERMAL CUNDUCTIVITY OF [TANTAL!M + TUNGSTEN + 5X;] ALLOYS

 $\langle \, Ta \, + \, W < 99.50\%$ or at least one $\, X_{i} \geq 0.20\% \rangle$

[For Data Reported in Figure and Table No. 299]

Curve No.	₹. 8.	Method	Year	Curve Ref. Method Year Temp. Reported No. No. Used Yange, K Error. %	Reported Error, %	Name and Specimen Designation	Compositi Ta	Composition (weight percent)	rcent) Hf	Composition (continued), Specifications and Remarks
-	283	ပ	1963	583 C 1963 361-1072 ±4.0	± 4·0	Ta-8W-2Hf	88.79	0.6		0.0041 C, 0.0040 O, 0.0023 N; specimen 2 in. in dis and 1 in. in length; end-ground flat and parallel; density 16.95 g cm ⁻² ; measured in helium atmosphere; Armeo iron used as comparative material.
8	583	۵	1963	1963 1172-2803 ± 4.0	44.0	Ta-3W-2Hf	88.79	9.0	2.3	The above specimen measured by another method.
1 es	849	1	1366	1966 1660-2599		T#: No. 1	Bal	ເກ ໝໍ	5.5	0.0095 C, 0.0012 H and 0.0006 O impurities; specimen 2.2524 cm in dia and 0.332 cm long; heated in high vacuum (10 ⁻⁸ mm Hg) by high frequency induction to 1000-3000 C; localized heating within 0.003 in. of the surface at current frequency of 500000 cps, heat lost only by radiation, the cylindrical surface being assumed isothermal, and the temperature gradient along the radius was analytically correlated to the thermal conductivity; density 16.81 g cm ⁻³ .
4	849	t	1966	1966 1509-2111		Tzz; No. 2	88.9887	8.5	2.5	0.0095 C, 0.0012 H and 0.0006 O impurities; similar to the above specimen.

DATA TABLE NO, 299 THERMAL CONDUCTIVITY OF [TANTALUM + TUNGSTEN + ΣX_{\parallel}] ALLOYS

(Ta + W < 99.50% or at least one $X_i \ge 0.20\%$)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-iK-1]

CURVE 1

361.0 0.433 505.4 0.469 650.9 0.562 949.8 0.569 1072.1 0.597 CURVE 2 1172.1 0.588 1346.5 0.654 1580.4 0.772 2063.7 0.857 2263.7 0.867 2477.5 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.867 2263.7 0.580 2270.5 0.611 2110.5 0.611 2231 0.580 2380 238

Not shown on piot

SPECIFICATION TABLE NO. 300 THERMAL CONDUCTIVITY OF (TELLURIUM + ARSENIC + DX) ALLOYS Te + As + DX,

(Te + As < 99.50% or at least one $X_i > \ 0.20\%)$

Composition (continued), Specifications and Remarks	52 mm dia x 2.5 mm thick; obtained from Servo Corp. of America; ground and polished; electrical resistivity 2.5 x 10^6 ohm cm at room temperature.	Similar to the above specimen except electrical resistivity 2.0×10^6 ohm cm at room temperature.
percent) Se	30	20
Composition (weight percent) Te As Se	30	4 0
Composit	40	40
Name and Specimen Designation	v	œ
Reported Error, %		
Temp. Range. K	313.2	313.2
Year	1963	1563
Method Used		
Ref. No.	1006	1006
Curve No.		¢;

data table no. 300 thermal conductivity of | Tellurium + arsenic + Σx_i | alloys | Te + As + Σx_i

(Te + As < 99, 50% or at least one $X_i \geq 0.20\%$

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

T k

<u>CURVE 1</u>*
313.2 0.00227

<u>CURVE 2</u>*
313.2 0.00220

Carlo Carlo Marie Land

o No graphical presentation

SPECIFICATION TABLE NO. 301. THERMAL CONDUCTIVITY OF (TIN - ANTIMONY - $5X_11$ - ALLOYS

 $(s_n * s_b \circ g_0, s_0 \pi)$ or at least one $X_i \geq 0, s_0 \pi)$

For Data Reported in Figure and Table No. 301

	Composition (continued), Specifications and Remarks					0.14 Fe; specimen machined from a dry sand cast bar,	(this alloy referred to as "white bearing metal).
	ent	£	0.13	:	9.17	-	
	Composition (weight percent)	Sn Sb Cu Pb	23.58 0.13		7, 90. 5, 16		7, 73
	w) HOLLISH	S.	1	;			
FOT DAME IN CONTRACT	Com	Su	9	05.26 0 + .26	X6. 92		x.
CI LOI	par sec.y	Curve Ref. Method Year Range K Error, Specimen Designation		SAE Braring Allov	SAE Bearing Alloy	no. 11	White B. M.
		Keportes Error, 🧓		•	•		< 2.0
		Temp.	1,4	1923 348.2	0.00		350-441
		Year		1923	(60)	1953	1925
		Method	280	224 L		<u>-</u>	نہ
		Ref.	Š.	224		e).	30
		Curve	Š	-		01	n

一种人们是不管的

DATA TABLE NO. 301 THERMAL CONDUCTIVITY OF [TIN + ANTIMONY + Σx_1] ALLOYS

(Sn + Sb $^{\circ}$ 99, 50% or at least one $X_1>0,20\%$)

[Temperature, T, K; Thermal Conductivity, k Watt cm-1K-1]

0.259

348.2

CURVE 3

CURVE 1 349.2 0.385

CURVE 2

0, 293 0, 439 0, 364 0, 393

349.7 370.7 402.7 440.7

SPECIFICATION TABLE NO. 302 THERMAL CONDUCTIVITY OF (TIN + COPPER + ΣX_1) ALLOYS S₁ + Cu + ΣX_1

 $(Sn+Cu)\times 99,\, 50\%$ or at least one $X_{j}\approx 0,\, 20\%)$

Composition (continued), Specifications and Remarks	0.8% Zn; cast.
Name and Conquisition (weight percent) Specimen Designation Sn Cu Ni	51.39 37.86 9.91 0.89.Zn; cast.
Name and Specimen Designation	
Method Year Temp. Reported Used Year Runge, is Error, %	0.2
Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error, %	215 L 1939 373, 473
Year	1939
rve Ref. Method Ye.	r r
Curve Ref. A	1 21

DATA TABLE NO. 302 THERMAL CONDUCTIVITY OF (TIN+ COPPER+ $\pm X_1$) ALLOYS Sn+Cu+ $\pm X_1$

(Sn + Cu <99, 50% or at least one $X_{j} > 0,\,20\%$

(Temperature, T. K; Thermal Conductivity, k, Watt cm 21 K 11)

373, 2 0, 209 673, 2 0, 276

No graphical presentation

The state of the s

SPECIFICATION TABLE NO. 303 THERMAI. CONDUCTIVITY OF [TITANIUM + ALUMINUM + Σx_1] ALLOYS

 $(Ti+A)<99,\,50\%$ or at least one $X_j>0,\,20\%)$

[For Data Reported in Figure and Table No. 303]

Composition (continued), Specifications and Remarks	Nominal composition; specimen in mill-annealed condition; lead used as comparative material.	Nominal composition; formerly designated as RC-130B; in mill-annealed condition.	Nominal composition; in mill-annealed condition.	Nominal composition; in mill-annealed condition.		0.02 C, filt visco, 0.005 H; the alloy produce to state and 1199, 8K for correct or viscosted at 1199, 8K for for the viscosted, aged at 755 K for the viscosted, neasured under viscosted (<10.6 mm Hg).	0.03 C, 0.011 N, 0.0057 H; the alloy produced by Crucible Steel Co.; heat-treated at 1175 K, aged at 769 K for 12 hrs and measured under vacuum (<10.4 mm Hg).	0.2 C, 0.015 N; specimen 4 in. x 0.375 in. x 0.125 in.; supplied by Reactive Metals. Inc.; solution heat-treated at 1200 K for 20 min and aged at 755 K for 4 hrs.; density 4.4 g cm ⁻³	0.2 C, 0.015 N; specimen 10 in. x 0.2 C, 0.015 N; specimen 10 in. x 0.5 in x 0.125 in.; supplied by Reactive Metals in.; Niles, Ohio; Rolution heat-treated at 1200 K for 20 min and aged at 755 K for 4 hrs; density 4.4 g cm ⁻³ .	0.03 C, 0.011 N; specimen 4 in. x 0.125 in.; supplied by Crucible Steel Co. of America, Pittsburg, Penn.; solution heat-treated at 1175 K for 15~30 min and aged at 769 K for 12 hrs:
Compos Specification	Nominal compo mill-anneal as compara	Nominal composited as RC condition.	Nominal compo	Nominal compa condition.	0.5 St.	0.02 C., f. ii produce: b. Corr : b. ii 20 n.u. for 4 iii : am under vacuu	0.03 C, 0.011 N, produced by Criheat-treated at for 12 hrs and r (<10 -6 mm Hg).	0.2 C, 0.015 N; speci x 0.125 in.; supplie Inc.; solution heat- 20 min and aged at Gensity 4.4 g cm ⁻³	0.2 C. 0.015 N; specii 0.5 in x 0.125 in.; Reactive Metals inc solution heat-freak 20 min and aged at density 4.4 g cm ⁻¹ .	0.03 C, 0.011 0.125 in.; s Co. of Ame solution hea
Mn		4.0								
Sr.	2. 5									
percer Mo				1.2			3, 0			3.0
Compositions weight percent) V Cr Fe Mo				1. 5		0.15	0. 10	0.15	0,15	0.10
osition Cr				1.4						
Comp			4 .			3. 87	1.0	3.87	3.87	
	9.0	,	б. 0	0.0	7.0	5. 89	4.	5.89	5.39	1.0
Ē	Bal.	Bal.	B£1.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
Name and Specimen Designation	A-110 AT	C-130 AM	Ti-6Al-4V	Ti-155A		6Al-4V	4A!-3M0-1V	6Al-4V	6Al-4V	4Al-3Mo-1V
Reported Error, %	ia V	ა V	ာ V	S V		ss स	ده ۱۱			
Temp. Range, K	311-811	311-811	311-811	311-813	408.2	23-299	25-300	22-294	422-922	22-294
Year	1958	1958	1958	1958	1956	1963	1963	1962	1962	1962
Method Used	ပ	v	ပ	ပ		ı	- 1	ul	-J	ı
Ref.	231	231	231	231	555	931	831	939	939	623
Curve No.	1	64	m	•	S	ø	~	20	თ	10

SPECIFICATION TABLE NO. 303 (continued)

Composition (continued), Specifications and Remarks	0.03 C, 0.011 N, specimen 10 in. x 0.5 in. x 0.125 in.; supplied by Crucible Steel Co. of America. Pittsburg. Penn.; solution heattreated at 1175 K for 15-30 min and aged at 769 K for 12 brs; density 4.51 g cm ⁻³ .
W	
rt) Ån	
t perce Mo	3.0
Composition(weight percent) V Cr Fe Mo S	0.10 3.0
positior Cr	
Com	1.0
₹	ਦ ਦ
Ë	E E
Name and Composition(weight percent) Specimen Designation Ti Al V Cr Fc Mo Sn Mn	4Al-3Mo-1V Bal. 4.4 1.0
Reported Error, %	
Temp. F	1962 422-922
Year	1962
Method	ה
Curve Ref.	939
Curv.	=

DATA TABLE NO. 303 THERMAL CONDUCTIVITY OF [TITANIUM + ALUMINUM + Σx_i] ALLOYS

 $(T_i + \Lambda I < 99, 50\%$ or at least one $X_i > 0, 20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

×	CURVE 11 (cont.)	0.156	0.170	0.185	0. 197	0. 204	0. 206																																				
-	CURVE	644	200	755	811	867	922																																				
4	CURVE 7 (cont.)*	0.0720	0.0814	0.0843	0.0846		VE 8		0.0137	0.0156	0.0348	0.0575	9.0618	0.0751		VE 9		0. 095	0. 106	0.118	0.128	0.140	0.151	0.163	0.173		0.196		E 10		0.0125	0.0142	0.0382	0.0656	0.0703	0. 0A32		/E 11		0.106	0.119	0. 130	0.142
4	CURVE	224.67	283, 09	300, 45	300, 45		CURVE		22	25	738	194	219	5 87	1	CURVE		422	478	533	583	644	700	755	811	867	922		CURVE 10		22	22	78	3	219	294		CURVE 11		422	478	533	685
¥	(cont.)	0.0958*	0. 101°	0. 107	0.113	0.120°	0.128	0.1384		Έ 5		0.0862		9 2	: :	0.0146	0.0156	0.0154	0.0155	0.010	0.0160	0. 0358	9, 0359	0.0359	0.0594	0.0611	0.0621	0.0725	0.0720	0.0766		CURVE 7*		0.0133	0.0132	0.0131	0.0138	0.0136	6.0150	0.0400	0, 0394	0.0674	0.0721
-	CURVE 4 (cont.)	477.00	533.00	589, 00	644.00	700.06	755.00	811.00		CURVE		408.2		CURVE 6	•	23, 39	24. 17	24, 64	24.64	25.40	25.42	81, 90	81.90	82.06	205, 55	215, 83	219, 02	281, 76	24.2. 10	259, 38		CURY		25, 38	23.60	23. 63	24, 38	24.51	25.17	92. 17	82, 23	208. 73	99 A 69
×	<u>/E 1</u>	0.0782	0, 0: 37	0, 0, 00	0.058	0, 1(2)	0, 1088	0. 110	0. 17:	0.10	0.1:8		/E 2	; 	86 50	0.0 70	0.0837	0.08	0.087	0. 1' 58	=	0.1.2	0.1.1	0.140		/E 3		0.07.18	0.02:0	0.0820	0. 0FET	0.0953	0.104	0.112	0.119	0. 127	v. 135		VE 4		0.0623	0.0866	*******
-	CURVE	311.00	366, 00	422, 00	477, 90	533, 00		644.00		755.00	811.00		CURVE		311, 00		422.00		533, 00	589.00	644.00	700.00	755.00	811.00		CURVE		311.00	366. 00	422.00	477.00	533, 00	589, 00	644. 00	700, 00	755, 90	811.00		CURVE		311.00	366.00	422 00

Not shown on plot

经济理局的对于1000年,

SPECIFICATION TABLE NO. 304 THERMAL CONDUCTIVITY OF (TITANIUM + CHROMIUM + ΣX_1) ALLOYS

 $\left\langle \, T_1 + C_T < 99.50\% \,\, \text{or at least one} \,\, X_{\frac{1}{1}} > 0.20\% \, \right\rangle$

(For Data Reported in Figure and Table No. 304)

arks		pua	pplied	pplied
Composition (continued), Specifications and Remarks		0.02 N, and trace O $% = 1000 \mathrm{M}_{\odot}$ s mm in dia and 72 mm long .	0.076 N, 0.0092 H; specimen 0.75 in. in dia; supplied by Watertown Arsen'al.	0.032 N, 0.0077 H; specimen 0.75 in. in dia; supplied by Waterfown Arsental.
	٥		0.05	0.02
	Mo			2.10
Composition (weight percent)	Ti Cr Fe O Mo C		0.105	96.3 3.38 0.13 0.131 2.10 0.02
(weight	Fc	1.3	1.4	0.13
nposition	Cr	96.2 2.8 1.3	95.65 2.71 1.4 0.105	3,38
Cor	Ţ	96.2	95.65	96.3
Name and	Specimen Designation	Ti 150A	Ti 150A(2)	Cr-Mo
Reported	Error, %	5-10	0,5	10
Temp.	Range, K Error, %	87-278	364-705	382-615
	Year	1961	1956	1956
N.thod	Used Year	1	1	ų
Bef	No. No.	119,	718 340	340
1	Š.	-	2	က

state is seen to be to the standard and the constitution of the standard the standa

Section of the second section of the second

THE PARTY OF THE PARTY OF

0.163 0.173 0.168 0.175 0.164

381.8 383.2 387.3 426.2 434.6

CURVE 3

DATA TABLE NO. 304 THERMAL CONDUCTIVITY OF [TITANIUM + CHROMIUM + ΣX_1] ALLOYS

 $\left(.T_{l}+C_{T}<99.50\% \text{ or at least one }X_{j}>0.20\% \right)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

¥ .	CURVE 3 (cont.)	2.8	0.7 0.1	₹	=	=	91.	16	.8 0.17	.2 0.1	.6 0.1	1.0 0.1	8.7 0.1	0.1 0.16	514.6 0.165																		
T	CURVE 1	96	0.10	278 0.131		CURVE 2		363.7 0,152	69.3 0.14	70.	406.8 0.147	412.3 0.138	6 0.15	419.3 0.142	.2 0.14	.1 0.15	14	.6 0.1	. 15	.9 0.13	4 0.15	6 0.16	2.9 0.1	- 0	.0 0.	1 0.14	4.	.2 0.1	.7 0.13	9.	.1 0.14	00.7 0.1	704.6 0.161

THE STATE OF

SPECIFICATION TABLE NO. 305 THERMAL CONDUCTIVITY OF (TITANIUM + IRON + Σx_i) ALLOYS

(Ti + Fe < 99, 50% or at least one $X_1 > 0, 20\%$)

[For Data Reported in Figure and Table No. 305]

Curve Red. Method Year Temp. Reported Name and Name and No. Used Composition (weight percent) 1 231 C 1958 311-811 < 5 Ti-140A \$3.7 2.2 2.1 2.0 2 204 L 1937 327.4 Russian 45 34 13.5 7.5		Composition (continued). Specifications and Remarks		Specimen in a mill-annealed condition; measured in vacuum of ~ 2 x 10 ⁻⁵ m m Hg; electrical resistivity 78, 86, 95, 103, 111, 119, 125, 132, 138 and 143 µohm cm at 311, 366, 422, 477, 533, 589, 644, 700, 755 and 811 K respectively. Lead used as comparative material.	7.5 Average composition of analysis.
1 1 4			_		t-
1 1 4		rcent)	Ĭ	5.0	
1 1 4		veight pe	Cr	2. 1	
1 1 4	•	sition (v	ပ		13.5
1 1 4		Compo	Fc	8	క
Curve Red. Method Year Range, K Error, % Specimen Designation. 1 231 C 1958 311-81! < 5 Ti-140A 2 204 L 1937 327.4 Russian ferrocarbontitanium	•		Ē	53.7	45
Curve Red. Method Year Range, K Error, % 1 231 C 1958 311-81! <5 2 204 L 1937 327.4 fe		Name and	opecimen Designation		Russian rrocarbontitanium
Curve Red. Method Year Temp. 1 231 C 1958 311-811 2 204 L 1937 327.4		Reported	E.F.O.	\$ ∨	J.
Curve Red. Method Year No. Used 1958 1 231 C 1958 2 204 L 1937		Temp.	nadige, n	311-811	327.4
Curve Red. Method No. No. Used 1 231 C 2 204 L		Year		1958	1937
Curve Ref. No. No. 1 231		Method	280	၁	ı
Curve No.		Ref.	į	231	204
		Curve	2		61

data table no. 305 thermal conductivity of (titanium + iron + $\Sigma X_1^{}$) alloys

 $(T_1 + Fe < 99.50\%$ or at least one $X_1 \times 0.20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watts cm-1K-1]

CURVE 1

0.119 0.123 0.126 0.130 0.134 0.139 0.145 0.151 311.00 366.00 422.00 477.00 533.00 589.00 644.00 700.00 755.00

0.248 CURVE 2

327.4

SPECIFICATION TABLE NO. 306 THERMAL CONDUCTIVITY OF [TITANBLM + MANGANESE + ΣX_1] ALLOYS

 $\left(T_1+Mn\leq 99,50\% \text{ or at least one } X_1\geq 0,20\% \right)$

[For Data Reported in Figure and Table No. 306.]

Composition (continued), Specifications and Remarks			
it)	ن		0.14
Composition (weight percent)	F		3.99 0.14
nuposition	Mn		91.17 4.7
ŭ	Ţ		91.17
Name and	7. Specimen Designation		RC-1308
Reported	No No Used Year Range, K Error, %		10.0
Temp.	Range, K		1953 17-278
-	Year		1953
Motho	Land		1 65 L
300	2	? .	15
	<u> </u>	!	-

THERMAL CONDUCTIVITY OF [TITANILM + MANGANESE + Σx_1] ALLOYS DATA TABLE NO. 306

 $(T_1+Mn\leq 95,50\%$ or at least one $N_1\geq 0-0\%)$

[Temperature, T. K. Thermal Conductivity, k. Watt cm⁻¹K⁻¹.]

CURVE 1

0.0142 0.0130 0.0201 0.0339 0.0450 0.0450 0.0551 0.0551 0.0595 17,15 19,91 23,35 23,40 42,37 42,37 65,25 19,76 10,00 141,20 141,30 274,00

SPECIFICATION TABLE NO. 307 THERMAL CONDUCTIVITY OF [TITANIUM + VANADIUM + ΣX_i] ALLOYS

 $(Ti+V+\Sigma X_i \leq 99.50\%$ or at least one $X_i \geq 0.20\%)$

[For Data Reported in Figure and Table No. 307

ration was a market and the second and a statement of the second

	Composition (continued), Specifications and Remarks	Solution heat-treated at 1061 K for 20 min, atr-cooled; aged at 755.4 K for 60 brs. a ir-cooled; neasurements done in high vacuum (<10 ⁻⁵ mm ligh; specimen produced by Crucible Steel Co.	Solution heat-treated at 1038.7 K for 30 min; aged at 805.4 K for 4 hrs; measurements done in high vacuum (< 10 ⁻⁵ mm Hg); specimen produced by Mailory-Sharon Metals Corporation.	Specimen 4 x 0.375 x 0.125 in.; supplied by Crucible Steel Co. of Americs; solution heat- treated at 1061 K for 20 min and agod at 755 K for 60 hre; density 4.82 g cm ⁻³ .	Specimen 10 x 0.5 x 0.125 in.; supplied by Crucible Steel Co. of America; solution heat- treated at 1061 K for 20 min and aged at 755 K for 60 hrs; density 4.62 g cm ⁻³ .	Specimen 4 x 0.375 x 0.125 in.; supplied by Reactive Metals, Inc.; solution heat-treated at 1039 K for 30 min and aged at 805 K for 4 hrs; density 4.65 g cm ⁻³ .	Specimen 10 x 0.5 x 0.125 in.; supplied by Reactive Metals, Inc.; solution heat-treated at 1039 K for 30 min and aged at 905 K for 4 hrs; density 4.65 g cm ⁻³ .
	×	0.0114	0.0066				
	N ₂	0.025	0.018	0.025	0.025	0.015	0 0 0 0 0
	cent)	0.04	0.03	0.04	0.04	0.3	e
~	ght perc	0.25	0.21	0.25	0.25	0.21	0.21
No. 307	Composition(weight percent)	10.4		10.4	10.4		
nd Table	omposit Al	. e.	2.75	က က	င်း	5. 5.	۶ .
igure an	>	13.9	14.95 2.75	93.9	13.9	14.95	14.95 2.75
rted in F	Ţi	Bal	Rai				
thor Data Reported in Figure and Table No.	Name and Specimen Designation	13V-21Cr-3AI	2.5Al-16V	129VCA	120 VCA	2.5Al-16V	2.5Al-16V
	Reported Error, "	√) +(s. +				
	Temp. Runge, K	24-297	24-301	#62-27	-925	2 2-29 4	4 22 - 922
	Year	1963	1963	2961	200	84 50	296. 1
	Method	n.		ـ د		, د	4
	Ref	831	331 000 000	3	3		
	Curve No.	-	rı e	, .	, r	າ ຢູ	

data table no. 307 thermal conductivity of [titanium + vanadium + Σ_{i}] alloys

(Ti + V < 99, 50% or at least one $\rm N_1 > 0, 20\%$

[Temperature, T, K; Thermal Conductivity, k, Wast em-1 K-1]

CUBVE 4		0	ö	Su3 0, 135	539 0. 147	644 0, 159			-	ó	867 0.209	922 0. 221		CURVES		Ö	25 0,0107	Ö	194 0.0633	219 0.0696	294 0.0869		CURVE 6		~	0, 13	0, 13	9.14	0.1	0.1	0.7	ó	922 0.221								
1 150	CONVE	23, 89 0, 0092	16	¥	; -	,	, d	37 0.	52.06 0.0294	212, 78 0, 0590	8	96	c	3	CURVE 2		23, 90 0, 0098	92	38	41 0.	02	90	37 0.	40 0.	67, 33 0, 02814	81, 59 0, 0327*	.65 0.	212,70 0.0673	.92 0.	19	. 12 0.	30L 13 0,0891	CURVE 3	22 0.0080	25 0.0107	; c	;	194 0.0353	si q	294 0, 0736	

Not shown on plot

SPECIFICATION TABLE NO. 308 THERMAL CONDUCTIVITY OF [TITANIUM + ΣX_j] Alloys Ti + ΣX_j

Specifications and Remarks	
Composition (weight percent). Specifications and Remarks Composition unknown.	
Reported Name and Error, % Specimen Designation 10.0 Tri 150A(1)	
Reported Error, %	
Temp. Reported Range, K Error. % 418-927 10.0	
Year 1956	
Method Used	
No Ref.	
Curve Ref.	

DATA TABLE NO. 308 THERMAL CONDUCTIVITY OF [TITANIUM + ΣX_1] ALLOYS Ti + ΣX_1

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

¥	1 (cont.)*	0, 163 0, 174 0, 174
۲	CURVE 1 (cont	917.9 926.8 926.8
.	VE 1*	0.166 0.169 0.171 0.171 0.163 0.167 0.168 0.168 0.168 0.168 0.169 0.175
H	CURVE	418. 44 421. 2 493. 4 497. 1 516. 5 524. 8 524. 8 621. 2 653. 4 653. 4 663. 7 746. 2

* No graphical presentation

THE WASHINGTON

SPECIFICATION TABLE NO. 309 THERMAL CONDUCTIVITY OF [TUNGSTEN + IRON + $\Sigma_{i,j}$] ALLOYS W + Fe + $\Sigma_{i,j}$

Control of the Contro

(W + Fe < 99, 50% or at least one $X_{\rm i}$ >0.20%)

Composition (continued), Specifications and Remarks			
Composition (weight percent)	W Fe C	86.00	80. 5 14. 04
	Reported Name and Error, % Specimen Designation		Ferrotungsten, 32
	Curve Ref. Method Year Temp. Repo		1 204 L 1937 340.7

DATA TABLE NO. 309 THERMAL CONDUCTIVITY OF (TUNGSTEN + IRON + ΣX_j) ALLOYS W + Fe + ΣX_j

(W+Fe<99,50% or at least one $X_1>0,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

340.7 0.468

SPECIFICATION TABLE NO. 310 THERMAL CONDUCTIVITY OF [TUNGSTEN + NICKEL + EX,] ALLOYS

(W + Ni < 99, 50% or at least one $X_1 > 0.20\%$

[For Data Reported in Figure and Table No. 310]

2	P. F.	Method		Reported	Name and	J	Composition (weight percent)	veight percen	ıt)	Composition (continued), Specifications and Remarks
Š	9	No. No. Used Year	Range, K E	Error, %	Specimen Designation	≱	ž	Cn	B	
							,			
-	595		1961 422-1144			90	٥	•		
		1391	400-1144			90.4	6.3	2.0	0.15	
7	282		1111-771						•	
e	595	1961	1961 422-1144			90.4	6.3	2.0	0.15	

the Title of the

TANKS VIEW

THERMAL CONDUCTIVITY OF [TUNGSTEN + NICKEL + Σx_i] ALLOYS (W + Ni < 99, 50% or at least one $X_i > 0.20\%$) DATA TABLE NO. 310

[Temperature, T, K, Thermal Conductivity, k, Watt cm-1K-1]

(=

0.790 0.790 0.790 0.787 0.787 0.786 0.786 CURVE 1 422.1 477.6 586.7 699.8 810.9 922.1 1033.2

0.753 0.748 0.741 0.738 0.729 0.729 CURVE 2 422.1 477.6 588.7 699.8 810.9 922.1 1033.2

0.701 0.697 0.675 0.673 0.667 0.665 0.665 CURVE 3 422.1 477.6 588.7 699.8 810.9 922.1 1033.2

THERMAL CONDUCTIVITY OF URANIUM + MOLYBDENUM+EX; ALLOYS

FIGURE SHOWS ONLY & OF THE CURVES REPORTED IN TABLE

Ma<99.50%, or at least one X; > 0.20%]

THERMAL CONDUCTIVITY, Wett cm" K"

TEMPERATURE, K

SPECIFICATION TABLE NO. 311 THERMAL CONDUCTIVITY OF [URANIUM + MOLYBDENUM + ΣX_i] ALLOYS

 $(U+M_{\rm 2}<99,50\%$ or at least one $X_1>0,20\%)$

[For Data Reported in Figure and Table No. 311]

Specifications and Remarks	Composition from the composition of the composition	a see the ensemble 15 cm long and 2 cm in dia; mell in	0.000 No. special into a water-cooled copper mold; vacuum and cast into a water-cooled copper mold; Incone used as comparative material.	0.006 Nb; the above specimen used Armoo iron as comparative material.	Melt and cast; forged at 870 C, rolled from a helium atmos-	phere furnace at 675 C then machined; increases vacuum of $\sim 1 \times 10^{-6}$ mm Hg.	Ö,	o one of 017 Mb cast: Armeo from used as comparative material.		a 118 0.02 Nb; cast; Armeo iron used as comparative material.	
	Zu	2	5	0.04	0.10		0, 063	900	0. 630	811.0	i
	æ	1	0. 12	0.12	2	; ;	0.136	6		000	
190000	Composition (weight percent) Mo Ru Rh		0. 16	0.16	30	?	0.195 0.136	•	c. 415		ر ب
	n (weight Ru		1. 2	1.2		T: 33	98		3. 12		4. 00
	apositio Mo		ت. ع	i. s	,	.; %	ę,	} i	3, 73		4. 63
	Con U		96, 974 1. 5	96, 974 1. 5		94.95	90 6 323 30	e e	92, 342 3, 73		90, 334 4, 63
	Name and Specimen	Designation	U-3% FS alloy	U-3% FS alloy		Fissium-type alloy	;	casting No. 870	U-8% FS alloy;	casting No. 743	U-10% FS alloy; casting No. 744
	eported	0, 1, 1, 1	-	4				4	4		4
	Curve Ref. Method year Temp. Reported	Kange, n r	1959 473-923	1050 493-948	2	293-1173 ±5		1961 373-1023	413-973		1961 373-973
	Year		1959	9:01	n cont	1956		1961	1001	167	1961
	Method	Used	၁	¢	د	Ħ		ပ	;	<u>ن</u>	ပ
	<u>ي</u>	Ŋ.	1 217	;	217	538		421		421	421
	Curve	Š	-	,	c1	ო		4		လ	9

DATA TABLE NO. 311 THERMAL CONDUCTIVITY OF [URANIUM + MOLYBDENUM + EX,] A LLOYS

 $(U+Mo<99,\,50\%$ or at least one $X_{j}>0,\,20\%)$

[Temperature, T, K; Thermal Conductivity, k. Watt cm-! K-]

74	CURVE 5 (cont.)	0, 230 0, 243 0, 259 0, 277 0, 291	0.312 0.337 0.364 VE 6	~	0, 221 0, 226 0, 238 0, 258 0, 268 0, 322 0, 322
F	CURVE	623. 2 673. 2 723. 2 773. 2 823. 2	873.2 0 923.2 0 973.2 0	273. 2 473. 2 473. 2 523. 2 573. 2	6 6 2 3 3 4 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
**	2 (cont.)	0, 347* 0, 356 0, 368 0, 402	VE 3 0, 110 0, 148 0, 165		0. 261 0. 261 0. 202 0. 215 0. 225 0. 232 0. 230 0. 332 0. 347 0. 360 0. 389 0. 389 0. 389 0. 167 0. 167 0. 167 0. 167 0. 167 0. 167
H	CURVE 2 (cont	623. 2 848. 2 873. 2 948. 2	293.2 0 373.2 0 473.2 0	473.2 573.2 673.2 773.2 973.2 1073.2	CURVE 373.2 423.2 473.2 623.2 673.2
- ¥	VE 1	0, 230 0, 247 0, 255 0, 272 0, 293	0, 289 0, 301 0, 310 0, 314 0, 322		VE 2 0. 234 0. 247 0. 243 0. 255 0. 255 0. 259 0. 259 0. 285 0. 310 0. 310 0. 310 0. 310
H	CURVE	473. 2 523. 2 523. 2 573. 2 623. 2	623. 2 673. 2 673. 2 723. 2	723.2 773.2 823.2 873.2 873.2 873.2 873.2	623.2 623.2 573.2 623.2 623.2 623.2 623.2 623.2 623.2 623.2 623.2 673.2

^{*} Not shown on plot

A Comment of the Comment of the control of the cont

SPECIFICATION TABLE NO. 312 THERMAL CONDUCTIVITY OF [URANIUM + ZIRCONIUM + Σ_{X_1}] ALLOYS U + Z_7 + Σ_{X_1}

 $(U+Zr\leq 99,50\%$ or at least one $X_1>0,20\%)$

Con e ition (continued), Specifications and Remarks	0. 135 Pd. 0. 189 Kh, 1.76 Ru; specimen 2 cm in dia and 15 cm long; machined from the cast ingot prepared by vacuum induction melting of binary alloys of uranium with fission elements in the form of buttons (prepared by arc melting) in thoria -coated graphite crucible, and then bottom pouring into a water-cooled copper mold at approx 1200 C; measured in vacuum; Armeo iron used as comparative material.
percent) No	0.01
Composition (weight percent) Zr Mo No	1. 85
Compositi	2, 54
Name and Specimen Designation	U-5 W/O Fe alloy; caeting No. 896
1 1	
Surve Rof. Method Year Temp. Reported No. No. Used Year Range, K Error, %	423-973
Year	1961
Method	421 C
Ref.	421
Curve No.	п

DATA TABLE NO. 312 THERMAL CONDUCTIVITY OF [URANIUM + ZIRCONIUM + $\Sigma\chi_1^1$] ALLOYS U + Zr + $\Sigma\chi_1$

 $(U + 2r < 95, 50\% \ or \ at least one \ X_i > 0, 20\%)$

CURVE I

423.2 0.211 448.2 0.226 473.2 0.228 523.2 0.243 573.2 0.253 673.2 0.253 673.2 0.265 673.2 0.279 773.2 0.209 773.2 0.303 798.2 0.326 823.2 0.335 948.2 0.333 948.2 0.333 No graphical presentation

SPECIFICATION TABLE NO. 313 THERMAL CONDUCTIVITY OF [ZINC + ALUMINUM + $\Sigma x_{i,j}$ ALLOYS $-\Sigma_n + AI + \Sigma X_{i,j}$

(2n+A)<99,50% or at least one $X_1 \ge 0,20\%)$

Composition (continued), Specifications and Remarks	0.008 Fc, 0.042 Mg, 0.024 Si, trace Bi, Cd, Pb, Sn and Tl.	0.010 Fe, 0.043 Mg, 0.022 Si, trace Bi, Cd, Pb, Sn and Tl.
percent) Cu	0.87	2.71
ın (weight Al	95, 18 3, 90 0, 87	4 . 88
Composition (weight percent) Zn Al Cu	95. 18	92.33 4.88
Name and Specimen Designation	Zamak Nr410	Zamak Nr430
Reported Error, %	± 1.0	± 1.0
Temp. Range, K	293-353	293-353
Ref. Method Year No. Ured	# L 1958	#F 1958
Methoc Ured	#	
No.	17	17
Curve No.	-	8

DATA TABLE NO. 313 THERMAL CONDUCTIVITY OF [ZINC + ALUMINUM + Σ_{k_1}] ALLOYS $z_n + Al + \Sigma_{k_1}$

 $\left(Z_{D}+Al<99,50\% \text{ or at least (me }X_{1}>0,20\% \right)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1,

¥	* I	1. 13 1. 14 1. 15	μ ω	1, 12
-	CURVE	293. 2 323. 2 353. 2	CURVE	323.2

SPECIFICATION TABLE NO. 314 THERMAL CONDUCTIVITY OF ZINC + LEAD + SX, ALLOYS Zn + Pb + EX,

 $(Z_{R}+P_{D}\otimes 99,50^{\sigma_{2}}\ \mathrm{or}\ \mathrm{at\ least\ one\ }N_{1}\otimes 9,20^{\sigma_{2}})$

6.4	Composition (continued), Specifications and Remarks			מ' בנו לים, יי סט דיני
	Composition (weight percent)	Zn Pb Cd		98,6 1.1 0.03
	Reported Name and	Specimen Designation		Commercial zine; Zn 1
	ı	No No. Used Year Range, K Error, "		1 72 E 1500 291, 373

DATA TABLE NO. 314 THERMAL CONDUCTIVITY OF [ZINC + LEAD + Σ_k] ALLOYS $\mathbb{Z}_n + \mathbb{P}^b + \Sigma_k$

 $(Zn+Pb\!<\!99,50\%$ or at least one $X_1\!>\!0,20\%)$

[Temperature, T, K; Thermal Combutivity, k, Watt cm-1K-1]

T k

291. 2 1. 115 373. 2 1. 108

SPECIFICATION TABLE NO. 315 THERMAL CONDUCTIVITY OF [ZIRCONUM + ALUMINUM + Σ_{k_1}] ALLOYS $Z_r + AI + \Sigma_{k_1}$

(2r+Al+99,50% or at least one $X_1>0,20\%)$

Semarks	Composition (continued), operations	and a supplemental of a supplemental completions of the supple	Propared from reactors as the medium; cast into 6 in. dia, 35 ib ingola, and hard-method to 0.125 in. strip then vacuum annealed at 788 C for 24 hrs.	Similar to the above specimen.	Similar to the above specimen.
	Composition (weight percent) Al Mo Sa		1,5 1,5 1,5	3.0 1.5	3.0
	Name and Specimen Designation				
	Reported From ".				
	Temp. Reported	, Sugar	747-86		696 -871 72%-869
	Year		1960		1960
	Ref. Method Vear	200	æ		& &
	Ref.	Ž	95.6		956 956
	Curve	è Ž	-		64 M

DATA TABLE NO. 315 THERIAL CONDUCTIVITY OF [ZIRCONIUM + ALUMINUM + ΣX_1] ALLOYS $2r + Al + \Sigma X_1$

(Zr+Al+99,50% or at least one $N_{\rm i}>0,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

¥	CURVE 3	0.140	0. 14	0. 147	0.151	0, 159					
۲	CUR	728	760	792	825	465					
צ	CLRVE 1*	0. 166	9 Te	0, 171	0.185		CURVE 2	6, 125	0.128	0, 137	0. 144
۲	5	747	761	408	86.8) }	5	969	740	920	118

Į.,

No graphical presentation

SFECIFICATION TABLE NO. 316 THERMAL CONDUCTIVITY OF (ZIRCONIUM + HAFNIUM + 5x,) ALLOYS

The second secon

 $(3r + Hf < 99, 50\% \text{ or at least one } X_1 > 0, 20\%)$

[For Data Reported in Figure and Table No. 316]

Curve No.	Kef.	Method Used	Yesr	Temp. Range, K	Reported Ermr, %	Name and Specimen Designation	Composi Zr	Composition (weight percent) Zr Hf C	ercent) C	Composition (continued), Specifications and Remarks
	441		1957	340-863			93, 73	0.97	9.3	Electrical resistivity 62.1, 69.4, 77.5, 89.3, 97.1, 101.0, 108.6, 113.6, 123.4, and 128.2 µ ohm cm at 65.3, 110.5, 165.1, 237.3, 292.8, 236.3, 403.0, 457.6, 546.0, and 589.5 C. respectively.

DATA TABLE NO. 316 THERMAL CONDUCTIVITY OF [ZIRCONIUM + HAFNIUM + ΣX_1] ALLOYS

 $(Zr + Hf < 99, 50\% \ or \ at least one \ X_1 > 6, 20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

0, 194 0, 185 0, 185 0, 185 0, 185 0, 196 0, 196 0, 198 0, 196 339.5 383.7 438.3 510.5 566.0 603.5 676.2 730.8 819.2

SPECIFICATION TABLE NO. 317 THERMAL CONDUCTIVITY OF [ZIRCONIUM + MOLYBDENUM + Σ_{i}] ALLOYS $Z_{i} + M_{0} + \Sigma_{i}$

(2r + Mo - 99, 50% or at least one X > 9, 20%)

Composition (continued), Specifications and Remarks	Prepared from reactor-grade Zr sponge by double-arc melting; cast into 6 in. dia, 35 lb ingots; hard-rolled to 0.125 in. strip then vacuum annealed at 1061 K for 24 brs.
Composition (weight percent)	1. 5
ion (weight	1.5 1.5
Composit	1, 5
Name and Specimen Designation	
Reported Srror, %	
Temp. Range, K	747-868
Year	1960
Surve Ref. Method Year No. No. Used	æ
Ref.	956
Curve No.	-

DATA TABLE NO. 317 THERMAL CONDUCTIVITY OF [ZIRCONIUM + MOLYBDENUM + ΣX_j] ALLOYS $Zr + Mo + \Sigma X_j$

 $(2r+Mo<99,\,50\%$ or at least one $N_{j}>0,\,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K -1]

T k
CURVE 1*
747 0.166
761 0.168
608 0.173
868 0.185

*
No graphical presentation

SPECIFICATION TABLE NO. 318 THERMAL CONDUCTIVITY OF (ZIRCONIUM + TANTALUM + $\mathfrak{T}X_1$) ALLOYS

(2r + Ta < 99, 50% or at least one $X_i > 0.20\%$)

(For Date Reported in Figure and 11e No. 318)

	Composition (continued), Specifications and Remarks		Electrical resistivity 58.4, 66.2, 79.3, 92.5, 100.2, 106.3, 113.6, 119.0, 126.5, and 129.8 μ ohm cm at 70.5, 114.0, 192.0, 294.8, 259.8, 422.0, 479.8, 835.8, 635.0, and 697 C respectively.
		HŁ	0.97
	Composition (weight percent)	ပ	0.3
	osition (we	H E	0.98 0.3
	Comp	Zr	97.75
4	Name and	Specimen Designation	
	Reported		
	Temp	Range, K Error, %	344-970
		Year	1957
	Mothod	No. No. Used	i la
	٥	ž	7
		Ž Ž	-

DATA TABLE NO. 318 THERMAL CONDUCTIVITY OF [ZIRCONIUM + TANTALLIM + EX;] ALLOYS

(Zr+Ta<99,50% or at least one $X_j>0,20\%)$

(Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1)

CURVE 1

343.7 0.1925
387.2 0.1971
465.2 0.1962
568 0.2100
633.0 0.2104
695.2 0.2264
753.0 0.2267
908.2 0.2267
908.2 0.2464
970.2 0.2628

SPECIFICATION TABLE NO. 319 THERMAL CONDUCTIVITY OF (ZIRCONTUM + TIN + $\Sigma X_{[1]}$ ALLOYS (Zr + Sn < 39.50% or at least one $X_{[1]}$ >0.20%)

[For Data Reported in Figure and Table No. 319]

Composition (continued), Specifications and Remarks	014 Ti.	1.5 Mo; prepared from reactor-grade 2r sponge by double-arc melting; cast into 6 in. dia, 35 lb ingots; hard-rolled to 0.125 in. strip, then vacuum annealed at 878 C for 24 hrs.	Prepared from reactor-grade Zr sponge by double-arc melting; cast into 6 in. dla, 35 lb ingots; hard- rolled to 0.125 in. strip, then vacuum annealed at 878 C for 24 hrs.	Similar to the above specimen.
	4.95 0.009 0.0125 0.235 0.024 0.0075 0.9055 0.014 Ti.	-	ρi	ζ.
, X	75 0.0			
Composition (weight percent) Sn Al C Fe HI N Ni	1 0.00			
rcent) Hf	0.024			
eight pe Fe	5 0,235			
ition(w	0.012			
Composition(weight percent)	0.009	1.5	3,0	1.5
Sn	4.95	1.5 1.5	3.0	3.0 1.5
Zr	Bal.	Bal.	Bal.	Bal.
Name and Specimen Designation				
Reported Error, %	±3.0			
Temp. Reported Range, K Error, %	298-573	747-868	728-869	716-875
Year	1921	1960	1960	1960
Method Used	ပ	œ	æ	æ
Curve Ref. No. No.	442	926	956	926
Curve No.	4	N	м	4

DATA TABLE NO. 319 THERMAL CONDUCTIVITY OF (ZIRCONIUM + TIN + Σ_{k_1}) ALLOYS

 $(Zr + Sn \leq 99, 50\%$ or at least one $X_1 \geq 0, 20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

Ļ

0, 096 0, 098 0, 101 0, 104 0, 105 0, 108 0, 112 0, 116 295.2 373.2 373.2 415.2 473.2 523.2 573.2

0.140 0.144 0.147 0.151 0.159 728 760 792 825 869

CURVE 3

1 | In the state of the state o

SPECIFICATION TABLE NO. 320 THERMAL CONDUCTIVITY OF [ZIRCONTUM + URANIUM + $\Sigma_{i,j}$] ALLOYS $Z_{i} + U + \Sigma_{i,j}$ $(Z_T+U<99,\,50\%$ or at least one $X_1>0,\,20\%)$

Composition (continued), Specifications and Remarks	0.09 Cr, 0.125 Fe, 0.013 N ₂ , 0.027 N ₁ , and 1.33 Sn; are-melted, forged, and rolled at 871 C.
Composition (weight percent) Zr U B	Bal 4.34 9.04
Name and Specimen Designation	513
d Year Range, K Error,%	1953 323-673
Ref. Method	27 C
Curve I	-

THERMAL CONDUCTIVITY OF [ZIRCONIUM + UPANIUM + Σ_{K_1}] ALLOYS $Zr + U + \Sigma_{K_1}$ DATA TABLE NO. 320

(Zr+U<99,50% or at least one $X_1>0,20\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K-1]

T K

CURVE 1

223.20 0.145
373.20 0.141
473.20 0.137
523.20 0.137
573.20 0.137
573.20 0.137
673.20 0.137
673.20 0.137

No graphical presentation

SPECIFICATION TABLE NO. 321 THERMAL CONDUCTIVITY OF [ZIRCONIUM + $\Sigma_{i,j}$] ALLOYS $z_i + \Sigma_{i,j}$

Composition (continued), Specifications and Remarks	Polycrystalline; anncaled.
Composition (weight percent)	86;±
Name and Specimen Designation	Zr 1
Reported Error, ",	2-3
Temp. Reported Range, K. Error, ",	1952 2.3-27 2-3
Year	1952
Curve Rei, Method Year No. No. Used	د
Rei.	97
Curve No.	-

THERMAL CONDUCTIVITY OF [ZIRCONIUM + Σ_{i}] ALLOYS $z_{i} + \Sigma_{j}$ DATA TABLE NO. 321

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

0, 0292 0, 0396 0, 0396 0, 0602 0, 0998 0, 179 0, 237 0, 246 0, 255 0, 268 2, 32 3, 27 4, 30 4, 30 7, 23 10, 75 14, 11 16, 90 20, 86 21, 85 21, 85 22, 14 24, 82 27, 30 No graphical presentation

GROUP 1 THERMAL CONDUCTIVITY OF (IRON + CARBON + 2X1) ALLOYS (C < 2.00%) SPECIFICATION TABLE NO. 322

($X_{j} \leq 0.20\%$ except Mn. P. S. Si $\leq 0.60\%$ each)

						_	For Dats	[For Data Reported in Figure and Table No.	gure and T	able No.	322]	
Curve No.	Z ef.	Metho	Method Year Used	Temp. Range, K	Reported Error, %	Name and Specimen Designation	o	Composition (weight per cent)	veight per P	cent)	Ø	Composition (continued), Specifications and Remarks
-	115	د.	1981	26-240		SAE 1095	0.93	0.34			0.26	0. 10 Cr; 0. 10 Ni; < 0.05 Mo.
81	129	ပ	1953	373-818	3.0-5.0	S1	0.83	0.27	0.017	0.015	0. 16	Annealed at 800 C for 2 hrs and cooled in furnace.
es	123	ပ	1933	364-773	3.0-5.0	S1 _C	0. 83	0.27	0. 017	0.015	0. 16	The above specimen normalized at 900 C for 10 min and alt-cooled, reheated to 800 C for 10 min and quenched in water, and reheated to 250 C for 1 hr and furnace cooled.
*	167		1935	293			9.0	S				
S	167		1935	293			1.0	Š			% %	
ø	167		1935	293			1.5	. 6 . 5			70°.2	
~	31	. :	1933	364-705	2.0	British steel; 4	0.92	0.56	0.032	9. 039	0. 177	Normalized at 900 C.
æ	31	_	1933	363-703	5.0	British steel; 5	i. 09	0.46	0.034	0.023	0.058	Normalized at 900 C.
ø	3	Œ	1936	273-773		Steel 3	0.57	0.55			0.38	
16	8	œ	1936	326-554		Steel 5	1.00	0.50			0. 15	
11	ă	_	1951	15- 93		1164 A/4	0. 14	0. 07			90 .0	Heated to 800 C and cooled in furnace.
2	28	-1	1906	105-296		Silver steel	1.0					Density = 7, 84 at 24 C.
ដ	170	_	1926	313		4.1	0. 90	0.41	0.014	0.015	0.28	Annealed.
7	170	_	1926	313		4.2	0. 90	0.41	0.014	0.015	0.28	Forged.
15	170	_	1926	313		5.1	1. 20	0.44	0.014	0.01	6.30	Annealed.
16	170	_1	1926	313		5.2	1. 20	0. 44	0.014	0.01	0.30	Forged.
11	170	. 1	1926	313		5. 3b	1. 20	0.44	0.014	0.01	0.30	Anuesled and then hardened at 800 C.
18	170		1926	313		6.1	1. 35	0.54	0.014	0.015	0.2;	Annealed.
19	170	7	1926	313		6.2	1.35	3.0	u. 014	0.015	0. 26	Forged
20	170	-1	1926	313		6. 3b	1. 35	0.54	0.014	0.015	0.25	Annealed and then hardened at 800 C.
21	170	٦	1926	313		7.1	1. 50	0.29	0.013	0.05	0. 12	Annealed.
22	170	٦	1926	313		7.2	1. 50	0. 29	0.013	0.02	0. 12	Forged.
23	170	ı	1926	313		7.3b	1.50	0. 29	0.013	0.05	0. 12	Annealed and then hardened at 800 C.
75	170	-1	1926	313		8.1	1. 70	0.29	0.013	0.03	90 '0	Annealed.
25	170	ي.	1926	. 313		8.2	1. 70	0. 29	0.013	0.03	90.0	Forged.
92	170	7	1926	313		<	0.50	0.32			0.24	
22	170	ب ـ	1926	313		B	0. 71	0.18			0.24	
28	176	ш	1920	303		18	ი. 60					Annealed at 900 C and slowly cooled.
23	176	ш	1920	303		1b	09 '0					Annealed at 1100 C and quickly cooled.
30	188	ш	1913	303		18	0.30					Appealed at 900 C and slowly cooled.

SPECIFICATION TABLE NO. 322 (continued)

1 188 E 1315 303 Number cell 1 0 0 0 0 0 0 0 0 0	Curve No.	Ref.	Metho	Method Year Used	Temp. Range. K	Reported Error, %	Name and Specimen Designation	٥	Compo	sition (w	Composition (weight per cent)	cent)	ಶ	Composition (continued), Specifications and Remarks
171 E 1917 303 Krupp steel 118 0.56 0.09 0.010 0.016 0.034 0.18 171 E 1917 303 Krupp steel 112 0.56 0.09 0.20 0.016 0.034 0.18 171 E 1917 303 Krupp steel 126 0.64 0.09 0.27 0.10 0.028 0.06 171 E 1917 303 Krupp steel 126 0.64 0.09 0.27 0.10 0.028 0.06 171 E 1917 303 Krupp steel 126 0.64 0.09 0.27 0.10 0.028 0.06 171 E 1917 303 Krupp steel 126 0.64 0.09 0.27 0.10 0.018 0.10 171 E 1917 303 Krupp steel 126 0.64 0.09 0.27 0.10 0.018 0.10 171 E 1917 303 Krupp steel 126 0.64 0.09 0.27 0.010 0.018 0.10 171 E 1917 303 Krupp steel 126 0.80 0.08 0.09 0.016 0.018 0.10 171 E 1917 303 Krupp steel 126 0.80 0.08 0.09 0.016 0.018 0.10 171 E 1917 303 Krupp steel 126 0.80 0.08 0.09 0.016 0.018 0.10 171 E 1917 303 Krupp steel 126 0.80 0.08 0.09 0.016 0.018 0.10 171 E 1917 303 Krupp steel 126 0.80 0.08 0.05 0.016 0.018 0.10 171 E 1917 303 Krupp steel 26 1.02 0.05 0.05 0.016 0.018 0.018 171 E 1917 303 Krupp steel 26 1.02 0.05 0.05 0.016 0.018 0.018 171 E 1917 303 Krupp steel 26 1.02 0.05 0.05 0.016 0.018 0.018 171 E 1917 303 Krupp steel 26 1.02 0.05 0.05 0.018 0.018 0.018 171 E 1917 303 Krupp steel 26 1.02 0.05 0.05 0.018 0.018 0.018 171 E 1917 303 Krupp steel 26 1.00 0.06 0.040 0.041 0.018 0.018 171 E 1917 303 Krupp steel 26 1.00 0.05	33	188	ш	1919	303		16	09.0						Annealed at 900 C and slowly cooled.
171 E 1917 303 Krupp steel:11b 0.56 0.09 0.010 0.016 0.034 0.18 171 E 1917 303 Krupp steel:12b 0.64 0.09 0.27 0.10 0.038 0.18 171 E 1917 303 Krupp steel:12b 0.64 0.09 0.27 0.10 0.028 0.06 171 E 1917 303 Krupp steel:12c 0.64 0.09 0.27 0.10 0.028 0.06 171 E 1917 303 Krupp steel:13c 0.75 0.07 0.35 0.010 0.08 0.09 0.010 0.018 0.00 0.016 0.00 0.00 0.016 0.00	32	171	ш	1917	303		Krupp steel:11a	0.56	0.09	0.30	0.016	0.034	0. 18	Forged.
171 E 1917 303 Krupp steel;12e 0.56 0.09 0.27 0.10 0.08 0.18 0.08 171 E 1917 303 Krupp steel;12e 0.64 0.09 0.27 0.10 0.08 0.06 171 E 1917 303 Krupp steel;12e 0.64 0.09 0.27 0.10 0.08 0.06 171 E 1917 303 Krupp steel;13e 0.75 0.07 0.35 0.10 0.08 0.00 0.01 </td <td>33</td> <td>171</td> <td>ш</td> <td>1917</td> <td>363</td> <td></td> <td>Krupp steel.11b</td> <td>0.56</td> <td>0.0</td> <td>0.30</td> <td>0.016</td> <td>0.034</td> <td>0. 18</td> <td>Annealed at 900 C for 1 br fn vacuum.</td>	33	171	ш	1917	363		Krupp steel.11b	0.56	0.0	0.30	0.016	0.034	0. 18	Annealed at 900 C for 1 br fn vacuum.
171 E 1917 303 Krupp steeti.12 6.64 0.09 0.27 0.10 0.289 0.06 171 E 1917 303 Krupp steeti.12 0.64 0.09 0.27 0.10 0.028 0.06 171 E 1917 303 Krupp steeti.12 0.64 0.09 0.27 0.10 0.08 0.06 171 E 1917 303 Krupp steeti.12 0.64 0.09 0.27 0.10 0.018 0.06 171 E 1917 303 Krupp steeti.15 0.75 0.07 0.35 0.010 0.018 0.01 171 E 1917 303 Krupp steeti.15 0.98 0.39 0.012 0.01	34	171	ш	1917	303		Krupp steel:11c	95 .0	0. 09	0.30	0.016	0.034	0. 18	OII-quenched from 900 C.
171 E 1917 303 Krupp steelilze 6.44 0.09 0.27 0.10 0.28 0.06 171 E 1917 303 Krupp steelilze 0.64 0.03 0.27 0.10 0.028 0.06 171 E 1917 303 Krupp steelilze 0.75 0.75 0.01 0.018 0.016 0.018 0.010 171 E 1917 303 Krupp steelilze 0.75 0.75 0.01 0.012 0.016 0.018 0.018 0	35	171	М	1917	303		Krupp steel,128	0.64	0.09	0.27	0. 10	0.028	90 .0	Forged.
171 E 1917 303 Krupp steel.13c 0.64 0.05 0.27 0.10 0.08 0.06 171 E 1917 303 Krupp steel.13c 0.75 0.07 0.35 0.010 0.018 0.01 171 E 1917 303 Krupp steel.13c 0.75 0.07 0.35 0.010 0.018 0.010 171 E 1917 303 Krupp steel.13c 0.76 0.35 0.010 0.018 0.10 171 E 1917 303 Krupp steel.13c 0.94 0.96 0.30 0.012 0.016 0.10 171 E 1917 303 Krupp steel.13c 0.94 0.96 0.36 0.015 0.01 0.01 171 E 1917 303 Krupp steel.13c 0.94 0.96 0.96 0.91 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	36	171	щ	1917	303		Krupp stect:12b	0.64	0.09	0.27	0. 10	0.028	90.0	Annealed at 900 C for 1 hr in vacuum.
171 E 1917 303 Krupp steel.135 0.75 0.07 0.35 0.010 0.018 0.10 171 E 1917 303 Krupp steel.135 0.75 0.07 0.35 0.010 0.018 0.10 171 E 1917 303 Krupp steel.136 0.75 0.07 0.35 0.010 0.018 0.010 171 E 1917 303 Krupp steel.136 0.96 0.30 0.012 0.016 <	37	171	ш	1917	303		Krupp steel:12c	0.64	0.09	0.27	0. 10	0.028	90.0	Oil-quenched from 900 C.
171 E 1917 303 Krupp steelijke 0.75 0.07 0.35 0.010 0.018 0.10 171 E 1917 303 Krupp steelijke 0.75 0.07 0.35 0.010 0.018 0.10 171 E 1917 303 Krupp steelijke 0.69 0.09 0.012 0.016 0.10 171 E 1917 303 Krupp steelijke 0.69 0.09 0.012 0.016 0.10 171 E 1917 303 Krupp steelijke 0.94 0.08 0.016 0.016 0.10 171 E 1917 303 Krupp steelijke 0.94 0.08 0.35 0.016 0.10 171 E 1917 303 Krupp steelijke 0.94 0.08 0.35 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016	38	171	M	1917	303		Krupp steel;15a	0.75	0.07	0.35	0.010	0.018	0. 10	Forged.
171 E 1917 303 Krupp steelijde 0.75 0.07 0.35 0.010 0.018 0.10 171 E 1917 303 Krupp steelijde 0.60 0.08 0.010 0.012 0.016 0.10 171 E 1917 303 Krupp steelijde 0.60 0.08 0.010 0.012 0.016 0.10 171 E 1917 303 Krupp steelijde 0.89 0.08 0.012 0.016 0.10 0.01	33	171	W	1917	303		Krupp steel:15b	0.75	0.07	0.35	0.010	0.018	0. 10	Annealed at 900 C for 1 hr in vacuum.
171 E 1917 303 Krupp steel-15e 0.80 0.08 0.30 0.012 0.016 0.10 0.10 171 E 1917 303 Krupp steel-15e 0.80 0.08 0.30 0.012 0.016 0.10 171 E 1917 303 Krupp steel-18e 0.84 0.08 0.30 0.012 0.016 0.10 171 E 1917 303 Krupp steel-18e 0.84 0.08 0.35 0.016 0.016 0.10 171 E 1917 303 Krupp steel-18e 0.94 0.08 0.35 0.016 0.016 0.10 171 E 1917 303 Krupp steel-28e 1.02 0.05 0.05 0.016 0.016 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	40	171	ы	1917	303		Krupp steel:15c	0.75	0.07	0.35	0.010	0.018	07 '0	Oil-quenched from 900 C.
171 E 1917 303 Krupp steel.166 0.80 0.30 0.012 0.016 0.10 0.10 171 E 1917 303 Krupp steel.186 0.80 0.30 0.31 0.012 0.016 0.10 171 E 1917 303 Krupp steel.186 0.94 0.08 0.35 0.016 0.016 0.10 0.10 171 E 1917 303 Krupp steel.186 0.94 0.08 0.35 0.016 0.016 0.10 0.11 171 E 1917 303 Krupp steel.20a 1.02 0.05 0.36 0.36 0.016 0.016 0.018 0.13 171 E 1917 303 Krupp steel.20a 1.02 0.05 0.05 0.016 0.016 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	1	171	(L)	1917	303		Krupp steel:16a	0. 90	0.08	0.30	0.012	0.016	0. 10	Forged
171 E 1917 303 Krupp steel.16c 0.80 0.08 0.03 0.012 0.016 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.013 0.016 0.013 0.016 0.013 0	42	171	ы	1917	303		Krupp steel.16b	0.80	90.0	0.30	0.012	0.016	0. 10	Annealed at 900 C for 1 br in vacuum.
171 E 1917 303 Krupp steetilsh 0.94 0.05 0.25 0.016 0.015 0.016 0.018 0.018 0.018 0.016 0.018 0	43	171	A	1917	303		Krupp steel:16c	0.80	0.08	0.30	0.012	0.016	0. 10	Oil-quenched from 900 C.
171 E 1917 303 Krupp steel:18b 0.94 0.08 0.35 0.016 0.018 0.13 171 E 1917 303 Krupp steel:20a 1.02 0.08 0.35 0.016 0.018 0.13 171 E 1917 303 Krupp steel:20a 1.02 0.05 0.36 0.013 0.014 0.08 171 E 1917 303 Krupp steel:20a 1.02 0.05 0.36 0.013 0.014 0.08 171 E 1917 303 Krupp steel:20a 1.02 0.05 0.40 0.013 0.01 0.08 171 E 1917 303 Krupp steel:20a 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel:30a 1.50 0.05 0.40 0.046 0.018 0.08 172 E 1917 303 Krupp steel:30a 1.50 0.0	‡	171	Œ	1917	303		Krupp steel;18a	0.94	0.08	0.35	0.016	0.016	0. 13	Forged.
171 E 1917 303 Krupp steel;20s 0.94 0.08 0.35 0.016 0.018 0.13 171 E 1917 303 Krupp steel;20s 1.02 0.05 0.36 0.013 0.014 0.08 171 E 1917 363 Krupp steel;20s 1.02 0.05 0.36 0.013 0.014 0.08 171 E 1917 303 Krupp steel;20s 1.30 0.05 0.05 0.05 0.013 0.014 0.08 171 E 1917 303 Krupp steel;20s 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel;20s 1.30 0.05 0.05 0.046 0.018 0.08 171 E 1917 303 Krupp steel;20s 1.50 0.05 0.05 0.046 0.018 0.08 172 E 1917 303 Krupp steel;30s 1.	45	171	(m)	1917	303		Krupp steel:18b	0. 94 0.	90.0	0.35	0.016	0.018	0. 13	Annealed at 900 C for 1 hr in vacuum.
171 E 1917 303 Krupp steel;20a 1.02 0.05 0.05 0.05 0.05 0.05 0.05 0.013 0.014 0.094 171 E 1917 303 Krupp steel;20c 1.02 0.05 0.05 0.013 0.014 0.09 171 E 1917 303 Krupp steel;2cc 1.20 0.05 0.40 0.040 0.014 0.08 171 E 1917 303 Krupp steel;2cc 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel;2cc 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel;3cc 1.30 0.05 0.05 0.046 0.018 0.08 172 E 1917 303 Krupp steel;3cc 1.50 0.05 0.36 0.020 0.05 0.05 172 E 1927	46	171	ш	1917	303		Krupp steel:18c	0.94	0.08	0.35	0.016	0.018	0. 13	Oil-quenched from 900 C.
171 E 1917 363 Krupp steel.20b 1.02 0.05 0.05 0.05 0.015 0.016 0.019 0.	47	171	ш	1917	303		Krupp steel;20a	1.02	0.05	0.36	0.013	0.014	0.08	Forged
171 E 1917 303 Krupp steel; 26a 1.02 0.05 0.36 0.15 0.014 0.019 0.019 0.06 0.40 0.015 0.019 0.018 0.08 171 E 1917 303 Krupp steel; 26a 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel; 26a 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel; 26a 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel; 30 1.50 0.05 0.36 0.020 0.020 0.05 172 E 1917 301 Krupp steel; 30c 1.50 0.05 0.36 0.020 0.05 0.05 172 E 1927 307 4 1.015 1.015 0.02 0.020 0.02 0.02 0.02	48	171	ш	1917	363		Krupp steel:20b	1. 62	0.05	0.36	0.013	0.014	0.08	Annealed at 900 C for 1 hr in vacuum.
171 E 1917 303 Krupp steel.264 1.30 0.06 0.40 0.046 0.046 0.018 0.08 171 E 1917 303 Krupp steel.264 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel.26c 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel.30c 1.50 0.05 0.36 0.020 0.020 0.05 171 E 1917 303 Krupp steel.30c 1.50 0.05 0.36 0.020 0.020 0.05 172 E 1927 307 Krupp steel.30c 1.50 0.05 0.36 0.020 0.020 0.05 172 E 1927 307 Krupp steel.30c 1.50 0.05 0.21 0.02 0.05 0.05 172 E 1927 307 Krupp steel.30c 1.0	\$	171	ш	1917	303		Krupp steel;20c	1.02	0.05	0.36	0. C13	0.014	0.08	Oil-quenche I from 900 C.
171 E 1917 303 Krupp steel;26b 1.30 0.06 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel;36c 1.30 0.05 0.40 0.046 0.018 0.08 171 E 1917 303 Krupp steel;30a 1.50 0.05 0.36 0.020 0.020 0.05 171 E 1917 303 Krupp steel;30c 1.50 0.05 0.36 0.020 0.020 0.05 172 E 1917 307 Krupp steel;30c 1.50 0.05 0.36 0.020 0.020 0.05 172 E 1927 307 4 0.70 0.21 0.029 0.020 0.05 172 E 1927 307 5 1.015 0.20 0.020 0.020 0.020 0.020 172 E 1927 307 5 1.018 0.22 0.017 0.020	20	171	ia	1917	303		Krupp steel 264	1.30	ი 06	0.40	9. 94 8	0.018	0.08	Forged.
171 E 1917 303 Krupp steel;36c 1.30 0.06 0.40 0.046 6.018 0.08 171 E 1917 303 Krupp steel;30a 1.50 0.05 0.36 0.020 0.020 0.05 171 E 1917 303 Krupp steel;30a 1.50 0.05 0.36 0.020 0.020 0.05 172 E 1927 307 Krupp steel;30c 1.50 0.05 0.36 0.020 0.020 0.05 172 E 1927 307 4 0.70 0.19 0.029 0.020 0.05 172 E 1927 307 4 1.015 1.015 0.20 0.020 0.020 0.020 0.020 172 E 1927 307 4 1.015 1.016 0.20 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	51	171	ы	1917	303		Krupp steel;26b	1. 30	90 '0	0.40	0.046	0.018	0.08	Annealed at 900 C for 1 hr in vacuum.
171 E 1917 303 Krupp steel;30a 1.50 0.05 0.36 0.020 0.050 0.050 0.05	52	171	ы	1917	203		Krupp steel:26c	1. 30	90 '0	0. 40	0.046	6.018	0. 08	Oil-quenched from 900 C.
171 E 1917 303 Krupp steet;30c 1.50 0.05 0.05 0.020 0.020 0.050 0.05 171 E 1917 303 Krupp steet;30c 1.50 0.05 0.05 0.020 0.020 0.05 <td>53</td> <td>171</td> <td>ш</td> <td>1917</td> <td>303</td> <td></td> <td>Krupp steel,30a</td> <td>1. 30</td> <td>0.05</td> <td>0.36</td> <td>0.020</td> <td>0.020</td> <td>0.05</td> <td>Forged.</td>	53	171	ш	1917	303		Krupp steel,30a	1. 30	0.05	0.36	0.020	0.020	0.05	Forged.
171 E 1917 303 Krupp steel, 30c 1.50 0.05 0.05 0.020 0.050 0.05 0.05 172 E 1927 307 4 0.70 0.70 0.21 0.023 0.023 0.27 172 E 1927 307 5 1.015 7 0.20 0.027 0.023 0.27 172 E 1927 307 6 1.185 0.22 0.017 0.020 0.23 172 E 1527 307 7 1.480 0.18 0.026 0.020 0.24 189 L 1934 356-390 2.0-5.0 Tool steel: Aq 1.41 0.01 0.23 0.027 0.006 0.158	X	171	ш	1917	303		Krupp steel,30b	1. 50	0.05	0.36	0.00	0.020	0.05	Ann, aled at 900 C for 1 hr in vacuom.
172 E 1927 307 4 0.70 0.21 0.029 0.023 0.27 0.27 172 E 1927 307 4 0.885 0.19 0.029 0.015 0.34 172 E 1927 307 6 1.185 0.22 0.017 0.020 0.27 172 E 1527 307 7 1.480 0.18 0.026 0.031 0.23 189 L 1934 356-390 2.0-5.0 Tool steel: Aq 1.41 0.01 0.23 0.037 0.006 0.158	55	171	W	1917	303		Krupp steel,30c	1. 50	0.05	0.36	0.020	0.020	0.05	vil-quenched from 900 C.
172 E 1927 307 4 0.885 0.19 0.028 0.015 0.034 172 E 1927 307 6 1.185 0.22 0.017 0.020 0.27 172 E 1927 307 7 1.480 0.18 0.026 0.031 0.23 189 L 1934 356-390 2.0-5.0 Tool steel: AQ 1.41 0.01 0.23 0.037 0.006 0.158	99	172	ш	1927	307		8	0. 70		0.21	0.023	0.023	0.27	
172 E 1927 307 5 1.015 0.20 0.20 0.027 0.020 0.27 172 E 1927 307 6 1.185 0.22 0.017 0.031 0.28 172 E 1927 307 7 1.480 0.18 0.026 0.020 0.24 189 L 1934 356-390 2.0-5.0 Tool steel: AQ 1.41 0.01 0.23 0.037 0.006 0.158	57	172	ш	1927	307		4	0.885		0. 19	0.028	0.015	0.34	
172 E 1927 307 6 1.185 0.22 0.017 0.031 0.23 172 E 1927 307 7 1.480 0.18 0.026 0.026 0.024 189 L 1934 356-390 2.0-5.0 Tool steel: AQ 1.41 0.01 0.23 0.037 0.006 0.158	58	172	ш	1927	307		S	1. 015		0.20	0.027	0.020	0. 27	
172 E 1527 307 7 1.480 0.18 0.026 0.020 0.24 189 L 1934 356-390 2.0-5.0 Tool steel; AQ 1.41 0.01 0.23 0.037 0.006 0.158	29	172	M	1927	307		9	1. 185		0. 22	0.017	0.031	0.28	
189 L 1934 356- 390 2.0-5.0 Tool steel: AQ 1.41 0.01 0.23 0.037 0.006 0.158	9	172	ш	1927	307		•	1. 480		0. 18	0.026	0. 920	0.24	
	61	88	_	1934	356- 390	2.0-5.0	Tool steel; Aq	1.41	0.01	0. 23	0.037	900.0	0, 158	Water-quenched from 775 C.

SPECIFICATION TABLE NO. 322 (continued)

Composition (continued), Specifications and Remarks	Tempered for 30 min at 150 C and air-cooled.	Tempered for 30 min at 200 C and air-cooled.	Tempered for 30 min at 250 C and air-cooled.	Tempered for 30 min at 300 C and air-cooled.	Tempered for 30 min at 350 C and air-cooled.	Tempered for 30 min at 400 C and air-cooled.	Tempered for 30 min at 500 C and air-cooled.	Tempered for 30 min at 800 C and air-c soled.	Tempered for 30 min at 700 C and air-cooled.	Annealed at 775 C.	Water-quenched from 780 C.	Tempered for 30 min at 150 C and air-cooled.	Tempered for 30 min at 200 C and air-anoled.	Tempered for 30 min at 250 C and air-covied.	Tempered for 30 min at 300 C and air-cooled.	Tempered for 30 min at 350 C and air-cooled.	Tempered for 30 min at 400 C and air-cooled.	Tempered for 30 min at 500 C and air-cooled.	Tempered for 39 min at 600 C and air-cooled.	Tempered for 30 min at 700 C and air-cooled.	Annealed at 780 C.	Water-quenched from 840 C.	Tempered for 30 min at 150 C and air-cooled.	Tempered for 30 min at 200 C and air-cooled.	Tempered for 30 min at 250 C and air-cooled.	Tempered for 30 into at 300 C and air-cooled.	Tempered for 30 min at 350 C and air-cooled.	Tempered for 30 min at 400 C and air-cooled.	Tempered for 30 min at 500 C and air-cooled.	Tempered for 30 min at 600 C and air-cooled.
ű	0.158	0.158	0.158	0.158	0.158	0. 158	0.158	0.158	0.158	0.158	0. 117	0.117	0. 117	0.117	0. 117	0. 117	0. 117	0. 117	0. 117	0. 117	0.117	0. 117	0.117	0. 117	0. 117	0, 117	0.117	0. 117	0. 117	0. 117
cent)	0.006	0.006	900 .0	900.0	900 .0	0. c06	900 .0	900.0	900.0	0.006	0. 02€	0.026	0.026	0.026	0.026	0.026	3. 026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.036	0. 026
ight per	0. 037	0.037	0.037	0. 037	0. 037	0.037	0.037	0.037	0. 637	0.037	0.020	0.020	0. 020	0. 02C	0. 020	0.020	0.000	0.00	0.020	0.020	0.00	0.00	0.020	0.020	0.020	0.020	0.00	0.020	0.020	0. 020
Composition (weight per cent)	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0. 207	0.207	0. 207	0.207	0.207	0. 207	0.207	0.207	0. 207	0. 207	0.207	0.207	0.207	0. 207	0. 207	0.207	0, 207	0. 207	0. 207	0. 207
Compos	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01																				
U	1.4.1	1.41	1.41	1. 41	1.4:	1.41	1. 41	1.41	1.41	1. 4.1	1.14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1.14	1. 14	1.14
Name and Specimen Designation	AT 150 C	AT. 200 C	AT. 250 C	AT. 300 C	AT. 350 C	AT 400 C	AT 500 C	AT 600 C	AT 700 C	A A A	B1 _C	B1 130 C	B1 _{T 200 C}	B1T 250 C	B1 100 C	B1, 350 C	B1 400 C	B1 500 C	P1_T. 600 C	B1, 700 C	B1	B2.	B2 _{T 150 C}	B2 _T 200 C	B2 T 250 C	B2 _T 300 C	B2 _{T 350} C	B2 _T 400 C	B2.r. 500 C	B2 _{T.} 600 C
Reported Error, %	2.0-5.0	2.0-5.0	2.0-5.0	2. 0-5. 0	2.0-5.0	2.0-5.0	2. 0-5. 0	2. 0-5. 0	2.0-5.0	2. 0-5. 0	2, 0-5, 0	2.0-5.0	2.0-5.0	2.0-5.0	2. 0-5. 0	2.0-5.0	2, 0-5, 0	2. 0-5. 0	2, 0-5, 0	2.0-5.0	2.0-5.0	2.0-5.0	2, 0-5, 0	2, 0-5, 0	2.0-5.0	2. 0-5. 0	2. 0-5. 0	2.0-5.0	2, 0-5, 0	2. 0-5. 0
Temp. Range, K	361- 390	366- 427	364- 468	366- 509	370- 537	376- 539	377- 547	382- 538	370. 492	372- 544	J53- 389	358- 387	366- 421	371- 469	366- 520	367- 540	368- 545	371- 341	358- 534	361- 530	363- 536	355- 398	359- 389	361-421	363- 469	367- 502	361- 534	372- 532	368- 535	365- 543
Year	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	Ş	18.	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934
Method	_	_	۔	_	-1	_1	-1	-1	٦	٦	_	_	_	-1		-1	٠.		_	-1		_	د	_	-1	a	7	7	-1	-1
No.	189	189	139	188	28	188	189	188	189	169	681	189	189	38	189	189	189	8 8	189	691	189	189	283	189	8	189	38	8	189	189
Cu Ze	3	3	I	3	9	67	8	69	70	1.1	72	73	7.4	22	92	22	78	19	90	81	82	3	2	80 (3	98	87	88	68	90	91

SPECIFICATION TABLE NO. 322 (continued)

Composition (continued), Specifications and Remarks	Tempered for 30 min at 700 C and air-cooled.	Water-quenched from 900 C.	Tempered for 30 min at 150 C and Air-cooled.	Tempered for 30 min at 200 C and air-cooled.	Tempered for 30 min at 250 C and alr-cooled.	Tempered for 30 min at 300 C and air-cooled.	Tempered for 30 min at 350 C and air-cooled.	Tempered for 30 min at 400 C and air-cooled.	Tempered for 30 min at 500 C and air-cooled.	Tempered for 30 min at 600 C and alr-cooled.	Tempered for 30 min at 700 C and air-cooled.	Water-quenched from 1000 C.	Tempered for 30 min at 150 C and air-cooled.	Tempered for 30 min at 200 C and air-cooled.	Tempered for 30 min at 250 C and air-cooled.	Tempered for 30 min at 300 C and air-cooled.	Tempered for 30 min at 350 C and air-cooled.	Tempered for 30 min at 400 C and air-cooled.	Tempered for 30 min at 500 C and afr-cooled.	Tempered for 30 min at 600 C and air-cooled.	Tempered for 30 min at 700 C and air-cooled.	Water-quenched from 790 C.	Tempered for 30 min at 150 C and air-cooled.	Tempered for 30 min at 200 C and afr-cooled.	Tempered for 30 min at 250 C and air-cooled.	Tempered for 30 min at 300 C and alr-cooled.	Tempered for 30 min at 350 C and air-cooled.	Tempered for 30 min at 400 C and air-cooled.	Tempered for 30 min at 500 C and air-cooled.	Tempered for 30 min at 600 C and air-cooled.
s	0. 117	0.117	0. 117	0. 117	0.117	0. 117	0. 117	0. 117	0.117	0.117	0. 117	0. 117	0. 117	0. 117	0.117	0.113	0.117	0. 117	0.117	0.117	0.117	0.109	0.109	0. 109	0. 109	601 '0	0.109	9, 109	0.109	0. 109
cent) S	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0. 026	0.026	0.026	0.007	0.007	0.007	0.007	0.007	0.001	0.007	0.007	0.003
ight per p	0.020	0.020	9.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	U. 023	0.020	0.020	0.020	0.020	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0. 914
Composition (weight per cent) Cu Mn P S	0.201	0.207	0. 207	0.207	0.207	0.207	0. 207	e. 201	0. 207	0.207	0. 207	0.207	0.207	6, 207	0.207	0.207	0. 207	0, 201	0. 207	0. 207	0. 207	0.157	0. 157	0 157	0. 157	0. 157	0. 157	0.157	0. 157	0. 157
Comp																						0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038
၁	1. 14	1. 14	1. 14	1. 14	1.14	1. 14	1. 14	1. 14	1.14	1. 14	1. 14	1. 14	1. 14	1. 14	1.14	1. 14	1. 14	1. 14	1. 14	1.14	1.14	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	9.931
Name and Specimen Designation	B2 _{T. 700}	B3	B3 150 C	B3 _{T.} 200 C	B3 _{T, 250} C	B3 _{T,300} C	B3 _{T 350} C	B3 _{T.} 400 C	B3. 500 C	B3 _T . 600 C	B3 _{T, 700} C	B4.	B4 150 C	B4 _{T,290} C	B4 _{T, 250 C}	P4 7.300 C	B4 7, 350 C	B4 T. 400 C	B4T. Suo C	B4 500 C	B4T, 790 C	ر د ت	CT 150 C	CT 200 C	CT 250 C	CT 300 C	CT 350 C	CT 400 C	CT. 590 C	CT. 600 C
Reported Error, %	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2. 0-3. 0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2. 9-5. 0	2.0-5.0	2.0-5.0	2.0-5.0	2. 0-5. 6	2.0-5.0	2.0-5.0	2.0-5.0	2, 0-5, 0	2.0-5.0	2.0-5.0	2.0-5.0	2. 0-5. 0	2.0-5.0	2, 0-5, 0	2.0-5.0	2.0-5.0	2. 0-5. 0
Temp. Range, K	368- 540	362- 389	363- 390	370- 426	360- 463	361- 493	372- 544	366- 540	364- 544	368- 540	371- 537	360- 387	368- 390	358- 419	363- 467	366- 508	373- 543	365- 547	367- 527	368. 533	372- 544	362- 388	361-390	363- 415	368- 470	378- 506	364- 543	370- 497	368- 548	369- 543
Year	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934
Method Year Used	1	_	د	-1	-1		ឯ	-	ب	_	_		_		٦.	د	-1	- 1	-1	_	-1	_	_	-1	u	_	_	~	_	-1
Ref.	22	188	189	188	189	82	83	188	82	183	88	188	189	28	88	188	82	189	188	88	189	188	28	28	8	8	5 8	28	188	88
Cu 7	85	6	94	96	96	16	86	66	601	101	102	103	104	105	106	101	108	8	110	111	112	113	114	115	116	117	118	119	021	ជ

SPECIFICATION TABLE NO. 322 continued

No.	Ref.	Metho	Curve Ref. Method year No. No. Used	Temp. Range, K	Reported Error, %	Specimen Specimen Designation Fe	ပ	Compos	Mn (we	Composition (weight percent)	ent)	· · · · · · · · · · · · · · · · · · ·	Composition (continued), Specifications and Remarks
122	189	-	1934	370- ,51	2. 0-5. 0	CT. 700 C	0.931	0.038	0.137	0.014	U. 007	60.10	Tempered for 30 min at 700 C and air-cooled.
123	189	J	1934	377- 545	2, 0-5, 0	,	0.931	0.038	0. 157	0.014	0.001	601.0	Annealed at 790 C.
124	T.		1917	303-1199		12	0.64	0.09	0.27	0.010	0.028	90.0	Forged.
125	71		1917	303-1170		16	08.0	90.0	0.30	0.012	0.016	0. 10	Forged.
126	11	_	1917	303-1159		20	1. 02	0.05	0.36	0.013	0.014	0.08	Forged.
127	11	→	1917	303-1147		26	1. 30	90.0	0. 40	0.046	0.018	0.08	Forged.
128	7.1	_	1917	303-1048		30	1. 30	0.05	0.36	0.020	0.020	0.05	Forged.
129	190	C)	1946	273-1273		British steel; 7	0.80	0.010	0.32	900.0	0° 003	0 . 13	 13 Ni, 0, 11 Cr, 0, 021 As, <0.01 Mo, 0, 304 Al; annealed at 860 C.
130	165	w	1919	303 2		7	0.206		6. 11	0.05	0.04	90 .0	
131	163		1936	303-1473	C	German steel; PD4	0.45		0.07	0.010	0.014	0.03	Annealed.
132	991	ပ	1939	273- 623		British steel; 7	0.80	0.070	0.32	0.008	0.009	0. 13	0. 13 Ni. 0. 11 Cr. 0. 021 As, <0.01 Mo, 0. 004 Al: annealed at 800 C.
133	99	ပ	1939	273- 423		20	1.22	0.077	0.35	6. 009	0.015	91 .0	0. 13 NI, 0. 11 Cr, 0. 025 As, 0. 01 Mo, 0. 006 Al: annealed at 800 C.
134	191		⇔R 1926	310, 320		ĸ	0. 50		0.32			0.2.1	
135	191	·	±R 1926	313.4		В	0.71		0. 18			0.24	
136	160	(1.	1938	373- 773		12	0.85		0.65				Nondral composition, annealed,
137	160	{s.,	1938	373- 773		13	1. 10		0. 33				Nominal composition: annealed,
138	160	Ĺ	1938	373- 773		14	1.40		0.53				Nominal composition, annealed.
139	175	۵,	1936	303-1073		Carbon steel; 2	0.31	0. 154	0. ;4	0.011	0.014	0.040	Annealed 21 850 C for 2. 5 hrs.
140	175	۵,	1936	303-1073		Carbon steel; 3	0.65	0, 150	0. 16	900 .0	0.012	0. 023	Annealed at 850 C for 2. 5 hrs.
141	175	a ,	1936	303-1073		Carbon steel; 4	0.88	0, 135	91 .0	600.0	0.011	0.049	Annealed at 850 C for 2. 5 hrs.
142	177	ပ	1936	298.2	10.0	Russian steel; U-9	0.91		0.35	0.030		0.35	Annealed.
143	192		1954	365- 632			1. 13		0.43			0.4	1.43 FeO, 1.13 Fe $_2$ O $_3$, porosity 19%; without heat treatment.
<u>‡</u>	560	ш	1953	350-814	±3.0		0.32		0.30			0.30	1,02 O; Sintered at 1150 C for 1 1/2 hrs; porosity 10,4%.
145	260	(4)	1953	342-711	±3.0		98.0		0.27			0.34	0, 20 O; sintered at 1150 C for 1 1/2 hrs; porosity 9,5%.
146	260	Œ	1953	319-733	+3.0		98.0		0.27			0.34	0, 22 O; sintered at 1150 C for 1 1/2 hrs.porosity 9.5%.
147	260	<u>Sei</u>	1953	358-750	+ 3.0		1.62		0.40			0.40	94,64 Fe; 0,4 Fe ₂ O ₃ ; 0,36 FeO: aintered at 1150 C for 1 1/2 hra; porosity 10,6%.
148	435		1900	2.11.2		FeWA14	0.105	0.05	90.0	0.03	0.015	0.015	
149	435	.	1900	291.2		FeWA 2	0.57	0.03	0.12	0.012	0.042	0.21	

And the second of the second o

_	
continued	
325	
ON 4	
TABLE	
. 2011	
* (1.1.1)	

							İ		:	!		i i	
Curve	E. E.	Ref. Method	Year	Year Temp.	Reported Error, 7	Reported Specimen Error, 7. Decimation	O	Composition (weight percent) Cu Mn P S	on (weigi Mn	nt perce P		ŵ	Composition (continued), Specifications and Remarks
E	į		Ì				000	•	0.035 0.12 0.005 0.025 0.06	0.005		90.0	
8	438	د.	0061	291.2		5 K W D 4	,		•	5	0.05 0.05 0.05	0.05	
151	435	ړ.	1900	291.2		FeWA 4	1.50	0.03		5		7	13 NE
152	561	U	1925	448.2			1.00		67.0				
153	561	ပ	1925	450.6		High C steel	1.28		0.03			- 3	
7	261	v	1925	449.0			0,05		0.0		;	10.0	20 30 and a second a second and a second and a second a second a second a second a second a second a second a
55)	561	U	1925	445.7		Fish-plate	0.21	0.068		0.027	0.027 0.025 0.09	60.0	0, 18 NI and 0.00 Ct.
2 4	539	ـ ،	1938	329-1105		Carbon steel	1.01		-	6.02	0.47 6.02 0.01 0.16	0.16	0.08 CF; anneared.
157	539	1	1938	337-787		Carbon steel	1.01		0.47	0.02	0.47 0.02 0.01 0.16		Nominal Composition.
158	562	٦	1949	26.240		1095				2	90.0		Nominal Composition from Mark's handbook.
159	504	<u>p</u> ,	1961	295.2	+5.0	1020	0.18/		0.90	0.50 Max	Max		

GROUP I

1

(€ ≤ 2.00%) THERMAL CONDUCTIVITY OF LINON + CARBON + EX, I ALLOYS DATA TABLE NO. 322

S, Si < 0. 60% each)
a;
< 0. 20% except Mn
ر.

	H	CURVE 63.	366.20 0.331 401.70 0.339 427.20 0.335	364.20 0.368	9000	ΥE		o o o	451.70 0.385 487.20 0.377 508.70 0.381	2	260 36 036	2 2 2	453.70 0.385 482.20 0.381	537. 20 0. 389	CURVE 67.	222	455, 70 0, 395 491, 20 0, 389	518, 70 0, 385 539, 20 0, 381				
	×	CURVE 52*	303. 20 0. 322 CURVE 53*	V.E.	303.20 0.347	303.20 0.297	CURVE 56	307. 20 0. 447	CURVE 57*	307. 20 0. 417	CURVE 58	307.20 0.416	(<u>C</u>	307, 20 0. 387	307. 20 0. 384	VE	355. 70 0. 305 374. 20 0. 310		CURVE 62*	360, 70 0, 322 376, 70 0, 322		
cm ⁻¹ K ⁻¹]	ι- *	CURVE 40	303. 20 0. 352 CURVE 41*	V.E.	303. 20 0. 423	303.20 0.385	CURVE 44*	303. 20 0. 393	CURVE 45*	303. 20 0. 398	CURVE 46	303.20 0.289	VE	303, 20 0, 431	303. 20 0. 381	S E	303, 20 0, 318	CURVE 50.	303. 20 0. 360	Α 	303. 20 0. 35 e	
[Temperature, T, K; Thermal Conductivity, k, Watts cm ⁻¹ X ⁻¹]	7 k	CURVE 28.	303. 20 0. 418 CURVE 29 303. 20 0. 411	V E	303.20 0.457	303. 20 0. 422	CURVE 32.	303. 20 0. 418	CURVE 33.	303. 20 0. 410	CURVE 34.	303. 20 0. 389	VE	303. 20 6. 439	303. 20 0. 431	Α.	303, 20 0, 418	CURVE 38+	303. 20 0. 414	CURVE 39.	303, 20 0, 393	
ature, T, K; Thermal	-	CURVE 17.	313, 20 0, 272 313, 20 0, 312 CURVE 18	313.20 0.402	313. 20 0. 414	VE 2	313, 20 0, 305 313, 20 0, 225	CURVE 214	313.20 0.510	CURVE 22.	313. 20 0. 510	CURVE 234	313.20 0.502	4	313, 20 0, 531 313, 20 0, 511	213 20 0 510	> E	313. 20 0. 551	Y	313. 20 0. 521		
Tempe	i.	CURVE 10	325, 80 0, 439 373, 20 0, 427 473, 20 0, 407 553, 90 0, 389	URVE	15. 00 0. 154 17. 16 0. 186 19. 22 0. 209 23. 66 0. 234	29, 90 0, 306 76, 10 0, 523	_	RVE 1	105, 20 0, 473 113, 20 0, 473			248, 20 0, 485 248, 20 0, 485 273, 20 0, 485		CURVE 13*	313.20 0.473 313.20 0.444	RVE	313, 20 0, 339	CURVE 15*	313.20 0.460	AV E	313.20 0.464	
	* F	CURVE 7	364. 20 0. 506 386. 20 0. 498 411. 70 0. 502 430. 70 0. 498	2000	474, 20 0, 494 497, 70 0, 490 519, 20 0, 485	222	5 5 5	704. 70 0. 477	URVE	362.70 0.498	428. 20 0. 481	447. 70 0. 481 470. 70 0. 481		200		70 0.	CURVE 9	273. 20 0. 510 373. 20 0. 477	473.20 0.448 573.20 0.418	20 0		
	Ŧ	CURVE 1	25, 52 0, 109 39, 33 0, 177 55, 13 0, 241 70, 96 0, 284	105, 29 0, 350	78 06 15			239.84 0.441 240.16 0.443	CURVE 2.	373. 20 0. 458 473. 20 0. 435		773, 20 0, 350 773, 20 0, 367 818, 00 0, 152	띩		373, 20 6, 412 473, 20 0, 406 573, 20 0, 296	673. 20 0. 381 773. 20 0. 364	CURVE 4	293. 20 0. 454	CURVE 5	293. 20 0. 423	CURVE 6 293, 20 0, 377	Not shown on plot

DATA TABLE NO. 322 (continued)

×	105	0, 285 0, 289 0, 285	106	j	C. 285	0.381	0. 377	0.377		107	i	0. 393	0.389	0.398		0.385		ف فا		0.398	200	303	300	0.389	0.331		8		204.0	0, 396	0.402	0.398	0.393	0, 385				
←	CURVE	358, 70 395, 70 418, 70	*901 3ABIL		363, 70	392, 70	418.70	467.20		CURVE 107*		366. 20	402. 20	415.70	414. 20	508.20		CURVE 108		373. 70	400.20	456.20	490.20	514, 70	543.20		CURVE 109		365.20	416, 70	442, 70	479, 70	503. 70	546. 70				
,×	CURVE 59 (cont.)	0 0, 393	CURVE 100.	70 0, 427		0 0.414			0 0.406		CURVE 1014				0.423			0 0.423		CURVE 102*	707 0					0 0.423			CURVE 103		0 0.251			CURVE 104		0 0.272		
Ţ	CURV	495. 70 540. 20	S	364. 7	389, 70	422, 20	446. 20	503.70	S43, 70		강		368. 70	394. 70	463.60	471.20	506. 20	539. 10		2	00.10	304.20	43. 40	456. 20	474.20	509.20	536. 70	i	3	360.20	377. 20	386. 70		3	4	368. 20	375. 70	3
×	E 94*	0, 285 0, 285 0, 289	CHRUE 95*	3	0.297	0.301	0.301	E 96*		0.364	0.368	0.364	0.360	0.368	460	انہ	0.398	0.402	0, 393	0.389	0, 402	0. 238	900 0	2 1 102	0. 402	0.398	0.393	0.39k	0.389	0.402		E 99		0.398	0.393	0.393	0.389	ر د د د
⊢	CURVE	363, 70 376, 70 389, 70	74117		370.20	390. 20	426. 20	CURVI		360. 70	391. 70	422, 20	146.70	462.70		200	261. 20	385. 50	415.20	445. 70	464. 70	493.20	rano		372, 20	394.20	419.70	453, 20	477, 70	544.20		CURV		366. 20	391. 70	410.70	447. 20	<u>.</u>
×	F 89*	0, 423 0, 431 0, 423	0. 423	0. 423	0, 414	;	CURVE 90*	0.423	0.427	0. 427	0.431	0. 423	0.427	0.423	1	CORVE 91		0. 427	0.431	0.435	0.427	0.450		CHBVE 924		0.435	0.427	0.431	0. 423	0.421	0.418		E 93.		0.259	0.264	0. 272	
←	CURVE	372. 20 399. 40 425. 20	449.20	500.70	532, 20		CUR	368, 20	397. 70	427.70	452, 20	477.70	505. 70	535, 20		<u></u>	365.70	399, 20	429.20	460.20	494. 70	07.916	043. 20	AHE		368, 20	395, 20	419. 20	445. 20	511.70	540, 20		CURVI	l	362, 70	374. 70	389. 20	
ж	E 83+	0, 297 0, 297 0, 305	*F8 3.1011.		0.318	0.314	0.318	'E E5#		0.339	0.335	0, 343		CURVE 86*	4	0.385	0.389	0.385	0, 385	!	CURVE 87		200	0.400	0, 402	0.398	0.398		E 88*	0 40%	0.398	0.406	0. 402	0.406		0.402		
←	CURVE	355, 70 374, 20 388, 20	Jailo		359. 20	374. 70	389. 20	CURVE		361. 70	391.20	420.70		CUR		363.70	413.20	439.20	469.20		COR		367. 20	427.70	457.20	479.70	501. 70		CURVE 88	261 70	399. 70	421.20	451.20	474.20	500.20	534. 20		
¥	78 (cont.)	0.414	E 79.	0.414	0.418	0.410	0.410	0. 414	0.410		€ 80.	Į	0.427	0. 423	0. 423	0.414	0.410	0.414		E 81+			0. 427	0.423	0.423	0.431	0.427		CURVE 82*	0.431	0.423	0.431	0.427	0.423	0.427	0.416		
۲	CURVE 7	521.20 544.70	CURV	370, 70	392, 20	410.70	445.20	511.20	540, 70		CURVE		358. 20	391. 20	419. 20	457, 70	515.20	534. 20		CURV		360. 70	400. 70	432.70	482, 70	509, 20	529. 70		CURV	363 20	396.20	428.20	452, 70	475, 70	508. 20	536. 20		
×	CURVE 73.	0, 335 0, 339 0, 339	476 3750	- - -	0.352	0.347	0.352	E 75*		0.381	0.385	0.381	0.385	0.377		CURVE 76*	0.393	0.398	0.398	0.389	0, 1 02	0.383		CORVE	0.338	0.383	0.393	0.398	0.393	200		CURVE 78*		0.414	0.423	0.414		0.418
	Æ	70 20 20	7401.	3	5. 70	402. 20	20. 70	CURVE		370.70	400. 10	431, 20	454.20	469.20	1	COR	366. 20	393, 70	424, 70	453, 70	479.20	520.20			367, 20	401.20	428.70	442.20	474.20	540.70		CURV		388.20	397.70	428.20	461. 20	486.70
۲	링	357, 70 375, 20 387, 20		•	36	40	4			••																									•	•		
⊢ بد	CURVE 68* CU	0.393 357. 0.393 375. 0.402 387.		0.398			CURVE 69.	0.398	0.402		0.402	0.398	0. 402	0. 393		CURVE 70*	0. 406	0.398	0.406	0.410	0. 402	0.402	0.398	01101/E 71e		0. 402	0.410	0. 402	0.406	7 T	398		CURVE 72		322		0. 326	

DATA TABLE NO. 322 (continued)

ж	CURVE 139	0.695	0.661	0.030	9 9 9	0.435	0.410	0.372	0.339	0.285	0.217	0.211	0.200	0. 194	200		- 101	91. 41.41.0	7 140		- c	0.00	0. 537	0.517	0.451	0.390	0.375	0. 331	0.312	0. 238	0. 193	. 193	787	0. 187	0 187	0. 188		CURVE 141				0.515			
۴	CUR	303. 20	323. 20	373 20	200	473.20	495. 20	573.20	612. 20	673.20	723.20	773.20	850.20	041.20	2000	1073.20	70.00		100	00	303.20	323.20	360, 20	373, 20	416.20	473, 20	491.20	573.20	599. 20	673, 20	730. 20	773.20	873.30	949. 20	973.20	1073, 20		CUR	ļ	303.20	323. 20	353. 20	373.20	408. 20	
×	CURVE 132 (cont.)	0.414	0.401	CHBVE 1934	1001		0. 448				CURVE 1343		0.552		4361 07	CORVE 133*		0. 519		COMYE 130		0.669		0. 427			4001 01	CORVE 137		0.653		0.418 225			CHRUE 128	200	0.636			0.318					
۲	CURVE	573.20	623. 20	idito		273, 20	323, 20	373.20	423.20		COR		310. 10	320. 10	2010	202	4	313. 40	4	200		373, 20	473.20	573. 20	673. 20	773. 20		201		373, 20	473. 20	573.20	200	23.50	I BILL		373, 20	473, 20	573.20	673, 20	773.20				
×	CURVE 129 (cont.)	0.381	0.366			0.316					0.243	0. 247	0.251	0. 233	0. 700	061 3/10/10	2		0. 543		CURVE 131	,	0.406	0.406	0.406	0.406	0.402+	0.377	0.343	0.314	0. 289	0.264	0. 604	0.212	200	0. 490	CHRVF 1320		0.498	0.454	0.483	0.469	0.451	0, 431	;
۴	CURVE	673.20	123, 20	003.57	07 070	923.20	973. 20	993. 20	1013.20	1023. 20	1073. 20	1123. 20	1173. 20	1223. 20	1613.60	idit	2		303. 20		SCOR		303. 20	323. 20	373. 20	473.20	573. 20	673.20	773. 20	873.20	973. 20	1073.20	20.00	1273.20	1473 20	1413. 70	CHRV		273, 20	323, 20	373, 20	423. 20	473, 20	523, 20)
×	CURVE 127 (cont.)	0.368	0.368	0.70	200	0.368	9, 356	0.356	0.343	0.326	0.318	0.310	0. 414	9 2 5 0	0.200	0. 280		CORVE 128	;	0.360	0.360	360	0.364	0.364	0.356	0.347	0.347	0, 343	0.339	0.310	0.310	0.372	0.212	0.2.0	001 3710113	E 163	492.0	0.494	0.483	0.469	0 452	0, 431	0.414	16E 0))
۲	CURVE 1	407, 20	460.20	467.20	041.20	595.20	693, 20	728.20	760.20	803. 20	863.20	910.20	973. 20	1022. 20	1102.20	1147.20	,	SECONO.		303, 20	361. 20	402. 20	437, 20	492, 20	576, 20	650.20	691. 20	719.20	753, 20	800. 20	904. 20	972, 20	1030. 20		Agiio	COR	977 90	123.20	373.20	423, 20	473 20	523.20	573.20	623.20	; ;
×	CURVE 124 (cont.)	0.305	0. 289	U. 318		CURVE 125	0.423	0. 435	0. 423	0. 423	0.423	0.398	0. 402	0.393	0.383	0.364	0.040	6.418	0.305	0.314	0.322	;	CUSVE 126*		0.431	0.423	0.423	0.431	0.431	0.414	0.418	0.414	0. 402	0.038	200	0.423	0 226		0.322		CI3RVE 127#		0.360	360	} ;
f -	CURVE 1	1100. 20	1134. 20	1199. 20		COR	303, 20		452.20	515.20	593. 20	642. 20	689, 20	743.20	781. 20	816.20	305. 20	954. 20	1030. 20	1108. 20	1170. 20		CCS		303. 20	389, 20	418.25	410.20	527.20	582. 20	633.20	680.20	132.20	817.20	920.020	360.20	1055 20	1084 20	1159 20		CHRV		303, 20	383.20))
¥	VE 121+	0.444	0.439	0.439	0.431	0.435	0.431	;	E 122		0.448	0. 414	0.435	0.439	0.431	0. 435	9.42		VE 123		0.448	0. 439	0.444	0. 444	0. 439	0.444	0. 435		VE 124.		0.439	0. 439	0. 439	0.450	5.5	0.414		36.0	35.6	0.360	385	0. 297	0 289		
۳	CURV	369, 70	393. 70	425. 70	458.20	485, 70	543. 20		CURVE		369. 70	411.20	439.20	464.70	133.50	530.70	220. 70		CURV	;	377.20	416.20	442, 20	475, 20	500, 70	525.20	544, 70		CURV		303. 20	391.20	420.20	469.20	25.1.20	527.20	200 200	796.20	851.20	912.20	967 20	999. 20	1044 20		
×	E 116.	0.398	0.402		0.406	C. 402	E 117*		0.410	0.406	6. 402	0. 402	0. 466	0. 402		CCRVE 118	•	0.410	6. ±14	0.410	0.110	0.414		0. 402		CURVE 119*	•	0.435	0.431	0.427	0.423	0.427	0.423	0. 427	1000	1204	974	0.427	777	0.435	0.427	0.431	0.423		
۲	CURVE	368, 20	397. 20	428.70	453. 20	410.20	CURVE		378.20	400.70	429. 20	451.20	481.70	206.20	1	CCRV		364. 70	396. 20	428. 20	455. 20	487. 20	511.70	543, 20		CURV		370. 20	401. 70	432, 20	459.20	495. 20	520.76	496. 70		CORVE	169 20	200. 20	426.70	451.20	478 70	507, 70	548 20		
×	CURVE 110.	0, 427	0.423	0.427	7 7 7	0.414	0. 427		111		0.427	0.414	0.423	***		7.0			CURVE 112.		0. 427	0. 427	0.423	0.414	0.418		0.410		CURVE :13	;	0.326	0.326		2113	3	0.343	0.347	0.347	;	CURVE 115+		0.356	0.352	0.356	
-	CURV	367, 20	391.20	126.20	451.20	506. 20	527. 20		CURVE 1114		368. 20	388.70	420.20	7 7 7 7	27.5.00	507.70	224. 10	1	COR	4	372. 20	404, 70	431. 70	452, 20	484. 70	516.20	544, 20		CURV		362. 70	373. 70	386. 20	VALLO		361 20	372. 70	389.70		CURV		363.20	379, 20	414.70	

HARDON TO THE PROPERTY OF THE

Not shown on plot

يقاء ألواللا أسيفية جينطالا أفراها معيطالة بالأسفاج السماءة أياسية فطلت أيفيا ليراقيس يدم حسليس بالماهم يدياه تسميقتها بالمسه

esta mineral L'Esta communità de la communità

GROUP II THERMAL CONDUCTIVITY OF (1100) + CARBON + XX₁] ALLOYS (C + 2, 00%) (At least one $X_j \geq 0, 20\%$ or if any of Mn. P. S. Si > 0, 60%SPECIFICATION TABLE NO. 323

0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.789 0.645 0.592 0.022 0.020 0.177	L S OZ	Curie Ref.	Metho	Method Year Used	Temp. Range, K	Reported Error, 7,	Name and Specimen Designation) ၂	Compre	Composition (we	Composition (weight per cent) Cr Mn P S	. 1		temposition (continued). Specifications and Remarks
176 E. 1926 303 20 0.6 0.5 0.5 0.177 189 L. 1934 363-391 2.0-5.0 0.14 0.1480 0.6 0.6 0.5 0.5 0.022 0.020 0.177 189 L. 1934 363-391 2.0-5.0 0.14 0.1480 0.789 0.6 0.6 0.5 0.5 0.022 0.020 0.177 189 L. 1934 311-466 2.0-5.0 0.14 0.1480 0.789 0.6 0.6 0.5 0.022 0.022 0.022 189 L. 1934 311-466 2.0-5.0 0.14 0.1480 0.789 0.6 0.6 0.5 0.022 0.022 0.177 180 L. 1934 311-532 2.0-5.0 0.14 0.1480 0.789 0.6 0.6 0.5 0.022 0.022 0.177 180 L. 1934 311-532 2.0-5.0 0.14 0.1480 0.789 0.6 0.6 0.5 0.022 0.020 0.177 180 L. 1934 311-532 2.0-5.0 0.14 0.1480 0.789 0.6 0.6 0.5 0.022 0.020 0.177 180 L. 1934 311-532 2.0-5.0 0.14 0.1480 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.1480 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.1480 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.1480 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.1480 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.1480 0.789 0.6 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.14 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.14 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.14 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.14 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.14 0.789 0.6 0.5 0.5 0.022 0.020 0.177 180 L. 1934 311-534 2.0-5.0 0.14 0.14 0.789 0.6 0.5 0.5 0.022 0.020	1	176	i	- 1920	303		23	9 .0	o. c					Annealed at 900 C and slowly cooled.
189 E 1914 303 2 0 -5 0 Oil-bardeding steel 0 789 0 645 0 .392 0 .022 0 .020 0 .177 189 L 1934 363-391 2 0 -5 0 Oil-bardeding steel 0 789 0 645 0 .392 0 .022 0 .020 0 .177 189 L 1934 311-466 2 0 -5 0 Oil-bardeding steel 0 789 0 645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-549 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-549 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-549 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-549 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-549 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 789 0 .645 0 .392 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 .892 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 .892 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 .892 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 .892 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 .892 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 .892 0 .022 0 .020 0 .177 189 L 1934 371-534 2 0 -5 0 Oil-bardeding steel 0 .892 0 .022 0 .02		176	w	1920	303		2b	9 .0	Ð. 5					Annealed at 1100 C and quickly cooled.
189 L 1934 3:60-3:89 2:0-5:0 Oll-bardedong 0:645 0:552 0:022 0:020 0:177 SQ		188	ليز	1919	303		2h	o. 6						0.5 W; annealed at 900 C and slowly cooled.
189 L 1934 363-391 2.0-5.0 Oil-hardening 0.769 0.645 0.392 0.022 0.020 0.177 St. 1894 340-421 2.0-5.0 Oil-hardening steel 2.789 0.645 0.392 0.022 0.029 0.177 St. 200 C 189 2.0-5.0 Oil-hardening steel 2.789 0.645 0.392 0.022 0.029 0.177 St. 250 C 1934 371-466 2.0-5.0 Oil-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 1934 371-532 2.0-5.0 Oil-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 1934 371-534 2.0-5.0 Oil-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 0.11-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 0.11-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 0.11-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 0.11-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 0.11-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 250 C 0.11-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.789 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 0.645 0.392 0.022 0.020 0.177 St. 260 C 0.11-hardening steel 2.780 C		189	7	1934	360 -389	2, 0-5, 0	Oil-bardening non-deforming steel SQ	0. 789	0.645	0. 592	0.022	0. 020	0. 177	OII-quenched from 790 C.
189 L 1934 371-466 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.029 0.177 189 L 1934 371-466 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 370-532 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 370-532 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 370-532 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-549 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-549 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Gil-hardening 0.789 0.645 0.392 0.022 0.020 0.177		189		1934		2. 0-5. 0	Oil-hardening non-deforming steel ^S r. 150 C	0. 769	0.645	0. 592	0.022	0.020	0. 177	Tempered for 30 min at 150 C and atr-cooled.
183 L 1934 371-466 2.0-5.0 Oil-hardening steel ST. 250 C 189 0.645 0.592 0.022 0.020 0.177		189	4	1934		2. 0-5. 0	Oil-hardening non-deforming steel ST, 200 C	0. 789	0. 645	0. 592	0.022	0.029	0. 177	Tempered for 30 min at 200 C and afr-cooled.
189 L 1934 367-499 2.0-5.0 Oil-hardening 8 teel		183	J	1934		2.0-5.0	Oil-hardening non-deforming steel ST, 250-C	0. 789	0.645	9, 592	6. 023	0. 020	0. 177	Tempered for 30 min at 250 C and atr-cooled.
189 L 1934 370 - 532 2, 0 - 5, 0 Oli - hardening steel St. 360 C Oli - hardening steel St. 350 C Oli - hardening steel St. 350 C Oli - hardening steel St. 400 C Oli - hardening steel St. 300 C Oli - hardening steel		189	٦.	1934		2. 0-5. 0	Oil-bardening non-deforming steel Sq. 306 C		0. 645	0, 592	0. 022	0.020	0. 177	Tempered for 30 min at 300 C and alr-cooled.
189 L 1934 371-549 2.0-5.0 Oll-hardening steel 3T.400 C 189 L 1934 372-540 2.0-5.0 Oll-hardening steel 5T.500 C 189 L 1934 371-535 2.0-5.0 Oll-hardening steel 5T.500 C 189 L 1934 371-535 2.0-5.0 Oll-hardening steel 5T.500 C 189 L 1934 371-538 2.0-5.0 Oll-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Oll-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Oll-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Oll-hardening steel 5T.700 C 189 L 1934 371-544 2.0-5.0 Oll-hardening steel 5T.700 C 189 L 1934 371-544 2.0-5.0 Oll-hardening steel 5T.700 C		183	-	1934		2. 0-5. 0	Ott-hardening non-deforming steel S _T , 350-C		0.645	0, 592	0. 022	0. 020	0, 177	Tempered for 30 min at 350 C and afr-cooled.
189 L 1934 371-534 2.0-5.0 Oil-hardening 0.749 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-535 2.0-5.0 Oil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Oil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-538 2.0-5.0 Oil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L 1934 371-534 2.0-5.0 Oil-hardening steel ST.700 C 189 L 1934 371-544 2.0-5.0 Oil-hardening steel ST.700 C 189 L 1934 371-544 2.0-5.0 Oil-hardening steel ST.700 C		189		1934		2, 0 - 5, 0	Oil-handening non-deforming steel Sr. 400 C	0. 789	0. 645	0, 592	0. 022	o. 020	0. 177	Tempered for 30 min at 400 C and atr-cooled.
189 L. 1934 371-535 2.0-5.0 Oll-hardening 0.789 0.645 0.392 0.022 0.020 0.177 ST. 600 C 189 L. 1934 371-538 2.0-5.0 Oll-hardening 0.789 0.645 0.392 0.022 0.020 0.177 189 L. 1934 371-544 2.0-5.0 Oll-hardening steel ST. 700 C 189 L. 1934 371-544 2.0-5.0 Oll-hardening 0.789 0.645 0.392 0.022 0.020 0.177 SAA		189	-1	1934		2. 0-5. 0	Oil-hardening non-deforming steel Sr. 500 C		0. 645	0, 592	0. 022	0. 020	0. 177	Tempered for 30 min at 500 C and air-cooled.
189 L 1934 371-538 2.0-5.0 Oil-hardening 0.789 0.645 0.392 0.022 0.020 0.177 non-deforming steel St. 700 C 189 L 1934 371-544 2.0-5.0 Oil-bardening 0.789 0.645 0.392 0.022 0.020 0.177 non-deforming steel		189		1934		2, 0-5, 0	Oil-hardening non-deforming steel ST, 600 C		0, 645	0. 592	0. 022	0. 020	0, 177	Tempered for 30 min at 606 C and atr-cooled.
189 L 1934 371-544 2, 0-5, 0 Oll-bardening 0, 789 0, 645 0, 592 0, 022 0, 020 0, 177 non-deforming steel 5A		189		1934		2. 0-5. 0	Oil-hurdening non-deforming steel ST, 700 C		0.645	0. 592	0. 022	0. 020	0. 177	Tempered for 30 min at 700 C and atr-cooled.
		189		1934		2, 0-5, 0	Oil-bardening non-deforming steel SA	0. 789	0, 643	0. 392	0. 022	0. 020	0. 177	Annealed at 730 C.

The state of the s

SPECIFICATION TABLE NO. 323 (continued)

Curve	Ref	Method		Temp.	Temp. Reported			Compos	sition (we	Composition (weight percent)	en t)		Composition (continued), Specifications and Remarks
No.	No.	No. No. Used	1 6:31	tange.	Error, "	Specimen Designation C Cr Mn P S	ပ	ا ئ	ű.	1	- 1	ž.	
5	3	0	1925	440			0.62		9, 33			0, 29	0, 27 N ₁
2 -	3	٠ ر	1925	450			1. 5.,		0.24			0, 35	0. 23 Ni.
9 1	3) c	1925	0.44		Carbon steel	0.95		0. 22			\$2.70 0	0.39 Ni. quenched in NaOH selation from 850 C.
: :	5) (1691	175		Carbon steel	0, 95		0. 23			0.24	0.39 Ni, tempered at 450 C.
<u>x</u>		ا ز	1950	;		Carlon steel	90.0		50			7. 3	0, 39 Ni; annealed at 850 C.
61	3	ს .	1925	7 000		Soft steed			U, 56	0, 032	0.639	0.15	No details reported.
92			1.6.1				· •		346	10 46 B 664	:::0	0.01	No details reported.
	956	نــ	1933	373-673		Soll Stre	F. 03		È				-

(C ℃. 00%) GROUP II DATA TABLE NO. 323 THERMAL CONDUCTIVITY OF (IRON + CARBON + EX.) ALLOYS

(At least one $N_1 \geq 0, 20\%$ or if any of Mn, $|P_1|S_1 \gg 0, 60\%)$

[Temperature, T. K. Thermal Conductivity, k, Watt em 2 K21]

i z	CURVE 21 (cont.)	0, 475 0, 475 0, 464																					
۲	CURVE	67 51 51 51 51 51 51 51 51 51 51 51 51 51																					
4	CURVE 13 (cont.)	0, 389 6, 385 0, 393	CURVE 14"	0.381		6.351	0.000 0.000 0.000	E 15	0,464	E 16	0.510	CURVE 17	0.397	81 33	0.518	1 3	0. 575	02 30	0.502	0, 490	701.0		6. 45 4
H	CURVE	488, 70 506, 20 538, 20	CURV	370, 70	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	483, 20	943.70 943.70	CURVE 15	444.8	CURVE 16	449.7	CURV	446.3	CURVE 18	440.7	CURVE	446, 6	CURVE 30	35.0.3	01.0	1 1 2 3	CURVE 21	373, 2
¥	VE. 9	0.368 0.381 0.372	9.0 372 5.0	0. 331 0. 372	CURVE 10	0.368		6.368 6.372	0, 364	11	0.385	380.0	382	0.381	CURVE 12	0.085	988 0 0		0.372	CURVE 13	0.385	0,339	69
۰	CURVE	369, 70 399, 70 371, 70	474.70	532, 20	CURV	370.70	410.70	476.70 518.20	547, 70	CURVE 11	371.70	200	458, 20	540, 20 540, 20	CURV	371, 20	428, 30	477.70	535.20	CURV	371, 20	401.70	451.70
¥	1 3 A	0.416 (E.2	0.371	r 3.	0,374	4 3/	0.268	0.240	/E 5	0.280	0, 285	(E 6	0.:103	0, 310	/E 7	0,339	0,343	0.339	E S.	0.372	0.373	0.072	7
H	CURVE	OCURVE	30:1, 20	CURVE	303, 20	CURVE	359, 70	389. 20	CURVE	381, 20	391, 20	CURVE	359. 70	420.70	CURVE	391, 20	416.70	466.20	CURVE	366, 70	02.424	459, 20	498, 78

Not shown on plut

GROUP I THERMAL CONDUCTIVITY OF (IRON + CARBON + EX,) ALLOYS (C> 2,00%) SPECIFICATION TABLE NO. 324

(X₁ = 0, 20% except Mn, P, S, St. 0, 60% each)

(For Data Reported in Figure and Table No. 3245)

S S		Ne.	Ref. Method	1	Reported	Name and		Compo	stion (x	Composition (weight per cent)	cent)]	Control of the contro
Š		Used	1 4624	Range, K	Error, %		ر	រី 	Mn	a	s	ž	Composition (continued), operations and netter he
-	33	1	1933	354-704	2.0	W W	2.80		0. 10	0.061	0.093	0.39	[0. 76 graphitic carbon, 2. 01 combined carbon].
2	172	Œ	1927	298		Cast iron; 1a	7.41	Trace	0.03	9. 036	0.093	0. 12	As cast.
e	172	ш	1927	388		2 s	2. 53	Trace	0.05	0.014	9, 029	0.05	As cast.
+	172	ш	1927	29€		34	2.67	Trace	0. 03	0.033	0.048	0. 11	As cast,
s	172	Œ	1927	298		7.7	3. 12	Trace	0.03	0.024	ი 000	90 .0	As cast.
ø	172	iai	1927	298		э̂в	3. 14	Trace	0.03	0.019	0.030	0.01	As cast,
-	172	ш	1927	298		6 a	3. 17	Trace	90.08	0.040	0. 657	0.21	As cast.
æ	172	ш	1927	298		7a	3. 53	Trace	9, 03	0, 009	0,052	0.0	As cast.
6	172	ω.	1927	298		77.00	3.64	Trace	0.04	0. 021	0.024	0. 16	As cast.
70	172	ш	1927	298		9a	3.93	Trace	3	0. 320	0.049	0. 15	As cast.
11	172	ວາ	1927	298		101	3.96	Trace	90.0	0.011	0.021	0.20	As cast.
12	172	ш	1927	86Z		lla	4. 13	Trace	0.03	0.017	0.023	0. 10	As cast.
13	172	ш	1927	298		12.1	4. 26	Trace	0.03	0.015	0.020	0. 10	As cast.
14	172	•	1927	298		13a	4.35	Trace	6 . 08	0.022	0.023	0.35	As cast.
15	172	ā	1927	298		142	4. 40	Trace	0.03	0.019	0,075	0.34	As cast.
16	172	ш	1927	298		lōs	4.61	Trace	0.03	0.017	0.040	0, 37	As cast.
11	172	ы	1927	298		16a	4. 63	Trace	80 0	0.020	0.074	9. 54	As cast.
91	172	ш	1827	298		16	2.41	Trace	0 02	0.036	0.093	0. 12	Cast; annealed at 1000 C for 2 hrs.
61	172	ы	1927	298		36	2. 67	Trace	0.02	0.033	0.048	0. 11	Cast; annealed at 1000 C for 2 hrs.
20	172	ш	1927	298		Q 9	3. 17	Trace	90 0	0.040	0.057	0.21	Cast; annealed at 1000 C for 2 hrs.
21	172	ш	1927	298		q ₈	3.64	Trace	0.04	0.021	0.024	0. 16	Cast; unnealed at 1006 C for 2 hrs.
22	172	ш	1927	298		10b	3.96	Trace	90 0	0. 011	0. 02 1	r. 20	Small graphite appeared in granular form; annealed at 1000 C for 2 hrs.
23	172	ш	1927	29.8		116	4. 13	Trace	0.03	0.017	0.023	0. 10	Annealed for 3 hrs at 650 C.
24	172	×	1927	298		12b	4.26	Trace	0.03	0.019	6.020	0. 10	Annealed for 3 hrs at 650 C.
25	172	ы	1927	298		136	4.35	Trace	90.0	0.022	0.023	0.35	3. 89 graphite in granular form; annealed at 1000 C for 2 hrs.
26	172	ы	1927	296		14b	4.40	Trace	0. 63	0.019	0.075	0.34	Annealed for 3 hrs at 630 C.
27	172	ш	1927	867		15b	4.61	Trace	0.03	0.017	0.040	0.37	Annealed for 3 hrs at 650 C.
20 81	172	Œ	1927	298		16b	4. 63	Trace	6.08	0.020	0.074	0. 54	4, 35 graphite in granular form; annealed at 1000 C for 2 hrs.
29	172	ш	1927	298		10	2.41	Trace	0.05	0.036	0.093	0. 12	Annealed first at 1000 C for 2 hrs and second at 1000 C for 4 hrs.

SPECIFICATION TABLE NG. 324 (continued)

Composition (continued), Specifications and Remarks	Annealed first at 1000 C for 2 hrs and second at 1000 C for 4 hrs.	Annealed first at 1000 C for 2 hrs and second at 1000 C for 4 hrs.	Annealed first at 1000 C for 2 hrs and second at 1000 C for 4 hrs.	1. 10 graphite in granular form; annealed first at 1000 C for 2 hrs and second at 1000 C for 4 hrs.	Annealed first at 1000 C for 2 hrs and second at 1000 C for 4 hrs and third at 1090 C for 2 hrs.	Annealed first at 1000 C for 2 hrs and second at 1000 C for 4 hrs and third at 1090 C for 2 hrs.	Annealed (1781 at 1000 C for 2 hrs and second at 1000 C for 4 hrs and third at 1090 C for 2 hrs.	Annealed first at 1000 C for 2 brs and second at 1000 C for 4 hrs and third at 1090 C for 2 brs.	 O2 graphite in granular form; annealed first at 1000 C for 2 hts and second at 1000 C for 4 hrs and third at 1090 C for 2 hrs. 		
St	0. 11	0.21	0. 16	0. 20	0. 12	0. 11	0. 21	0. 16	0. 20	0. 57	6.5
cent)	0.048	0. 057	0.024	0. 021	0.093	0.048	0.057	0.024	0. 021	0. 074	0.074
Composition (weight per cent)	0.033	0.010	0. 021	0. 011	0.036	0. 933	0.040	0. 021	0. 011	0, 567	0.540
strion (v Mn	0. 02	0.08	0. 6	o 8	0.05	0.05	0.08	3	90 .0	0.53	0.44
Compo	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	0.089	951 0
ပ	2.67	3. 17	3.64	3.96	2.41	2.67	3. 17	3.64	3.96	3.02	30.6
ed Name and Specimen	Cast iron; 3c	9 0	96	10c	ρŢ	3d	6 d	P8	10d	White cast iron; l	Grev cast
Reported											
Temp. Range, K	298	25 8 25 8	298	298	298	298	298	293	298	303-1073	363-1073
Year	1927	1927	1927	1927	1927	1927	1927	1927	1927	1936	1936
Method	l i	ы	ப	ш	ш	ω	щ	ω	ω	۵	۵
Ref. 1	172	172	172	172	172	172	172	172	172	175	175
Curve Ref. Method Year No. Used Year	30	31	32	33	ŧ	35	36	37	38	8	9

GROUP 1

;
:
•
5
•
-
į
2
ž.
ž
ē
5
71
< 0.20% except
×-
ت

	¥	CURVE 40		323, 20 0, 297 361, 20 0, 300			504, 20 0, 329 573, 20 0, 338		769, 20 0, 325 773, 20 0, 323			1073, 20 0, 203														
1 rr T. K. Thermal Co.	*	CURVE 33	298.20 0.256	5	5 2 2 2	298. 20 0. 339	CURVE 35	298, 20 0, 322	CURVE 36	298, 20 0, 268	9	298, 20 0, 225	CURVE 38	298. 20 0. 503	CURVE 39	303, 20 0, 128 323, 20 0, 133			\$12, 20 0, 172 573, 20 0, 197			873, 20 0, 198 884, 20 0, 198				
T. T. T. T. T. T. T. T. T. T. T. T. T. T	A P	CURVE 21	399 20 0 226		CURVE 22	298, 20 0, 205	CURVE 23	298. 20 0. 200	CURVE 24	298, 20 0, 189	CURVE 25	298, 20 0, 563	CURVE 26	298, 20 0, 167	CURVE 27	298. 20 0. 155	CURVE 28	298. 20 0. 557	CURVE 29	298, 20 0, 334	CURVE 30	298. 20 0. 321	CURVE 31	298.20 0.265	CURVE 32	298.20 0.226
	.x	URVE 9		298, 20 0, 215	CURVE 10	298. 20 0. 196	CURVE 11	298, 20 0, 191	CURVE 12	298. 20 0. 182	CURVE 13	298. 20 0. 167	CURVE 14	298, 20 0, 145	CURVE 15	298, 20 0, 146	CURVE 16	298, 20 0, 129	CURVE 17	298. 20 0. 124	CURVE 18	298, 20 0, 335	CURVE 19	298, 20 0, 318	CURVE 20	298. 20 0. 265
		¥ .	CORVE	353.70 0.485	376, 70 0, 461	429.70 0.473			515, 70 0, 452 527, 70 0, 456				CURVE 2	298.20 0.319	CURVE 3	298, 20 0, 303	CURVE 4	298.20 0.294	CURVES	298. 20 0. 260	CURVE 6	298.20 0.264	CURVE 7	298, 20 0, 254	≥	298. 20 0. 226

GROUP II THERMAL CONDUCTIVITY OF (IRON + CARBON + ΣX_l) ALLOYS (C> 2.00%) SPECIFICATION TABLE NO. 325

(At least one $X_i > 0.20\%$ or if any of Mn, P. S, SI > 0.50%)

[For Data Reported in Figure and Table 325]

							Š .	odau me	3	ו מו ולפנס ויכל מו ב ושלו ב שווי בחוב				
Curve No.	Ref.	Metho	Method Year Used	Temp. Range, K	Reported Error, %	Name and Specimen Designation	ပ	្	Cu	Composition (weight per cent) Cu Mn Ni P	nt per cent	s (:	Si	Composition (continued), Specifications and Remarks
-	179	يـ ا	1939	357-698	2.0	Cu cast Iron	3. 18		1. 58	69 .0			1.58	Cast in mold.
8	179	-1	1939	352-707	2.0	Cr-Mocastiron	3. 12	0.54		0.38			2.31	0.77 Mo; cast in mold.
ო	179	٦	1939	356-709	9. 0	Mo cast iron	2.56			0.63			2.20	0.58 Mo; cast in mold.
4	179	٦	1939	349-696	2.0	N:-Tensyl cast	2.80	0. 54		0.66 1.71			2. 51	Cast in mold.
S	179	-1	1939	355-710	2.0	NCreastiron	3.41	3		0.65 1.49	<u>6</u>		1. 03	Cast in mold.
9	196	J	1926	361-701	2. 0	HD cast iron	3.25			1.87	0.69	0.027	1.56	[2.51 graphitic carbon, 0.74 combined carbon]: as cast.
7	196	_	1928	367-693	2.0	Gray cast iron	3. 32			2. 43	0.71	0.014	1.52	[2.55 G. C., 0.77 C. C.]: 28 cast
80	196	-1	1928	359-701	2.0	Cr cast iron:1	3. 19	0. 198		96.0	0. 10	0.049	1. 42	[2. 49 G. C., 0.70 C. C.]; as cast.
6	196	٦	1928	358-697	2.0	Cr cast iron;2	3. 17	0.392		0.97	0.69	0.40	1.40	[2.24 G. C., 0.93 C. C.]: as cast
10	196	-1	1928	356-703	2. 0	Ni cast iron	3. 16			0.94 0.746	146 0.67	0. 095	1. 56	[2, 50 G. C., 0.67 C. C.]: as cast
11	196	-1	1928	358-707	2.0	V cast iron	3. 19			0.99	0.69	0.084	1.45	0. 124 V; [2. 49 G. C., 0. 70 C. C.]; as cast.
12	196	1	1928	353 - 706	2.0	W cast fron	3.05			0.76	0.68	0.064	1.89	0. 475 W : [2. 24 G. C., 0. 78 C. C.]; as cast.
13	196	٦	1928	355 - 702	2.0	M-4-1	3.34			2. 43	0.71	0.014	1. 52	[3, 08 G. C., 0.26 G. C.]; annealed at 550 C for 200 hrs.
11	196	1	1928	359 -702	2.0	Cr-2-1	3.21	0.392		0.97	0. 69	0.40	1.40	[2, 72 G. C., 0.49 C. C.]; annealed at 550 C for 200 hrs.
15	961	-1	1928	362-703	2.0	Ni cast fron; 1	3. 15			0.94 0.746	746 0.67	0.095	1. 56	[3, 08 C. C., 0.07 C. C.]; annealed at 550 C for 200 brs.
16	196	1	1928	361-701	2.0	W cast iron; 1	3. 05			0.76	0.68	0.064	1.89	0.475 W; [2.45 G.C., 0.60 C.C.]; annealed at 550 C for 200 hrs.
11	197	J	1940	441-668		Cu-33	3. 15		1. 45	9. 58	0.23	0.11	1.58	
18	197	7	1940	367-712		Cu-34	3. 18		1.98	9. 58	0.23	0. 11	1.49	
19	197	٦	1940	370-687		Cu-35	3. 16		3. 10	0.58	0.23	0. 11	1. 44	
20	188	ᆈ	1939	337-437		Cu cast iron:C2a	3.47		1. 36	991.0	0.68	0.097	2.03	
21	198	7	1939	335-427		Cu cast (ron:C2b	3.47		1. 36	0. 468	0.68	0.097	2. 03	Specimen 35 mm in diameter.
22	198	د	1939	345-448		Cu cast iron; C5a	2. 37		1. 16	0. 447	1. 43	0.093	2.05	Specimen 75 mm in diameter.
23	198	٦	1939	342-432		Cu cast iron; C5b	2.37		1. 16	0.447	1.43	0.093	2. 05	Specimen 35 rnm in diameter.
24	198	_1	1939	347-446		Cu cast fron; C6a	3. 31		1. 26	0.468	1.56	0. 102	2.00	Specimen 75 mm in diameter.
52	198	-1	1939	344-429		Cu castiron.C6b	3.31		1. 26	0.468	1.56	0. 102	2.00	Specimen 35 mm in diameter.
36	198	J	1939	347,415		Mn cast fron; P2	2.6/			1. 20	1.96	0.06/	5.0	
27	198	1	1939	351,399		Mn cast iron; P5	2.6/			1. 20	1.06	0.06/ 0.10	2.0	
28	198	-1	1939	338 399		Mn castiron; P9	2.6/			1.20	0.92	0.06/	2.0	

SPECIFICATION TABLE NO. 325 (continued)

Curve No.	S e	Metho	Method Year Used	Temp. Range, K	Reported Error, %	Name and Specimen	ပ	ٽ ت	ompositi Cu	ion (weight Mn Ni	Composition (weight per cent) Cu Mn Ni P	လ	ïŝ	Composition (continued), Specifications and Remarks
58	198	1	1939	342,408		Mn castiron P10	2.9			1. 20	0.92	0.06/	2. c	
90	198	1	1939	337, 394		Mncastiron Pll	2.6/		•	1.20	1. 16	0.06/ 0.10	2.0	
31	198	-1	1939	338, 405		Mn cast (ron; P12	2.6/		•	1. 20	1, 16	0.06/ 0.10	2.0	
32	197	Ļ	1940	436- 681		30	3. 16		•	0.57	0.22	0. 11	1. 54	
33	197	J	1940	433 - 672		31	3.2	_	0. 53 (0.57	0.22	0. 11	1.50	
34	197	-1	1940	433- 672		32	3. 18		0.99	0.58	0.23	0. 11	1.59	
38	199	٦	1899	294- 348			3. 40/ 3. 60		0.05/ (0.055 (0. 50/ 0. 55	0.053/ 0.058	0. 106	1. 40	
36	172	Œ	1927	298		17a	3.82		Trace (0.09	0.009	0.056	1.24	No graphite; cast in Iron mold.
37	172	Ĺ	1927	298		18a	3.81		Trace (0.05	0, 003	0.05	1.96	No graphite: cast in iron mold.
36	172	(A)	1927	298		<u>i</u> 9a	3.84		Trace (90 '0	0.004	0.021	1. 98	3, 26 graphite in flaky form; cast in sand mold.
9	172	ш	1927	298		17b	3.82		Trace (65 .0	0,000	0.056	1. 24	Cast, and annealed at 800 C for 1 hr.
9	173	щ	1927	298		18b	3.81		Trace	0.05	0.003	0. 05მ	1. 96	Cast, and annealed at 800 C for 1 hr.
Ŧ	172	ш	1927	298		19b	3.84		Trace	90.06	0.004	0, 012	1.98	Cast, and annealed at 800 C for 1 hr.
42	172	(4)	1927	298		17c	3.82		Trace	60.0	0,009	0.056	1. 24	Annealed lirst at 800 C for 1 hr, then at 1000 C for 1 hr.
ţ,	198	-1	1939	339- 437		Cla	3.42		0.15	0.447	0.66	0. 10	2. 10	Specimen 75 mm in diameter.
1	198	٦	1939	342- 438		ctb	3.42		0.15	0. 147	99 '0	0. 10	2. 10	Specimen 35 mm in diameter.
45	198		1939	334- 425		C3s	3. 37		0.45 (0. 436	0.82	0. ng.a	2. 07	Specimen 75 mm in diameter.
46	198	J	1939	336- 419		C3b	3.37		0.45	0. 436	.	် င ဘ	2.07	Specimen 35 mm in diameter.
4.7	198	.1	1939	337- 436		C4a	3. 18		0.15	0.468	•	ı	3.	Specimen 75 mm in diameter.
4	198	_	1939	341- 452		C4b	3.18		0.15	0.468	1.20	;	2 10	Specimen 35 mm in diameter.
4	8	-1	1932	356- 698		Ingot iron; 1	3. 77		=	0. 43	0.037	0.490	1	12.95 G. C., 0.82 C. C. J. Iron of ingot mold before service.
20	8	٦	1932	349- 699		ଷ	3.48/		. •	0.73/	0, 042	0. 039	2.05/ 2.08	[2.70 - 2.74 G.C., 0.74 - 0.79 C.C.]; iron of ingot mold before service.
51	200	7	1932	358- 700		31	3.43/		-	0. 78	0.029	0.083	2.44/2.46	[2.60 - 2, 30 G. C., 0, 61 - 0, 83 C. C.]: fron from the top of a used lagot mold having a life of 65 casts.
23	200	_1	1932	349- 701		3B	3.57/			0. 74	0. 039	0. 032	2. 20/ 2. 23	[2.80 - 2.91 G. C., 0.67 - 0.77 C. C.]; Iron from the bottom of a used ingut mold having a life of 65 casts.
53	200		1932	348- 698		۲,	3. 12			0. 43			1.86	[2,48 G. C., 0.64 C. C.]; Iron from a used ingot mold having a life of 65 casts and being made of the same metal as that of sample 1 above.

SPECIFICATION TABLE NO. 325 (continued)

200 L 1932 342- 700 179 L 1939 360- 700 2.0 179 L 1939 360- 700 2.0 179 L 1939 349- 698 2.0 129 C 1933 373- 773 2.0-5.0 196 L 1928 361- 706 2.0 196 L 1928 355- 703 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 700 2.0 196 L 1928 355- 701 2.0 20 L 1933 375- 665 2.0 20 L 1938 355- 701 2.0 20 L 1938 355- 701 2.0 20 L 1938 355- 701 2.0 20 L 1938 365- 695 2.0 20 L 1938 365- 695 2.0 20 L 1938 365- 701 2.0	1 Supra	ວ່ ວ	Cu Mn	b s d	
179 L 1939 355-700 2.0 179 L 1939 360-700 2.0 179 L 1939 349-698 2.0 129 C 1933 379-773 2.0-5.0 129 C 1933 373-773 2.0-5.0 136 L 1928 356-703 2.0 196 L 1928 350-691 2.0 196 L 1928 350-691 2.0 196 L 1928 350-697 2.0 196 L 1928 350-697 2.0 196 L 1928 350-655 2.0 196 L 1928 350-657 2.0 196 L 1933 346-690 2.0 31 L 1933 346-690 2.0 31 L 1933 356-704 2.0 31 L 1933 356-704 2.0 <tr< td=""><td>ļ</td><td>3.36</td><td>0.76</td><td>2. 12</td><td>[2. 97 G. C., 0. 49 C. C.], fron from a used ingot mold from the same metal as that of sample 2 above.</td></tr<>	ļ	3.36	0.76	2. 12	[2. 97 G. C., 0. 49 C. C.], fron from a used ingot mold from the same metal as that of sample 2 above.
179 L 1939 360 - 700 2.0 129 C 1933 349 - 698 2.0 129 C 1933 373 - 773 2.0 - 5.0 129 C 1933 373 - 773 2.0 - 5.0 136 L 1928 356 - 703 2.0 196 L 1928 356 - 655 2.0 196 L 1928 356 - 655 2.0 196 L 1928 356 - 655 2.0 196 L 1928 356 - 655 2.0 196 L 1928 356 - 655 2.0 196 L 1928 356 - 655 2.0 196 L 1928 356 - 697 2.0 196 L 1933 356 - 697 2.0 31 L 1933 346 - 696 2.0 31 L 1933 356 - 701 2.0 31 L 1933 356 - 701 2.0 320 L 1928 366 - 695 2.0 340 L 1928 366 - 695 2.0 350 L 1928 366 - 695 2.0 360 L 1928 366 - 695 2.0 370 R 1936 303 - 1073 370 175 P 1936 303 - 1073 370 370 370 370 370 3	1 3.	3.20	0.72	1. 56	As cast.
179 L 1939 349-698 2.0 129 C 1933 373-773 2.0-5.0 136 L 1928 361-773 2.0-5.0 136 L 1928 358-703 2.0-5.0 136 L 1928 356-691 2.0 136 L 1928 356-655 2.0 136 L 1928 356-657 2.0 136 L 1928 356-657 2.0 136 L 1928 356-657 2.0 136 L 1928 356-657 2.0 136 L 1928 356-657 2.0 136 L 1933 346-655 2.0 131 L 1933 346-690 2.0 31 L 1933 346-704 2.0 31 L 1933 356-701 2.0 31 L 1933 373-703 2.0	3.	3. 11	0.39	2 26	As cast.
129 C 1933 373-773 2.0-5.0 129 C 1933 373-773 2.0-5.0 136 L 1928 356-703 2.0-5.0 136 L 1928 355-703 2.0 136 L 1928 355-700 2.0 136 L 1928 355-655 2.0 136 L 1928 356-697 2.0 136 L 1928 356-697 2.0 136 L 1928 356-697 2.0 136 L 1933 346-690 2.0 31 L 1933 346-704 2.0 31 L 1933 346-704 2.0 31 L 1933 352-709 2.0 31 L 1933 352-709 2.0 31 L 1933 366-695 2.0 31 L 1933 366-695 2.0 <t< td=""><td>HD cast iron 2.</td><td>2.61</td><td>0.45</td><td>2. 46</td><td>As cast.</td></t<>	HD cast iron 2.	2.61	0.45	2. 46	As cast.
129 C 1933 373-773 2.0-5.0 196 L 1928 351-773 2.0-5.0 196 L 1928 358-703 2.0 196 L 1928 355-703 2.0 196 L 1928 355-703 2.0 196 L 1928 356-655 2.0 196 L 1928 356-657 2.0 196 L 1928 356-697 2.0 196 L 1928 356-697 2.0 31 L 1933 346-704 2.0 31 L 1933 346-704 2.0 31 L 1933 352-709 2.0 31 L 1933 352-709 2.0 31 L 1933 352-709 2.0 31 L 1933 366-695 2.0 31 L 1933 366-695 2.0	C3 3.	3.93	0. 63	0.134 0.077 1.40	[3.34 G.C., 0.59 C.C.]; as cast
196 L 1928 361-706 2.0 C 196 L 1928 358-703 2.0 L 1928 355-703 2.0 L 1928 355-703 2.0 L 1928 355-700 2.0 L 1928 355-655 2.0 L 1928 355-655 2.0 L 1928 356-655 2.0 L 1928 356-657 2.0 L 1928 356-697 2.0 L 1928 356-697 2.0 L 1933 346-690 2.0 J 1 L 1933 346-690 2.0 J 1 L 1933 346-690 2.0 J 1 L 1933 356-701 2.0 J 1 L 1933 356-701 2.0 J 1 L 1933 356-701 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-695 2.0 L 1958 366-1073	C4 4.	4. 16	0.79	0.120 0.040 1.35	[3. 50 C. C., 0. 66 C. C.]; as cast.
196 J. 1928 358- 703 2.0 196 L. 1928 350- 691 2.0 196 L. 1928 355- 700 2.0 196 L. 1928 356- 655 2.0 196 L. 1928 356- 655 2.0 196 L. 1928 357- 665 2.0 196 L. 1928 356- 697 2.0 196 L. 1928 356- 697 2.0 31 L. 1933 346- 696 2.0 31 L. 1933 346- 704 2.0 31 L. 1933 352- 709 2.0 31 L. 1933 356- 701 2.0 31 L. 1933 352- 709 2.0 31 L. 1933 366- 695 2.0 31 L. 1933 366- 695 2.0 31 L. 1933 366- 695 2.0 31 L. 1933 366- 695 2.0 31 L. 1933 366- 695 2.0 306	Gray cast iron; S6 3.	3.08	96.0	0.36 0.08 1.24	[2.28 G.C., 0.79 C.C.]; as cast.
196 L 1928 350-691 2.0 196 L 1928 365-700 2.0 196 L 1928 356-655 2.0 196 L 1928 356-655 2.0 196 L 1928 356-697 2.0 196 L 1928 356-697 2.0 196 L 1928 356-697 2.0 31 L 1933 346-690 2.0 31 L 1933 346-704 2.0 31 L 1933 352-709 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 366-695 2.0 31 L 1933 366-701 2.0 31 L 1933 366-701 2.0 31 L 1933 366-695 2.0	.58	3. 16	0.97	0.70 0.054 1.48	[2, 48 G. C., 0.68 C. C.]; as cast.
196 L 1928 355-700 2.0 196 L 1928 356-655 2.0 196 L 1928 356-655 2.0 196 L 1928 357-655 2.0 196 L 1928 351-765 2.0 196 L 1928 351-695 2.0 31 L 1933 346-690 2.0 31 L 1933 346-704 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 366-695 2.0 196 L 1923 366-695 2.0 201 R 1928 366-695 2.0 201 R 1928 369-103 2.0 201 R 1928 366-695 2.0 201 R <	S9 3.	3.25	0.97	0.81 0.066 1.91	[2.65 G.C., 0.60 C.C.]; ss cast.
196 L 1928 3.56-665 2.0 196 L 1928 350-655 2.0 196 L 1928 357-665 2.0 196 L 1928 3.57-665 2.0 196 L 1928 3.57-665 2.0 196 L 1928 3.57-605 2.0 31 L 1933 3.46-690 2.0 31 L 1933 3.46-704 2.0 31 L 1933 3.56-701 2.0 31 L 1933 3.56-701 2.0 31 L 1933 3.56-701 2.0 31 L 1933 3.56-701 2.0 31 L 1933 3.56-703 2.0 196 L 1928 3.66-695 2.0 196 L 1928 3.69-695 2.0 175 P 1936 303-1073 175 P 1936 303-1073	S-8-1 3.	3, 13	0.97	0,70 0.054 1.48	[3. 01 G. C., 0.12 C. C.]; tempered at 550 C for 40 hrs.
196 L 1928 350- 655 2.0 196 L 1928 35- 697 2.0 196 L 1928 35- 697 2.0 196 L 1928 35- 697 2.0 196 L 1928 35- 690 2.0 31 L 1933 34- 694 2.0 31 L 1933 34- 694 2.0 31 L 1933 35- 704 2.0 31 L 1933 35- 704 2.0 31 L 1933 35- 709 2.0 31 L 1933 37- 703 2.0 196 L 1928 365- 695 2.0 201 R 1928 366- 695 2.0 201 R 1928 366- 695 2.0 201 F 1928 366- 695 2.0 201 F 1936 303-1073 175	S-8-2 3.	3. 16	0.97	0.70 0.054 1.48	[3.05 C. C., 0.11 C. C.]; tempered at 550 C for 80 hrs.
196 L 1928 357-665 2.0 196 L 1928 356-697 2.0 196 L 1928 356-697 2.0 196 L 1928 356-697 2.0 197 L 1933 346-690 2.0 31 L 1933 346-704 2.0 31 L 1933 352-709 2.0 31 L 1933 352-709 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 376-703 2.0 31 L 1933 376-703 2.0 31 L 1933 376-703 2.0 31 L 1928 369-695 2.0 3175 P 1936 303-1073 3175 P 1936 303-1073	5-8-3	3. 15	0.97	0.70 0.054 1.48	[3.06 G. C., 0.09 C. C.]; tempered at 550 C for 120 brs.
196 L 1928 356-697 2.0 196 L 1928 351-705 2.0 196 L 1928 351-705 2.0 31 L 1933 346-690 2.0 31 L 1933 346-704 2.0 31 L 1933 352-709 2.0 31 L 1933 352-709 2.0 31 L 1933 356-701 2.0 31 L 1933 366-695 2.0 196 L 1928 369-703 2.0 196 L 1928 369-103 175 P 1936 303-1073 175 P 1936 303-1073 175 P 1936 303-1073	S-8-4 3.	3. 15	0.97	0.70 0.054 1.48	[3, 03 G. C., 0, 12 C. C.]; tempered at 550 C for 160 bra.
196 L 1928 351-705 2.0 196 L 1928 376-696 2.0 31 L 1933 346-690 2.0 31 L 1933 346-704 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 31 L 1933 366-701 2.0 31 L 1933 373-703 2.0 196 L 1928 366-695 2.0 201 R 1922 468-815 175 P 1936 303-1073 175 P 1936 303-1073	S-8-5	3. 14	0.97	0.70 0.054 1.48	[3.02 G. C., 0.12 C. C.]; tempered at 550 C for 200 hrs.
196 L 1928 376- 696 2.0 31 L 1933 346- 690 2.0 31 L 1933 341- 694 2.0 31 L 1933 341- 694 2.0 31 L 1933 346- 704 2.0 31 L 1933 352- 709 2.0 31 L 1933 352- 709 2.0 31 L 1933 366- 695 2.0 196 L 1928 366- 695 2.0 201 R 1922 468- 815 175 P 1936 303-1073 175 P 1936 303-1073	S-6-1 3	3.07	0.94	0.36 0.08 1.24	[2. 77 C. C., 0.30 C. C.]; tempered at 550 C for 200 hrs.
31 L 1933 346-690 2.0 31 L 1933 341-694 2.0 31 L 1933 346-704 2.0 31 L 1933 356-704 2.0 31 L 1933 356-701 2.0 31 L 1933 356-701 2.0 196 L 1928 366-695 2.0 201 R 1922 468-815 175 P 1936 303-1073 175 P 1936 303-1073	S-9-1 3	3.28	0.97	0,81 0.966 1.91	[3, 23 G. C., 0, 05 C. C.]; tempered at 550 C for 200 brs.
31 L 1933 341- 694 2.0 31 L 1933 346- 704 2.0 31 L 1933 356- 701 2.0 31 L 1933 356- 701 2.0 31 L 1933 356- 701 2.0 196 L 1928 369- 695 2.0 201 R 1922 468- 815 175 P 1936 303-1073 175 P 1936 303-1073	2.	2.89	0.32	0.27 0.046 1.87	
31 L 1933 346- 704 2.0 31 L 1933 352- 709 2.0 31 L 1933 373- 703 2.0 196 L 1928 363- 703 2.0 201 R 1922 468- 815 175 P 1936 303-1073 175 P 1936 303-1073 175 P 1936 303-1073	3 2	2.87	0.28	0.28 0.045 2.91	
31 L 1933 356-701 2.0 31 L 1933 352-709 2.0 31 L 1933 373-703 2.0 196 L 1928 363-703 2.0 C0 196 L 1928 363-703 2.0 C0 175 P 1936 303-1073 175 P 1936 303-1073 175 P 1936 303-1073	P1 3	3.34 0.33	0. 76	0.18 0.065 1.90	
31 L 1933 352-709 2.0 31 L 1933 373-703 2.0 196 L 1928 363-703 2.0 196 L 1928 365-695 2.0 201 R 1922 468-815 175 P 1936 303-1073 175 P 1936 303-1073 175 P 1936 303-1073	27	3,40 0,30	0.92	0.59 0.060 1.90	
31 L 1933 373- 703 2.0 196 L 1928 365- 695 2.0 201 R 1922 468- 815 175 P 1936 303-1073 175 P 1936 303-1073 175 P 1936 303-1073	23	3, 30 0, 31	1.00	0.95 0.050 2.00	
196 L 1928 363- 703 2.0 C 196 L 1928 366- 695 2.0 201 R 1922 468- 815 175 P 1936 303-1073 175 P 1936 303-1073 175 P 1936 303-1073	BM 2	2. 36	0. 125	0.135 0.080 1.03	[0. 13 G. C., 2. 23 C. C.].
196 L 1928 366-695 2.0 201 R 1922 468-815 175 P 1936 303-1973 175 P 1936 303-1073 175 P 1936 303-1073	Grayhot mold; S1 3.	3.35	0.85	0.17 0.12 0.65	[2.44 G.C., 0.91 C.C.]; as cast.
201 R 1922 468-815 175 P 1936 303-1973 175 P 1936 303-1073 175 P 1936 303-1073	S-1-1 3.	3.34	0.85	0.17 0.12 0.65	[2. 62 G. C., 0.72 C. C.]: tempered at 550 C for 200 brs.
175 P 1936 303-1373 175 P 1936 303-1073 175 P 1936 303-1073	Gray soft 3.	rs.	0.64	2. 19	Soft cast from.
175 P 1936 303-1073 175 P 1936 303-1073	White cast iron 2 3.	3. 16	0.059 0.34	0.329 0.045 0.46	0.34 Mo.
175 P 1936 303-1073	White cast iron: 3 5.	5. 14	0.057 0.37	0.605 0.042 0.47	0.37 Mo.
195 D 1936 202-1072	White cast fron 3 2.	2.37	0.071 0.31	0, 776 0, 036 0, 54	0.55 Mo.
1300 203-1013	Grey cast iron;5 3,	3.06	0.087 0.32	0.607 0.049 0.47	0.36 Mo.
83 175 P 1936 303-1073	Grey castiron:6 3.	3. 09	0, 184 0, 29	0.610 0.048 0.45	0.55 Mo.

SPECIFICATION TABLE NO. 325 (continueJ)

Composition (continued), Specifications and Remarks	[0.75 combined carbon] : hypoeutectold with pearlitic base.	[0.75 combined carbon] : hypoeutectold with ferritic base.	0, 65 W; [0, 85 combined carbon]; hypoeutectoid with pearlitic base.	0, 65 W; [0, 85 combined carbon]; hypoeutectoid with ferritte base.	[0.65 combined carbon]; bypereutectoid with pearlitic base.	[0.65 combined carbon]; bypereutectoid with ferritic base.	[0.61 combined carbon]; eutectic with pearlille base.	[0, 61 combined carbon]; eutectic with ferritic base.	0.07 Mg; (0.81 combined carbon); with pearlific base.	0.08 Mg; [0.75 combined carbon]; with pearlitic base.	0.08 Mg; [0, 75 combined carbon]; with ferritic base.	[1.20 combined carbon]; with pearlitic base.	[1.20 combined carbon]; with ferritic base.	[0. 83 combined carbon]; with pearlitic base.	0.063 Mg; with spherical graphite; annealed at 900 C for 12 hrs and furnace-cooled.	0.088 Mg; trace pearlite; with apherical graphite; annealed at 900 C for 12 hrs and furnace-cooled.	0.066 Mg; graphite in compact mixed form; annealed at 900 C for 12 brs and furnace-cooled.	0.066 Mg; 40.0 > pearlite; with short laminar graphite; annealed at 900 C for 3 hrs and furnace-cooled.	With laminar graphite; annealed at 900 C for 12 brs and furnace-cooled.	With laminar graphite; annealed at 900 C for 12 brs and furnace-cooled.	With laminar graphite; annealed at 900 C for 12 hra and furnace-cooled.
š	1.94	1.94	1. 82	1. 82	2. 02	2. 02	2, 25	2. 25	Z	2. 90	2.90	1.20	1.20	1.01	5 . 4	2. 1	2. 1	2. 1	2.2	2.3	2.5
S	0.077	0.077	0. 083	0. 083	0. 390	0. 990	0. 116	0. 116	0. 01	0 . 01	0.01	0.069	0.069	0.079							
cent) P	0.456	0.456	0. 509	0. 509	0. 484	0. 484	0.143	0.143	0. 122	0. 126	0. 126	0. 143	0. 143	0. 28							
ight per	0. 130	0. 130	0.000	0.000	0. 15	0.13	0. 10	0.10	6. 15	0.18	0. 18	0. 10	0. 10	0. 02		1.0	1.1	1.1		1.1	1.1
ion (we Mn	1.5	1.5	0.91	0.91	0.95	0.95	0.88	0.88	0.94	1.08	1. 08	0. 36	0.36	69 .0	0.32	0.27	0. 22	0.21	0. 23	0.20	0.26
Composition (weight per cent)																					
ວ່	0.490	0. 490	0. 420	0.420	0. 19	0. 19	0.09	9	0.05	0.02	0. 05	0.06	0.06	0.05							
U	2.98	2.98	3. 95	3.05	3.82	3.82	3.20	3.20	3. 13	2.95	2.95	2.33	2.33	3.69	Ť	<u>.</u>	Ť	0 ₹	<u>1</u>	Ť	÷
Name and Specimen	Cast (ron; A	Cast iron: A	Cast iron: B	Cast iron: B	Cast iron: V	Cast Iron: V	Cast iron: G	Cast iron, G	Cast fron: D pl. 25	Cast Iron: D pl. 26	Cast fron: D pl. 26	Cast iron: E	Cast iron: E	Cast Iron; Zh	Cast 1ron; 2128	Cast Iron: 2078	Cast fron: 2131	Cast (ron: 2100	Cast Iron: 2076	Cast iron: 2077	Cast Iron; 2079
Reported Error. %	< +5.0	< + 5.0	< +5.0	< + 5.0	<+5.0	<+5.0	<+5.0	<+5.0	6 °5 L	×+5.0	0 5 1	< +5.0	< +5.0	< + 5. 0	1+1.5	±1. 5	+1.5	±1.5	+ 1.5	+ 1. 5	÷1.5
Temp. Range, K	408-1193	408- 693	393-1193	403- 703	408-1193	408- 68R	403-1173	403- 698	403-1198	403- 698	403- 693	408-1198	408- 693	408- 708	300	300	300	300	300	300	300
Year	1956	1956	1956	1956	9561	1956	1956	1956	1956	1956	1956	1956	1956	1956	1957	1957	1957	1957	1351	1961	1957
Method	- 1	Œ	œ	œ	æ	æ	œ	<u>م</u> د	æ	Œ	Œ	Œ	*	<u> </u>	7		د	_	٦	a	٦
Ref.		302	202	202	202	202	202	202	202	202	202	202	202	8 8	203	203	203	203	203	203	203
Curve	æ	85	98	87	8 0	69	96	91	85	93	94	35	96	97	86	66	100	101	102	103	ই

SPECIFICATION TABLE NO. 325 (continued)

10 20 1 357 300 ±1.5 Cast iron: 41 2.3 1.1 2.2 With laminar graphite; annealed at 900 C for Intrace-cooled. 10 20 1 353 352 1.2 3.2	Curv.	Ref.	Metho	od Year	Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error, %	Reported Error, %	Name and Specimen Designation	c Cr	1	Composition (weight per cent) Cu Mn Ni P	veight pe	r cent)	s	SI	Composition (continued), Specifications and Remarks
204 L 1537 362 Pearlilitopig fron: 41 3.12 2.50 3.51 3.51 3.51 3.52 3.54 3.51 3.52 3.54 3.52 3.54 3.53 <td></td> <td>203</td> <td>٦</td> <td>1957</td> <td>300</td> <td>± 1.5</td> <td>Cast iron: 2132 a</td> <td>4. C</td> <td></td> <td>0. 22</td> <td>1.1</td> <td></td> <td></td> <td>2.2</td> <td>With laminar grapbite; annealed at 900 C for 12 brs and furnace-cooled.</td>		203	٦	1957	300	± 1.5	Cast iron: 2132 a	4. C		0. 22	1.1			2.2	With laminar grapbite; annealed at 900 C for 12 brs and furnace-cooled.
205 C 1953 358 Nodular fron 3.57 0.33 1.33 0.035 0.045 1.12 205 C 1953 358 Nodular fron 3.56 0.29 1.30 0.035 0.010 2.77 205 C 1953 358 Nodular fron 3.47 0.29 1.30 0.03 0.01 2.73 205 C 1953 373-673 Nodular fron 3.33 0.29 1.20 0.03 0.01 2.24 206 L 1933 373-673 Nodular fron 3.33 0.50 1.12 0.03 0.01 2.28 207 L 1933 373-673 White temper cast 2.89 0.12 0.15 0.05 0.05 0.10 2.81 207 L 1933 373-673 White temper cast 2.89 0.12 0.21 0.05 0.05 1.81 208 L 1933 373-673 Cast iron 2.87	106	8	_	1537	362		Pearlitic pig fron: 41	3. 12		2. 50				1. 26	
205 C 1953 358 Nodular Iron 3.56 0.33 1.30 0.025 0.010 2.27 205 C 1953 328 Nodular Iron 3.47 0.29 1.30 0.030 0.012 3.53 205 C 1953 358 Nodular Iron 3.33 0.50 1.12 0.03 0.01 2.34 976 L 1933 373-673 White temper cast 2.80 0.13 1.25 0.00 1.03 1.03 976 L 1933 373-673 White temper cast 2.80 0.12 2.81 0.13 0.15 0.05 1.03 0.35 0.09 1.03 976 L 1933 373-673 Cast iron 2.87 0.15 2.8 0.05 0.15 1.04 1.05 1.04 1.04 976 L 1933 373-673 Cast iron 3.34 0.15 0.15 0.15 0.05 1.06 1.06	107	205	ပ	1953	358		Nodular fron	3.57		0.33	1. 33	0. 035	0.004	1. 12	0, 06 Mg; cast.
205 C 1953 3£8 Nodular iron 3.47 0.29 1.30 0.030 0.012 3.53 205 C 1953 358 Nodular iron 3.36 0.40 1.23 0.030 0.012 3.53 205 C 1953 373-673 Nodular iron 3.33 0.50 1.12 0.055 0.015 0.05 1.28 976 L 1933 373-673 White temper cast 2.89 0.13 0.15 0.061 0.093 0.39 976 L 1933 373-673 Cast iron 2.89 0.12 0.12 0.05 0.95 0.95 1.81 976 L 1933 373-673 Cast iron 2.89 0.15 2.8 0.05 0.15 2.8 976 L 1933 373-673 Cast iron 3.34 0.15 0.15 0.15 0.05 1.90 976 L 1933 373-673 Cast iron	108	202	ပ	1953	358		Nodular iron	3.56		0.33	1.30	0.025	0.010	2, 27	0.06 Mg: cast.
205 C 1953 358 Nodular iron 3.36 0.4 1.23 0.030 0.010 4.34 205 C 1953 358 Nodular iron 3.33 0.5 1.12 0.055 0.010 2.28 976 L 1933 373-673 White temper cast 2.89 0.13 0.13 0.061 0.093 0.39 976 L 1933 373-673 Cast iron 2.89 0.12 0.21 0.21 0.061 0.89 0.39 976 L 1933 373-673 Cast iron 2.89 0.12 0.21 0.061 0.89 0.39 976 L 1933 373-673 Cast iron 3.34 0.76 0.78 0.065 1.90 976 L 1933 373-673 Cast iron 3.34 0.76 0.59 0.60 0.60 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 <t< td=""><td>109</td><td>205</td><td>ပ</td><td>1953</td><td>358</td><td></td><td>Nodular iron</td><td>3.47</td><td></td><td>0.29</td><td>1, 30</td><td>0.030</td><td>0.012</td><td>3, 53</td><td>0.06 Mg; cast.</td></t<>	109	205	ပ	1953	358		Nodular iron	3.47		0.29	1, 30	0.030	0.012	3, 53	0.06 Mg; cast.
205 C 1953 358 Nodular fron 3.33 0.50 1.12 0.055 0.015 2.28 976 L 1933 373-673 Black temper cast 2.36 0.13 0.13 0.135 0.055 1.03 976 L 1933 373-673 White temper cast 2.89 0.12 0.27 0.27 0.045 1.87 976 L 1933 373-673 Cast iron 2.89 0.12 0.28 0.045 1.81 976 L 1933 373-673 Cast iron 3.34 0.76 0.28 0.045 1.80 976 L 1933 373-673 Cast iron 3.34 0.76 0.59 0.060 1.90 976 L 1933 373-673 Cast iron 3.34 0.76 0.59 0.060 1.90	110	205	ပ	1953	358		Nodular iron	3.36		0. 40	1. 23	0.030	0.010	4.34	0. 06 Mg. cast.
976 L 1933 373-673 Black temper cast 2.36 0.13 0.135 0.105	111	205	ပ	1953	358		Nodular iron	3.33		0.50	1. 12		0.010	2, 28	0.06 Mg. cast.
976 L 1933 373-673 White teniper cast 2.89 0.10 0.061 0.081 0.39 0.39 976 L 1933 373-673 Cast iron 2.87 0.12 0.28 0.26 1.87 976 L 1933 373-673 Cast iron 3.34 0.76 0.76 0.18 0.065 1.90 976 L 1933 373-673 Cast iron 3.34 0.36 0.59 0.060 1.90 976 L 1933 373-673 Cast iron 3.30 1.00 0.95 0.050 2.00	112	976	7	1933	373-673	B		2, 36		0.13			0. 080	1.03	94. 5 graphite in C.
976 L 1933 373-673 Cast iron 2.89 0.132 0.27 0.046 976 L 1933 373-673 Cast iron 3.34 0.76 0.18 0.055 976 L 1933 373-673 Cast iron 3.40 0.92 0.18 0.065 976 L 1933 373-673 Cast iron 3.30 1.00 0.95 0.050	113	91C	1	1933	373-673	3		2.80		0.10			0.093	0.39	72. 9 graphite in C.
976 L 1933 373-673 Cast iron 2.87 C. 28 0.045 0.065 976 L 1933 373-673 Cast iron 3.34 0.76 0.18 0.065 976 L 1933 373-673 Cast iron 3.30 0.92 0.59 0.050 976 L 1933 373-673 Cast iron 3.30 1.00 0.95 0.050	114	926	7	1933	373-673		Cast iron	2.89		0, 32			0.046		
976 L 1933 373-673 Cast iron 3.34 0.76 0.18 0.185 0.065 976 L 1933 373-673 Cast iron 3.40 0.92 0.59 0.060 976 L 1933 373-673 Cast iron 3.30 1.00 0.95 0.050	115	916	1	1933	373-673		Cast iron	2.87		C. 33			0.045	2, 81	
976 L 1933 373-673 Cast iron 3.40 0.92 0.59 6.060 976 L 1933 373-673 Cast iron 3.30 1.00 0.95 0.050	116	916	-1	1933	373-673		Cast iron	3, 34		0.76			0.065	1, 90	
976 L 1933 373-673 Cast iron 3.30 1.00 0.95 0.050	117	916	1	1933	373-673		Cast iron	3, 40		0.92			c. 060	1.90	
	118	946	ı	1933	373-673		iron	3.30		1.00			0.050	2, 00	

GROUP II (C > 2.00%)THERMAL CONDUCTIVITY OF [IRON + CARBON + EX] ALLOYS (At least one $X_1 > 0.20\%$ or if any of Mn, P, S, SI > 0.60%) DATA TABLE NO. 325

	.	CURVE 24		375. 70 0. 408	445, 70 0, 396		CONVE 63			428.70 0.379	20 3/63/5	CONVE 28	347, 70 0, 255			CURVE 27		351, 20 0, 300	399, 20 0, 299		CORVE 28		200 00 00 000		CHRVE 29.	200	342, 20 0, 301	408. 20 0. 295		CURVE 30		304.30 0.311		CURVE 31		338, 70 0, 326	405. 70 0. 330		CURVE 32*	•	436.70 0.440	507 60 0.431	231. 00 00 TES	
	×	IVE 18*		0.427	Ö	o (444	ó	0	o	o i (s i	CURVE 19*	}			0.444		0.448			0.406		CURVE 20*		0.494			CURVE 21.			0.476		CURVE 22*			0.421		1	CURVE 23	,		0, 397
	۲	CURVE	367, 30	404.60	435, 10	443.90	449.90	509, 10	532, 90	588, 60	621.90	07 699	712.40	CUB		370, 50	411, 50	438.60	452.80	494. 20	519. 20	602, 50	686. 50	į	5	00 366	356. 30	436.70		SO	;	335.00	427 20		CUB		344, 40	378. 70	448.20		5		342. 20	431.70
	×	VE 15.	0.502	0. 494	0.490	0.485	0.490	0.477	0.481	0.473	0.469	0.469	0.469	0.456	0.448	0.439		CURVE 16*		0.519	0.515	0. 498	0. 502	0.502	C. 494	964.0	0.430	0.481	0.485	0.473	0.469	0.460	0,432	;	CURVE 17*		0.431	0. 423	0.410	0.406				
.m-1 _K -1	۲	CURVE	361.70	397. 20	422. 70	430.20	446.70	476.70	486.70	504.70	521.70	524. 70	528.20	627. 20	966.70	702. 70		CUR		360, 70	397. 20	421.20	430, 70	440.20	460.70	477.20	506.20	515. 20	522. 70	547.20	587. 20	634. 20	207 20		CUR		440.60	514. 10	590, 10	667.70				
k, Watts c	*	12 (cont.)	0.469	0.460	0.464	0.452	0.456	0.439	0.431	; ;	CURVE 13*		0.523	0. 498	0, 510	0.490	0.481	0.485	0.481	0.481	0.473	0.477	0.452	0.435	0.435	0.435	0. 421	CURVE 14*			0. 556	0.552	0.552	0.544	0.536	0.540	0.536	0. 527	0.527	0, 510	0.498	0.498	0.490	0.477
onductivity,	۴	CURVE	506. 70	522, 20	532. 70	566, 20	600.70	677.20	706.20		CUR	:	354, 70	417.70	426.70	445.20	470.20	476.70	486.20	502. 70	515. 70	521.70	557. 20	599. 70	635.70	667.70	101. 60	CUR		359. 20	394. 20	423. 20	428.20	467.70	475.70	483, 70	507. 20	519.70	525. 70	559, 20	596. 20	626. 70		702. 20
Thermal (×	E 10	0.456	0.456	0.452	0, 439	0.448	0.446	0.444	0.439	0. 439	0.435	0. 431		0.423	0.418		CURVE 11 *	1	0.515	0.502	0.498	0, 494	0.494	0.481	0.485	0.481	0.473	0.469	0.456	0.448	0, 444	0. 435		F 124		0. 49B	0.494	0.485	0.481	0.477	0.411	0. 477	0.473
(Temporature, T, K; Thermal Conductivity, k, Watts cm ⁻¹ K ⁻¹ ,	T	CURVE	356. 20	384. 70	420.70	429.20	434.70	400.20	484 70	505. 20	519.20	521.70	549. 70	640.70	681. 20	703.20		CURV		358. 20	389. 20	418.70	431. 70	450.70	468. 70	470.70	487.20	516.20	524, 20	560.20	594.20	635, 20	678.70	91. 50	CHRVE 124		354. 70	394, 20	420.70	435.70	451.20	467. 20	473.70	484, 20
(Temper	*	(cont.)	0.460	0.452	0.460	0.448	0.444	0.427	0.414		E 8		0.536	0.523	0.523	0.510	0.510	0.502	0.506	0.502	0. 498	0.494	0.485	0. 477	0.473	. 454 5	0.460	VES	1	0.552		0.540	0.540	536	0.531	0.519	0.519	0.519	0.515	0.502	0.498	0.490	0. 477	0.473
	H	CURVE 7	490, 20	506. 20	523, 20	551. 70	587, 20	660.70	693, 20		CURV		358, 70	425. 20	428.70	444.20	458, 70	476.70	487.20	508.20	521. 20	523.70	557. 20	588. 20	632. 70	568, 20	701.20	CURV		357. 70	389. 70	425. 20	440.70	455.20	469 20	470.70	498.20	518, 20	523.70	555, 20	581. 70	614.70	662. 70	697. 20
	×	4 (cont.)	0.389	0.389	0.381	į	ادم	494	0.477	0.481	0.469	C. 460	0.464	0.452	0.444	0.439		E 6*	ļ	0.502	0.494	0.485	0.485	0.485	0.481	0.481	6.473	2.464	0.464	0.452	0.448	0. 439	0.435		* .	[]	0.494	0.490	0.477	0.481	0.473	0.469	0.469	0.473
	۲	CURVE 4	596. 20	661. 20	695. 70		CORVE	354 70	407.70	427, 70	448.70	497. 70	516.20	581, 70	667.70	710.20		CURVE 6*		360, 70	394. 70	426. 20	426. 70	451.20	473.20	474. 20	493.70	524 20	526. 70	560, 70	599, 20	640.20	201 30		CURVE 7		356.70	393. 70	425.20	430.70	435, 70	453, 20		474.20
	æ	E 1	0.473	0.469	0.456	0.460	0.452	0.453	0.439	0.435	0.418		27	90. 206	0.494	0. 494	0.485	0. 477	0.473	J. 481	0.469		0.452		е В		6. 494 494	0.481	0.481	0.477	0.417	0.469	6.400	0.443		E 4	1	0.431	0.414	0.418	0.416	0.402	0.398	0.402
	۴	CURVE	356. 70	407, 70	430.70	444. 70	493.20	518 70	575, 20	664, 20	697.70		CURVE	352, 20	415.20	425. 20	45L 70	496. 20	522, 20	526.20	581, 20	668. 20	706. 70		CURVE 34		355. 70	427. 70	458, 20	491.20	519.70	524, 70	367.20	108.10	3	CURVE		349.20	414.70	426.20	460, 20	467.70	501.70	525. 20

. 4	/E 64•	0.561	0.548	0.523	0, 485	4	CORVE 63	585	9 2	5.5	0. 52.5	U. 481	CHRVE 66*					0.473		CHDVF R74		0.552							0.518						o; ,		CHOVE 684			0.552		0.548		0. 536			
۲	CURVE	356. 20	423.20	502.20	664. 70		COR	249 70	240.10	413.70	492. 20	655.20	CITE		357.70	422 70	503.50	565 70	3	0110		356, 70	393. 70	421.70	424.70	440.20	458.20	474, 70	475.70	07 664	521.20	555.70	587.20	624. 70	660. 20	691. ZU		3	25.1.20	385.20	418.20	422 70	438.70	452.70	: :		
ж.	(cont.)	0.469	0.460	0.452		0.44.1		CURVE 62*	•	0.404	0.464	0.456	0.452	9.5	0.440	0.400		977	5.0	0.432	0.444	0.435	0.435			CURVE 53*	ļ	0.569	0.556	. v	252	3	0.531	0. 536	0.527	0. 527	0.023	0.503	700.0	0.430	6.43	ř					
۲	CURVE 61	562, 20	588. 70	632. 70	671.20	703. 20		CCRV	;	349. 20	379. 70	404.20	414.20	77.	451.20	463.20	413.40	490.20	273. 20	510.70	25.50	392.20	65.8.70	690. 70		CUB		365.70	395. 26	426. 70	431.70	454.70	477.20	480.20	536.20	517. 70	521. 79	556.20	286. 20	623.70	300.70	100. 50					
*	£ 58*	0, 550	0.519	0.488	0.458	0.426		E 59.		0.528	0.502	0.476	0.449	0.422		CORVE 60	,	0.536	0.527	0.523	0.515	0.510	0.302	506	0.430	0.490	0.490	0.485	0.477	0.469	0.452	0. 448	CURVE 61*		0.515	0.515	0.502	0.502	0.502	0.494	0.493	0.485	0.481	40.4	. 453		
۲	CURVE 58*	373.20	473.20	573, 20	673.20	773.20		CURVE 59*		373, 20	473.20	573.20	673.20	773. 20		SON		361. 20	390. 20	419.20	426.20	449.20	468. 20	37.1.20	510.20	516.20	538. 20	558.70	584.20	633. 20	668.20	705. 70	CURV		357. 70	390, 20	420. 20	425. 70	448. 20	462. 20	471.70	485. 70	505. 20	523. 70	524. 20		
×	(cont.)	0.435	0.427	0.431	0.427	0.414	0.410	0.410	0. 402		E 55*	ľ	0.510	6. 506	0. 494	0.490	0. 490	0.481	0.481	0.464	0.448	0.448	4	CORVE 36*	0 460	0.456	0. 444	0.452	0.452	0.439	0.439	0.435	0.418	;	CURVE 57*		0.460	156	0.444	0.448	0.435	0.431	0.439	0.427	0.423	0. 414	
[-	CURVE 54 (cont.	477 70	509, 70	518, 20	544, 70	584, 70	617.20	651. 2C	700.20		CURVE 55*	<u> </u>	357.70	387. 20	425.70	464. 20	468. 70	498. 20	520. 20	590, 20	666.20	700.20	7	S COR	350 70	411 70	432.20	451.20	490, 70	508.20	520.70	581.70	695.20		CUR		348. 70	406 . 20	421. 20	454. 70	483. 20	511. 20	514.20	586, 20	654. 20	698. 20	
×	E 52*	9	0.410	398	343	0.402	0, 393	0.389	0.398	0.385	0.381	0.389	0.381	0.381	0.381	0.381	0.368		CURVE 53*]	0.435	0.431	0.423	0.418	0.418	0.414	0.410	410	0.406	0.410	0.402	0.398	0.389	0.300	0.381	CHRVE 54*		0	Ö		Ö		0.439				
~	CURVE 52*	0	343.20	412.20	424.20	427.20	445.20	464.70	474, 70	493.70	511.20	523.70	547, 70	582, 70	619.20	666. 70	791.20		CURV	<u> </u>	348.20	379.20	412.70	425.70	426. 70	447. 70	466.20	03.69:	508, 20	523. 70	550, 26	583, 70	620.20	657.70	91. 10	CHR		341.70	361.70	406.70	420, 20	422, 20	447. 20	448. 70	461. 20		
٠.	9 (cont.)		0.389	0.301	0.33	3.50	0.360		€ 50*	۱.	4,5	6.423	0.423	0.427	0.418	0.414	0.418	0.410	0.410	90400	0.418	0.406	0.410	0.402	0.402	0.338	•	107	0.368	0.364	0.364	0.356	0.356	0.332	0.352	0.332	0.343	0.352	0.343	0.343	0. 239	0, 335	0.331				
۲	CURVE 49		519, 20	07.00	382.70	05.30	648 20		VALLO		9	278 70	411.20	426.20	427.20	455.70	468.20	470.20	482 70	504 20	521.70	548, 70	591.70	625, 70	655.20	698. 70		2	358 20	375. 70	405, 70	422. 20	438. 60	438. 60	460.70	466.20	506.70	518. 20	545. 70	576. 20	615.70	662, 70	700.20				
×	# C # C	i i	0.512	0. 495	0. 467	;	- + + -	45.5	5	0.440	0. 432	•	-	0.486	0.400	46.0		2 464		69.0	0. 4 0. 7 5 4 0	0.441	:	E 47*	1	0.485	0.475	0.446	404	1 40	0.486	0.434	0.418		E 49	0	0 0 0 0	363	55.0	3.48	0.381	0 377	393	0.368	0.368	}	
۰	CHRVE		339.00	371.20	436.70		CURVE	000	342.20	370.20	437. 70	4:5 0/10/10	2	223 60	333.00	201. 20		AAA SVOIT	200	6	336.20	119.20		CURVE		336.80	367.70	436.20	336110	200	341.20	377.20	451.70		CURVE 49		336.20	360.10	433.30	423.20	746.20	750.20	409. 20	490 20	509 70		
.	: e	201	0.427	0.414	0. +10	0.348	;	34	•	0. 439	0.427	0.414	0.410		3	,	0.00	0.52.0	000	0. 603		5	0.136		/E 37		0.130		/F. 38	,	0.429	7 E 39		0.203		CURVE 40		0.353	;	CORVE 41	663	0.050	67 3710770	2	705 0	6.0	
ŀ	•	CORVE	432.70	510.80	590, 20	672. 10		CURVE		432.90	510.30	590.30	671.90		CORV		294. 10	312. 10	329, 40	347. 90		CORVE	00 800	730.	CURVE		298.20		CURVE	i	298.20	CHRVE		298. 20		CUR	;	298. 20		COR	000	238. 20	i	500	000	736. 40	

DATA TABLE NO. 325 (continued)

د		COUL	0. 222	0.218		CURVE 87*		0. 536	. 1	0. 431	C. 366	E 88		0.565*	0.490	0.406*	0.389	0.356	0 247	300	0.020	200	0. 231	9	3	0 740	594	0.469	0.4054		06 3	1	0.661*	0.556*	0.448*	0.444	0.389	0.381	0.351	222		10	:	682	505.0	910	0.502	
٢		CONVE 86 (cont.)	1113.20	1193.20		CCE	,	403.20	513.20	393.20	03.50	CURVE 88		40C. 20	513, 20	618.20	693. 20	818.20	913.20	963	1112 20	1193 20	7.00	or averse		408 20	508.20	608 20	688 20		CURVE 90		403. 20	508. 20	608. 20							CHRVE		403 20			698.20	
		3	0. 291	0.302	0.321							0.300			0. 206	0. 205	0.205	0. 205		CURVE 84		0. 423	0 410	0.360	0.343	0. 339	0. 335	0.331	6, 305	0.305		CURVE 85*		0.485	0.448	0.393	0.360		CURVE 86*	1	0. 523	0.477	0.431	0.406	0.268	0.259	0.251	
F	CHRVE		303. 20	323, 20	364. 20	373.20	473.20	20. 20.	573.20	624 20	673.20	773. 20	775. 20	861.20	873.20	956. 20	973. 20	1073. 20		CUR		408, 20		608.20	698. 20	808. 20	893. 20	993. 20	1128.20	1193, 20		CURV		408. 20	508. 20	608. 20	693. 20		CURV		393, 20	478.20	578, 20	653, 20	813.20	943. 20	993. 20	
×	CURVE 80 (cont.)	ı	0. 130						CURVE 31		0. 159	0. 167	0. 184	0. 192	0. 212	0. 220	0. 226	0. 235	0.240	0.237	0.213	0.210	0. 187	0. 187	0. 179	0.178	0. 172		E 82		0. 293	0.299	0. 312	0.315	0.334	0.345	0.353	0.365	0.370	0.362	0.302	a, 270	0.210	c. 204	6. 192	0. 186	0.174	
۴	CURVE	j	773. 20	857. 20	973.20	1010 20	1073.20		CUR		303. 20	323, 20	364, 20	372, 20	428, 20	473.20	514. 20	573.20	626.20	673, 20	765.20	773.20	873.20	882, 20	956. 20	973.30	1073.30		CURVE	;	303, 20	323. 20	203. 20	373.20	432. 20	473, 26	519.20	573, 20	634. 20	673. 20	754. 20	773. 20	851. 20	873.20	936. 20	973.20	1073.20	
×	CURVE 78.		0.300	0.316	0.408	0.426	0.604	0.649	0.665	0.802	0.855	0.858		E 79		67.0	241.0	7	10. J	0. 155	0.154	0. 155	0. 160	0. 163	0. 162	0. 156	0. 156	0. 154	0. 154	0. 156	0.136	0. 138	60	00	9	0. 138	0. 131	0. 199	0. 197 0. 255	0.261	0.210	0.213	0.216	0.228	0.211	0. 221	0. 189	
۰	CURY		468.70	558.50	558. 60	571.80	676.50	658, 00	716. 10	777.00	799. 10	815, 10		CONVE 79	000	203. 20	3.55	27.00	313. 20	423.20	473.20	497. 20	573.20	626.20	673.20	773.20	778.20	868. 20	873. 20	373.20	1073.20		CO STATE	200	200	223.20	350.20	36. 20	353. 60	37.5.20	425. 20	473.20	209. 20	573.20	630, 20	673, 20	767. 20	
×	5 (cont.)		0. 502 0. 538	0.590	0.586	0.577		CURVE 76*		0.569	0.561	0.565	400.0	0.302	5.56	540	0.527	000		0.023	0.506	0.494	6.494	0. 477	694.0	8 6 2			0.577	0.565	200	0, 556	0.544	0.544	544	57.6	0.523	0.527	20.0	610.0	900	0.43g	0.461					
H	CURVE 75 CONL	47	585.70	627.70	663.20	703. 70		CUR	;	362, 70	391. 70	419.20	448 20	462.20	472.70	481 70	505. 70	515 20	526.20	250.20	203.20	334. 20	07.970	568.70	103.50	Agillo	COUNTE	06 336	300.20	424 70	434 20	441.70	463, 20	473.70	482.70	502.70	519.20	520 70	550 70	20.00	453.20	021.10	000					
×	73 (cont.)	0.473	0.473	0.477	0.469	0.469	0.464	0.460	0.150	0.400	0.460	0.452	0.444	:	E 740		0.469	0.460		0.450	45.0	0.452	450	0.432	0.448	0.44	0 444	0 439	0.439	0.435	0.435	0.431		E 75	1	0.632	0.628	0.623	0.619	0.623	6.615	611	179.0	607	900	0.611	•	
٠	CURVE 7	432.70	432. 70	453.20	453, 70	472. 70	486. 20	200.50	551.20	507. 20 507. 30	625.70	656. 70	701. 20		CURV		352, 20	370, 70	410.20	428.70	435.20	451.20	466.70	168 70	492. 70	519.70	520.20	555, 20	585. 20	622, 20	664.20	708.70		CURV	i i	373.70	386. 20				457.70					529. 20		
×	CURVE 70 (cont.)	0.439	0.435		E 71	•	44.0	426	0.435	0.431	0.427	0.431	0.427	0.427	0.423	0.427	0.423	0.423	0.418	0.414	0.410		E 72*	ļį.	0. 494	0.430	0.485	0.481	0.485	0.481	0.477	0.477	0.473	0.473	0.469	0.473	0.473	0.460	0.460	0.456		7.3	I I	0.485	0.477	0.473		
۲	CURVE 7	655. 20	690, 20		CURVE	241 20	373 20	406.70	419.70	420.70	146, 70	459, 70	460, 20	480.20	504. 20	518.70	542.70	578, 70	613. 70	654, 70	694, 20		CURVE 72*		345. 70	375.76	405, 70	421, 70	433, 20	451.20	461.70	470.20	493.20	514.20	516.70	552.70	584.70	622. 70	663. 20	704. 20		CURVE 73				399. 70		
¥	CURVE 68 (cont.)	0.523	0.527	0.515	0.510	0.310	0.494	0.485	0.473	0.464		CURVE 69*		0.510	0. 502	0.490	0.490	0.494	0.490	0.481	0.477	0.481	0.473	0.473	0.469	0.460	0.452	0.452	0.444		. 10 •		0.473	0. 46+	0. 45r	0.460	0. 473	0. 460	0.456	0.460	0.456	0.452	0.452	0.448	0. 448	0.444		on plot
(-	CURVE	465. 20	474. 70	498.70	520.70	553.70	579.20	621.70	664.70	704.70		CURV		356. 20	393, 70	420, 70	421.20	443. 70	463.70	472.20	485.70	505. 70	519.70	523.70	55L 20	586. 20	626. 70	661. 70	696. 20		CURVE 70	976	340. 20	375.70	411. 70	422. 20	424. 20	437, 20						20	20	614.20		Not shown on plot

iid	VE 117	0.481	0.460	0.443		VE 118	404.0	0.456	0.444	70.																										
H	CURVE	373, 2	573.2	673, 2		CURVE	0.000	473.2	573. 2																											
æ	VE 109*	0, 362	CURVE 110		0, 351	•	CURVE 111	6, 357	***************************************	CONVE 112	0.628	C. 631	0,582	VE 113°		0.481	0.464	0, 452		VE 114°		0.469	0.460	0, 439		CURVE 115	0, 439	0, 431	24.0		CURVE 116	0.440	0, 477	0.469		
۲	CURVE	358.00	CUR	;}	35~ 00		CC	358, 00	Š		313, 2	473, 2	673, 2	CURVE		373.2	473.2	573. 2	2.679	CURVE		373.2	4.5. 5.5.	673, 2		CUR	373, 2	473, 2	5 10 5 6 73 5 6 73 6		50	. 1.21	473, 2	573, 2	· ·	
æ	97 (cont.)	0.502	;	86.3/	}	0.287	4 00 u.	6	0. 292	CURVE 100		0 : :10:3	CURVE 101	0.355		CURVE 102"		0.628	CURVE 103		0.565	6101	CORVE 104	0.628		CURVE 105	0.665	301 3310310	3	0.537	,	CURVE 107	0.377	Prof. Sylvania		0.372
٢	CURVE	608, 20 708, 20	2	CCRVE		300, 00	(GILO	CONST	300.00	CURV		300.00	CURY	300.00		CURV		300.00	CURV		300,00	Š	COR	300.00		CURI	300.00	Š	200	361.50		CUR	358, 00	3017		358,00
æ	F 92	0, 345	0.335	0.57	0, 251	0.247	₹ ° 0		VE 93	0.339	0.335	0.301		CORVE	0.347	0.343	0.301	as C		0.469	c. 431	0.387	0.041 0.041	0.276	0.218	0.130	•	CURVE 96"	0, 502	2. 3.	0.431	0, 347	VE 97	35	0. 59s	
۲	CURVE	403, 20 50\$ 20	603.30	69.3, 20	893, 20	993, 20	1125, 20	1197.50	CURVE	403.20	508, 20	608, 20		20	403, 20	508, 20	693, 20		200	408, 20	503, 20	605, 20	686.20 01.00	893, 20	993, 20	1123, 20	27.0611	S	408, 20	508. 20	608.20	693. 20	CURVE	00 007	513, 20	

* Not stown on plot

THE REPORT OF THE PARTY OF THE

SPECIFICATION TABLE NO 326 THERMAL CONDUCTIVITY OF [IRON + ALUMINUM + LX,] ALLOYS GROUP I

 $(X_{j} \leq 0,\, 20\%$ except C $\leq 2,\, 00\%$ and Mn, P, S, Si $\leq 0,\, 60\%$ each)

[For Data Reported in Figure and Table No. 326]

	Composition (continued), Specifications and Remarks	State men heated to 800 C and	furnace cooled; measured in a vacuo of 5 x 10 mm Hg.	Sand cast.	Sand cast.	Sand cast.	Sand cast.	
	Š	:	61.0					
	ot) S	000	u. coe					
	อั		0.010					
	Composition (weight percent)		4 11 0.03 0.08 0.037 0.005 0.13					
	mpositio		0. 03	7.9.1			• • • • • • • • • • • • • • • • • • •	• •
	ပိ 🔻		4	11 18 < 3.1	13 36 70 1	1.05 25.21	14.30 0.1	70.0
'			Bal	lea	7 6	E .	Bal	78 128 128
	Name and Specimen	neprikaman	3792					
	Year Dance K Fror W.							
	Temp	u 'admen	1951 15-93		333	333	333	333
	Year		1951		1934	1934	1934	1934
	Nethod	Osca	1		ú	Ĺ	Ĺĸ	μ,
	Curve Ref.	d Z	104		207	207	207	202
	Curre	ģ	-		2	ຕ	∢.	ur.

DATA TABLE NO. 326 THERMAL CONDUCTIVITY OF [IRON + ALUMINUM + Σx_1] ALLOYS GROUP I

 $(N_{j} \approx 0,\, 20\% \ except \ C \le 2,\, 00\% \ and \ Mn, \ P, \ S, \ Si \ \le 0,\, 60\% \ each)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm 1 K-1]

H

CURVE 1

14, 97 0, 0218 17, 71 0, 0269 21, 5C 0, 0368 76, 60 0, 118 93, 10 0, 142

CURVE 2

333, 20 0, 209 CURVE 3 333.20 0.167

CURVE 4 333. 20 0. 167

CURVE 5

333. 20 0. 100

TANK NEWS

SPECIFICATION TABLE NO. 327 THERMAL CONDUCTIVITY OF [IRON + ALUMINUM + $\mathbb{Z}X_1$] ALLOYS GROUP II

(At least one $X_1>0,\,20\%$ or if any of Mn, P. S. $S_1>0,\,60\%)$

[For Data Reported in Figure and Table No. 327]

Composition (continued), Specifications and Remarks	Heat resistant cast iron Bal 7.00 2.70 0.95 0.58 0.96 Specimen 0.75 in. in dia and 15.5 in. long; cast.
īs	96.0
rcent) Mn	0.58
eight pe Cr	0.95
tuon (w	2,70
Composition (weight percent)	7.00
2	Bal
Name and Specimen Designation	Heat resistant cast iron
Temp, Reported	
Temp.	39 357-703
Year	1939
Method	-)
Z E	179
Curve Ref. Method Year R	i -

DATA TABLE NG. 327 THERMAL CONDUCTIVITY OF [IRON + ALUMINUM + Σ_{i}] ALLOYS GROUP II

(At least one $X_1>0.\,20\%$ or if any of Ma, P, S, Si >0.60%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

0, 335 0, 326 0, 326 0, 322 0, 314 0, 314 0, 301 CURVE 1 356. 70 409. 70 432. 20 447. 20 465. 70 511. 70 523. 20 659. 20 669. 20

Andrew State St

SPECIFICATION TABLE NO. 328 THERMAL CONDUCTIVITY OF (IRON + CHROMIUM + ΣX_1) ALLOYS GROUP I

 $(X_j \approx 0, 20\% \ except \ C \approx 2, 00\% \ and \ Mn, \ P_j \ S_j \ S_i \le 0, 60\% \ each)$

[For Data Reported in Figure and Table No. 328]

Ref. No.	Method Used	Year	Temp. Range. K	Reported Error, %	Name and Specimen Designation	Fe	Cr	cω _O	Composition (weight percent)	eight pe	rcgnt)	s	ıs l	Composition (continued), Specifications and Remarks
129	v	1933	373-821	3.0-5.0	\$5	Bal 5	5. 15	0. 10	0. 45		0.013	0.017	0.18	Spectmen 2 cm in dia and 15 cm long; hot rolled; annealed; load used as comparative material; (thermal conductivity value of 0.352 Watt cm ⁻¹ deg ⁻¹ at 0 C assumed).
129	O	1933	373-773	3, 0-5, 0	¥	Bal 15. 19		0.08	u, 35	0.05	0.02	0.017	0. 20	Specimen 2 cm in dia and 15 cm long; cast at 1490 C, cogged, and rolled; annealed at 845 C; lead used as comparative material (k = 0.352 Watt cm ⁻¹ deg ⁻¹ at 0 C).
129	υ	1933	373-865	3, 0-5, 0	Ϋ́	Bal 26	26.0	0.10	0.40	0.18	0.013	0.008	0.45	Similar to the above specimen except cast at 1500 C.
37	v	1951	426-843	4 . 0	AISI 403 stainless	Bal 12.0	.; o	0.15						Lead or a sample calibrated against lead used as comparative material.
4 3	J	1958	852-1380	5.0	AISI 446	70, 55 27, 61	7.61	0.086						0.01 Mo; specimen 6.75 in. in dia and 1.5 in. thick.
104	u	1951	15-93		3632 A	Bal 13, 57	3, 57	0.36	0. 13				0. 22	Specimen heated to 800 C and furnace cooled; mensured in a vacuo of 5 x 10 5 mm Hg.
ğ	J	1981	15-92		3632 B	Bal 13, 57	5.52	0.36	0. 1:1				0.22	Specimen heated to 950 C and oil quenched; measured in a vacuo of 5 x 10 % mm Hg.
341	<u>(</u>	1920	303		32	Bal	1.0	9.0						Annealed at 900 C and cooled slowly.
176	ı u	1920	303		£	Bal	1.0	9.0						Annealed at 1100 C and cooled quekly.
176	: ш	1920	303		40	Bal	5.0	9.0						Annealed at 900 C and cooled slowly.
176	ы	1920	303		4		2.0	9.0						Annealed at 1100 C and cooled query:
176	ы	1920	303		જ	Bal	3.0	9.0						Anneated at 300 c and coated storing:
176	ы	1920	303		ß		3.0	9.0						Annealed at 1100 c and cooled slowly.
176	ы	1920	303		61	Bal	5.0	9.0						Amenated at 100 C and cooled micking
176	Œ	1920	303		ફ	Bal	5.0	9.0						Attheated at 1100 Chaid cooling species.
220	-	1920	30.6		7a	Bal 1	10.0	9 '0						Annealed at 900 C and cooled slowly.

SPECIFICATION TABLE NO. 328 (continued)

176 E 1920 3493.2 3493.2 840 Bal 18.0 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 An Alia 8.5 0.6 0.6 An Alia 8.5 0.6 0.6 An Alia 8.5 0.6 0.6 An Alia 8.5 0.6 0.6 An Alia 8.5 0.6 0.6 An Alia 8.5 0.6	Curve No.	Ref.	Method	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Fe Cr		Composition (weight percent)	(weight p	ercent)	s.	ಪ	Composition (continued), Specifications and Remarks
176 E 1920 3404.2 848 Bal 13.1 0.6 176 E 1920 3404.2 849 Bal 13.1 0.6 176 E 1920 3404.2 940 Bal 13.1 0.6 176 E 1920 3404.2 940 Bal 17.0 0.6 183 L 1936 3404.1473 1 Bal 4.3 0.01 0.04 183 L 1936 3404.1473 1 Bal 4.3 0.01 0.04 183 L 1936 3404.1473 1 Bal 4.3 0.07 0.04 183 L 1936 3404.1473 1 Bal 14.3 0.07 0.04 183 183 3404.1473 1 Bal 12.9 0.07 0.04 183 183 3404.1473 1 Bal 12.9 0.07 0.04 184 L 1936 3404.1473 1 Bal 12.9 0.07 0.04 185 L 1936 3404.1473 1 Bal 12.9 0.07 0.04 185 L 1936 324-1173 2 AISI 446 76.44 24.5 0.15 0.04 185 L 1951 24.250 2 AISI 446 76.44 24.5 0.12 0.04 185 L 1952 277-1173 2 AISI 446 76.44 24.5 0.13 0.25 186 L 1935 277-1173 2 AISI 449 Bal 12.6 0.07 0.07 185 L 1952 277-1173 3 AISI 440 AISI 400 0.13 0.05 185 L 1958 463-953 3 AISI 440 AISI 440 AISI 440 AISI 440 186 L 1958 463-953 AISI 440 AISI 440 AISI 440 AISI 440 186 L 1958 463-953 AISI 440 AISI 440 AISI 440 AISI 440 187 L 1958 463-953 AISI 440 AISI 440 AISI 440 AISI 440 187 L 1958 463-953 AISI 440 AISI 440 AISI 440 AISI 440 AISI 440 187 L 1958 AISI 440	11	176	Œ	1920	303.2		ъ								Annested of 1100 C and second assistant
176 E 1920 300.2 39a Bal 13.0 0.6 1.70 0.6 1.70 0.6 1.70 1.2	18	176	- 4	1920	303.2		8,	Bal 15, t							Appealed at 1100 C and cooled quickly
176 E 1920 303-2 304 305	13	176	ы	1920	303.2		gs Qs	Bal 13.							Amostad of 1100 C and cooked slowly.
176 E 1920 300.2 300.4 1 136 340.4 2 1 136 340.4 2 1 136 340.4 2 1 136 340.4 2 1 1 136 340.4 2 1 1 1 1 1 1 1 1 1	50	176	ш	1920	303.2		9.8	Bal 20.0							America at 1100 C and cooled quickly.
163 L 1936 3493-1473 E Bal 4.96 0.01 0.04 0.04 0.02 0.02 0.02 0.03 0.0	21	176	ы	1920	363.2		£	Bal 17. 0							Anneated at 900 C and cooled Blowly.
163 L 1936 303-1373 6 Bal 13.06 0.07 0.04 0.02 Food 0.05	22	163	ı	1936	303-1473		-		_					2	Annealed at 1100 C and cooled quickly,
163 L 1936 309-11773 T 1941 13.10 1.52 0.38 0.03 0.04 0.05 0	g	163	٦	1936	303-1373		9	-						70.0	Forged.
1131 C 1953 323-1173 2 AISI 430 82.4 17.2 0.102 0.254 0.13 0.035 0.14 0.018 0.024 0.17 0.06 131 C 1953 323-1173 2 AISI 430 82.4 17.2 0.102 0.254 0.13 0.035 Anulass standess 115 L 1951 25-250 ~2 AISI 410 Bal 12.60 9.99 0.32 0.13 0.018 0.028 0.020 0.00 0.00 0.00 0.00 0.00 0	24	163	7	1936	303-1373		7	Bal 13, 1						20.0	Forged.
131 C 1953 323-1173 2 AISI 430 82.4 17.2 0.102 0.254 0.13 0.023 0.14 0.018 0.024 0.17 0.02 0.131 0.131 C 1953 323-1173 2 AISI 446 76.44 23.59 0.152 0.043 Anulas standess 115 L 1951 25-250 ~2 AISI 446 81 12.50 0.043 0.32 0.12 0.013 0.36 0.01 0.13 0.25 0.14 0.23 0.15 0.013 0.013 0.14 0.15 0.013 0.14 0.15 0.013 0.14 0.15 0.013 0.14 0.14 0.15 0.14 0.15 0.013 0.14 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	25	163	ı	1936	303-1273		6	Bal 20. 6						9 6	Forged.
131 C 1953 323-1173 2 AISI 430 82.4 17.2 0.102 0.254 0.035 Analysis standess 131 C 1953 323-1173 2 AISI 446 76.44 23.59 0.152 0.043 0.093 0.021 Analysis 14	97	166	ပ	1939	273-623		91	Bal 12, 9			0 14		0.024	2 6	Court Heat (Featment,
131 C 1953 323-1173 2 AISI 430 82.4 17.2 0.102 0.254 9.043 9.0														;	As specimen 8 in. long; heated at 560 C in air, tempered at 750 C for 2 hrs and air cooled; from used as comparative material; measured in a vacuum of ~0.2 mm He.
131 C 1953 323-1173 2 AISI 446 76.44 23.59 0.152 0.043 0.021 0.021 An stantless 115 L 1951 25-250 ~2 AISI 410 Bal 12.60 9.99 0.32 0.12 0.012 0.011 0.36 0.05 0.013 0.14 0.25 0.15 0.013 0.15 0.013 0.15 0.013 0.15 0.013 0.15 0.013 0.15 0.013 0.15 0.15 0.013 0.15 0.15 0.013 0.15 0.15 0.013 0.15 0.1	22	131	ပ	1953	323-1173	24							0, 035		Annealed at 1050 C; lead used as
115 L 1951 25-250 ~2 AISI410 Bal 12.60 9.99 0.32 0.12 0.012 0.011 0.36 0.06 0.36 0.012 0.012 0.011 0.36 0.012 0.013 0.36 0.013 0.36 0.013 0.36 0.013 0.36 0.013 0.36 0.013 0.31 0.013 0.0	53	131	ပ	1953	323-1173	2							0.021		Annealed at 900 C; lead used as
177 C 1936 298 10 Bal 3.51 0.14 0.23 0.018 0.26 0.21 0.26 563 L 1935 273,1073 Russian steet Ral 1.15 0.32 0.63 0.10 0.028 0.029 0.31 0.1 490 F 1950 273-1173 AISI 430 Bal 14,00 0.13 0.56 0.10 0.012 0.007 0.50 0.1 564 C 1958 463-953 AISI 430 Bal 14,00 0.12 ARX ARX ARX 564 C 1958 463-953 AISI 430 Bal 14,00 0.12 ARX ARX	29	115	ı	1981	25-250	~3	AISI 410 standess	Bal 12. 6			0.12		9.011	0, 36	0.06 Cu, 6.03 N.
563 L 1935 273,1073 Russian steet Ral 1.15 0.32 0.63 0.10 0.028 0.023 0.31 0.1 0.1 0.028 0.023 0.31 0.1 0.1 0.0 0.0 0.1 0.1	30	177	ပ	1936	258	10				0. 23		9, 018		97 0	bootlearon
490 F 1950 273-1173 Bal 26.00 0.13 0.56 0.10 0.012 0.007 0.50 0.13 564 C 1958 463-953 AISI 430 Bal 14.00/ 0.12 Aisi ax Aisi 463-953 AISI 430 Bal 14.00/ 0.12 Bal 14.00/ 0.12 Bal 14.00/ 0.12 Bal 14.00/ 0.12 Bal 14.00/ 0.12 Bal 14.00/ 0.12 Bal 14.00/ 0.12 Bal 14.00/ Max	31	563	_	1935	273, 1073			Hal		0.63			0.023	310	
564 C 1958 463-953 AISI 430 Bal 14, 007, 0, 12 Stainless 18, 00 Max 564 C 1958 463-953 AISI 430 Bal 14, 007 0, 12 stainless 18, 00 Max	35	490	Ĺ 4	1950	273-1173					95 O			0.007	5 0	Z 7 7 0
564 C i958 463-953 AISI 430 Bal 14,00/ 0, 12 stainless 18,00/ Max	33	564	ပ	1958	463-953		AISI 430 stainless	Bal 14.04 18.04					•	}	Nominal composition from Metal's Handbook; alumina (Body Al-300) used as comparative material
	3 4	564	ပ	1958	463-953		AISI 430 stainless	Bal 14, 00							Nominal composition from Metal's Handbook; the above specimen measured using different alumina (Body Al-300) as comparative material.

DATA TABLE NO. 328 THERMAL CONDUCTIVITY OF LIRON + CHROMIUM + ΣX_L | ALLOYS

GROUP 1

($X_j < 0.20\%$ except C $\leq 2.00\%$ and Mn, $|P_j| |S_j| \leq 0.60\%$ gach

[Temperature, T. K. Thermal Conductivity, $\dot{\kappa}$, Watta cm⁻¹K⁻¹]

- ×	(cont.)	0.261	0.265	i i	E 30		0.414	3	31	0 406	0.290		32.		0.226	0.238	0.255	0.272	0.285	0.301	0.318	0.335	0.351	0.364		33.		0.107	0.199	0.208	0.220	0.224	0.236	0.277	340	- 1	102.0	203	502.0	214	22.0	277	0.251		
:	CURVE 29 (cont.)	202. 21	225. 28		CURVE 30		298. 20		CURVESI	273. 2	1073, 2		CURVE 32.								873.2					CURVE 33.		463.2				759.2			CHEVE 34								953.9		
. ×	E 26*	0.270	0.272	0.276	0.278	0.278	0.280	0.280	F 27		0.220	0, 222	0.226	6. 229	0.233	0. 237	0.240	0.244	0.248	0.252		E 28		0. 176	0. 180	0.186	0. 192	0. 198	0. 204	0.210	0.216	0. 222	9. 228	56 3		0.0510	601.0	0 147	. 61	0.205	966	900	0.238	253	
;-	CURVE 26*	273.20	323, 20	423. 20	473.20	523, 20	573.20	623.20	CHRVE 27		323, 20	373, 20	473, 20	573, 20	673.20	773, 20	873, 20	973, 20	1073, 20	1173, 20		CURVE 28		323, 20	373, 20	473.20	573. 20	673.20	773.20	873, 20	973.20	1073. 20	1173.20	PC BVR:10		25, 14	70 56	5.00	6.5.6	30.00	17:00	111.40	145.14	160 00	;
, T X T X X	E 23	0.255	0, 255 0, 255	0, 255	0, 255	0.255	0, 255	0. 255	0.255	0.255	0, 255	0.255		E 24		0.276	0.276	0.280	0. 285	0.285	0. 297	0.305	0.314	0.318	6. 322	0. 322	0.322	0. 322	;	254		0. 234	0. 234	0.234	0 234	0.239	0 243	0.243	25.0	167.0	0.20	0.62	0. 23.3		
⊣	CURVE 23	303. 20	323, 20	473, 20	573, 20	673.20	773, 20	873.20	973.20	1173 20	1273. 20	1373, 20		CURVE 24		303.20	323.20	373.20	473.20	573, 20	673.20	773. 20	873.20	973, 20	1073.20	1173.20	1273. 20	1373.20		CURVE 254		303. 20	323.20	373.20	573 20	673.20	773 20	873.20	973.50	1073.20	1173.50	1070.20	16/3.20		
-¥	E 14	0.305	51 3.	į	0.186		E 16		67.7.70	F 17	:i ≥	0.162		F. 18		0.186		E 19		0.140		E 20		0.179		<u>E 21</u>	:	0. 130		E. 22		0.360	0.356	0.353	333	0.314	0 247	0.280	0.276	0.270	1 6	0.272	0.270	0.272	
۲	CURVE 14	303. 20	CHRVE 15		303.20		CURVE 16		303. 20	CIRVE 17		303, 20 0, 162		CURVE 18		303. 20		CURVE 19		303. 20		CURVE 20		303. 20 0. 179		CURVE 21		303. 20		CURVE 22		303. 20	323. 20	373.20	573.20	673.20	773 20	873.20	973 20	1073 20	1173 20	1273.20	1273.20	1473.20	3
.¥	(cont.)	0.360	0.377	0.391	0.389	0.395		ا و	0 0204	0.0263	0.0339	0.118	0. 144		E 7		0.0168	0. 02 12	0.0264	660 '0	0.114		8 H	•	0.402		6	;	0.369	:	• 10		0.400	11.	<u>:</u>	0.364		5 12	1	0.375	5	-	31	0 241	
←	CURVE 5 (cont.	1030. 10	1170. 10	1270.80	1270.80	1380, 40	,	CURVE 6	15.28	16.37	21. 53	75. 40	93.00		CURVE 7		15. 30	18. 29	21. 38	75.86	92. 40		CURVE 8		303. 20		CURVE 9*		303, 20 0, 369		CURVE 10	4	303. 20 0. 400	CHRVF 116		303.20		CURVE 12		303.20		21 2110110	2000	103 20	, ,
¥	(E.1	0.366	0.351	0.343	0. 336	0.330		2.	0,261	0.262	0.262	0.262	0.263		္သု	;	0. 209	0.219	0. 229	0. 238	0.240	0.242	0.241	0.244	,	<u>.</u>		0.273	0.7.0	897.0	0.267	262	0.55	0.252	0.249		ď	'n	0.267	0.265	318	197	0.320	0.363	
۲	CURVE	373.20	573, 20					CURVEZ			573.20				CURVE						700. 10					CORVE	90							810.90			CURVE 5			856.50			920.20		
																																												_	

Not shown on plot

SPECIFICATION TABLE NO. 329 THERMAL CONDUCTIVITY OF (TRON + CHROMICM + EX;) ALLOYS (C < 2.00%) GROUP II

(At least one $X_1 \geq 0.20\%$ or H any of Mn, P, S, $Si \geq 9.60\%)$

(For Data Reported in Figure and Table No. 329)

	Composition (continued), Specifications and Remarks	Specimen supplied by Carnegic Illinois Seel Corp.	0. 20 Cu, 0.014 P; annealed at 900 C for 1 hr. cooled in still air, annealed at 750 C for 1 hr, and cooled in still air. Ni used as comperative material.	0 046 P; oil-quenched from 850 C, supplied by Meastra. Brown Bayley Steels Ltd.; specimen (tube) 1 in. O. D. 0.75 in. L.D.	0.046 P; the above specimen tem- pered for 3 hr at 150 C.	0.046 P; the above specimen tempered for 3 hr at 350 C.	0.046 P; the above specimen tem- pered for 3 hr at 550 C.	0,046 P; the above specimen tem- pered for 3 hr at 650 C.	0.046 P; the above specimen annealed for 1 hr at 850 C.	0,046 P; the above specimen reheated to 650 C for 120 hr.	0.030 P; specimen 1 in. da; oil- quenched from 830 C; tempered at 140 C for 6 hr.	0.030 P; the above specimen tempered at 150 C for 2 hr.	0.030 P; the above specimen tempered at 350 C for 3 hr.	0,030 P; the above specimen tempered at 550 C for 4 hr.	0, 27 V; usual heat treatment.	Usual heat treatment.	Usuai heat treatment.
	w		0.020	0.019	0.019	0.019	9.019	0.019	0.019	0.019	0.028	0.028	0.028	0.028			
	ž.	0 20	9.44	0 23	0.23	0.23	0, 23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	3.36	4.33	3,36
	ercent)	0.17		933 0	0.33	0.33	0.33	0.33	0,33	0.33	0.23	0.23	0,23	0.23			
210	Composition(weight percent) C Mn Mo Ni	0 32	0 52	0.22	0.22	0.22	0.22	0.22	0,23	0.22	0,21	0.21	0.21	0.21			
Tight aims that the	sition(w Mn	0.52	69.0	0.59	6: 29	9,59	0.59	0,59	0.59	0.59	0.73	0.73	0.73	0.73	0,35	0.33	0.4
	Compos	0 33	0.16	0.42	0, 42	0.42	0.42	0, 42	0.43	0.42	1.05	1.05	1,05	1.05	0.44	0.41	8.39
911	ڻ	66 0	6,65	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.5	1.5	1.5	1.5	8.92	2.04	2.05
יייייייייייייייייייייייייייייייייייייי	Fe	ball.	bal.	bal.	bal.	lad	bal.	bal.	bal	bal.	bal	bal.	bal.	bal.	bai.	bal.	bal.
To be new new to a	Name and Specimen Designation	SAE4130		- En19a	En19b	Enl Sc	En19d	En19e	En19f	En19g	En31a	En316	En31c	En31d	21	ĸ	₹
	Reported Error, %	o1	7														
	Temp. Range, K	25-298	428	323,373	323, 373	323-473	323-473	323-473	323-473	323-823	273-373	273-573	273-673	273-1173	303-1273	393-1273	303-1473
	Year	1931	1950	1956	1956	1956	1956	1956	1956	1956	1956	1956	1956	1956	1936	1936	1936
	Method Used	7	O	O	Ü	ပ	U	၁	ပ	Ü	ပ	ບ	ပ	ပ		ï	J
	Ref.	115	180	Ç.	173	173	173	173	173	173	173	173	173	173	163	163	163
	Curve No.	-	84	m	4	S	ယ	¢	æ	э	10	11	77	13	14	15	91

SPECIFICATION TABLE NO 329 (continued)

Composition (contrased), Specifications and Remarks	i ili Co; usual heat trentment.), so Co, usual heat treatment	o 75 V, 0,5 W) mensured in vacuo.	0, 2 V measured in vacuo	a T.V. o. 15 No measured in vacuo.		1,55 Al. annealed at 900 C; specimen 2 cm in, tha and 15 cm long: lead used as comparative material.	0.21 V.	Nominal composition: specifical (a. i. day, 7.5 in, long, measured in a vacur of (40°) mm of Hg	0, 12 Cu. 0, 039 ass. 0, 028 P. 0, 004 Ab- annealed at 500 C, reheated to 600 C and furnace cooled; density 7, 845 g cm. 1, ron used as comparative materials	0,015 Pt sperimen 2 cm dat, 15 cm long; annealed at 845 Ct fead used as comparative material.	0, 066 Cu, 0, 009 P. 0, 628 As: 0 005 Al; americal at \$60 C; density 7, 842 g cm.*; iron used hs comparative material.	0.25 W. 0.054 Cu, 0.03 Al, 0.022 P. 0.022 V. 0.003 As; heated at 960 C in air, tempered 2 hr at 750 C and air cooled; density 7.741 g cm.?; iron used as comparative material.	Nominal composition; alumina used as comparative material (Wesgo Al-30).	0.12 Cu. 0.039 As. 0.028 P. 0.004 Al. trace V; quenched from 1000 C; annualed at 100 C for several hrs: from used as comparative material.	0.017 P; annealed; iron used as comparative material.
w x										9, 6.11	0.01	0, 036	0.022		0.9:11	0.013
x.	3	e, E		::	:	: :	1 1 6	0.23		77 ° 6	60.00	0.20	<u>r</u> =		0.21	0.24
recent)			:: "				G			97.70	0.23	0,073	6.5.7 0		97.0	0.31
Compesition (weight percent) C ala Mo Ni		1.13	(1 •	2		î.			0, 73 max	0.30		0.012	0.01		0.29	
ation(w	96.0	G. 43		9		.	0.30	0.54		0, 59	60.0	6.69	£ 61 0	-	0.55	0.045
Compey	0, 45	1.36	0, 23	7	: :	: 1 : 2	1.10	09 '0	0, 95 1, 20	0.35	<u>. n .</u> 0	0,515	0.27	0 12 21 0 83.E	0.35	9
5	16.2	15,35	(- 2)	;		0 [17 12	94.0	15 15	85.0	9.11	1.09	13.69	14/	×	1.46
F.	153	bat I.	bal.	1	3.41	- - -	bal.		bal.	hal.	tal.	bal	bal.	hal.	bal.	bal.
Name and Specimen Designation	က	,	11-20	: :	1-2.	H-46	Š	÷	A1S1440 · C	20	č	19	ដ	AISI430 stambess	Ona	Ensi
Reported Error, "							4 :		io		# }					
Temp. Range, K	303-1373	200 CAR	0101-000	20.00	373-973	373-1073	373-773	273-773	:73-773	273-623	573-573	273-573	273-573	473 873	303,353	323-1073
Year	1936		1001	2001	1953	1933	1933	1 436	1939	1939	1933	1 939	1939	1938	1956	1936
Method Used		ì.	; ر	ن ا	J †	‡ ()) : ::	α	; <u>.</u> .	U	Ú	Ú	U	Ü	Ü	ပ
Ref. No.	1 291	2 .	3	.	181	1 41	621	031	185	166	129. 1 51	166	166	613	2	ž
Curve No.	1	.	۲. ا	19	95	5	; }}	Ę	ា ភ	25	56	23	7° 21	65	8	31

SPECIFICATION TABLE NO. 329 (continued)

Composition (continued), Specifications and Remarks	0, 040 (max) P: nominal composition from Metals Handbook.	0. 25 (max) N, 0. 040 (max) P; powder (0. 000583 ft dia); measured with 0. 53 volume fraction He, nominal composition from Metals Handbook.	0.25 (nax) N. 0.040 (nax) P. (0.009583 it dia); measured with 0.53 volume fraction air; nominal composition from Metals Handbook.	0. 25 (max) N. 0. 040 (max) P. powder (0. 000583 ft dia); measured with 0. 53 volume fraction argon; nominal composition from Metal Handbook.	0.20 V; annealed 2 hrs at 700 C, then oil-quenched.	0.26 V; annealed 2 hrs at 700 C, then oil-quenched.	0, 25 (max) N; 0, 040 (max) P; nominal composition; powder (mean dia 0, 000583 ff) with 0, 5 volume fraction argon.	0, 25 (max) N; 0, 040 (max) P; nominal composition; powder (mean dia 0, 000583 ft) with 0, 5 volume fraction containing mixture of helium and argon (He; A = 2, 333).	0. 25 (max) N: 0. 040 'max) P. Journal composition; powder (mean dia 0. 000553 fl) with 0. 5 volume fraction containing a mixture of neon and argon (Ne; A = 1. 941).
У.	0. 01 max	0. 63 max	0. 03 Max	0. 0.3 max			0. 03 max	0. 03 max	0.03 max
35	0.20/	1. 06 max	1. 60 max	1. 60 max			1. 00 max	1. 00 max	1.06 max
Composition (weight percent)	1,50. 0,25	n.c.s.	1, 50 nets	1. 50 max	0.50	0°.05	1, 50 max	1. So max	n.zx m.zx
Composi	조무 공공	90 x 00 00 00 00 00 00 00 00 00 00 00 00	9, 255 max	0, 3.5 max	0.31	0.32	0.35 max	0.35 max	6.35 max
C	9, 50° 1, 10	12.7. 21.71		2.55 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7	1.35	1.59	∑ ₁₊ 0 ⊠	50 G	212
Name and Specimen Designation Fe	SAE 4140 bal	AISH46 standess bal.	Alsit të standess bal.	AISI446 standess bal.	ioal.	bal.	Alsī446 staniless bal.	AISI446stunless tal.	Al8146 stainless bal.
Reported Feror									
Terap. Range K	12 12 14 17 17	040-031	350-532	366-579	673, 2	673.2	027-440	397-622	432 ×35
Year	194.	1551	1.6.5.1	195.4	1:467	194.3	1651	1958	36.0 10 10 10 10 10 10 10 10 10 10 10 10 10
Method Used		×	c.	×	ບ	O	æ	æ	α
Ref.	616	<u>C</u> úo	146	39.7	125	i;	;	7	
Culy.	7	Ħ	*	13	¥	(-	ć.	e.	9 4

SPECIFICATION TABLE NO. 329 (continued)

Composition (continued), Specifications and Remarks	0.25 (max) N; 0.040 (max) P; nominal composition; powder (mean dia 0.000583 ft) with 0.5 volume fraction endating a mixture of neon	0.25 (max) N ₁ 0.040 (max) P; nominal composition; powder (mean dia 0.00583 ft) with 0.5 volume fraction neon.	0.25 (max) N; 0.040 (max) P; nominal composition; powder (mean dia 0.000583 ff) with 0.5 volume fraction helium.	0.01 P. 1.03 W. and 0.24 V; heated to 1000 C. oil quenched; electrical resistivity 0.127, 0.105, and 0.0976 milliohm cm at 200, 400, and 600 C, respectively.	Same composition as the above specimen; heated to 1000 C, oil quenched, tempered at 680 C for 10 hrs. electrical resistivity 0.139, 0.113, and 0.0956 milliohm cm at 200, 400, and 600 C.	Same composition as the above specimen; heated to 1000 C, oil quenched, tempered at 680 C for 10 hrs, and at 650 C, for 1000 hrs, electrical resistivity 0.111, and 0.0867 milliohm cm	at 200, 400, and 600 C, respectively. Same composition as the above specimen: heated to 1000 C, oil quenched, tempered at 680 C for 10 hrs, and at 600 C, for 1000 hrs; electrical resistivity 0.148, 0.115, and 0.101 at 200, 400, and 600 C, respectively.
o	0.03 max	0.03 max	0.03 max	9.014			
Composition(weight percent) C Mn Mo Ni Si	1.0c max	1.00 max	1. 00 max	0.42 0.21			
(weigh				0.59			
osition Mn	1.50 max	1.50 max	1.50 m·tx	0.63			
Comp	0.35 max	0.35 max	6.35 max	0.16			* · · · · · · · · · · · · · · · · · · ·
c.	23/	13/ 27	133	11.81			
Fe	bal.	bal.	Ē				
Name and Specimen Designation	ASI416 stainless bal.	AIS1446 stainless	AB1446 stainless xxl,	EI #02 skel	El 802 steel	El 862 stecl	EI 802 steel
Reported Error, %					,		
Temp. Range, K	464-736	397 849	392-723	 १८ १८ १८	473-973	473-873	473-873
Year	1958	3 6 E	7: 10:00 11:00	1962	7963	796	1962
Mrthod	œ	œ	ಜ	L .:	ы	ш	•
Ne C	531	SX 3	581	1: X	977. 974	. H	977.
Curve No.	4	걐	4	 	ഗ *	E T	t-

- Andrews An

TO THE PROPERTY OF

SPECIFICATION TABLE NO. 329 (continued)

Composition (continued), Specifications and Remarks	Same composition as the above specimen: heated to 1000 C, oil quenched, tempered at 700 C for 19 hrs: electrical resistivity 0.140, 0.114, and 0.0951 milliohm cm at 200, 400, and 600 C, respectivity.	0.01 P. 1.03 W, and 0.24 V; heated to 1100 C, oil euenched; electrical resistivity 6.137, 0.114, and 0.0981 milliohn cm at 20c, 400, and 600 C, respectively.	Same composition as the above specimen; healed to 1150 C, oil quenched, tempered at 700 C for 10 hrs; electrical resistivity 0.140, 0.116, and 0.0965 milliohn cm at 200, 400, and 600 C, respectively.	0.031 P; specimen 1.27 cm in dia and 15 cm long; annealed at 950 C, oil quenched from 950 C and tempered at 760 C; cast condition; electrical resistivity 61.2, 63.4, 65.4, 67.3, 65.7, and 72.7 µohm cm at 20, 45, 62, 91, 123, and 159 C respectively.	Similar to the above specimen execpt in wrought condition and electrical resistivity 61.8, 65.6, 67.3, 69.3, 73.6, and 75.1 µchm cm, at 22, 65, 92, 114, 170, and 187 C respectively.
s		0.59 0.42 0.21 0.014		0.036	
รั้ง		0.21		0.56	
v-rcent) Ni		0.42		0.25	
veight p Mo		0.59		0.10	
Composition(weight percent)		0.63		2.	
Compo		11.81 0.6		6.13	
ů		11.81		12.4	
Fc					
Name and Specimen Designation	El 802 steel	El 802 steel	El 802 steel	T 12	T 12
Reported Error, %				v V	9 V
Temp. Range, K	473-873	473-873	473-873	312-436	3 % -459
Year	1962	1962	1962	1366	1966
Method	μ	ш	ш	n	-1
Ref.	977.	977.	977.	27.6	973
Curre No.	& &	4	S,	15	23

THERMAL CONDUCTIVITY OF (MON + CHROMICN + 5%) ALLOYS (C < 2.00%) GROUP II 129 DATA TABLE NO.

(At least one $\mathrm{N}_i \geq 0$, 30% or if any of Mn. P. S. Si $\geq 0.60\%)$

(Temperature, T, K, Thermal Conductavity, k, Watt cm⁻¹K⁻¹1

. ν	CURVE 30*	303,20 0,345 353,20 0,350	CURVE 31*	323.20 0.415	373.70 0.410 423.20 0.410		573, 20 0.395				1073.20 0.240		CURVE 32"	l			673.2 0.370		CURVE 33			_	311.0 0.0138		434.3 0.0160		470. 9 0, 0163		502. 6 0. 0169							
T	CURVE 25 (cont.)	423, 20 0, 422 473, 20 0, 418 523, 20 0, 414			CURVE 264			573,29 0,268		CURVE 27*			323.20 0.477				573.20 0.423		CURVE 28*			323.20 0.259				573.20 0.276		CORVE. 29	473 20 0 194		673, 20 0, 220					
Ŧ	CURVE 21 *	373,20 0,272 473,20 0,272 573,20 0,276			973.20 0.276		CURVE 22	661 0 00 620	473 00 0 185			773.20 6.221		CURVE 23*			473 20 0.435			773.20 0.344		CURVE 24	170 0 00 000						573, 20 0, 276 723 20 0, 285	773,20 0,295		CURVE 25	i	323.20 0.427		
æ	CURVE 17 (cont.)		1373,20 0,347	CURVE 18°	156 0 06 202				706 0 00 min	773,20 0,26%			1973,20 0,272			1353, 20 0.372	661 TVR.19						277 0 07 778	973, 20 03, 23		CURVE 20			413,20 0.312 513 20 0.368	673.20 0.347	770,20 0,331		973,26 0,293			
. <u>.</u>	CURVE 15	303, 20 0, 201 323, 20 0, 205 373, 20 0, 209	473,20 0,226	673,20 0,268					15:3, 50 9,:101	CURVE 16		303,29 0,243					513, 10 0, 115 117, 10 0, 115						1515, 20 0 1515, 1		CURVE 17				373,20 0,261 471 00 0 964							
	CURVE 12 (cont.)	523, 26 0, 375 573, 20 0, 370 623, 20 0, 360		CURVE 13					007 0 07 777								953, 20 6, 336 473, 30 6, 336				1133,20 0,255		1100	303, 10 0, 222					653, 20 0, 259							
¥	CURVE 7"	323,20 0,440 373,20 0,455 473,00 0,460	5	COMPE ST		10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CURVE 9	000 0 04 1144						423,20 0,355		CURVE. 10	27.3, 20 G. 223		573, 20 0, 257		CURVE 11							573, 24 0, 340	C1 3/8/10		273, 20 0, 335		423, 20 0, 390		
Ħ	CURVE. 1	25,34 0,077 40,24 0,104 56,06 0 185				143,92 0,531			200 C 27 200						CURVE :		151,70 0,312	CURVE 3			373,20 0,005	į		923, 20 6, 3330			CLEATE 5		013, 20 01, 310 01, 20 01, 211			CURVE 6			413, 25 0, 408)	

Not shown on plot

DATA TABLE NO. 329 (continued)

		245*	c	ين.	_		 :		.~:																																			
±	CURVE 52	9.24	5	0,246	0.251	0, 242	0. 253		0. 263																																			
H	CUB	120	100	2.05	365, 2	275, 2	51 GVG	11). 7	459.3																																			
×	ont.)	0, 270	-	¥		0.350	0, 254	0.240		ł_1		U. 179	0.290	U. 334	ŧ	, 1	911	797	011	•	4_		0, 266	0.279	0, 290		*		0.264	0.277	0. 281			0, 241	230	0, 245	0, 242	243	249	142	0, 648	馬	250	520
	3) 5+ 3	o :	j	CURVE 46"		oʻ	oʻ	j		CURVE 47		j.	⇒ :	s ⁱ	£ 16 .1		=	· =	; =	;	CHRVE 495		Þ	j.	.		CURVE 50"		္	္ ေ	ာ်	TO HARLO		ó	÷	ဘ	ဘ်	ဘဲ	÷	خ	÷	j	j :	j
۲	CURVE 45 (cont.)	67.3.2		m		473, 2	613.2 613.2	S1		3		~; (-	61 6 61 6 61 6 61 6 61 6 61 6 61 6 61 6	i Z		3	6 60				E		47.3, 2	67.3, 2	87.3, 2		20		47:3	673, 2	7. 7.		3	112.5	319, 2	331.2	340, 2	356.3	363, 2	363, 2	399, 2	411. 2	5. 5 S	7.36. 7.36.
		\$0.00 1-10	• L	107	113	ES.		504 504	608	957	7	535	: : ::	Ne e	7	3			Ξ.	; :		; <u>;</u>	7	: ::	12	73	<u>.</u>	99	3	30 :	9 6	۽ ۾	ور ب	62				si _r	:;	4			,	ت ت
i z	CURVE 40	0.00758	100.0	0,00402	0.00%	0,00851	0,00851	0.00894	0.00909	0,009.57	1. 0094 4	0,00935	0.00081	0,00052	0.0101	0.10.0	1		2.00		20.0		7010	0.01	0.0146	0.0134	0.0154	0.0159	0.019£	0.0158	0.0166	0.10.0	0.0176	0.0179		CURVE 44		4. 22. O	0.253	0. 266		CURVE 45"	;	0.256
۲	Ct. B	8,968	x - 7	3.10.6	559,4	569, 5	616.5	1,123	677.6	9.985	0.027	140,12	# (F)	0.00	3.53	6+6	10:15	[] []	2		1 CA.T		2.00	17 17	7.10	568,5	574, 8	606.1	607.4	632.4	4.409		7.02.3	722.6		CUK		†1 **** †	673, 3	873, 2		CUR		51 12 13 15 15 15
ı.	6 (5)	9.3138		;}	0,003233	0,003403	0.00362	0.00340	9, 00:176	0.00352	0.003903	0.00456	0,00087	0,00425	0,00403	0.100.0	0.000.0	0.00423	007500	12500.0	10000	200.0	5 F00 10	en En	31	0.00991	0.0107	0.0113	0.0113	0.0121	;	اچ اند	0,00629	0.00661	0 00740	0.00311	0.00845		11-3	! 	0,00535	0,00551	0,00627	0, 00695
۲	CURVE 37	673.2	AT BYBYE		376.6	385.9	437.3	c 177	200	525.6	540,8	8.860 8.8	508.9	0.F1%		- 14 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18) (-) (-) (-) (-) (-) (-) (-) (-	3 3	(n in in in in in in in in in in in in i	1.000		CLERVE 39		397.0	457,4	525. s	535.7	621.6		CCRVE 40	130	523.6	11.59	71.256	(* (*) (*)		CURVE 41		9. ES	575.1	5.005 1.10	1 45.7
4	CURVE 33 (cont.)	0.0366	0.010.0	0.0168	0.0170	0.0171	0.0177	0.0182	0.0140	0.0130		쥬		6,000.00 0,000.00	: HOO I	0.00400		71000 D	6 1050 O	0.00300	0.0000	0.000.0	1,500			CURVE 35	ļ	6, 00292	0.00001	0, 04841	0, 60346	0,0436	0.00355	0.00332	0.00353	0 00x160?	0.00338	0,0039%		CURVE 35.º	ļ	0.3305		
۳	CURVE	524.3	(- 2 (- 2 (- 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3	555.4	569, 3	591.5	610.9	6.00.9		CURVE 34		7 000	2 . 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	£ 50.0	2 - 2	# 000.	6 600	100	7 2	0.000	6.5	1 625	1	CURV		365, 9	113.1	163,3	498.2	7 1	- 5	्र () () ()	5.00	10.00	51.5	1- 7-10		CL'R		673.2		

Not shown on plot

A STATE OF THE STA

GROUPI Specification table no. (30) Thermal conductivity of [1ron + Chromium + Nickel + Σ_{X_1}] alloys

(X1 + 0, 20% except C > 2, 06% and Mn, P. S. Si > 0, 60% each)

[Fur Data Reported in Figure and Table No. 350]

	-	25.50		Ranke, K	Range, K. Error, W.	Specimen Designation	ت	N. C. Ma	ان:	N.	 	Composition (continued), Specifications and Remarks
	137		65.61	1.8- 93	ı	4020	IB. 8	8. 10	0. 12	6, 24	0.43	Quenched in water from 1150 C.
	158	ب	1955	406-100>		AISI 304 standess	17. 0 / 19. 0	7.07	0. 11			Nominal composition.
	1 651	L 19	1952	23, 79	< 10.0	AIS! 304 stainless	17. 0/ 19. 0	7.0,7	0. 11			Nominal composition.
-	129 (SI)	1933	373- 78E	3. 0-5. 0	A7	18. 6	9. 10	0.07	0.27		Heated to 735 C for 8 hrs and cooled in diatomaceous carth.
10	129	C	1923	373- 773	3, 0-5, 0	A.S.	18, 5	9, 2;	0.11	0. 19		Heated to 1120 C and quenched in cold water.
			1933	373 - 773	3.0-5.0	6 7	19. 6	5 .	t ? '0	0.37		Heated to 735 C for 8 hrs and cooled in diatomaceous earth.
-	7 621	C 19	1933	350- 773	3, 0-5, 0	910	9 .61	7. 99	0.24	0.28		Heated to 1120 C and quenched in water.
			1934	373- 773	2.0	A10A	19. 6	7.95	0. 24	0.28		The above specimen A10 heated again for 8 hrs at 735. C and cooled in furnace.
_ 6	152	1. 19	6161	10- 20		Stainless						Composition unknown.
91	160	F 19	1938	373- 773		AS21	27.0	18.0	0, 12			Quenched
=	162	ST	9:6	273-197.3		Staybrite	17, 87	3 5	0.15	0.26	0. 19	Softened at 1150 to 1200 C.
7.1	3	I. 19	1936	303-1.573		??	17. 36	.ე 10 20	0, 11	0. 53	0. 48	Rolled.
 	163	ST 7	1936	303-1153		=1	24. 50	4. 32	61 '0	0. 51	0. 30	Rolled.
		C 18	1933	323-1173	2.0	AISI 302 stainless	18. 40	9.66	0.116		0. 130	71, 60 Fe. 0, 021 P. 0, 013 S. annealed at 1100 C.
15	129 (c 19	1933	373- 773	3.6-5.0	A3	14.60	0.70	0. 14	0.19	0. 12	0, 020 P. 0, 015 S. annealed at 845 C.
16	162 (C 18	1936	273-1073		F. H. stainless	13. 65	0.37	0.27	0. 29	0. 27	Air hardened from 940 C and tempered at 725 C.
17.		L 19	1936	303-1373		n	13.30	0. 50	91 .0	0.46	0.26	Rolled.
18	_ §	1 19	1951	15- 93		37.H	18.80	8. 10	0. 12	0.24	0.43	Heated to 1150 C and quenched in oil.
61		L 19	1938	336 - 1056			17.30	8.F.	97.0	0.30	0.20	0.017 P. 0.002 S; heated at 1100 C and quenched in water.
		.T	1938	326. 579			17.30	8.61	0.26	0.30	0.20	0,017 P, 0,002 S, heated at 1180 C and quenched in water.
			1938	344-1952			17,30	9.61 13.161	0.26	0.30	07.50	0.017 P, 0.002 S; heated at 1180 C and quenched in water, then reheated to 306 C.
22 (539	1 19	1938	348-1069			13.29	0.51	0.12	6.33	0.19	0.017 P. 0.016 S, annealed at 900 C and lurnace cooled
23	539	1 19	1936	331- 584			13, 29	0.51	0.12	0.33	0.19	
	539	7	1938	340-1074			13, 29	0.51	0.12	0.33	0.19	0.017 P, 0.016 S. water quenched from 1180 C, and reheated to 310 C.
25	563	13	1935	273, 1273		Russian stainless	18.9	7.5	07.0	0.47	9.11	0,022 P.
56	565		1949	27- 250		18-9 type 304 stainless						Nominal composition.

SPECIFICATION TABLE NO. 330 continued)

	Composition(continued), Specifications and Remarks		Norman compositio		Heat-treated at 1050 C and water -quenched.	A to Ca. O Of May O to P and O that Stereofmen		made up of 1 in. dia disks.
1.111	í	ā		,	9.0	:	-	
	int per cent)	- I		,	97.0	2	<u>.</u>	
	נוסם (איניול	ا ار			0.08	41.	H5H	
	lacimo.	ž			9.5%	:	13.10 0.50 0.50	
,	,	5			19.32 9.55 0.08		13.10	
	Name and	No. No. Used Yest Range, K Error, Specimen Designation Cr Ni C Nii	18-8 stainless		18-8 stainless		120 stainless	
	Reported	Error, S			5.0		٠ د	
	remperature	Range, K	411 4		373-973		435-1632	
		rear	920		1005	2	1961	
	Method	Used	9:01 0 1 999 50	þ	-		~	
	8	S Z	333	200	730		614 R	
	Cury	ģ	ţ	3	ac	67	67	i

DATA TABLE NO. 3:00 THERMAL CONDUCTIVITY OF IBON + CHROMIUM + NICKEL + $\Sigma \chi_1$) ALLOYS GROUP I

4	CURVE 28	0, 152 0, 192 0, 205 0, 205	0.222	0.255		CUIVE 23	0.227	0.241	0, 242	0. 247	0.246	0, 249	0, 263	0, 265	1/2.0	0.230	000	0.304																		
Ţ	COR	2.23 4.73 5.73 5.73 5.73 5.73 5.73 5.73 5.73 5	173, 2	973.2 973.2		3	#35,4 640	1 17 17 17	2. 4 26	747. 1	779, 3	A31, 5	972.6	10:37, 1	1195, 4	1.519, 3	1414.0	1631.5																		
¥	CURVE 23*	0, 254 0, 263 0, 267	270 3114110	. [9, 267	0, 268	0.279	256	0.252	0, 273	0, 269		Z 32		0. 167	0. 10.		5	0.0279	0.0474	9, 0665	0.0782	0.0872	0.0971	0. 114	0. 121	0. 132	0.135	0.140	0.144		/E 27		651.0		
۲	CUR	331.2 382.2 462.2 544.2			340, 2	380. 2 493. 2	572.2	7.46	868.2	987. 2	1074. 2		CURVE 25		273. 2	127.5. 2	2	CHRVE S	26.8	40, 37	55, 20	69, 98	30 . Si .	195 03	144.77	165, 12	206, 54	219, 94	235.09	250, 10		CURVE 27		313, 2		
×	CURVE 19	0, 207 0, 205 0, 211	0, 205	0. 216	0, 236	0.262	tac avent	77.	0.192	0. 199	0. 203	0. 207	0. 207	2	CORVE 21		0.100	0.215	0, 218	0, 238	0, 2:37	0, 276	0.279	0.270	CURVE 22		0, 310	0.302	0.310	0, 305	0, 305	0.287	0.269	0.277	6.23.5 5.25 5.25	#C7 '0
H	CUR	338, 2 350, 2 375, 2 511, 2	580, 2	754. 2	883, 2	1056.2	all 5		326, 2	364, 2	387, 2	464.2	579.2	,	COR		7.60	473, 2	555. 2	688.2	798.2	894, 2	974. 2	1052. 2	CUD		348.2	360, 2	383, 2	383, 2	514.2	525. 2	756, 2	863.2	959. 2	1009. 4
.¥	15*	0, 243 0, 247 0, 252 0, 256	0, 261	16	940	0.251	0,255	0.257	0, 257	0, 257	0.247	0. 236	4		0	0.00	127.0	0.226	0. 230	0, 234	0. 239	0, 243	0.251		0.310	0.335		18		0.0129	0.0156	0. 01F7	0.0714	0.0814		
Н	CURVE 15	373, 20 473, 20 573, 20 673, 20	773.20	CURVE 16	000	373, 20	473, 20	673, 20	773. 20	873.20	973. 20	1073, 20		CURVE 17	00.	503.20	253. 20	473, 20	573, 20	673, 20	773, 20	873, 20	973, 20	1073.20	1273, 20	1373, 20		CURVE 18		15, 25	17, 90	21, 11	76.30	92.80		
~	(cont.)	0, 234 0, 247 0, 259 0, 276	0, 297	0, 339	0.369	0.423	0.471	13	ļ	0.209	0, 209	0, 213	0, 226	0. 259	0.0 0.0 0.0 0.0 0.0	# 00 C	0.170	0,310	0, 331	0.356	6.389	0.431	:	5	0, 123	0, 133	0.151	0, 168	0.186	0. 204	0.2::1	0, 239	0, 256	0. Z.		
۲	CURVE 12 (cont.)	373, 20 473, 20 573, 20 673, 20	773. 20	973, 20	1073, 20	1273, 20	1373, 20	CURVE 13		303, 20	323, 20	373, 20	47.3, 20	573, 20	67.3, 20	17.1. 20	01.5. 10	1073, 20	1173, 20	1273, 20	1:473, 20	1473, 20		CURVE 14	323, 20	373, 20	473, 20	573. 20	673, 20	773. 20	873, 20	973. 20	1073. 20	1173, 20		
×	(cont.)	0, 164 0, 178 0, 183 0, 207	Ŝ	<u> </u>	0, 150	0. 181	0, 196	1	6	{	0. 00711	0.0109	0.0151		≅	300	502	0. 218 0. 218	0, 222	J. 226		=		0, 149	0.176	0.188	0. 205	0, 218	0 2:34	0. 247	0, 262		5 		0.230	5.5
۲	CURVE 7 (cont.	473, 26 573, 20 673, 20	1/10/10				673, 26		CURVE 9			15. UC			CURVE 10			573, 20				CURVE 11		373.20						20			CURVE 12	5	303.20	n N
×	(cont.)	0, 224 0, 231 0, 233 0, 242	5.245	0,254	0, 259	~	47.60	0.085		٠ <u>٠</u>		9, 144	0. 177 0. 177	9. 190	0, 20%	0.210		ής Δ:	j	0, 163	0, 176	0.189	0. 201	0. 214	9 13	ļ	0, 156	0. 172	0, 187	0. 262	0.217		2	:	0.144	7
٠	CURVE 2 (cont.)	773, 20 839, 00 851, 00 904, 10			1005.00	CURVE 3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CURVE 4		373, 20		54.4, 20	77.7.20	200	20.00	CURVE		373, 20	473, 26	573. 20	673, 20	113. 20	CURVE 6				573, 20				CURVE 7	•	354.60	313.20
2	리	0, 00125 0, 00175 0, 00182 0, 00217	9, 00129	0. 00235	0,00364	0,00311	0,0146	1, 0160	0, 0163	0 164	0,0168	0.0192	0.0208	0.0505	0.0414 6.0814	0. 0044	•	3	0.172	9, 176	0.178	0, 179	0.181	0.134	1, 188	1, 188	7, 192	0, 193	0. 197	0, 199	5, 201	0, 205	0, 207	0.210	0.212	3
(-	CURVE	를 일 일 일 20 명 일 40 4 원			5. 5. 5. 7.		15, 17					13.68			(3. 30		e aventa	2000						483 20											969.00	

* Not shown on plot

THE RESERVE

SPECIFICATION TABLE NO. 331 THERMAL CONDUCTIVITY OF JRON + CHROMIUM + NICKEL + EX, J ALLOYS GROUP II

(At least one $N_j \geq 0, 20\%$ or if any of Mn. P. S. St $\geq 0, 60\%)$

For Data Reported in Figure and Table No. 331.

Composition (continued). Specifications and Remarks	1.7 Nb. 0.3 Si.	10,0 Co. 3,0 Nb, 2,5 W, 1,0 Si.	Hot rolled; annealed at 1093 C for 1 hr.	0.26 St. 0.023 S. hot rolled, annealed, and quenched in water.	0,73 Nb, 0,58 St, 0,017 S; hot rolled, annealed, and quenched in water.	20.0 Co. 2.5 W. 1.1 Nb.	0, 60 (Max) 2r, 0.07 (Min; Se, 0.07 S. Min.	$10 \times C = Nb.$	72, 21 Fe, 1, 11 Al. 0, 49 St.	0.53 Si, 0.028 S.	0-50 Si, 0,028 S; tested in high vacuum.	2, 85 W. 1, 22 Si., usual heat treatment.	9, 92 W. 1, 07 Si; usual heat treatment.	1, 0 Ti, 0, 7 Si.		0, 85 Nb, 0,57 Si, 0,027 N, 0,023 total P and S.	0, 43 St. 0, 931 N. 0, 04 total P and S.	1,00 (Max) Si, 0,000 (Max) S; nominal composition; disklike specimen of 2,75 in, dia.; accuracy ± 0,008 W cm ⁻¹ C ⁻¹ ,
2				0.018	0, 013		0, 07 M in			0,025	0,025							0, 045 Max
ot) Mo		2.0		2.18	9, 62	3,25	0, 60 Max											
Composition(weight percent)	О. я	, ,	2.0	1, 59	1, 64		9.5 Max		0.60	0.67	0, 67	1.	1, 17		2, 0 Max	1, 24	1. 12	2, 90 Max
on(weigh					60.09											0,26	90.0	
mpositiv	0.1	0,4	$\frac{0.18}{0.20}$	D. 10x	95.0	0.3	0, 15 Max	0, 0x Max	0.074	0,053	0,053	£	0, 53	6.3	0, 0 N. 5	0.05	0.0	0, 0.8 Max
C _O	14.0	13.0	6.0 7.0 8.0	11.66	10, 94	20.0	×, 0/ 10.0	9,0/	7.06	9,09	9, 09	12,23	11.90	t- 5	, c , z 11, c	19, 25	Z	7 2
5	19.0	13.0	7,0 1,0 1,0 1,0	16, x2	17, 65	20.0	17.0/ 19.0	17.0/	17, 30	13,81	18,51	12, 85	13,34	9.5	14,07	ř.	3/2	2.67 2.0
Name and Specimen Designation	IR 2.0	C Is B	AISI 301 stainless	AISI 316 stainless	AISI 347 stainless	Multanet N-155	AISI 303 stainless	AISI 347 stainless	Stainless 17-7	AISI 304 stainless	AISI 304 stainless	17	13	Austenitic steel; 1818	AISI 304 stainless	AISI 047 stainless	AISI 304 standess	AfSI 304 stainless
Reported Error, 7		•				0.4			0.0	5.0	5.0							ري. ن. 0
Temp. Range, K	37.3-1073	37.3-1173	137-1217	0521-901	ES-1174	400- 821	2, 6- 78	4, 3- 76	877-1305	373- 773	420- 820	000-1473	300-1073	2, 9- 92	473- 923	25- 295	27- 250	144-485
Year	1993		1921	1001	1991	1351	1971	1951	1955	1959	1959	90361	1936	1931	1952	1561	1921	1966
Method Used		:	5	ن	ú	ú	-			٢	نـ	ت	ت	ت	٦	٦	_:	~
Ref.	-	:	. To	\$	15	Ļ	155	155	ij	ÿ	<u>9</u>	16:	13.1		ń	11.5	11:	17.00
Curve No.	-			-7	i S	٤	1-	,	=	=	Ξ	2	===	=	:2	16	12	:

SPECIFICATION TABLE NO. 331 (continued)

Composition (continued), Specifications and Remarks	Annealed.	2.20 Si; rolled.	2, 38 Si, rolled.	0.68 St. 0.60 W. 0.025 As. 0.011 S. 0.004 Al; heated to 1100 C and cooled in water.		10 x C · Nb.	0, 47 Si, 0, 34 Ti, 0, 003 St annealed.	0.84; rolled.	0, 88 Si, 0, 002 S; annealed at 1050 C for 2 hrs and quenched in water.	0, 8h Nb, 0, 007 S.	1.018 Si. 0.007 S; annealed at 850 C for 2.5 hrs.	2, 89 St. 1, 54 W; forged.	1, 19 Al, 0, 45 Si, 0, 017 S; density 7, 43 g cm ⁻¹ .	2,75 W, 0.8 Si, 0.030 S; specimen 4 mm dia and 120 mm long; austenitic; tempering at 1175 C (cooling medium is water) and aging at 750 C for 10 hrs.	Other components unknown; specimen 4 mm dia and 120 mm long; austentic; forging from 1150 C to 550 C, tempering at 1150 C (ccoling inedium is water) and aging at 700 C for 50 hrs.
ط				0, 022			0.013		0.024	0,016	0.015	0.006	0.024	0. 635	
70 M0	2.0/				2.0/									0.4	
t percer Mn		0.71	1, 40	0, 35			0, 59	G. X	o. 650	1, 77	6, 55	1.03	0.71	0	
Composition (weight percent)				9, 030							0, 108				
npositue	1.3	12, 60 0, 13	9, 12	ë Ë	0, 10 Max	0, 05 Marx	0,07	0, 15	0,26	0,07	0, 19	6,54	0.70	0, 15	
N. C.	10, 0/ 14, 0		20.30	<u> </u>	10.0/ 14.0	9.07	9, 12	1,73	6, '6	11.12	9.03	13, 10	7.21	12	ر. ع
r.	à a	20, 35	22, 75	19, 11	16. 0.7 15. 0	17, 0. 19, 0	18,00	27.55	16, 05	15, 00	21, 64	13, A	17. UK	51 15	£
Name and Specimen Designation	AJSL 316 stainless	15	16	15	AJSI 316 stainless	AISI 347 stunless	A11	=======================================	EYA-2 steel	AISI 247 stemless	Stanless steel	W.F. 103	Strinkess 17-7 PH	Russian sterl E1257-15	Russian steel Or 19, Nië
Reported Error, T	10.0				o ĉi	÷	9.0			Ø '0 #		10.0	30.0	.	-
Temp. Range, K	0.00 270	1 F	202-125	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 t- 13 06	030-1933	273- 273	::60-1:1:	15 V	469- 710	::0::-107::	298,2	700, 1367	400-1273	380-963
Year	1953	19.36	15.38	13-13	<u>;</u>	£ 5.	1404	91:41	1939	1981	19:16	9861	195k	1957	55.67
Method		_;	:	U	×	×	ن		-1	ت	۵.	Ü	_O	ш	뇨
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	2	3	3	Å	ē	131	16.3	:61	161	221	113	195	#39	†99
Caryo No.	<u>=</u>	20	5	?!	÷	7	÷	Ŧ,	5	/)	ş	9:	Ħ	#	#

SPECIFICATION TABLE NO. 331 'continued)

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, "	Specumen Designation	N L		C Cu Mn M	Mn		_	Specifications and Remarks
3.	154	-	1960	561-1263		AISI 310 skrinless	79.45. 9.6.9	9 6 77 6 77 8 77	6,25 Mrs	2, o Max			L 5 St. Max.
35	#0g	, už	1958	414-71:	÷	18.5 stanless. YAIT-1	<u>.</u>	2	20.0	+ :			9,5 Tl. 0,4 Si. in form of rod.
36	534	ini.	1958	247 - 98 ×	= -:	18.8 stunless. YAIT-2	; ::	14 14 2		1.25			0,45 St. 0,5 Tt. in form of rod.
Ħ	#30	ы	8063	97.7.6	÷	1>> strinless. YAIT-3	<u>A</u> ,	- -	n, 10	1,25			0,5 Tl, 0,4 Si, in form of rod.
£.	33.1	ш	1958	219 -514	о 18	18-5 stainless: YMT-4	1	5 ° E	<u>71</u>	1.31			0,49 St. 9,5 TE in torni of tubes.
Ē	#155	ند	1364	509 -8+4	0 'i:	18.5 standess: YAIT-5	17, 39	ر ا	9. 1	<u></u>			n, 46 Tl, n, > Sr. in form of tabe.
07	76	표	1997	443-1555	•	15.5 stundess. YAIT-6	E. C	٠ , , ,	0, 0'1	<u>Ş</u>			n, 14 Si, e, to Tl, from the melt.
-	534	ы	1958	373-373	÷:	18-8 strinless. E1-572	20, 6	11.0	9: '0	71 . <u></u>	.:.		0, 70 St. 0, 55 Ft. 0, 3 Nh.
<u>;</u> ;	# (3	w	1955	1 12	3	18.8 stainless. Elt-of2	3 ° 0 ° 0	11.0	90.0	<u>-</u>			e, no Science Dr. Octa No Tempered at 500 Chorano bes.
	# (5	ы	-501	1000	0 1	18.8 stunless. E1-578	30.6	11.0	90.0	77			0,70 Sc 0, 5 B, 0,3 Mb, tempered at occ Che Results.
7	i,	ш	1004	026 H25	0 ::	1s. × stainless. El-572	30.6	3.5	90,06	2	1		0, 70 St. 0, 50 Tr. 6, 3 Mb. ten period at 50 °C for 2000 kess.
6.	11 12	딻	1958	10.00	e d	18, 8 standers. El-372	20°.	11.0	95.70	7. 2	1. i		0,76.80, 0,75.40,9 Mb; tempered at 750 C for Building.
946	# 15	'n	19.05	#40- 973	9 1	18. 8 stuniess. E1 606. 4	÷,	= .	60.0	1° 0			2, a.C. 1, 5 St.
1:	# 	<u></u>	1958	410- 43	- 2	1888 stainless. El 606, 3	<u>.</u>	- -	60%	a. -			2, a C 1, a Si.
1	京 (5		1058	437- 779	= +f	1 -> Strindess: El 606. 3	<u>+</u>	6 1/	60.09	e			2, o.P. 1, 5 St. aged at 3th C for 1000 brs.
2	£,	1	10H	34n-1061		Ni-Cr steel	şi ci	- [2 	\$1.0 6.0	E 's	E E	0, 013	o, it Si, o, 00 t Si, cooled in a recom- gor C, and tempered at 600 C.
Ξ	n G	.:	1935	13 146		Ni-Cr steel	5.i 8.	71	·;: '0	7	95.0	::: .	0, 14 St. 0, 00 : S. queue hed in oil from

SPECIFICATION TABLE NO. 331 [coatinued]

Composition (continued), Specifications and Remarks	0,34 St, 0.003 S; quenched in off from 850 C and tempered at 300 C.	0, 51 Si.	50,98 Fe. 0, 84 Si, 0,005 S.	9,77 NB, 0,76 SL, 0,007 S.	 20 Ti; forged; commercial heat- resistant alloy; measured in the byiting nitrogen bath. 	Forged, commercial heat-resistant alloy, measured in the boiling nitrogen bath.	Forged, commercial heat-resistant alloy; measured in the boiling nitrogen bath.	Max 0, 8 Sn, max 0, 8 Ti, max 0, 63 Si, max 5, 035 S; unannealed.	1, 00 Si max, min 0, 15 S.	1.00 St, 0.30 Nb + Ta; specimen com- peged of 5 one-inch dia disks.	0.05 Si, specimen composed of 5 one- inch dia disks.	0.05 Si, trace Mo, Al, and W; specimen composed of 5 one-lich dia disks.	1.00 max Si, 0.030 max S; nominal composition; erose sectional area 0.105 cm² and 2.55 cm long.
ь	0.013		0.025	0,021						0.04	0.02	0.2:	0, 045 Max
χ _ο	95.0						3, 00				2.82		
Cumposition(weight percent) C Cu Mn Mo	0,51	0.61	1. K	7. ×0				2. 0/ Max	1, 25 Max	1.00	96 .0	3, 50	2. 00 Max
on (weigh							1.56			4.1			
position	0.28	8, 97 0, 17	0.10	690.0	0.04	8,30 0,04		0.14/ Max	1,25 / 0,15 2,50 Max	0.07	9, 12	0.30	0, 08 Max
Con	2.72 0.28	8,97	25, 54 20, 68 0, 10	18, 16 11, 20 0, 669	8.20 0.04	8,36	17, 80 9, 15 0, 04	8/	1, 25 2, 50	4,	4,27	9.5	, 8 12
z 5	2. Ž	18, 42	25, 34	18, 10	ls, 45	10, 95	17.80	17./ 20	12,	16.4	15, 66	18.5	187 20
Name and Specimen Designation	Ni - Cr steel	AISI 303 stainless	AISI 310 stainless	AISI 34° stainless	18/8 stainless: 1	18/8 stainless; 2	18/8 stainless: 3	SS KH18N5T	416 Stamless	Ph17-4(H900) stainless	AM355 steinless	Crucible HNM	AISI 304 Sainless
Reported Error, T								> 5, 0		ري د		ig V	
Temp. Range, K	325 - 984	273-1173	273-1173	273-1173	61 X 1-	e) 4 t-	ຄາ ໝີ່ !-	4. G. 4.8	317-473	375-1668	317-1623	373-1498	160-150
Year	1938	1950	1956	1950	1940	1940	1940	9561	1962	1961	1961	1901	1963
Method	i i	(s.	. is.	. ند				ü	U	ď	×	œ	ı.
Ret	533	90	. 4	9	537	533	537	585.	615	614	614	7.	8.86 8.85
Carve No.	51	65	; ;		# 55 8	99	t;	'n	88	09	61	62	£3

SPECIFICATION TABLE NO. 331 (continued)

Composition (continued), Specifications and Remarks	0. 60 Si., 0. 19 Co., 0. 010 S. machined specturen 0, 900 ± 0. 001 in. in dia, 5. 715 ± 0. 006 in. long in the measuring section and 1. 125 ± 0. 003 in. in dia and 3. 375 ± 0. 006 in. long in the boater section; hor-rolled, annealed and pickled; density 7. 95 cm ² at 293. 2 K. hardness, Rockwell B 7h-79; measurements doze in a vacuum of 2 x 10 ² Torr, electrical reasistivity, during thermal conductivity measurements, 75. 4, 80. 1, 80. 6, 83. 9, 84. 1, 85. 5, 86. 1, 86. 3, 86. 9, 90. 0, 88. 4, 90. 9, 90. 0, 88. 4, 90. 9, 90. 0, 92. 3, 93. 4, 95. 2, 96. 7, 98. 2, 95. 100, 100, 104, 106, 105, 106, 109, 113, 111, 114, and 120 policy, 106, 109, 113, 111, 114, and 120 policy, 431. 5, 457. 1, 460. 9, 481. 5, 500. 9, 431. 5, 457. 1, 460. 9, 481. 5, 500. 9, 431. 5, 500. 9, 431. 5, 500. 4, 897. 1, 958. 2, 982. 6, 1113. 2, and 1185. 9 K, respectively; electrical resistivity before thermal conductivity measurements 75. 4 µndm cm at 295. 9 K, Armoo iron from Batcile Memorial Institute used as comparative material; specimen supplied by NASA -Lewis: results reported to be about 6-11% higher than values
G,	E 20 0 0
en t) Mo	2 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .
tht perce	1. 59
ion(weig Cu	60 · 0
Composition(weight percent) C Cu Mn I	0.063
N N	12. 60
c	17. 45
Name and Specimen Designation	AES 316; 3A
Reported Error, %	ය :I
Temp. Range, K	274-1186
Year	1965
Method	O
Ref	86
Curve	₩ ₩

SPECIFICATION TABLE NO. 331 (continued)

Curve No.

65

	3. Ag. 7 4 4 4 4 4 4 4.
Composition (continued), Specifications and Remarks	0. 54 Si, 0. 014 S; machined specimen 0. 900 ±0. 001 in. in da, 6. 715 ± 0. 006 in. long in the measuring section and 1. 125 ±0. 003 in. in da, 3. 375 ±0. 006 in. long in the heater section; hot-rolled, annealed and pickled; density 7. 95 g cm ⁻³ at 293. 2 K; hardness, Rockwell B 77; measurements done in a vacuum of z x 10 ⁻⁴ Torr; electrical resistivity during thermal conductivity measurements, 75. 7, 80. 3, 81. 8, 82. 7, 84. 7, 86. 0, 87. 3, 87. 5, 67. 8, 67. 1, 58. 0, 100, 102, 10. 4, 113, 113, 114, 113, 114, 115, 117, 118, 118, 118, 118, 118, 118, 118
2.	0.021
E S	20 20 20 20 20 20 20 20 20 20 20 20 20 2
percer Mn	& #
(weight Cu	
Compresition (weight percent)	0.063
Con	12. 62
5	17.45
Name and Spectinen Designation	AJSI 316; 4A
Reported Error, %	ស +
Temp. Range, K	273-1219
Year	1965
Method Used	O
Ref. No.	7.86

DATA TABLE NO. 331 THERMAL CONDUCTIVITY OF (HENN +CHROMIUM + NICKEL + Σ_{X_j}) ALLOYS GROUP II

5. Si > 0.60%	(Temestrure T. K. Thermal Conductivity, k. Watts cm 1 K-1)
	3
(At least one $X_1 > 0$, 20% or if any of Mr. P. S. Si > 0, 60%)	Conductivity.
. 20% or if	Thermal
о Л	.4
×-	←
(At least one	Temperature

	×	CURVE 17 (cost.)	0.0970	0.10	0.121	0 139	136	3.5	7.70		1.8	}	0.134	0, 155	0, 151	0.163	0.165	0.167	0.176		<u> </u>		0.0586	0.0711	0.0879	0, 115	0, 136		20		0. I/6	0, 176	0.176	0.180	0.188	0.201	0.209	0.222	0.234	0.247	0,255	0.268	0.285	0, 305
	۴	CURVE	104.92	144 83	165, 15	206 64	200.000	20.027	25.03.00	700.10	CURVE 18		344.3	372.1	388, 7	410.9	415.4	4.5.4	482.1		CUPVE 19		65.72	79.43	102.70	197. 20	276.40		CURVE 29	0	30.5.2	323, 2	373.2	473.2	573.2	673, 2	773.2	873, 2	973.2	1073.2	1173.2	1273.2	1373.2	1473.2
	×	(cont.)	0.0312	0.0010			;	8	96.	0.208	0.223	0.239	0.250		16		0.0293	0.0460	0.0623	0.0741	0.0841	0,0912	0.0975	0.104	0.110	0.114	0.118	0.126	0, 130	0, 134	0, 139	0, 145	0, 148	0, 150		17		0.0280	0.0473	0. 0669	0.0778	0.0870		
	H	CURVE 14 (cont.)	28, 80	36. 30 42 00	35.00	CHRVE		* * * * * * * * * * * * * * * * * * * *	7 : 0	673.2	773.2	873.2	923, 2		CURVE		25. 26	41, 10	55. 88	70.83	86. 73	100, 23	115, 00	129, 30	145, 43	160. 16	175. 11	201. 62	214. 42	254.94	249.73	262.10	287.90	294, 72		CURVE		26.74	40.34	55.18	69, 95	87.28		
	×	12	0.201	0.201	6.201	906 0	550	0.222	£ 7.7 ° 0	0.268	0.268	0.285	0,305	0.326	0.360		13		0.130	0.136	0.188	0.201	0.222	0.239	0.255	0.272	0.289	0,310	0,326	0,347	0.385		1 4		0.001H5	0.00192	0.00237	0.00292	0,00371	0.00742	0.0135	c. 0216		
itts cm-1 K	T	CURVE 12	303, 2	363.2	473.2	0 1.65	3.000	173.2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1073, 2	1173.2	1273.2	1373, 2	1473.2		CURVE 13		303.2	323, 2	373.2	473.2	573, 2	673.2	773.2	£2.5	973, 2	1973, 2	1173, 2	1273. 2	1373, 2		CURVE 14		2.88	3,27	3, 86	4.48	5, 23	9.40	14, 10	21.20		
ctivity, k. W.	. 4		0,00234	0.0117	0.0669	0.00.0	0.00	0.0032	0.00.0			237	0, 235	292	305	0.303	0.331	332				0. 165	0, 173	0, 150	C. 188	0, 195	0. 202	0. 20g	0.214	221				0, 168.	17%	0. 18G	186	194	200	0, 206	0.213	219		
Conduc		VE h								VE 9		ö	'n	o.	Ö	oʻ	<u>.</u>	o.		CURVE 10		ë	÷	Ð.	o.	⇒່	<u>.</u>	်	.	င်		CURVE 11		0	Ö	Ġ.	o	œ.	j.	Þ,	Ö	0		
K. Thermal	۴	CURVE	4, 25	00.41	02 50 02 50	02. 63	00.00	01.01	16.20	CHRVE		876.8	880.1	1046, 3	1156.7	1160.1	1309, 2	1309.2		CUR		373.2	423.2	473.2	523, 2	573, 2	623, 2	673, 2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	773.2		CUR		42.3, 23	473.2	523, 2	573, 2	623, 2	673, 2	723.2	773.2	823, 2		
[Temperature, T. K. Thermal Conductivity, k. Watts cm ⁻¹ K ⁻¹]	×	່ດ ່	0,234	0, 2.34	550 C		:	9	Š	0.170	0. 1 <u>%</u>	0, 194	0, 204	0.214	0, 222	0.231	0.238	0,245		ر- ا دن	l	0.00125	0.00247	0.00240	0, 00663	0,00693	0.0198	0.0189	0.0220	0.0669	0,0657	6, 0664	0.0672	6.0667	0.0719	0, 0733	0.0843	0,0823						
Temp	-	CURVE 5	919. 1	936.9	1173 6			CURVE 6	• ;;;	7 004	477.6	5.1:1, 2	588, 1	 	8 '569	755, 4	810.9	851.0		CURVE 7		2, 59	4, 20	4 . 25	10, 10	10. 10	19, 40	20, 40	20, 60	26.90	58,00	58,30	59, 50	59, 70	63, 30	66, 80	77,00	77. 80						
	¥	4	0, 105	0, 113 0, 113	0, 125	7.7.0	0, 146	0. 155	0, 151	9, 159	P. 159	0, 184	0, 188	9, 201	0.205	0.209	0.222	0.218	0, 234	0.238	0, 251	s	 ω		0.117	0:1:30	0, 142	0. 146	0. 151	0, 159	0. 167	0, 167	7. o	0,175	0, 167	0.138	0, 182	0.295	0, 201	0,213				
	۲	CURVE	135.7	7	5 5 5 6 5 2 5 6 5 2 5 6	200.0	367.5	433, 8	200	2005 1000 1000 1000	6.000	592, 5	660.7	759.8	812.6	825.6	944.7	953. 8	1031. 5	1114.0	1220.4		CURVE 5		137.7	185.4	228.6	269. 2	361.9	427.9	429.5	490.8	540.7	550.1	552.1	576.5	662.3	741.3	768.9	801.0				
	. 4	-1	0, 151	9, 167	# 50 c	00	2. C1.	0, 234	6, 251	0.268	,	اد	9, 134	0,153	0,174	188	0.205	0.232	81.7.0	0.257	0.276		n		601.0	0, 1:30	0, 134	0.142	0.163	0, 167	0.176	0, 167	0.188	0, 197	0.209	0 226	0 234	0.255	0.251	197 0	;			
	1	CURVE 1	373, 20	473, 20	573, 26	02.1.10	773.20	873, 20	973, 20	1073, 20	Crant		373. 2	7.5	57.5	6.3.2	77.3. 2	873.2	973, 2	1073.2	1173.2		CURVE:		135, 8	0.ザ	226.0	266. 6	329. 8	355, 5	e .0 €	405.0	536. 4	602. 5	7.22 . 3	8.03	- x	10.02	1038. 8	1916.7				

Not shown on plot

可以公司的企业的

-	¥	1 (cont.)	0.334	0.312,	c. 299	¢	CURVE 52		0.142	0. 151	0. 159	0.176	0.137	0.210	0.250	0.247	0.258	0.2%	*	CURVE 53		0.130	0.142	0.163	0.184	0.201	0. 226	9, 251	0.276	0. 30	0.326	;	CURVE 54	001	300	0.203	0.222	0.634	0.255	0.275,	0. 293	0,014	0.339	0.364	00	CORVE 33	0.0879	· · · · · · · · · · · · · · · · · · ·
ţ	-	CURVE 51 (cont.	706.2	235,2	984.2		SIGN		273.2	373.2	473.2	573.2	673.2	2.5.0	873.2	973.2	1073.2	1173, 2		COR		273.2	373.2	473.2	573.2	673.2	773.2	873.2	973.2	1073, 2	1173, 2	,	SICILIE	e e	7.67.7	213.2	413.4	573.2	673, 2	773. 2	873. 2	97.3. 2	1073. 2	11.1.5. 2	, dire	202	78.0	1
	አ	CURVE 45	0.172	. 0, 232	0.272	#	CURVE 46		0.158	0.182	0.241	٠,	CURVE 47		0, 145	0.177	0.220	Þ	/E 48	•	0.147	0.183	0,203		CURVE 49		0.380	0.382	0.380	0.376	0.346	0.312	0.295	001	: E	2		015.0	0, 336	0, 333	0.327	;	10.3	0000	200.00	0.502		
	۲	CUR	373.2	773.2	973, 2		CUR		446.6	585.1	973.2		S C	400	4.89.0	566, 5	£3.3		CURVE		457. 1	601.2	778.8		CUR		340.2	381.2	482.2	593. 2	687.2	765.2	462.2	1001.2	Č	COKVE		342.2	395, 2	529.2	574.2		CORVE		2.00.0	2.82.2	7.64	
	ж	E 38	0, 172	0, 203		E 39		0, 172	0.186	0.203	•	9		0, 161	o. 196	0.224	0.278	0.316	0.306	*:	E 41		0.138	0.176	0.215	0, 251	>	T: 42	:	0, 178	0.201	0.234	6, 27:3		1. 9.5		9, 176	0.200	0.2.14	0.27₩	٠	/E. 44		0. <u>16</u> 6	0. 195	0.228	0.510	
	⊱	CURVE 38	447.9	506. 9		CURVE		447.9	504.8	6 '909		CURVE 40	•	441.0	642. 1	720.0	1037.4	1209,0	1224.8		CURVE		373.2	573.2	773.2	973.2		CURVE 42		373.2	573, 2	773, 2	973, 2		COKA	í	373. 2	57.3. 2	773. 2	973, 2		CURVE		373, 2	573, 2	77.3. 2	1010	
1 continued	¥	22	0, 172	0.248	0.277	0, 320	0,358	0, 382		34		0, 126	0. 137	0, 149	0. 158	9, 168	0.172	0, 176	0, 186	0. 196	,	35 		0.172	0.181	0.130	0. 196	., 223	0.266	e,	36		0, 163	د. د الاد	0. 190	0.131	0, 200	0. 263	•,	37	ļ	0.272						
DATA TABLE NO, 331 'continued)	۴	CURVE 33	380.4	567.7	639, 5	767, 5	884.2	963, 2		CURVE		561.2	647.2	746.2	822.2	907.2	979.2	1061.2	1120.2	1203.2		CURVE 35		413.7	520.6	5:32. 1	573.2	742. 1	743.2		CURVE 36		346, 9	431.1	460.6	5.5	573.2	927.9		CURVE		973.2						
DATAT	אַ	(cont.)	0. 166	0.150	0, 173	0, 160		29		0.0870	0.0874	D. 08K3	0.0900	0.110	0.112	6.104	0.0979	0.100	0, 111	0.118	0.138	0.144	0,156	0.161	0.174	č	30		0.146	£	31	<u> </u>	0.235	0.273		3,5		0.0753	0, 121	0.176	0.222	0.247	0.272	0.295	0.360	0.383		
	.	CURVE 28 (cont.	617. 1	622. 1	669, 3	709, 9		CURVE		303, 2	323, 2	349.2	373, 2	473.2	510.2	573,2	599.2	673, 2	746.2	773.2	346.2	873.2	9:19.2	973, 2	1073, 2		CURVE 30		298.2		CI'RVE 31		6.669	1366.5		CURVE 32		400.2	489.2	610.3	703.2	776.3	3, 3, 0 3, 3, 0	974. 2	1083.2	1272.5		
	ᅶ	(cont.)	0.211	0, 245 0, 245	0.283	00: 0	٥	E 25]	0, 161	0.176	0, 191	0. 206	0.221		E 26		0, 205	0,205	0.209	0.222	0.243	0.259	0.276	0,289	0,305	0, 326	0.347	0, 372	0.410		F 27		0.0188	0.0824	0, 469		E 28		0, 173	0, 187	0. 183	0, 169	0, 167	0.1%2	0. 17 к		
	٢	CURVE 24 (cont.)	826.1	1043, 4	1358 7	1542.9		CURVE 25		373.2	473,2	573, 2	673, 2	773.2		CURVE 26	1	303.2	323.2	373, 2	473, 2	573.2	673.2	773.2	873.2	973, 2	1073.2	1173.2	1273, 2	1373, 2		CURVF 27		13	x I∽	290		CURVE 28		469.3	481.0	496.6	520.4	548.8	0. 1. 30	4.380		
	¥	5.21	0.176	0.176	977	0.158	0. 197	0,209	0, 222	6, 239	0,255	0.272	0,289	0.314	0.339	*	62	}	0, 159	0.161	0, 163	0, 167	0, 172	0, 178	0.182	0.188		. 23	\	0, 138	0.141	0, 155	0.163	0.170	0, 195	9, 231	0.273	35 N O		E 24		9,140	0.142	0.161	0, 165	0.153		n on plot
	۲	CURVE 21	303.2	323.2	515, £	573.2	673.3	173.2	87.1, 2	973.2	1073, 2	1173.2	1273.2	1373.2	1473.2		CURVE		273, 2	323, 2	373,2	423.2	473.2	523.2	573.9	623.2		CURVE 23	}	335, 2	372.2	43%.0	478.2	9.009	837.3	1053.0	1304.4	1396.4		CURVE		329.7	364.9	421.5	475.3	615.7		Not shown on plot

AMEN'S OF THE STREET

0, 263 343.7 6, 14 0, 285 343.7 6, 14 0, 297 391.5 0, 15 0, 15 0, 15 413.7 1, 0, 15 1, 15	1242.7 0.2 1405.9 0.2 1503.2 0.2 0.2 1668.2 0.3 16.5 0.1 316.5 0.1 514.3 0.1 514.3 0.1 514.3 0.1 514.3 0.1 514.3 0.1 514.3 0.1 514.3 0.1 514.3 0.1 514.3 0.1 514.5 0.2 1131.5 0.2 1131.5 0.2 1131.5 0.2 1152.6 0.2 1152.6 0.2 1623.2 0.3
617 617 617 617 617 617 617 617	RVE STORY
61. 413.7 0.15 417.6 0.11 61. 430.9 0.11 61. 430.9 0.11 61.154 457.1 0.11 61.178 481.5 0.11 61.191 500.9 0.11 61.218 589.8 0.11 61.281 589.8 0.11 61.281 665.4 0.11 61.281 665.4 0.11 61.281 665.4 0.11 61.281 665.4 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.281 613.7 0.11 61.385 6 0.11 61	WE GO
61. 430.9 0.11 0.154 457.1 0.16 0.167 460.9 0.17 0.178 481.5 0.17 0.210 524 460.9 0.17 0.221 520.4 0.17 0.255 589.8 0.1 0.266 605.4 0.1 0.267 665.9 0.1 0.266 670.4 0.1 0.267 712.2 1 0.1 0.152 729.8 0.1 0.152 897.1 0.2 0.293 982.6 0.2 0.293 982.6 0.2 0.293 1153.9 0.2 0.293 1155.9 0.2 0.293 1155.9 0.2 0.345 CURVE 65° 0.346 5 0.3 0.346 5 0.3 0.090 375.4 0.3	B
431.5 0.14 54 460.9 0.14 78 481.5 0.14 110 500.9 0.11 110 520.4 0.11 121 520.4 0.11 250.5 605.4 0.1 250.6 655.4 0.1 250.6 655.3 0.1 172.6 0.1 172.1 0.2 172.1 0.2 172.1 0.2 172.1 0.2 229 897.1 0.2 229 897.1 0.2 229 897.1 0.2 229 897.1 0.2 229 897.1 0.2 238.2 0.2 238.2 0.2 248 27.2 0.2 250 897.1 0.2 260 897.1 0.2 272.1 0.2 284.2 0.2 295.2 1113.2 0.2 296.2 115.5 9 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2 346.5 0.2	IVE
67 460.9 0.17 178 481.5 0.11 191 50.09 0.17 110 514.3 0.11 557 559.8 0.17 558.8 0.17 559.8 0.17 712.6 0.17 712.6 0.27 712.1 0.27 712.6 0.27 229 952.6 0.27 229 952.6 0.27 335.4 0.335.4 0	ME CONTRACTOR
78 481.5 0.1 191 200.9 0.1 200.9 0.1 200.9 0.1 200.9 0.1 200.9 0.1 200.9 0.1 200.9 0.1 200.9 0.2 200.9 200.9 0.2 200.9 0.2 200.9 0.2 200.9 0.2 200.9 0.2 200.9 0.2 200.9	3VE
191 191 191 191 191 191 191 191 191 191	NA E
250.4 0.1 2557 559.8 0.1 2563 569.8 0.1 2563 569.8 0.1 2563 569.8 0.1 2563 5670.4 0.1 2563 5670.4 0.2 2563 567	RVE
257 589.8 0.1 263 665.4 0.1 2663 665.4 0.1 266 659.3 0.1 2670.4 0.1 2670.4 0.1 2712.6 0.2 2712.6 0.2 272.1 0.2 272.1 0.2 272.1 0.2 273.1 113.2 0.2 273.1 113.2 0.2 273.1 113.2 0.2 274.1 1185.9 0.2 275.1 1185.9 0.2 276.1 0.2 277.2 0.2 277.2 0.2 277.2 0.2 277.3 0.2 277.3 0.2 277.3 0.3 277.3 0.3 277.3 0.3 277.3 0.3	RVE
663 609, 4 0.1 12.6 6.2 13.7 0.1 13.2 0.1 13.2 0.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13	RVE
220 651.3 7 0.1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 5 4 2 2 2 3 3 5 4 2 2 3 3 5 4 2 3 6 5 6 3 3 5 4 3 6 0 6 3 3 5 4 3 6 0 6 3 3 5 4 3 6 0 6 3 3 5 4 3 6 0 6 3 3 5 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	RVE
229 672.4 0.3 672.4 0.3 712.6 0.1 712.1 0.2 712.1 0.2 712.1 0.2 712.1 0.2 712.1 0.2 712.1 0.2 712.1 0.2 897.1 0	RVE
679.8 0.1 712.6 0.2 712.1 0.2 722.1 0.2 729.8 0.2 200 897.1 0.2 229 958.2 0.2 233 982.6 0.2 248 1113.2 0.2 293 1185.9 0.2 294 135.4 0.3 335.4 0.3 346.5 0	IRVE
712.6 0.2 172.1 0.2 172.1 0.2 172.1 0.2 172.1 0.2 200 897.1 0.2 229 958.2 0.2 278 1113.2 0.2 293 1185.9 0.2 293 1185.9 0.2 343 CURVE 65° 343 5.4 0.2 346.5 0.3 375.4 0.3 375.	IRVE
722.1 0.2 1152 729.8 0.2 200 897.1 0.2 229 958.2 0.2 2293 1185.9 0.3 2243 1185.9 0.3 326 CURVE 65* 34.3 CURVE 65* 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3 335.4 0.3	
152 1799 8 0 1, 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 2 2 2 2 2 2 2 2	
220 890.4 0.4 220 897.1 0.4 223 958.2 0 224 958.2 0 224 1113.2 0 224 1185.9 0.1 224 272.6 0 335.4 0 346.5 0 346.5 0 346.5 0 394.3 0 0.00 394.3	
229 831.1 253 958.2 253 982.6 278 1113.2 223 1185.9 3126 212 CURVE 65* 346 272.6 346.5 346.	
253 982.6 0.2 223 1113.2 0.2 224 1113.2 0.2 226 CURVE 65* 346 272.6 0.2 346.5 0.3 35.4 0.3 35.4 0.3 35.4 0.3 35.4 0.3	
278 1113, 2 0.3 226 1185, 9 0.3 248 CURVE 65* 346 272, 6 0.3 335, 4 0.3 346, 5 0.3 3	
293 1185.9 0.3 272 CURVE 65* 346 272.6 0.3 335.4 0.3 346.5 0.3 346.5 0.3 346.5 0.3 36.9 0.3 36.9 0.0	
226 CURVE 65° 348 272.6 0. 335.4 0. 346.5 0. 346.5 0. 106. 394.3 0.	7
248 <u>272.6</u> 0. 335.4 0. 346.5 0. 375.4 0. 346.5 0. 3106. 394.3 0.	
272.6 0. 335.4 0. 346.5 0. 346.5 0. 106. 394.3 0.	1457.1
335.4 0. 346.5 0. 346.5 0. 106. 375.4 0.	
346, 5 0. 090 375, 4 0. 106 394, 3 0.	3 V.S
375.4 0. 394.3 0.	
394.3	
105 408.7 0.	
128 433.7 0.	
126 438.2 0.	
132 439.8 0.	
ö	
472.6 0.	
494.3	CURVE 64*
507. 1 0.	
0, 130 558, 2 0, 179	273.7

SPECIFICATION TABLE NO. 331R RECOMMENDED THERMAL CONDUCTIVITY OF (IRON + CHROMIUM + NICKEL + TA) GROUP II

[For Data Reported in Figure and Data Table No. 331R]

Curve No.	Name and Designation	s	Estimated Error
¥.	Stainless steel 304	(max)Mn, 1.00(nax)Si, and	±10% below 100 K, ±5% from 300 to 900 K, and ±10% above 1400 K.
Д	Stainless steel 347	17,00-19,00 Cr, 9,00-13,00 Ni, 2,00(max)Mn, 1,00(max)Si, 0.08 (max)C, and 10 x C(min)Mu-Ta.	Same as above.

DATA TABLE NO. 331R RECOMMENDED THERMAL CONDUCTIVITY OF (IRON + CHROMIUM + NICKEL + £X1) GROUP II

[Temperature, T₁ in K and T₂ in F; Thermal Conductivity, k₁ in Watt cm-1 K-1 and k₂ in Btu hr-1ft-1F-1]

T,	71	440.3 620.3																
.,	∞;	16,21 11,11	7 2	2		7	ਂ ਹ ਹ	æ (•	6	(i)	(13. ÷				
ΞŽ	CURVE	0,179 0,192	0,305	0, 219 219 219	1	0, 246	0,259	0,273	5.5	0.300	1	0.515	(0, 327)	3000				
T;		5049 6000	90.	9 6	:	1000	1100	1961	1300	1400		00:1	1500	1665				
T,		-459.7	-450.7	-441.7	-114.7	-369.7	-324.7	2 526-				n n	35.0	80,3	130	2 2	2.0U.5	20.08
k,	URVE B	0 (0, 0202)	0.179	6, 451	Ţ. Ţ.	3, 13	39	96.5	; ;		, ,	7. 97	8,36	. s.	. 0.3		9.53	5.9.1
ĸ.	CURV	0 (0, 00035)	0.0031	U, 0078	0.025	0,054	0.076	150 0		0.111	0.126	0, 138	0, 143	0.748	101	0, 1.2	0.165	0.172
τ,		c	ç	10	25	3	75	001		3	200	520 520	273. 2	300		È.	400	456
T ₂		440.3	800,3	980.3		1340	1520	1700	1880	2060	; :	2240	2420	2537				
ž.	URVE A (cont.)	10.6	12.3	13.0	0.0	(14.6)	(15.4)	(16.2)	(17.0)	12.0		(18.7)	(19.5)	(0.02)				
ж _	CURVE	0, 184	0.212	0.225	0.2.3	(0.253)	(0, 267)	(0, 281)	(0, 295)	(60% 0)		(0, 323)	(0, 337)	(0.347)				
T.		200	200	800	206	1000	1100	1200	1300	1300		1 500	1600	1665				
Ļ		(- o		ţ-	1.1	7.6	. 7			۲.	9.7	9.7	2.0				50.3	350.3
		4 35	1 7	-44	-41	-36	-35	, ;	312-	¥1-	j	•	**		Ç.	=	20	
k 2	Œ A			(0 491)	•	•	•											
k ₁	CURVE A	0	(0, 196)	·	1.56	3.35	4.62	: :	5.49	6.64	7.51	8.20	8.49	t	5.0	9.36	9.83	10.2

77 77 72 72

and the second

t Values in parentheses are extrapolated.

Specification table no. 332 thermal conductivity of (1ron + cobalt + ΣX_i) alloys group ii

(At least one $X_1>0,\,20\%$ or if any of Mn, P, S, $S_1>0,\,60\%$

[For Data Reported in Figure and Table No. 332]

Composition (continued), Specifications and Remarks							00000	3, 75-7, 0 W; annealed at 1030 C	2 75 7 0 W. heated to 900 C for	30 min and quenched in oil, then requenched from 950 C.	Forged. 2, 5 W, 1.) Nb, 3, 25 Mo.		
Ĩ	; =	0. 11	0, i.2	9, 12	0.12	0.12	0, 125				0.51		
v	8 20 2	0.023	0.022	0.021	0.018	0.015	0.015 0.013						
-	1 <	0.023 0.023	0, 026	0.024	0.021	0.018	0.015						
ercent	ž š	0. 00 0. 11	0. 17	0.22	0.33	0.4	0.55				9	20.0	
_	Mn	0, 27 0, 295 0, 00 0, 26 0, 279 0, 11	0.264 0.17	0,248 0.22	0.217 0.33	0.186	0, 155 0, 55	0.30/	6.85	0,30/ 0,85	0.42		
sition(Cr Cu Mn	0, 27 0, 26	0.25	0. 23	0. 20	0. 17	0.14						
Соперо	ċ							3, 50/	5.75	3, 50/ 5, 75	20.47	20.00	
	-	0.098	0, 115	0. 12	0, 135	5	0.165				0.07		
	O OO	4,86 0,098	14 6 0.115	19.4		28 S (0.15	48 6 0.165	35.0 0.90	41.0	35.0/ 0.90 41.0	26.00 0.07 20.47	20,00 0.2	
Name and	Designation	81 :	m -	.		o t	- 3		K. S. Magnet steel	gnet	10	Harnes alloy	N-155
Reported	Error, %											•	r r
Temo	Range. K	303.2	303.2	303.2	303.5	303.2	303.2	303.2	309.2	309.2	303-1173		40%-351
	Year	1919	1919	1919	1919	1919	1919	1919	1927	1927	9261		1951
	Method	ja ja	ı	ы	ш	រេ	w	ы	ш	ப	-	4	ပ
	Ref.	508	203	20%	20₽	208	208	802	272	172		2	37
	Curve No.	-	: 04	ĸ	4	ç	9	(-	x	6	;	0	11

DATA TABLE NO. 332 THERMAL CONDUCTIVITY OF [IRON + COBALT + Σ_{i}] ALLOYS GROUP II

(At least one $X_1 > 0, 20\%$ or if any of Mn, $|P_1||S_1| > 0, 60\%)$

Wat cm-1 K-1]
ъ,
Conductivity,
Therma
¥
Ŧ,
[Temperature,

											-																				
*	0 (cont.)	0, 239	0, 301	0, 318	0, 335	0.347	=				0.194				0.231		C. 243														
H	CURVE 10 (cont.	773, 20	873, 20	973, 20	1073, 20	1173, 20	CURVE	400.40	422, 00	477, 60	533, 20	588, 70	644.30	699.80	755.40	00.010	851.00														
¥	E 1	0.402		/E 2		0, 395	<u>(E 3</u>	0, 409		/E 4		0.438	!	Б	6	0.00	. !	9 3/	0.593	/E 2	0.711	/E 8	0.634	/E 9	0, 137	CURVE 10	0. 201	0.201	. 0 212 212	0, 255	0
Ļ	CURVE	303, 20		CURVE		303. 20	CURVE	303, 20		CURVE		303, 20	•	CURVE	000	30.1. 20		CURVE	303. 20	C1.RVE	303, 20	CURVE	309, 20	CURVE	309, 20	CUR	363, 20	323. 20	473, 20	573. 20	673, 20
																															<u>.</u>

SPECIFICATION TABLE NO. 332 THERMAL CONDUCTIVITY OF (IRON+COPPER+ \(\Sigma\)_1 ALLOYS GROUP I

 $\langle X_{j} \approx 0, 20\%$ except $C \approx 2, 30\%$ and Mn. P. S. Si $\approx 0, 60\%$ each)

[For Data Reported in Figure and Table No. 333]

Curve		Metrod	•				Compos	Composition (weight percent)	tht perce	Ê		Composition (continued), Specifications and Permarks
No.	No. No.	Sed	Used rear	Runge, K Error,"	e Specimen Designation Cu	Ü	O	O Mn P S S	_	w	ž.	
					Carbon steel	0 638	ì		0.041 0.067 0.030	0.067	0.030	Annealed at 950 C for 2, 5 hrs.
~	173	, ≏	1936			Š	;	:			:	near a mark and 30 portraity a 12% without heat
2	192	'n	1954	335-762		5, 0	1, 66	0, 44			 	treatment.
		;		2000		10.54	:0	0.43			0, 29	Porosity = 10% ; without heat treatment.
: 7	192	T)	1954	CO4-567							-	Demonstry a 10 St. without heat treatment.
4	192	ĸ	1954	395-646		15. 46 6.	ου 	C. 39			10.01	the state of the s
n	192	ш	1954	305-448		40.69	J. 51	0, 40			6. 29	Percenty = 10, 75; without near treatment.

DATA TABLE NO. 333 THERMAL CONDUCTIVITY OF (IRON + COFPER + ΣX_j) ALLOYS GROUP ($(X_j \le 0, 20\% \text{ except C} \le 2, 00\% \text{ and Mn}, P, S, Si \le 0, 60\% \text{ each})$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

	3 (cont.)	0.418	0.418	0.414	*		0. 565						0.548	0.548		0, 536		<u>ا</u> ع	1	0.582			0.611		0.640										
ı	CURVE 3 (cont	8	ž	184 . 60	CURVE		Ç			•			512, 40	34. 20		621, 10		CURVE				- 1	6.	-	448, 20										
ı	1 1	0.688			0. 501		0.374		0.275			0.215		0. 203	0.190		2 3	0, 364			0.347		0.343		3	0.339	E 3		0.435	9, 431	0.431	•	•	0. 423	0. 423
I	CURVE	303. 20				473, 20		612, 20					954. 20	÷	3.2		CURVE	335, 40				576.50			84.	761.70	CURVE	298.40		330, 50				401.50	420.40

Mercy Service

CROUP 1 SPECIFICATION TABLE NO. 334 THERMAL CONDUCTIVITY OF (180N + MANGANESE + Σx_j) alloys

($X_{i} \leq 0.20\%$ except C $\leq 2.00\%$ and P, S, Si $\leq 0.60\%$ each)

[For Data Reported in Figure and Table No. 234]

1	7	a a	Met) pe	Temp. Reported	E	Name and			Compo	Sitton	weight	er cent				
128 C 1933 373- 773 C 2 2 2 2 2 2 2 2 2	2	Š.	ر	Yea		ا بر	Specimen Designation	Mn	I V	ن	Cr	ر ر	ž	ا ـه	S	Si	Composition(continued), operations and networks
140 1 1931 11-9 31 11-9 13 11-9 13 11-9 11-9 13 13 13 13 13 13 13 1	-	121]	1933	773 3.	1	Low Mn steel	1.65	٥	.5.		0		1		. 24	Normalized at 900 C.
151 1 152 0.41 1 2	71	16	. E	1938			Austenitic steel	13.50	7	. 12							Nominal composition; austenitic.
1. 1. 1. 1. 1. 1. 1. 1.	e	2	 	1951			53	2. 23	•	7					٥		Heated to 800 C and cooled in furnace.
104 L 135 15-5 139 13-5	7	6.7	→	1951				12. 69	7	27					0		Heated to 1000 C and quenched in water.
144 1 134 154- 343 1349 1	מי	2	<u>۔</u>	1951				12.95	•	60 .			0				Heated to 1000 C and quenched in water.
154 C 1946 273-1123 C 13.0 13	9	2	_l →	1921				38.9	0	. 20			o,				Heated to 1000 C and quenched in water.
164 c 1346 c 132 c 132 c <th< td=""><td>۲-</td><td>16</td><td>о Т</td><td>1946</td><td></td><td></td><td></td><td>13.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0, 938 As; heated to 1050 C and cooled in air.</td></th<>	۲-	16	о Т	1946				13.0									0, 938 As; heated to 1050 C and cooled in air.
165 E 1919 300.3 4 5.0 0.045 0.020 0.047	20	91	ن ب	9151				13. 0									0.038 As. heated to 1050 C and alr cooled, then heat-treated at 450 C for 102 days.
1.65 E 1919 303.2 2	đi	91	is E	1919	303.2	~	œ	6		202			Ó			. 073	
165 E 1919 303.2 10 7.9 0.152 0.153 0.046 0.046 0.040	10	16	а 9	1919			6	5.0		199			Ö			080	
165 E 1919 303.2 11 8.8 0.170 0.194 0.046	11	16	5 E	1919			10	4.9		. 195			Ö			0.00	
165 c 1916 30.31 30.31 4 1.50 0.183 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.194 0.193 0.193 0.194 0.193 0.193 0.194 0.193 0.193 0.194 0.193 0.193 0.194 0.193 0.193 0.194 0.193 0.193 0.194 0.193 0.194 0.193 0.194 0.193 0.194 0.193 0.194	12	16		1919	303.2		11	8.8		194			0			960	
166 C 1939 273 – 423 4 1.50 0.015 0.23 0.06 0.105 0.07 0.07 0.037 0.037 0.038 0.122 166 C 1939 273 – 623 3 13.0 0.044 1.22 0.03 0.015 0.037 0.037 0.038 0.12 113 L 1939 2.7 – 22 3 4 1.22 0.04 1.22 0.03 0.01 0.03 0.0	13	19		1919			12	8.6		193			Ö			<u>e</u> .	
146 C 1939 273-623 13 13 13.0 0.004 1.22 0.03 0.070 0.07 0.034 0.124 0.124 0.134 0.1	*	91		1939		٠	4	1, 50									0. 033 As: 0, 025 Mo; annealed at 860 C.
115 L 1951 27-209 3AE 1020 steel 0.33 0.18 0.4 0.09 0.4 0.09 0.4 0.00 0.4 0.00 0.00 0.4 0.00	15	<u> </u>	၁ 9	1939	273- 623			13.0									0.038 As; heated to 1050 C and cooled in air.
81 L 1939 $2.7-22$ 9 0.50 0.4 0.03 0.03 0.20 0.25 0.25 0.25 0.21 0.23 0.20 0.25 0.25 0.21 0.23 0.25 0.25 0.10 0.031 0.034 0.28 0.28 0.25 0.10 0.031 0.034 0.28 <th< td=""><td>91</td><td>=</td><td> </td><td>1951</td><td>27 - 299</td><td></td><td>SAE 1020 steel</td><td>0.33</td><td>Ö</td><td>. 18</td><td></td><td></td><td></td><td></td><td>0</td><td>014</td><td></td></th<>	91	=	 	1951	27 - 299		SAE 1020 steel	0.33	Ö	. 18					0	014	
17 L 1558 0.93-363 1.0 42.11 C steel 0.68 0.31 0.021 0.03 0.28 0.28 167 1951 123-1198 3 58£ 1010 steel 0.42 0.10 0.00 0.008 0.28 2.2 167 1953 293.2 3	71	3 0	4	1939	2.7-			0. 50 0. 70	•	₹.			oʻ			35	
91 C 1931 123-1194 SAE 1010 steel 0.42 0.10 0.008 0.28 ≈ 0.2	18	-		1958	293-353			0.68	•	.31			Ö			. 28	
167 1935 30.3 30.5 6.15	19	6		1951	123-1198		SAE 1010 steel	0.42	0	01 :			o.		88		Hot rolled.
167 1936 1937 6.5 0.3 6.5 6.5 6.2 7.2<	20	16	~	1935			J	30.5	Ó	. 10					Ħ	2.	
168 L 1932 371-473 S.0 0.5 0.12 0.05 0.05 0.12 0.05 0.05 0.12 0.05 0.05 0.12 0.05 0.05 0.12 0.05 0.05 0.05 0.13 0.14 0.01 0.	21	91	r -	1935			-	. S	0	e.					A	.2	
31 L 1933 376-710 2.0 CS1 0.34 0.10 0.031 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.043 0.1 0.04 0.044 0.024 0.013 0.1 0.04 0.044	22	<u>3</u>	×	1932		0		0.5	•		. 05		Ö			. 12	
31 L 1933 366-705 CS 2 0.61 0.26 0.026 0.033 0.11 31 L 1933 365-706 CS 3 0.67 0.44 0.024 0.637 0.15 169 +R 1936 273-773 Steel 1 0.17 0.044 0.044 0.024 0.024 0.15 0.02 170 L 1926 313.2 1.1 0.13 0.08 0.009 0.005 0.03 170 L 1926 313.2 1.3 h 0.13 0.08 0.009 0.005 0.03	23	C	1 !	1933	012 -010		CS 1	0.34	0	. 10			ö			<u>-</u> ز	Normalized at 900 C.
31 L 1933 36.5 – 706 CS 3 0.67 0.44 0.024 0.037 0.15. 169 +R 1936 273 – 576 Steel 1 0.17 0.044 0.024 0.024 0.012 0.102 169 +R 1936 273 – 576 Steel 2 0.37 0.10 0.08 0.009 0.005 0.005 0.005 170 L 1926 313.2 1.2 0.13 0.08 0.009 0.005 0.03 0.03 170 L 1926 313.2 1.3 h 0.13 0.08 0.005 0.005 0.03 0.03	24	n	ו ר	1933	n.		CS 2	0.61	0	. 26			0.				Normalized at 900 C.
169 LF 1936 273-773 Steel 2 0.17 0.064 0.054 0.02 169 LE 1926 273-586 Steel 2 0.37 0.19 0.10 0.07 0.00 0.00 0.00 0.17 170 L. 1926 313.2 L. 2 0.13 0.08 0.009 0.005 0.03 170 L. 1926 313.2 L. 3h 0.13 0.08 0.009 0.005 0.03	25	n	- -	1933	706 2.	0	CS 3	0.67	Ó	**			0			17.5	Normalized at 900 C.
169 ++++++++++++++++++++++++++++++++++++	56	16		R 1936			Steel 1	0. 17	Ó	705					0	2 0.	
170 L 1926 313.2 L 0.13 0.08 0.09 0.005 0.03 170 L 1926 313.2 L 2 0.13 0.08 0.009 0.005 0.03 170 L 1926 313.2 L 3h 0.08 0.005 0.005 0.03	27	91		R 1936	273- 536		Steel 2	c. 37	0	10					•	. 17	
170 L 1926 313.2 L 2 0.13 0.08 0.009 0.005 0.03 170 L 1926 313.2 L 3 0.08 0.009 0.005 0.03	28	171	-i	1926	313.		1.1	0. 13	Ó	. 08			ö				Annealed.
176 L 1926 313.2 L.3 h 0.13 0.08 0.009 0.005 0.03	29	17.	0	1926	313		1.2	0. 13	0	. 08			Ö			. 03	Forged.
	30	17		1926			1.3 h	0.13	•	80			0				Annealed, and then quenched from 800 C.

SPECIFICATION TABLE NO. 334 (continued)

į	Si Composition(continued), Specifications and Remarks	0.31 Forged.	0.31 Annealed in vacuum at 900 C for 1 hr.	0.31 Quenched in oil from 900 C.	0.10 Forged.	9, 10 Annealed at 900 C for 1 hr in vacuum.	0. 10 Quenched in oil from 960 C.	0.23 Forged.	0.23 Annealed at 900 C for 1 hr in vacuum.	0.23 Quenched in oil from 900 C.	0.34 Forged.	0.34 Annealed at 900 C for I hr in vacuum.	0.34 Quenched in all from 300 C.	Trace	0.33	0.10 Forged.	0.34 Forked.	0.14 Normalized.	0.14 Quenched in oil from 850 C.	0. 14 Tempered 3 hrs at 150 C after being quenched in oil from 850 C.	0. 14 Tempered 3 brs at 350 C after being quenched in oil from 850 C.	0. 14 Tempered 3 hrs at 550 C after being quenched in oil from 850 C.	0. 14 Tempered 3 hrs at 650 C after being quenched in oil from 850 C.	0. 14 Annealed 1 hr at 850 C after being quenched in oil from 850 C.	0. 14 Reheated at 650 C for 120 hrs after being quenched in oil from 850 C.	0.061	0.062	0 . ns3
	S	0. 030	0.030	0. 036	0.044	0. O±	0.044	0. 628	0.028	0.028	0.043	0.043	0.043	0.021	0.021	0.044	0.043	0.043	0.043	0.043	0.043	0.043	0.643	0.043	0.043	٠. چ	٠ چ	0.04
î	۵,	0.015	0.015	0.015	0.051	0. 051	0.051	0.013	٥13 ،	0.013	0.043	0.043	0.043	0.021	0. 023	0.05!	0.043	o. 032	0.032	0. 032	0. 032	0. 032	0. 032	0. 032	0.032	0.05	0.05	0.05
per ce	ź																	0. 12	0. 12	0. 12	0. 12	0. 12	0. 12	0. 12	0. 13			
Composition (weight per cent)	Cu	0.10	0.10	9. 10	0.10	0. 10	0. 10	0. 13	0. 13	0. 13	60 0	60 .0	0.09			0. 10	0.09											
Compost	Al C Cr	0.14	0. I 1	0. 14	6. 18	0. 18	6. 18	0.31	0.31	0.31	0.44	0. 44	0. 44	0.095	0. 395	0. 18	÷+ ·0	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.004 0.206	0.010 0.295	20% 0 200
	Man	0.39	0.39	0.39	0.34	0.34	6.34	0.65	0.65	0.65	0.67	0.67	0.67	0.38	0.43	0.34	0.67	1. 05	1. 05	1. 05	3. 05.	1. 05	1. 05	1.05	1. 05	0.31	9 .0	9
Name and	Specimen Designation Fe		Krupp steel; 2b	Krupp steel, 2c	Krupp steel, 4a	Krupp steel, 4b	Krupp steel: 4c	Krupp steel: 6a	Krupp steel. 6b	Krupp steel, 6c	Krupp steel, 8a	Krupp steel, 8b	Krupp steel: 8c	7	2	7	30	En 8a	5n Sb	En 8c	En 8d	Er se	En 8f	En 9g	En 8h	2	3	•
Reported	Erior, &																											
Temp.	Range, K	303.2	303.2	303.2	303.2	303 2	303 2	303. 2	303. 2	303. 2	303. 2	303. 2	303. 2	307.2	307, 2	303-1199	303-1135	323-1123	323, 373	323, 373	323- 473	323- 473	323- 473	323- 473	323- 873	393. 2	303. 2	
Curve Ref. Method	Year	1917	1917	1917	1917	1917	1917	1917	1917	1917	1917	1917	1917	1927	1927	1917	1917	1956	1956	1956	1956	1956	1956	1956	1956	1919	1919	
Metho	Used	ω	ίΔÌ	ш	ш	æ	u	sa	ы	ω	Ħ	ы	ш	(L)	(H)	_1	_	Ų	ပ	'n	U	ပ	ပ	ပ	ပ	u	14	1
He C	No.	171	171	IJ	171	171	171	171	171	171	171	171	171	172	172	11	7.1	173	173	173	173	173	173	173	173	3	165	
ן מי	ž Ž	3	33	33	3	35	36	33	38	65	97	7	42	Ç	7	45	4	7	9	6†	20	51	52	53	7	55	8	: :

SPECIFICATION TABLE NO. 334 (continued)

Composition (continued), Specifications and Remarks				Basic C-1010 fully aluminum-killed steel: annealed at 600 C.	0, 032 As; 0, 020 Mo; anneal≥ 3t 930 C.	0. 006 As; annealed at 930 C.	0,033 As; annealed at 860 C.	0.024 As; 0.01 Mo; annealed at 860 C.	Nominal composition.	Nominal composition.	Nominal composition.	Annealed at 850 C for 2, 5 hrs.	Annealed at 850 C for 2, 5 hrs.	Annealed at 850 C for 2, 5 hrs.		Quenched in oll from 1200 C.		0, 13 Mo; annealed.	Commercially pure.	Original material remetted and rolled into bars with a cross-section of about 15 mm² and a length of 100 mm; after a short rolling annealed at 1373 K for 2 hrs in evacuated silica tubes, rolled to final form and anneated at about 773 K for 10 hrs; ejectrical resistivity 3. 1. 7. 5 and 12. 2 µbhm cm at 90, 193, and 290 K respectively; original material supplied by Haraeus,
	0.064	0.066	¢. 068						Trace No	Š	Š	0.031 An	0.014 An	0.009 An	13	3	12		0.092 Co	0.0
S				0, 030 0, 19	50 0.08	34 0.11	0.029 0.11	0.038 0.20	Ţ			6.016 0.	0.056 0.0		0. 13		0.12	6, 007 0, 24		
w	49 0.040	\$9 0.03B	19 0.039		29 0.050	34 0.034								18 0.016					07 0.014	
ent) p	0.048	0.049	0.043	0.015	0.029	4 0.034	3 0.031	0.037				0.007	0.016	0.018	_			0.019	0.007	
the part					e 0.07	0.074	0, 063	0.04				3	æ	30	0. 30					
Composition(Reight Parcent) p					0. 045 Trace	e 9. E3	0.12	0.060				0.150	0, 228	0.148						
positio					0.045	Trace	Trace	0. 03										0.03		
Co	0, 205	0.204	0, 203	0.08	0.08	0.23	0.415	0, 435	0.065	0.29	0.52	9	0.28	0.12	0.39	1.2	0.33	0.13	Trace	
₹	0.019	0.029	0. 0:17		0.002	0.010	0.000	0.006												
Mn	1.1	1.6	0.:	0.42	0.31	0.635	0.643	0.69	0.40	0.34	0.63	97 .0	0.45	0, 37	0.58	12	0.48	6.45	0. 20	0, 37
Name and Specimen Designation	s	9	t-	AIS1 1010	ęı	n	ι'n	S	-	10	11	-1	Carbon steel 0,45	Carbon steel			CS, Japanese 0, 48	Carbon steel	Wrought aron	N
Reported Error, %				5.0															2.0	
Temp. Range, K	303	303	303	298-1055	273-623	273-573	273-623	273-623	173-773	373-773	373-773	303-1073	303-1073	303-1073	442.2	431.4	449.7	323-1122	369-715	100-280
Year	1919	1919	1919	1954	1939	1939	1939	1939	1938	1938	1938	1936	19:16	1936	1925	1925	1925	1938	1933	1961
Method Used	u	ш	ш	Ĺų	v	ပ	ပ	၁	ĹŁ	(4 ,	(44	۵.	مه	۵ı	ပ	၁	ນ	J	-1	H
Ref. No	165	165	165	174	166	166	166	166	160	160	160	175	175	175	261	561	561	623	31	671
Curve No.	33	60	09	61	62	63	7 9	65	99	29	89	69	30	11	72	55	4.	75	36	77

SPECIFICATION TABLE NO. 334 (continued)

Composition (continued), Specifications and Remarks	Similar to the above specimen, except electrical resistivity 5.1, 9.5, and 14.4 polm cm at 90, 193, and 290 K respectively.	99. 1 Fe; specimen 2.54 cm in dia and 37 cm long; normalized at 1227. 6 K, tempered at 966.5 K; specimen, chemical composition, heat-treatment history provided by the International Nickel Co.; date presented as a smooth curve.			Specimen 1. 27 cm in dia and 15 cm long; annealed and normalized at 870 C; cast condition; electrical resistivity 24. 1, 25. 0, 26. 3, 28. 2, 29. 3, 31. 0, and 34. 3 uchm cm at 20, 41, 59, 94, 113, 146, and 188 C respectively.	Similar to the above specimen excepting wrought condition and electrical resistivity 23.4, 25.3, 27.3, 29.1, 29.3, 33.2, and 33.2 pubm cm at 23, 63, 92, 119, 134, 177, and 182 C respectively.	Wetted in oil.	Tempered at 150 C.	Tempered at 350 C.			Annealed at 850 C.	Annealed at 900 C.
S		0. 15	0.09	0.001	0.46		0.14	0. 14					6.5
လ			0.014	0.041	0. 025		0.043	0.043				e. 043	
۵			0.007	0.031	ი. 030		0.032	0,032	6,032	0.032	0.032	0, 0:32	
bercent Na							0.12	0.12	0.12	0. 12	0. 12	0.12	
weight Cu													
Composition(weight percent) C Cr Cu Ni													0.1
Compo		0. 15	Trace	0.10	0. 40		0.39	0.39	0.39	0,39	0.39	0.39	0.37
74													
Mo	0.521	0.53	0.20	0.34	0. 50		1.05	1.05	1.05	1.05	1.05	1.05	6.5
Name and Specifical Designation	7	AISI C 1015	Mild steel	British CS	H9A	н9А	British En8	Steel	Steel	Steel	Stee:	Steel	42, 11 b
Reported Error, %					© :	<u>မ</u> ?							3.9
Temp. Range, K	100-280	123-813	373-673	1.29-1.21	307 -422	337-162	27.8.2	373.2	373.2	373. 3	373.2	373, 2	293-353
Year	1961	1961	1933	20.50	1986	1966	1450	1659	1359	1959	1959	1959	1958
Method Used	-1	٦		1 -	4 4	ı	ζ	ی د	. U	ပ	ပ	ပ	- 1
Re L.	671	(-) (-)	350		9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	97.3	9	2 2	085	086	0 77 0 77	080	17
Curve No.	x.	o t	Ġ	9	z %	æ æ	;	4 "	Ç û	2 5	. x	S 3	06

SPECIFICATION TABLE NO. 334 (continued)

Composition (continued),	Specifications and memory			
	SSi	0.025 0.053 0.14		0,024 0,037 0,11
_	۵	0.025 0.		0,0240.
it percent	ź			
on (weigh	3			
Composition (weight percent)	C Cr Cu Ni	36	. 211	44
	7	•	•	•
	Ma		79.0	0.67
Name and	Specimen Designation Mn	-	British steel V. 51	British steel 0.67
Į.	Error, %			
Temp.	Range, K		373-673	373-673
4,000	1641		1933	1933
Method			1	-1
Ref.	No. No.		926	976
Curve	Z.		7	5 6

DATA TABLE NO. 334 THERMAL CONDUCTIVITY OF LIRON + MANGANESE + ΣX_j A LLOYS $(X_j \le 0.20\% \ except \ C \le 2.00\% \ and \ P. \ S, \ Si \le 0.60\% \ each)$

GROUP I

(Temperature, T, K; Thermal Conductivity, k, Watts ${\rm cm}^{-1}{\rm K}^{-1}$)

×	CURVE 33 *	0. 423	CURVE 34		0. 452	CURVE 35 *		0.448	4	CORVES	0.448	476 3740112	0 3	0.356		CURVE 38 *		0.393	6	CURVE 39	0.310		CURVE 40 .	000	6. 033	CURVE 41 *		0.372	CHRVE 42		0.322		CURVE 43		0. 605	CURVE 44	ļ	0. 445	
H	CUR	303. 20	CUR		303, 26	CUR		303. 20	Š	800	303. 20	idito	100	303. 20		CUR		303. 20		SOR	303. 20		CUR	000	303. 20	CUB		303. 20	/BILD		303. 20		CUR	;	307. 20	CUR		307. 20	
×	CURVE 25 (cont.)	0.519			o 0	ن ن			VE 26 *			0.515				CURVE 27 *		0.540	0.007	0.473		CURVE 28		0.787		CURVE 29		0.783	CHRVE 30	3	0.764		CURVE 31		0, 423	CHRVE 32 .		0.414	
۲	CURVE	500. 70	534. 70	555, 70	585, 20	665, 20	705, 70		CURVE	273. 20	373. 20	473.20	673.20	773. 20		CUR		273, 20	373.20	526 40		CO		313.20	313. 20	COF		313.20	1110		313, 20		50	;	303. 20	1112		303, 20	
×	CURVE 23	0.678	0.661	0.669	0.657	0.661	0,653	0.649	0.649	0.653	0.644	0.644	0.632	•	CURVE 24	<u> </u>	0.561	0. 556	0.556	0.556	0.548	0.548	0. 548	0.544	0.044	0.544	0. 536	0.540	0,032		CURVE 25 *		0.544	0.540	0.531	0.536	0.527	0.531	0.523
- L	CUR	370.20	431.70	436.70	448.20	462.70	484.20	511.20	531. 70	558. 70	590. 70	627. 20	704 70		CUR		366. 20	390, 70	427 70	433.70	451.20	472. 20	41.5.70	496. 70	523. 20	549.70	580. 20	624. 70	657.70	7.50	CUR	1	365.20	389. 20	428.20	433. 70	454, 20	471.70	477. 60
ity. k, water k	CURVE 19 (cont.)	0.544	0, 536	0.569	0.552	0.548	0.506	0.519	0.506	0, 506	0.477	0.490	0.473	0.456	0.448	0.435	0.431	0.377	0.402	0.381	0.335	0.322	0.293	0.268	00 30000	VE 20	0.531		VE 21	305 0		VE 22		0.500	0.459	0.434	0.337	0.296	
T T	CURVE	431, 50	453, 40	465, 30	479. 60	511 60	527, 80	533.90	535.90	552. 70 588. 10	596. 60	602, 20	625.40	664.50	690, 90	703, 80	719, 70	779. 30	792, 50	81E. 90	942, 20	967.80		1198, 00			293, 20		CCRVE	243 20		CURVE	 	373, 20	473, 20	573.20	173, 20	873, 20	
k leg	CURVE 16 (cont.)	0.650	0.648	0.648	0.647	0.0	0.634		CURVE 17	0.00844	0.0151	0.0196	0.0222	0,0280	0.0320	0.0342	0.0351	0.0471	0.0378	0.0600	0. 111		CURVE 18 •		0.457	0.468		CURVE 19	749		0. 707	0.669	0.644	0. 628	0.619	0.388	0, 603	0. 582	0. 594
(remperature, 1, K; Inermal Conductivity, K, Watts cm. T k T k	CURVE	204. 43	220.71	238.33	256. 07	290, 29	298. 54		CUR	2. 70	5.30	6.38	7.64	9.60	9.21	10.24	10. 56	12. 04	13.83	20 30	21.80		CUR	6	303.20	353, 20		CUR	122 50	154 00	186.30	218.50	345. 50	361.70	371.80	395 60	399, 50	400. 60	427, ≎0
k len	VE 10	0, 184	CURVE 11		0.155	CURVE 12	1	0.147	* 64 34	CONTENT	0.148	77	COUNT I	0.460	0.460	0.460	0.456	4 96 6 22	CORVETO	0 132	0.140	0.149	0. 157	0.165	180	0. 188		CURVE 16	0.282	107.0	0.506	0.565	0.611	0.620	0.632	0.648	0.653	0.650	0.632
۲	CURVE	303. 20	CUR		303. 20	CUR		303. 20	Č	5	303, 20	9.10		273.20	323, 20	373.20	423, 20	į	200	273 20	323, 20	373.20	423.20	473. 20	573.20	623. 20		CUR	26.54	40.03	55.29	70, 12	88. 53	101.69	114.94	144.88	160.01	175, 14	203. 60
*	1 3/	0.132	0.149	0. 157	0.165	0.180	0. 186	0. 195	0.201	0, 209	0.211	0.213	0.218	0.222			8		0.200	0.276	0.278	0.282	0.287	0.289	297.0	0. 233	6. 293	0.276	0.232	0.220	0.218	0. 222			A)	0.260			
۲	CURV	273.20	373. 20	423. 20	473.20	573. 20	623, 20	673.20	723. 20	623. 20	873.20	923. 20	1023, 20	1073. 20	1123. 20		CURV	60	27.2.20	373 20	423.20	473.20	523. 20	573. 20	673.20	723. 20	773. 20	823. 20	923.20	973, 20	1023.20	1073.20	1123, 20		CORVE	303, 20			
*	1 2	0.403	0.376	0.363	0.349	E 2	ĺ	0.185	0. 187	0. 200			0.0330	0.0417	0.0541		0. 226	4		0.0128	0.0148	0.0174	0.0660	0.0123	ES	 	0.0211	0.0225	0.0271	0.0322	0. 136	0.146		ام	92.60 0	0.0333	C. 0425	0. 107	0.113
۲	CURVE	373.20	573. 20	673.20	773. 20	CURV		373.20	473.20	673, 20		CURV	14.94	17. 82	21. 33	76.00	92. 60	Vario	1	15.56	60 '81	21.06	75.80	88.20	CURVE		15. 31	16. 11	18. 29	19.91	77 80	86. 10		CONVE	15 15	18.40	21, 39	76. 60	

Not shown on plot

THE PROPERTY OF THE

¢	CURVE 85	0.435	/E 87*	0.485	VE 85	0.50	/E 89*	0.485	VE 90*	0, 430 0, 437 0, 445	/E 91*	0. 561 0. 552 0. 544 0. 536	/E 92°	0. 540 0. 527 0. 519 0. 506
•	CUR	373. 2	CURVE	373.2	CUR	373. 2	CURVE	373. 2	CUR	293, 20 323, 20 353, 20	CURV	373, 2 473, 2 573, 2 673, 2	CURV	373, 2 473, 2 573, 2 673, 2

THERMAL CONDUCTIVITY OF [IRON + MANGANESE + Σ_{X_1}] ALLOYS GROUP II SPECIFICATION TABLE NO. 335

(At least one $X_{\frac{1}{2}} > 0.20\%$ or if any of P. S, Si > 0.60%)

[For Data Reported in Figure and Table No. 335]

Composition (continued), Specifications and Remarks	Commercially pure.	Annealed at 900 C.	Cooled once to -190 C.		Cast in mold.	< 0, 05 Ti, < 0, 03 Mg.			Specimen 4 mm in dia and 120 mm long; tempered at 930-940 C (cooling medium is water) and aged at 680-690 C for 2 brs.
ឆ		0.11	0.11	0. 11	2. 51	< 0.3	0.21	0.037	0.3
တ		0.03 0.926 0.11	0.026 0.11	0.03 0.026 0.11			0.035		0.04 0.04 0.3
nt)		0.03	0, 03	0.03			0.01H 0.03h 0.21	0.87	0.04
Composition (weight percent)	3.0				1. 00		0.23		0.3
n(weight per Mo Ni						0.03			9.0
Composition Cr Cu		0.288	0,288	0.258		$0.08\;\;0.25\;<0.03$			0.7 0.16 0.6 0.25 0.6
Con	1						0.07		9.0
ا ا	12. 0/ 0. 70/ 13. 0 6. 80	0.31 0.09	0.31 6.15	0.31 0.09	3, 11 3, 10	0.40 0.33	0.42 0.10	32, 50 4, 55	0.16
Z Z		0.31	0.31	0.31		0.40	0.42	32, 50	0.7
Name and Specimen Designation	Mn-Ni steel	la	व	1	Mn-Ni cast iron	42.11 a	B. S. 976 En32A; BGK 1	Russian alloy 22	Russian steel 12 AIKb
Reported Error, %	3, 0-5, 0				2.0	1.0	2. 0		
Temp. Reported Range, K Error, 76	373-773 3.0-5.0	303	303	303	355-706	293-353	323-573	312	387-975
Year	1933	1918	1918	1919	1939	1958	1956	1937	1957
Method	o	ш	ш	ш	J	1	၁	ı	ш
Ref	129	178	178	208	179	17	209	204	1 999
Curve No.		81	က	4	v	မှ	1	œ	თ

انسينواه خالله فاحديث بالبراق البالاتهام بهمينا فرمط بالوراقت أمو خاعل يوطاها مقاله فالفاض مدفر جمد خودة المقنم املاء دردد

data table no. 335 thermal conductivity of (iron + manganese + Σx_1) alloys group ${f u}$

The second secon

(At least one $X_1 \geq 0.20\%$ or if any of $P,~S,~S_1 > 0.60\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1 373. 20 0.146 473. 20 0.146 473. 20 0.160 573. 20 0.171 673. 20 0.171 673. 20 0.171 CURVE 2* 302. 2 0.410 CURVE 4 303. 2 0.456 CURVE 5 355. 70 0.435 431. 70 0.435 431. 70 0.435 495. 20 0.414 622. 70 0.427 589. 70 0.427	•	CURVE 7 (cont.)	673. 20 0. 435	.	.	CURVE 8	311.9 0.597	CHRVE 9	386.7 0.510	2 0	000	, ci																
ಬ್ರಕ್ತಿಬ್ಬೆಜ್ಜ್ ಬ್ಲಿಟ್ಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ಟ್ ಬ್ಲಿಟ್ಟ್ ಬ್ಟ್ಟ್ಟ್ ಬ್ಟ್ಟ್ಟ್ಟ್ಟ್ಟ್ಟ್ಟ್ಟ್ಟ್ಟ್ಟ್	•		200	9 6	20.0			s 1	٥	; ,		0.	 6	0 0 0	70 0.	20 0.	20 0.4	70 0.4	70	7.0	20 0.4	20 0	, c		20 0.	20 0.	20 0.	:

* Not shown on plot

THE RESERVE

SPECIFICATION TABLE NO. 336 THERMAL CONDUCTIVITY OF [IRON + MOLYBDENUM + EX;] ALLOYS GROUP II

(At least one $X_{\underline{i}}>0.20\%$ or if any of Ma, P, S. $S_{\underline{i}}>0.60\%)$

[For Data Reported in Figure and Table No. 336]

Composition (continued). Specifications and Remarks	Annealed	Annealed.	
Composition(weight percent)	N C Cr ME SI	o	D.:
	Designation Mo	High speed steel; M-1 8.5	High speed swel; M-10 8.0
Reported	Error, %	7.0	.; 0
Temp	Range, K	408-822	413-820
	Year	1956	1956
7	Deed	-	ן א
	No. No.	1 645	3 8
	Š.	-	- 2

THERMAL CONDUCTIVITY OF [MON + MOLYBDENUM + EX,] ALLOYS GROUP II DATA TABLE NO. 336

(At least one $X_{\hat{I}}>0.20\%$ or if any of Mn, P, S, Si >0.60%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

Commencer of the control of the cont

CURVE 1 407.6 411.9 494.1 494.1 503.1 522.6 524.7 44.7 524.7 628.3 628.3 628.3 710.9 710.9 811.6 811.6 821.5 CURVE 2

0. 332 0. 333 0. 330 0. 330 0. 338 0. 347 0. 386 0. 413.1 417.0 417.4 478.9 484.4 484.4 522.4 522.4 522.4 552.4 557.6 557.6 717.8 818.2 820.1

THE WAR

SPECIFICATION TABLE NO. 337 THERMAL CONDUCTIVITY OF [IRON + NICKEL + Σ_{X_1}] ALLOYS GROUP I

 $(X_i \le 0.20\%$ except C $\le 2.00\%$ and Mn, P. S, Si $\le 0.60\%$ each)

[For Data Reported in Figure and Table No. 337]

ed).			3 Cu;	86 Cu.															no dia normal- pered at Inter- hemical reatment : Inter-	vi c	i	- i
Composition (continued). Specifications and Remarks	Annealed.	Annealed at 950 C.	0.001 Al, 0.039 As, 6.08 Cu; annealed at 930 C.	0.006 Al, 0.023 As, 0.086 Cu, 0.01 V; annealed at 850 C.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.	Electrolytic.			Specimen about 2. 54 cm in dia and about 37 cm long; normalized at 1144.3 K, tempored at 86.5 K; furnished by International Nickel Co., chemical composition and heat treatment history provided by the international Nickel Co.	The above specimen, run 2.	the above specialen, run 3.	The above specimen, run 4.
⊠	0.16		0.01	0.18															0.33			
S	5	0.003	0. 035	0.032 0.034																		
۵	0.041		0.017	0.032																		
ercent) Mo			0.030 0.017	2																		
Composition(weight percent) C Cr Mn Mo	0.34	0. 22	0.38	0, 55															0.52			
ition(v			0.022	0.17																		
Compos	0. 11	0.050	90.9	0.325 (< 0.1	< 0, 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	.0 >	< 0.1	< 6.1	Ξ.	Ξ.		0.45	0. 14			
	5. 10	43.93 (0.55 (3.47 (1. 67 < 0	1.93 < 0	7.05 < 0	10, 20 < (19.2 <0				.1 <0.1	1 < 0.1	٥.	3.41 (4.91			
ž					<u>.</u>					1. 13.1		1. 22. 1	1. 25.2	l. 28.4	. 35. 1	. 47.1	30.0					
n Fe	Bal	55.8	Bal	Bal.	Bal.	Bal.	Bal.	Bal.	Ba!	Bal.	Ba	Bal.	Bal.	Bal	Bal	Bal	Bal	l Bal.	<u>।</u> हि			
Name and Specimen Designation	3703	42% Ni-Iron	-	σı													Climax	Japanese steel	AISI 2515	A151 2515	CACA ICIA	AISI 2515
Reported Error, %		2.0																				
Temp. Range, K	1.6-88	323-1173	273-423	273-573	330	330	330	330	330	330	330	330	330	330	330	330	305	446	125-263	184-485	515-715	400-696
Year	1959	1953	1939	1939	1920	1920	1920	1920	1920	1920	1920	1920	1920	1920	1920	1920	1928	1925	<u>3</u>	1961	1007	1961
Method Used	-1	ပ	ပ	ပ	ı	1	7	7	1	u	u	ıı	.	1	ų	_	Q,	Ç		-	1	ı
Ref.	157	131	166	166	206	306	206	306	506	506	506	306	506	206	206	506	186	281	537	200	ŝ	937
Curve No.	1	21	က	•	S	¢ i	-	æ	6	10	11	12	£1	14	15	91	17	18	61 6	2 2	7	22

SPECIFICATION TABLE NO. 337 (continued)

1 1	F .					to early to the state of
	Composition (continued), Specifications and Remarks	The above specimen, run 5.	Original material re-melted and rolled into bars with a cross-section of about 15 mm² and a length of 100 mm; after a short rolling annealed at 1373 K for 2 hrs in evacuated silica tubes; rolled to final form and annealed at about 773 K for 10 hrs; electrical resistivity 3.4, 7.9, and 12.9 μohm cm at 90, 193, and 290 K, respectively; original material supplied by Herseus, A. G. Inc., Hanau, Germany.	Similar to the above specimen; electrical resistivity 5, 3, 9, 5, and 15, 1 pobm cm at 90, 193, and 290 K respectively.	Specimen 2. 54 cm in dia and 37 cm long; packed in powder and annealed in bydrogen 5 hrs at 92.1 K, 5 hrs at 1450 K, furnace cooled to 700 K; cooled in hydrogen; specimen furnished by, and chemical composition, heat-treatment history provided by the International Nickel Co.; data presented as a smooth curve.	Specimen 2. 54 cm in dia and 37 cm long; annealed 30 min at 1102.6 K, water quenched, 1 hr at 588.7 K, air cooled, 48 brs at 369.3 K, air cooled; specimen supplied by, and chemical composition, heat-treatment history provided by International Nickel Co.; data presented as a smooth curve.
	22				2	0. 13
	တ					
	م					
	Composition(weight percent)				5 0.09 0.44	₹
	ဦ်ပ				0.035	0.06
	Fe Ni		o. 946	1, 90	49. 503 49. 15	63.97 35.41
	Name and Specimen Designation	A1SI 2515	ო	ဟ	Higb-perin -49 49. 503 45. 15	Invar
	Reported Error, %					
	Temp. Range, K	423-908	100-280	100-280	123-613	125-813
	Year	1961	1361	1961	1961	1961
	Method Used	1	٦	- 1	٦	٦
	Rei	937	671	671	937	907
	Curve No.	23	*	52	98	2.7

SPECIFICATION TABLE NO. 337 (continued)

Composition (contrained), Specifications and Remarks	Specimen 2.54 cm in da and 37 cm long; normalized at 1172.5 K and tempored at 866.5 K; specimen furnished	by, and chemical composition, hant-treatment history provided by International Nickel Co.; data presented as a smooth curve	Specimer 2. 54 om in dia and 37 cm long; normalized at 1200 % 12 cm long; normalized at 1200 % tempered at 966. 5 K; specimen furnished by, and chemical composition, beat-treatment history provided by International Nickel Co.; data presculed as a smooth curve.
Š	6.32		0. 27
S			
۵٫			
Mo			
weight Mn	જુ જ		95 .3
Composition(weight percent)			
Comp	0. 16		0. 126
ž	3. 46		97, 964 1, 04 0, 126
F	95.483 3.46 0.16		97, 984
Name and Spectnien Designation Fe	ALS! 2315		N.
Reported Error, %			
Year Range, K Error	1961 123-813		123-813
Year	1961		1961
Method Used	د		.i
Ref.	937		937
Curve Ref.	28		53

DATA TABLE NO. 337 THERMAL CONDUCTIVITY OF (IRON + MICKEL + ΣX_1) ALLOYS GROUP I

(X₁ <0. 20% except C <2. 00% and Mn, P. S, Si <0. 60% each)

[Temperature, T. K; Thermal Conductivity, k, Watt embers1]

×	CURVE 27 (cont.)	0.154	0.171	0.186	0. 201	0.216	0.223		CURVE 28		0.271	0.307	09: 0	0.388	0.397	0.392*	0.378	0.359	0.351		CURVE 23		0, 375	0.408	0, 452	0.468	0.461	0. 441	0.412	0.382	0, 371													
Ħ	CURV	373, 2	473, 2	573, 2	673, 2	773.2	813.2		5		123.2	173.2	273.2	373, 2	473.2	573.2	673.2	173.2	813, 2		CUI	1	123. 2	173.2	273. 2	373.2	473.2	573.2	673, 2	173. 2	813.2													
×	CURVE 22 (cont.)	0,376	0.378	0, 382	0, 369	0.362		VE 23	1	0.379	0, 376	0,378	0, 370	0.359	0, 346		VE 24		0.67	0 . 70	0, 695		VE 25	{	0.497	95.0	09.0		VE 26		0.158	0, 173	0, 194	6, 205	0.210	0. 211	C. 213	0, 218	0, 222		VE 27	G 343	0, 109	0.134
۲	CURVE	458.2	518.2	578.2	636.2	596.2		CURVE		423.2	493.2	575. 2	652.2	730.2	908.2		CURVE	<u> </u>	100	200	280	:	CURVE	ĺ	100	200	280	}	CURVE		123.2	173.2	273.2	373.2	475.2	573. 2	673.2	773.2	513.2		CURVE	123.2	173. 2	273. 2
*	CURVE 15	0, 110		CURVE 16		0. 154		CURVE 17		0.136		CURVE 18		0,527		CURVE 19	}	0.242	0.270	9, 293	c. 304	0, 321	0,334		CURVE 20	ł	0. 290	0, 325	0.351	0, 363	0.377	0.332		CURVE 21	}	0.366	0.370	0.377	0.382	0,381	0.384	CITRUE 29		0.371
۴	cur	330.00		CUR		330, 00		CUR		305.00		CUR		445.8		COB		125. 2	158.2	186.2	213. 2	239. 2	263.2		CUR		193, 2	253.2	313.2	373.2	428.2	483.2		CCR		372, 2	413.2	453.2	49 . 2	? ?	64 (2)	21.0		400.2
24	+ (cont.)	0.381	0, 389	0.393	0.393		/E 5		6. 598		9 32	}	0.435		7.27	}	0.423		/E 8	1	0.304		E 9		0.288		E 10		0.223		E 11		0.210		E 12	1	5, 205		E 13	1	0.134	71 4		0, 116
Ħ	CURVE 4 (cont.)	423, 20	472, 20	523, 20	573, 20		CURVE		330, 00		CURVE		339, 00		CURVE 7		330,00		CURVE 8		330 03		CIRVE		330,00		CHRVE 10		330,00		CURVE 13		330,00		CURVE 12		330,00		CURVE 13		330,00	AL STRUCT		330, 00
zd.	Œ 1	0.00381	0.00481	0.00580	0.00689	6.00843	0.01026	0.0422	0.0459	0, 0481	9. 0525	0.0586	0.0638	0.175	0.199	0.195	0.211	0. 227		/E 2		0.159	0.161	6, 165	0.169	0.171	0.174	0.178	0.181	184	0.188) •	/E 3	į	0.653	0,628	0.603	0.577		₩ ₩	ļ	6.364	0.377	:
(- 1	CURVE	1.66	2.06	2.62	3, 07	3,63	4	15.04	16. 16	18. 14	16.15	12, 24	SC. 60	73, 76	73, 80	80, 05	82.92	87.64		CURVE		323 20	373 20	473 20	573, 20	673, 20	773 20	873, 20	973. 20	1073 20	1173 20		CURVE		273, 20	323.20	373.20	423.20		CURVE		273, 20	373 20	;

CROUP II SPECIFICATION TABLE NO. 336 THERMAL CONDUCTIVITY OF (IRON + NICKEL + EX, | ALLOYS

(At least one $X_1 > 0.20\%$ or if any of Mn. P. S. Si > 0.60%)

[For Data Reported in Figure and Table No. 338]

Reported Error, %		Name and Specimen Designation	Z 28. 75	C Co 0.017 17.15	Compos Co Co	sitton (weight Cu	Composition (weight per cent)	34	ω	<u>s</u>	Composition(continued), Specifications and Remarks 53.7 Fe; annesled at 900 C.
	1414B	. 4	24.30	1. 18			•	6.05				Heated to 1050 C and quenched in water,
	3975	S.	2.61	0.27	ó	0. 49	•	0.45 0	0. 029 0.	0.011 0	0. 11	0.75 Mo; beated to 850 C and quenched in oil, then reheated to 650 C and quenched in water.
	128	1287 D	1. 92	0.14			•	0.72		J	0.21	Annealed.
	128	1287 I	11.39	0. 18			•	0.93		J	0. 22	Anisaled.
	179	1798 H	19.64	0.43			~	1.06				Annealed:
	128	1287 D	1. 92	0. 14			3	0.72		9	0.21	Heated to 800 C and cooled in furnace.
	4	1448 A	37.4	0. 10			0	0. 82				Heated to 800 C and cooled in furnace.
	3450-3	6-3	36. 17	0. 16			0	0.92	۵	0. 0 0		Heated to 1050 C and quenched in water.
	38		ø.	0. 10	0.012	•	0.48 0	0.31 0.	0.029 0.	0.026 0	0. 11	Approximate composition; annealed at 900 C.
.,	2p		4.6	0. 10	0.012	•	0.48 ú	ú.31 0.	0. 028 0.	0.026 0	0. 11	Approximate composition; cooled once to +190 C in liquid air.
	38		9.	0. 11	0.024	0	0.67 0	0.32 0.	0.027 0.	0.025 0	0. 11	Approximate composition; annealed at 300 C.
63	융		9. 2	0. 11	n, 024	•	0.67 0	0.32 0	0. 027 0.	0.025 0	0. 11	Approximate composition; cooled once to -190 C in liquid air.
•	4		13.6	0. 12	0. 035	•	0.87 0	0.32 0.	0.025 0.	0.025 0	0. 12	Approximate composition; annealed at 900 C.
•	ą		13.8	0. 12	0. 035	•	0.87 0	0. 32 0.	0. 025 0.	0.025 0	0. 12	Approximate composition; cooled once to -190 C in liquid air.
_	9		18.5	0. 13	o. 948	~	1.06 0	6.32 0.	0.024 0.	0.024 0	0. 12	Approximate composition; annealed at 900 C.
	gg		18. 5	0. 13	0.048	1	1.05 0	0. 32 0.	0. 024 0.	0.024 0	0. 12	Approximate composition; cooled once to -190 C in liquid air.
	9		21.2	0. 135	0.05	-	1.17 0	0.32 0.	0.023 0.	0.024 0	0. 12	Approximate composition; annealed at 900 C.
	9		21. 2	0. 135	0.05	7	1.17 0	0.32 0.	0. 023 0.	0.024 0	0. 12	Approximate composition; cooled once to -190 C in liquid air.
	4		23.6	0.14	0.061	-	1.27 0	0.32 0.	0.022 0.	0.024 0	0. 12	Approximate composition; annealed at 900 C.
	ą		23.6	0.14	0.061	-	1.27	o. 32 o.	0.022 0.	0.024 0	0. 12	Approximate composition; cooled once to -190 C in liquid air.
	6		21.7	0. 15	0.071	-	1.44 0	0.32 0.	0.021 0.	0.023 0	0. 12	Approximate composition; annealed at 900 C.
	a		27.7	0. 15	0.071	4	1.44 0	0. 32 0.	021	0.023 0	0. 12	Approximate composition; cooled once to -190 C in liquid sir.
			1 06		360	•				0000		O ONO to before and the second of the beauty of

SPECIFICATION TABLE NO. 338 (continued)

Composition (continued). Specifications and Remarks	Approximate composition, cooled once to -190 C in itquid air.	Approximate composition; agnealed at 900 C.	Approximate composition; cooled once to -190 C in liquid air.	Approximate composition; agnealed at 900 C.	Approximate composition; ecoled once to -190 C in liquid air.	Approximate composition; annealed at 900 C.	0.027 As; 0.012 Al; heated to \$50 C and cooled in water.	Normalized et 900 C.	Annealed,		Cast in mold.	0.34 W.		Forged and worked.	The above specimen annealed for 3 hrs at 690-700 C.	The above specimen cooled from 31 to 29 C in one hr and then cooled to 26 C in one hr.	The above specimen heated to 78 C and and cooled to 76 C in 2 hrs and to 70 C in 2 hrs and then cooled very slowly below 70 C in 3 hrs.	The above specimen heated to 185 C and cooled to 165 C in one hour and cooled below 165 C in 2 hrs.
St.	0. 12	0. 12	o. 12	0. 12	0. 12	0. 13	0. 15	0.02	0.35	6, 42	1. 80	0.23	0.37	0.14	0.14	0,14	0.14	0.14
S	0.023	0.023	0. 023	0.023	0. 023	0.022	0.003	0.02				0.009	0.13					
nt) P	0.021	0.00	0.020	0.019	0.013	0.018	0. 009	0.015				0.14	0.016					
Composition (weight per cent)	0.32	0.32	0.32	0.33	0.33	0. 32	0.89	0.56	9.6		0. 62	09.0	1.04	9.84	0.84	94	0.84	0.84
(weigh Cu	1. 51	1. 56	1. 56	1. 65	1. 65	1. 83	0. 030				6, 41	0.140	0.152					
osition	i						Trace	0.46	0.5	2. 02	3.37	0.22	0.82					
Comp	0. 075	0.078	0.078	0.084	0.084	0.095												
၁	0. 15	0. 155	0. 155	0. 16	91 .0	0. 17	0.28	o. 35	0.30	1.81	2. 41	0.22	0.37	0, 26	0.26	0.26	0.26	0.26
ž	29. 1	30. ś	30. 5	32.8	32.8	36.9	28. 37	1. 37	1.5	18.65	13. 70	2.58	2,36	30.40	30.4	30.4	30.4	30.4
Name and Specimen Designation	106	ila	11b	12a	12b	13a	14	S	16	Nicrosilal	Ni-Resist Cast Iron	Crucible steel	Crucible steel					
Reported Error, %								3.0-5.0		2.0	2.0			1.5	1.5	1.5	5.5	1.5
Temp. I Range, K	303	303	303	303	303	303	273- 623	373- 773	473- 773	352- 704	347- 702	439.4	439.2	299-344	2.99.2	299.2	299.2	299. 2
Curve Ref. Method Year No. No. Used	1918	1918	1918	1918	1918	1918	1939	1933	1938	1933	1939	1925	1925	1922	1922	1922	1922	1922
Ref. Metho No. Used	ш	(a)	ω ₂	(L)	ы	ш	O	Ç	(a,	7	7	ပ	ပ	٦	٦	1	ų	H
Ref. I	176	178	178	17.8	178	178	991	129	160	35	179	561	561	493	493	493	493	493
C.T.e	Ŝ.	56	27	28	53	30	31	32	33	34	35	36	37	38	33	\$	¥	2 3

SPECIFICATION TABLE NO. 338 (continued)

Composition (continued), Specifications and Remarks	56.303 Fe; specimen 2.54 cm in dia and 37 cm long; amealed for 30 min at 1088. 7 K, furnace cooled; specimen furnished by, and chemical composition, heattreatment history supplied by international Nickel Co.; data presented as a smooth curve.	62. 233 Fe: specimen 2. 54 cm in dia and 37 cm long; annealed for 30 min at 1102.6 K, water quenched, 1 hr at 588.7 K, air cooled, 48 hrs at 369.3 K, air cooled, specimen furnished by, and chemical composition, heat-treatment history provided by International Nickel Co.; data presented as a smooth curve.	90. 29 Fe; specimen 2. St cm in dia and 37 cm long; normalized at (1650 + 1450 F) (1172 + 1061 K), tempered at 833.7 K; specimen furnished by, and chemical composition, heat-treatment history provided by International Nickel Co.; data presented as a smooth curve.		Specimen 4 mm in dia and 100 mm long; prepared by powder-metal-lurgy method (Fe type PZhIM of GCST 9849-61 supplied by Sultiaski Metallurgical Works, Cu type PM-2 of GCST 4860-49 supplied by Pyshmensky Electrolytic Copper Works, IN type PNE of GCST 9722-61 and C type TKA of GCST 9722-63; sintered at 1413-1433 K for 1.5 hrs in R ₂ atmosphere then sintered in cracked ammonia atmosphere; electrical conductivity 0.76, 0.79, 0.68, 0.52, 0.70, 0.60, 0.58, 0.57, 0.55, 0.55, and 0.58 x 10 ⁴ ohm ⁻¹ cm ⁻¹ at 1305, 344, 414, 450, ohm ⁻¹ cm ⁻¹ at 1305, 344, 414, 450, 517, E88, 644, 694, 595, 817, and 957 C, respeciively.
ŝ	0, 16	0.34	0. 28		0.13
s					Trace Trace
ρ Δ					Trace
percent Mn	0.97	0. 81	0. 77		?. ¥
weight					ი ი
Composition(weight percent)	0.09	0. 12		2.05	
S.	42,11 0,0%5	35.84 0.08	8. 56 0. 10	18.65 1.81	21.4 0.98
Name and Specimen Designation	Low-exp-42 4	Free cut lavar	:Z &6	Cast iron 1	Alloy No. 3 2
Reported Error, ダ					
Temp. Range, K	123-813	123-813	123-813	373-673	578-12:10
Year	1961	1961	1961	1933	96 5
Method	٦	J	٦	_	ω
Ref.	937	937	937	976	5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
Curve No.	4	3	IJ ₩	46	4.1

SPECIFICATION TABLE NO. 338 (continued)

Composition (continued). Specifications and Hemarks	Similar to the above specimen except electrical conductivity 0. 66, 0. 64, 0. 59, 0. 52, 0. 47, 0. 45, 0. 64, and 0. 43 x 10 ⁴ chm ⁻¹ cm ⁻¹ at 327, 345, 395, 456, 538, 623, 723 and 795 C, respectively.	0.32 Mo; specimen 1.27 cm in dia and 15 cm long; annealed at 900 C, oil quenched from 870 C and tempered at 600 C; cast condition; electrical resistivity 27.1, 30.7, 33.3, and 36.6 µohm cm, at 19, 72, 110, and 160 C, respectively.	Similar to the above specimen except in wrought condition and electrical resistivity 25. 9, 27.5, 28.5, 32.3, 34.0, and 36.2 µohn cm at 22, 56, 66, 121, 150, and 179, respectively.	1. 25 Al. 1. 18 Ti; specimen 1. 27 cm in 42a and 15 cm long; fully beat treated; electrical resistivity 107. 4, 108. 8, 110. 9, 114. 9, and 116. 9 µohn cm at 20, 50, 100, 200, and 250 C, respectively.	Traces of P and S; specimen 4 mm in dia and 100 mm long; sintered for 1.5 hrs at 1140-1150 C in hydrogen atmosphere; electrical resistivity 1.13, 1.23, 1.35, 1.39, 1.49, 1.51, and 1.67 mohm cm at 37.6, 102.2, 219.1, 301.3, 406.3, 527.4, and 613.5 C, respectively.
Si	0. 14	0.40		0. 22	0.15
S	frace	0.015			
£ .	Frace 7	0.013			
reent) Mn	0.15 Trace Trace	0.76		0. 10	0. 19
veight po	9.87				8.3
ition(w	.	0.69		18. 1	
Composition(weight percent)				< 0.2 1	
o	1. 02	0, 32		0.1	1.05
ž	29. % L	1.65 0		37.2 0	15.4
1					
Name and Specimen Sesignation	Alloy No. 4	M8	∞ 1€	Nimonic PE7	
Reported Error, %		9 V	9 V	φ V	
Temp. Range, K	1965 600-1068	304 440	331.453	309-519	311-867
Year	1965	1966	1966	1966	1963
Method Used	ம	٦	د	1	ம
Ref. No.	983, 984	973	973	973	8 8
Curve No.	2. 30	3	05	51	52

DATA TABLE NO. 338 THERMAL CONDUCTIVITY OF JIRON + NICKEL + DX, I ALLOYS GROUP II

(At least one $X_j > 0$, 20% or if any of Mn, P. S, Si > 0.60%)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

*	CURVE 44 (cont.)	0.129	0. 167	0,182	0.211*	0.217	CURVE 45		0. 196	0.284	0.319	0.336	0.336		0, 318	CITRUE 46*	F	0. 293	0. 285	0.268	3	CURVE 47	}	0.0946	0.114	0.123	0.127	0, 147	0.156	0, 172	107.0	762.0	0.0	CURVE 48		0,0833
۲	CURVE	273.2	473.2	673.2	773.2	813.2	CITE		123. 2	273, 2	373.2	473.2	673.2	773.2	813.2	1917	200	373.2	473.2	573.2	i i	CUR		578.2	687.2	723.2	790.2	861.2	917. 2	267.2	10/8.2	1030. 2	1430.6	CUR		600.2
æ	CURVE 36	0.545	CURVE 37	0.470		CURVE 38	0. 121	0. 122	0. 131	CURVE 39		0.119	CHRVE 40*		0.120	CITE UF 41	11.	0.120	*	CURVE 42	0.124		CURVE 43	061	0, 136	0.159	0.175	0.184	0. 191	0.199	0. 212	0. 218	CITDVE 44		680.0	0.104
۲	CUR	439.4	E)	439.9	7:30.		6 566	302.4	341.4	CUR		299. 2	CITE		299. 2	2	5	299. 2	(3	299. 2		S CUR	193.0			373.2	473.2	573.2	673.2	713.2	813. 2	di C		123.2	173. 2
ᅶ	CURVE 32	0.445	0, 409	0. :91 0. :77	3.6	CURVE 33	0.365		0. 251		CURVE 34	100 11	0. 293	0, 289	0. 293	0.285	0.285		0.276			0.272		0.268		CURVE 35		0,343	0.339	0.331			0.326			
H	CUR	373.20	573. 20	673, 20	113.40	EN S	473 20	573. 20	673, 20	77.5. 20	CUB	02 636	371, 70	411, 70	432, 20	433, 20	462.20	474. 20	490.70	511.20	556. 70	587.70	629. 70	664. 20		CUR		347. 20	404. 20	426. 70	44.70	486. 20	514.20	582, 20	657, 20	701.70
ry, A, wan en A I	CURVE 23	303. 20 0. 188	CURVE 24	303 20 0 0782		CURVE 25	303, 20 0, 157		CURVE 26	303.20 0.0808		CURVE 27	303, 26 0, 134		CURVE 28	8080 0 06 206		CURVE 29		303. 20 0. 0808	CURVE 30		303, 20 0, 0866	Crotte 23	TO THE OTHER			373, 20 0, 146				573.20 0.176				
remperature, 1, A, mental conductory, A, wan on k	CURVE 12	303.20 0.258	CURVE 13	303 30 0 355		CURVE 14*	303, 20 0, 218		CURVE 15	303. 20 0. 213		CURVE 16	303, 20 0, 175		CURVE 17	202 00 00 202		CURVE 18		303. 20 0. 171	CURVE 19		303, 20 0, 188	OF TUBIL	27	303. 20 0. 130		CURVE 21		303, 20 0, 193		CURVE 22	21.80 0 00 000			
llemperaure, 1 T k	CURVE 6 (conl.)	31 0.0191	32 0.	2 2	22	8	CITRVE 7		12	93 0.0877	40	.60 0.307	8	CURVE 8		25	3 5	70 0.0826	20	CITBVE 9	2 division	45	=	.08 0.0181	1 2	28		CURVE 10		. 20 0. 320		CURVE 11	602. 0	07		
•	히	18.	86			76.			15.	21.	76.	3, 5	•			35.	. 20	77.	95.			15.	18.	20.	9, 25	37.				303,			202	963		
×	CURVE 4 (cont.)	0.0638	0.0745	0.073	0, 263	0. 289	0. 286	CURVE 5		0.00185	0.00236	0.00279	0.00385	0.00406	0.00473	0.0209	0.0218	0.0267	0.0861	0.0918	0, 0969	0, 1023		ν <u>ε</u> 6	0.00130	0.00132	0.00158	0.00160	0.00191	0.00193	0.00229	0.00268	0.00317	c. 0159	0.0172	!
۲	CURVE	17.53	19.39	19.68	75,34	80.36	87.70	CUR		2.05 2.05	2, 21	2, 59	3 S	3.65	4.08	15.08	16.16	19, 83	65.93	68.04 70.39	73.62	76, 13		CURVE	1 29	1.75	1.99	2, 13	2.51	2.52	2.92	3.45	 	15, 19	16.84	
*		0.142	0. 150	0.156	0.175	0.184	0. 193 0. 101	0.210		21	0.0120	0.0146	0.0548	0.0641		<u> </u>	9070	0.0410	0.0474	0.0581	0.0637	0, 215	c. 222	0.242	5	•	1	0.00453	0.00541	0.00635	0.00743	0.00890	0.0103	0.0561	0.0603	
ţ.	CURVE	323. 20	473. 20	573. 20	773, 20	873. 20	973. 20	1173. 20		CORVE	15, 35	18.09	3. 5. 3. 5.	93.60		CURVE	טו צו	15.60	17.69	19.99	21. 26	74.00	75.90	85. 20	01:10	CURVE		1.61	1.86	2. 12	2. 57	9 9 9	3. 1	15. 17	16.17	

Not shown on plot

CURVE 51 (cont.)	6, 2 0, 153* 6, 2 0, 153* 9, 2 0, 159	CURVE 52	x o	5.4 0.1138 2.8 0.1179	3 0.1	5.1 0.1284	5 0.1	7 0.1	2,3 0,1439 u 5 0,1439	5 0.1	0 9	1																	
ଧ	470. 485. 519.		310. 353.	375. 425.	493	S18	574.	618.	652.	743.	800.	886.																	
48 (cont.)	0, 0854 0, 0862 0, 0870	0, 0929 0, 0992 0, 110	0.	VE 49	0, 393	0 +03 20 +03 20 +03	0.398	0.394				VE 50*	0.400		0.390	 0.382	VE 51	0.120	~	~	-	0.127	٠,	~	_	٦.	0.136	0.135	0.148
CURVE	618. 2 668. 2 729. 2	831. 2 896. 2 996. 2	1068.2	CURVE	304. 2	322, 2			391. 2			CURVE	331.2		396.2	453.2	CURVE	309. 2	334. 2			7.00.0					7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4:0.2	

SPECIFICATION TABLE NO. 339 THERMAL CONDUCTIVITY OF [IRON + NICKEL + CHROMUM + 5x,] ALLOYS GROUP I $(X_1 \le 0, 20\% \ \mathrm{except} \ \mathrm{C} \le 2.00\% \ \mathrm{and} \ \mathrm{Mn}, \ P, \ S, \ \mathrm{Si} \le 0.60\% \ \mathrm{each})$

339
ò
Table
a g
Rpure
Reported in
For Data
<u>.</u>

Composition (continued).	Specifications and Remarks	Annealed. Annealed. 0.01 V, 0.028 As, 0.033 S; annealed at 860 C; reheated to 640 C and cooled in furnace.	0. 01 V. 0. 023 As. 0. 025 S; annealed at 860 C; reheated to 640 C and cooled in furnace.	 1 V; annealed and quenched. Hot rolled. 	Normalized.	0.012 S; quenched in oil from 850 C, then tempered at 600 C and quenched in water.	0. 012 S; quenched in oil from 850 C. 0. 012 S; quenched in oil from 850 C, and tempered at 300 C
	Si	0.35 0.35 0.17	0. 25	6.3	0.25	0.21	0.010 0.21
	۵		0, 55 0, 06 0, 018 0, 25		0.025 0.25	0.010 0.21	0.010
	ercent) Mn Mo	0.4 0.6 0.53 0.07 0.031	0.06	0.6 0.2			0) 03
	Ma	0.4 0.6 0.53	0, 55	9.0	0.32	0.42	0.42
	Composition (weight percent)	0.053	0. 120				
	c C	0. 13 0. 35 0. 33	9, 325	0.55	0. 27	0.33	0.29
	Compo	0.006	0.008 0.325 0.120				
	ت	1. 1 1. 3 0. 50	0.71	6.4	10.0	0.45	0.72
	ž	4.5 3.38	3, 41	1.7		3. 17	2. 92
	Name and Specimen Designation	15 17 10	11	AMS 2713	Chromel 502 34.0 KHZN 2.89	Japanese steel Ni - Cr steel	
	Reported Error, %			0.1	3.0-5.0	2.5	
	Temp. Range, K	373-773 373-773 273-523	273-573	26.7	373-773	298. 2 449. 6 330-1073	334-492 340-876
	Year	1938 1938	1939		1933	1936 1925 1938	1938 1938
	Method	و بنا بنا	ပ	•	_i (‡ ∪	ပ္ပ	1 1
	Ref.	160	991		17 129	561 561	88 88
	Curve	Š 2 -	n √		တ မ	t⊷ oc d	01

DATA TABLE NO. 339 THERMAL CONDUCTIVITY OF [IRON + NICKEL + CHROMIUM + IX1] ALLOYS GROUP I

 $(X_i^{-} \le 0.20\%$ except C $\le 2.00\%$ and Mn, P, S, Si $\le 0.60\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

(cont.)	0. 163 0. 177 0. 192	E 7	0.347	E 8	0,472	6 3	0.478			0. 421				0. 302	01 3	0.414		9, 437		<u> </u>	0. 443	0.439	0.405		0.359	0.340		
CURVE 6 (cont.)	573. 2 673. 2 773. 2	CURVE	298. 2	CURVE	449.6	CURVE	330.2	406.2		650.2		942.2	1029.2	1073. 2	CURVE	334.2	399. 2	492.2		CURVE	340. 2	499.2			802. 2			
VE 1	0.573 0.561 0.544	0.523	VE 2	0. 456 24.	0.377	0. 297	VE 3	0.343	0.351	0.360	0.368	0,369		VE 4	0.335	356	0,360	0,364	0.364	0.364	VE 5	0, 336	0.343	0.350		VE 6	0, 134	: : :
CURVE	573. 2 473. 2 573. 2	773. 2	CURVE	373.2	573.2	773. 2	CURVE	273.2	323.2	373.2	472.2	523. 2		CURVE	273.2	373.2	423.2	473.2	523.2	573. 2	CURVE	293. 2	323.2	353.2		CURVE	373.2	•

скопр п Thermal conductivity of [Iron + nickel + chromium + Σx_i] alloys SPECIFICATION TABLE NO. 340

(At least one $X_1 > 0.20\%$ or if any of Mn. P, S, Si > 0.60%)

						No man									
Ϋ́ο.	Ref.	Ref. Metho No. Used	Curve Ref. Method Year No. No. Used	Temp. Range, K	Reported Error, %	Specimen Designation	ź	ت	CCC	Ma (*	Composition (weight per cent) C Mn Mo P	r cent)	S	ಸ	Composition(continued), Specifications and Remarks
-	Ē	٦	1953	373-1173		Rex 78	18.0	14.0	0.1	0.5	ဟ က			0. j	3. 5 Cu. 0. 75 Ti.
84	181	د	1953	373-1073		Jessop G 17	25.0	13.0	0.4	8 .0	2. o			1.5	2.5 W.
17	17	4	♣ L 1958	293- 353	7.0	AMS 2714	1, 7	1.0	6, 55	0.3	0.5			6.3	0. 1 V; annealed and quenched.
*	ž	J	1981	15- 93		Era ATV steel: 3731	27.3	14. 6	0.44	1. 34				1. 62	3.5 W; heated to 1000 C and quenched in water.
S	162	၁	1936	273-1073		Era ATV steel	26.86	15. 20	0.46	1. 18		0.018	0.014	1. 30	52, 2 Fe; 2, 77 W; forged.
•	181	_1	1953	373-1173		C 18 B	13.0	13.0	0.4	9.0	2.0			1.0	10. 0 Co; 3. 0 Nb; 2. 5 W.
~	37	ပ	1951	400- 851	4.0	N-155	20.0	20.0	0.2		3.25				20. 0 Co; 2. 5 W; 1. 1 Nb.
®	166	ပ	1939	273- 573		12	3, 53	0. 78	0.34	0.55	0.39	0.024	0.003	0. 27	0,050 Co. 0.037 As: 0.007 Al; annealed at 860 C, then reheated to 640 C and cooled in furnace.
6	162	ပ	1536	273-1073		F. N. C. T.steel	3, 55	r. 85	0.39	0.64				0.21	Oil-hardened from 830 C and tempered at 600 C.
92	185	ပ ၂	1960	273-1073	2.0	Macloy Csteel	36.5	16.75	0.49	0.58		0.012	0.016	j. 9	Heated to 1050 C and cooled in air.
11	17	4	# L 1958	293- 353	1.0	Vacromin F	32, 31	20.03		1. 42	0. 10			Trace	Trace Al.
::	186	α,	1928	305		Climax	29. 0	2.0		1.0					
13	117	ပ	1936	298	10.0	5 2A 2 steel	4.11	1.54	0.32	0.37		0.018		0.30	0.83 W; normalized.
14	187		1955	373, 1173		Nimonic DS	n 782	818	0. 15 Max	1. 5 Max				2. 5 Max	
15	561	ပ	1925	448 . 2		Crucible steel	2,23	0.88	0.26	0.32			0.013	0.26	0.38 V,
16	539		1938	332-1049		Ni - Cr steel	4.33	1.12	0.31	0.38	0.37	0.021	0.008	0.15	0.27 W; quenched in oil from 850 C and then tempered at 600 C.
11	539	ပ	1938	342- 574		Ni - Cr steel	4.33	1.12 0.31	0.31	0.38	0.37	0.021	900.0	0.15	Quenched in oil from 850 C.
98	539	ပ	1938	335- 736		Ni - Cr steel	€.33	1.12	0.31	0.38	0.37	0.021	900.0	0.15	The above specimen tempered again at 320 C.
61	3		1940	78.2		Ni + Cr + W Steel	26.56	14.13	0.42	1.06				3.1	2.21 W, P and S unknown; commercial heat resistant alloy; forged; measured in a boiling nitrogen bath.
8	3		1940	78.2		Lon alloy steel	3.00	0.99	0, 28	9.9					Si unknown; commercial heat resistant alloy; oil hardened from 830 C and then tempered at 600 C; measured in a boiling nitrogen bath.
21	3	a.	1961	2385.2	ç, ,	AISI 4340 steel	1.65/		0.76/0.38/	9.6	0.2/	0.04	0.04	0.2/	Nominal composition from Mark's handbook.

SPECIFICATION TABLE NO. 340 (continued)

Ref. Method No. Used	Method	1	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	ź	ర	Composition(weight percent)	on(weig Mn	tht perc	cont)	S	Si	Composition (continued), Specifications and Remarks
999	Ī	Ä	1963	323-1123	2.0	EI-855	36. 55	15. 5	0.08	0.46		0.0125	0.047	0.55	2.88 W and 0.31 Ti; quenched in air from 1100 C.
66 4 E			1957	400-1273	#I	Russian stee! EI-257	15	15	0.15	0.7	4.	0.035	0.030	9.9	2.75 W; austenitic; specimen 4 mm in dia and 120 mm long; tempered at 1175 C (cooling medium; water) and aged at 750 C for 10 hrs.
937 L	ı		1961	123-813		NI -Span -C	41.95	5. 33	0.03	0.42					49. 332 Fe. 2. 51 Ti, 0. 38 Al; specimen 2. 54 cm in dia and 37 cm long, after machining at NBS age bardened for 6 hrs in a vacuum furnace at 955. 4 K; furnace cooled; specimen, chemical composition, heat-treatment history provided by the Interational Nickel Co.; data presented as a smooth curve.
937 L	H		1961	123-813		AISI 4340QT	1.87	0.74	0.40	0.68	0.25			0. 28	95, 747 Fc; specimen 2, 54 cm in dia and 37 cm long; normalized at 1144, 3 K, oil-quenched at 1088, 7 tempered at 866, 5 K; specimen, chemical composition, heat-treatment history provided by the international Nickel Co.; data presented as a smooth curve.
937 L	٦		1961	123-813		AISI 4340NT	1.87	0.74	0.40	0.68	0.25			0. 28	Similar to the above specimen except only normalized at 1144. 3 K and tempered at 866. 5 K.
765 C	ပ		1957	298. 2		Alloy steel	3.4	9.0	0.3						Thermal comparator applied on the machined curved surface of the 1 in. dis bar specimen.
765 C	ပ		1957	298. 2		High alloy steel	36. 5	16.75	0.49					1.90	Thermal comparator applied on the machined curved surface of the 1 in. dia bar specimen.
765 C	ပ		1957	298.2		High alloy steel	36, 5	16.75	0.43					1.90	Thermal comparator loaded with 100 gram weight applied on the plane lapped surface of the specimen.

DATA TABLE NO. 340 THERMAL CONDUCTIVITY OF [IRON + NICKEL + CHROMIUM + ZX,] ALLOYS GROUP II

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K -1] (At least one $X_1>0.20\%$ or if any of Mn, P, S, Si>0.60%)

×	CURVE 25 (cont.)	0, 307 0, 354 0, 379 0, 346	0. 380° C. 366°	0.348° 6.341	E 26	0. 262	0.296	0.344	0.377	6.372	0,359	0.340		E 27"	}	0.343	,	E 28	0, 11		E 29		0.109									
۲	CURVE	173. 2 273. 2 373. 2 473. 2	573.2 673.2	773.2	CURVE	123.2	173.2	273.2	473.2	573.2	673.2	13.5		CURVE 27"		298. 2		CURVE 28	298. 2		CURVE 29		298. 2									
×	CURVE 22 (cont.)*	0, 156 0, 166 0, 176 0, 184	0, 191 0, 197	6, 231 0, 206	0, 213 0, 222	0, 22 5 0, 233	C. 238	0.241		£ 23		5.0.0	0.126	0.222	0.247	6, 272	9, 295	0.360		E 24		0.076	0.091	0.116	0, 137 0, 154	0.170	0.184	0. 19н	0. 204	5 25	 	0. 275
۳	CURVE 2	423. 2 473. 2 523. 2 573. 3	623, 2 673, 2	723.2	823. 2 873. 2	923. 2 973. 2	1023.2	1073.2	1,26.0.	CURVE 23	6	400.1	202.1	703.2	776. 2	878.2	974. 2	1083.2	j	CURVE		123. 2	173. 2	273. 2	27.3 2	573.2	673.2	773. 2	813. 2	CURVE 25		123.2
*	91 3	0.397 0.396 0.387 0.384	0.338	0. 256 0. 225	0. 250 v. 372	0, 226	E 17	010	0.336	0, 333	0, 327	104		0.380	0.396	0.3%	0 295	0, 269	E 19		0.0582		E 20		0.180	E 214		0, 335	9	E 22	0, 130	0. 143
H	CURVE 16	332. 2 363. 2 449. 2	584. 2	752. 2 851. 2	955. 2 973. 2	1049.2	CURVE 17	0.70	395.2	529.2	574. 2	Agiro	1000	335. 2	386.2	569, 2	689. 2	736. 3	CHRVE 19		78.2		CURVE 20		78. 2	CHRVE 21		295. 2		CORVE 22	323, 2	373.2
×	(Cont.)	0, 372 0, 377 0, 368 0, 352	0.314	0.247	E 10*	0, 103 0, 122	0, 141	0. 160	0.194	0, 207		0. 235		=	901.0	0.111	0.117	61.3	4	0.136		E 13		0.343	***	;}	0.142	0.314	:	3)	0.491	
۲	CURVE	473.20 573.20 673.20	873. 20 973. 20	1073, 20	CURVE 10	273.20 373.20	473, 20	573, 20	773. 20	873.20	973. 20	1073. 20	CITRVE	200	293. 20	323, 20	353, 20	CHRVE 19		305.00		CURVE 13		298. 20	****		373, 20	1173, 20	,	CURVE 15	448.2	
.	CURVE 5 (cont.)	0, 197 0, 213 0, 226	CURVE 6*	9. 134 0. 153	0.174 0.188	0, 20 5 0, 222	0. 238	0. 257	2	CURVE 7		0.130	0.1.4	0, 194	0. 264	0.214	0.222	6. 23. 2. 23. 2. 23.	0.245		CURVE 8		0.331	6, 335	0.339	0.351	0.356	0,358	, 1	1	0.335	0.360
۲	CURVE	873, 20 973, 20 1073, 20	CUR	373, 20 473, 20	573, 20 673, 20	773, 20 873, 20	973, 20	1073, 20	1110.50	Single	000	400.40	457 60	533.29	588, 70	644.30	639, 80	755, 40 810, 40	851.00		CUR		173. 20	323. 20	373, 20	473.30	523, 20	573, 20		CCRVE	273, 20	373, 20
*	/E 1	0, 142 0, 159 0, 180 0, 197	0. 213 0. 226	0. 243 0. 259	0.272	/E 2	0.117	0. 134 4. 154	0.172	0.193	0.218	0.238	007.7	(E 3	}	0.303	0.313	0, 322	4.3		0.0114	0.0143	0.0179	0.0551	0.0651	5 2	1	v. 109	0.126	7. 138 0. 155	9, 158	9. 1 <u>8</u>
۴	CURVE 1	373. 20 473. 20 573. 20 673. 20	773, 20 670, 20	973. 20 1073. 20	1173. 20	CURVE	373, 20	473.20	673, 20	773, 20	873, 20	973.20	013.50	CURVE 3		253.20	323, 20	353. 20	CURVE 4		15.30	18, 30	21.78	76.90	93, 40	CURVES		273. 20	373, 20	573, 20	673, 20	773. 20

SPECIFICATION 7.BLE NO. 341 THERMAL CONDUCTIVITY OF [IRON + PHOSPHOROUS + $\Sigma_{i,j}$ alloys $(N_1 \pm 0, 20\% \ \text{except C} \pm 2, 00\% \ \text{and Mn}, \ P, \ S, \ Si \ \pm 0, 60\% \ \text{each})$

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks 21 P; S, Si.	
Temp. Reported Name and Range, K. Error, % Specimen Designation	• •
Reported K Urror, %	
Tem Runge.	7 387
*	193
Curve Ref. Method No. No. Used	104
Curve No.	-

GROUP I

DATA TABLE 40. 341 THERMAL CONDUCTIVITY OF [1RON + PHOSPHORUS + $\Sigma_{k,l}$ ALLOYS [Temperature, T. K; Thermal Conductivity, k, Watt ent-1 K-2] (X) < 0, 20% except C < 2, 00% and Mn, P, S, St < 5, 60% each)

CURVE 1

386.7 0.363

No graphical presentation

CROUP I SPECIFICATION TABLE NO. 342 THERMAL CONDUCTIVITY OF JIRON + SILICON + EX. ALLOYS

($X_{j} \leq 0.20\%$ except C $\leq 2.00\%$ and Mn. P, S $\leq 0.60\%$ each)

[For Data Reported in Figure and Table No. 342]

Curve No.	Ref.	Metho	Method Year Used	Temp. Range, K	Reported Error, %	Name and Specimen Designation	- জ	¥	Composition (weight percent)	ion (wei)	tht perce	£ 4	x	Composition (continued) Specifications and Remarks
1	170	1	1926	313.2		12	0.65	† 	0.45		0, 35	6, 015	0.02	Annealed,
2	170	-1	1926	313.2		2.2	0.65		0.45		0.35	0.015	0.02	Forged.
n	170	J	1926	313.2		2. Jh	0, 65		0.45		0.35	0.035	0.02	Annealed and then quenched from 800 C.
4	170	_1	1926	313.2		3, 2	0.86		0.55		0.4.1	0.014	0, 02	Forged.
Ŋ	170	1	1926	213.2		3, 3h	98.0		0.55		0.44	0.014	0.05	Annealed and then quenched from 800 C.
9	17	4	1958	293- 353	1.0	42.11b	0.5		0.37	0.1	0, 5			
7	210	œ	1956	373-1173	ر ب		1. 90		0.02		0.25	0.024	0.026	Unfinished.
œ	210	Œ	1956	373-1173	0.4		1. 23	0.01	9, 09		0.29	0.047	0,029	0,35 mm foil.
G,	210	æ	1956	373-1235	0.4		1.80	0.01	0 .09		0.32	0.038	0.023	0.35 mm foil.
10	210	æ	1936	373-1203	0.4		2, 20							The rest not determined, billet specimen.
11	216	œ	1956	373-1203	4.0		2.78	0.06	0.08		0.35	0.034	0.023	Billet specimen.
21	210	Œ	1936	373-1213	٠٠		3.94	0.09	0.08		0.27	0.027	0.008	0.35 mm foil.
13	210	æ	1956	373-1183	4.0		4.28	0.05	90.0		90.0	0.012	0.006	Billet specimen.
14	210	æ,	1956	373-1183	4.0		4.38	0.05	0.07		07.50	0.015	0.008	Unfinished.
15	203	٦	1957	300	1.5	2164	2.4		<0.1		0.39			(5.0 pearlite); annealed at 900 C for 12 hrs and furnace-cooled.
16	204	د	1937	319.5		Ferrosthcon 45%; 6	47.2							Heat-flow parallel to thickness.
11	2 0 4	_	1937	320.7		Ferrosilicon 45%; 7	44.0							Heat-flow parallel to thickness.
18	20 20	_	1937	374.7		Russian alloy; 8	16. 0							
61	204	_	1937	379.5		Russian alloy; 9	10.01							
20	7 7 8	٦	1937	376.6		Russian alloy; 10	10.30							
21	2 0 4	-1	1937	382.4		Russian alloy; 11	12. 92							
22	356	2	1956	373-1173	3 ± 7.0		45.0							
23	326	æ	1956	373-1173	3 + 7.0		38.0							
24	356	æ	1956	373-1173	3 ± 7.0		32.0							
25	356	吆	1956	373-1173	3 ± 7.9		29.0							
56	326	œ	1956	373-1173	3 + 7.0		25.0							
z	326	œ	1956	373-1173	3 ± 7.0		17.0							
87	326	œ	1956	373-1173	3 + 7.0		10.0							
53	356	æ	1956	373-1173 ± 7.0	3 ± 7.0		7.							

SPECIFICATION TABLE NO. 342 (continued)

Composition (continued), Specifications and Remarks					0.016 Cu, 0.05 Ni.	Hot rolled.	99. 55 Fe, trace Cu.	Original material re-melted and rolled into bars with a cross-section of about 15 mm² and a length of 100 mm, after a short rolling annealed at 1373 K for 2 hrs in excuated silica tubes, rolled to final form and annealed at about 773 K for 10 hrs; electrical resistivity 8.4, 12.9, and 177 pubm cm at 90, 139, and 290 K respectively; original material supplied by Heraeus, A.G. Inc., Hanau, Germany.	Similar to the above specimen; electrical resistivity 20. 1, 24. 7, and 29. 1 µohm cm at 90, 193 and 290 K respectively.	Specimen 1.27 cm in dia and 15 cm long; annealed and normalized at 950 C; cast condition; electrical resistivity 19.4, 20.5, 21.7, 24.5, 27.3, and 29.4 tubin cm at 18, 34, 56, 108, 156, and 189 C, respectively.	Similar to the above specimen except in wrought condition; electrical resistivity 19. 0, 22. 1, 25. 6, and 28. 0 µohm cm at 21, 71, 93, 137, and 172 C, respectively.
S					0.010	0.025	Trace			0.028	
c.					0.005	0.136	Trace			0.011	
percent) Mn					0.01	0.046	0.1			0.35	
(weight					0.03						
Composition(weight percent)					0.13	0,04	0.1			0.11	
¥											
iS	2.8	2.2	1.3	0.9	0.51	0.265	0.2	0. 592	1.47	4.0	
Name and Specimen Designation						Wrought iron	Fe II	o	t-	E10A	E10 A
Reported Error, %	47.0	±7.0	±7.0	±7.0		3.0-5.0				9 V	© Y
Temp. Range, K	373-1173	373-1173	373-1173	373-1173	479.2	373-802	291, 373	100-280	100-280	305-436	336-446
Year	1956	1956	1956	1956	1925	1933	1900	1961	1961	1966	1966
Method Used	æ	æ	æ	æ	ı	၁	ပ	٦	ı	ı	L)
Ref.	356	356	356	336	561	129	77	671	671	973	973
Curve No.	30	31	32	33	34	35	36	t- m	38	38	9

DATA TABLE NO. 342 THERMAL CO! "STIVITY OF [IRON + SILICON + $\Sigma\chi_{\rm I}$] ALLOYS GROUP I

 $(X_j \pm 0.20\% \ except \ C \pm 2.00\% \ and \ Mn, \ P, \ S \pm 0.60\% \ ench)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K -1]

H	CURVE 35	373.2 0.589 470.2 0.543		773. 2 0. 405		CURVE 36		291, 2 0, 601 373, 2 0, 594		CURVE 37	100 0.400	200 0.51	280 0.56	CURVE 38		100 0. 22	200 0.32		CURVE 39			313.2 0.500		322, 2 0, 503		381.2 0.485	436.2 0.467	***************************************	CURVE 40	136 2 0 497	; o			388.2 0.491 401.2 0.478 412.2 0.485	
T K	CURVE 28	373. 2 0. 182 573. 2 0. 197	0. 167 0. 218		CURVE 29	373.2 0.238	0. 264	773.2 0.285		CURVE 30	0.249	0. 293	173.2 0.295		CURVE 31		0, 289	0.314	1173. 2 0. 264*		CURVE 32*	0.343	0, 535	773, 2 0, 326	0, 272	CITRVE 33*				773. 2 0. 372		CURVE 34		479. 2 0. 260	
. ¥	CURVE 21	0.450	CURVE 22	0.0962	573, 2 0, 0711 773 2 0 0732	0.0774		CURVE 23	0.0962*		1173. 2 0.0962		CURVE 24	0.0795		773.2 0.105	0. 197	,	CORVEZS	0.094		1173.2 0.167		CURVE 26	0000	573.2 0.0920		0, 159		CURVE 27	921 0		773. 2 0. 130		
k T k T K T K	CURVE 14 (cont.)*	o o .	573, 2 0, 266 613, 2 0, 261		750.2 0.286		873.2 0.282			o o	1083, 2 0, 274	o	1183.2 0.285	CHRVE 15		300 0. 255		CURVE 16	319 5 0 459		CURVE 17	320.7 0.474		CURVE 18		374.7 0.364	CURVE 19		379, 5 0, 399	06 3/0015	CONVE 20	376, 6 0.442			
T k	CURVE 12 (cont.)	00	573, 2 0, 234 603, 2 0, 241			823, 2 0, 297		903, 2 0, 292		1073, 2 0, 268		1213, 2 0, 285	1.000	CONVE	373, 2 0, 215	ဝ			573, 2 0, 238			803.2 0.274				1003, 2 0, 236			1173, 2 0, 289	oʻ	CHRVF 145		37.3, 2 0, 2.34		
T k	CURVE 10		473, 2 0, 300 500, 2 0, 308		591, 2 0, 133 673 2 0, 316	728. 2 0. 308		820, 2 0, 297 873, 2 0, 289	j	o	1073. 2 0. 268	0	1173, 2 0, 264	si .	CURVE 11		373, 2 0, 249	ာ် ေ	503 2 0.272	i ခ	၁ :	673, 2 0, 310 713, 2 0, 312		0.		930, 2 0, 262	် ၁	ö	1173, 2 0, 264		CUBVE 12	:	373.2 0.207		
Ţ	CURVE 7 (cont.)	1143, 2 0, 277 1173, 2 0, 272	CURVE 8	1	373, 2 0, 343 393, 2 0, 343					773.2 0.322			973, 2 0, 301					CURVE 9	373.2 0.326	Ö	473.2 0.318				777. 2 0, 293					1073. 2 0. 251	i d	1235, 2 0, 241			
+	CURVE 1	313.2 0.469 313.2 0.477	CURVE 2		313. 2 0. 460	CURVE 3		313.2 0.364	CURVE 4		313, 2 0, 406		CURVE 5	313. 2 0. 326		CURVE 6			353, 2 0, 431		CURVE 7	373. 2 0. 452			488, 2 0, 435			693. 2 0. 397		823, 2 0, 364		973. 2 0. 318	္ ေ	1073, 2 0, 293	

Not shown on plot

Specification table no. 343 thermal conductivity of [bron + silicon + $\Sigma_{i,j}$] alloys group ii

(At least one $X_j > 0.20\%$ or if any of Mn, P, S > 0.60%)

[For Data Reported in Figure and Table No. 343]

Composition (continued), Specifications and Remarks	0. 007 Al. 0. 029 As: annealed at 930 C	0.06 Mg, 0.65 V.	ò			(Trace pearlite); annealed at	cooled.	7.0 Zr.	38.4 Fe ₁ 0. 59 O ₂ (contained in 0. 65 FeC and 1. 5 Fe ₂ O ₃); 5. 1% porresity; sintered 1 br and 30 min at 1150 C and annealed 30 min at 825 C.	98. 11 Fe. 0. 76 O ₂ (contained in 0. 79 FeO and 1. 8 Fe ₂ O ₃); 11. 4% porceity; sintered 1 hr and 30 min at 1150 C and annealed 30 min at 825 C.	98. 183 Fe. 0. 67 O ₂ (contained in 0. 4 FeO and 1. 9 Fe ₂ O ₃ ; 14.3% porosity; sintered 1 hr and 30 min at 1150 C and anneater 30 min at 825 C.	98, 263 Fe. 0, 71 O ₂ (contained in 0.6 FeC) and 1.9 Fe ₂ O ₂ ; 17% porosity; sintered 1 hr and 30 min at 1550 C and annealed 30 min at 825 C.	0.06 Mg; cast.	0.06 Mg; cast.	0.56 O; sintered at 1150 C and kept in this condition for 1 hr 30 min.
s	0.047				0.043								0.012	0.01	
ے	9.044				0.30								0.03	0.03	
reent)	0, 156	51.0	:0.3			1.0							1.3	1, 23	
eight pe Ma	0. 50	0.3	0. 2		0. 28	0, 37				0.35	0, 35	0.35	0.29	0.4	0.30
Composition (weight percent)	0, 637	0.04	0.04												
Compo	0.04	0.02	0.03												
ပ	6.485	2. 16	2. 66	2, 75	3. 62	· 0.1			90.00	0.18	0,097	0.037	3. 47	3, 36	0.058
S	1.98	10 3.53	20 2.99	6, 49	4. 20	2.3	~	35	0.60	0.60	0.70	0.59	3, 53	4.34	4 .0
Name and Specimen Designation	21	Cast iron Nr 1510 3.53	Cast iron Nr 1520 2, 99	Silal	Cast iron; 5	2165	m	Russian alley;## 3					Nodular Iron	Nodular Iron	
Reported Error, %		1.0	1.0	2.0	2.0	± 1.5			3. 0	4. 3.0	# 3.0	± 3.0			± 3, 0
Temp. Range, K	273-623	299-360	293-353	360-703	339-700	300	;	111	336-660	325-703	343-693	328-795	358	358	340-723
Year	1939	1958	1958	1933	1933	1957		1937	1953	1953	1953	1953	1953	1953	1953
Method Used	ပ	4	1	1	٦	1		J	ച	ப	យ	យ	ပ	ပ	sa sa
Ref. No.	166	17	17	31	31	203		204	211	31	211	211	205	502	999
Curve No.	-	7	n	4	ß	ဗ			£	ာ	01	Ξ	12	13	4

Section 1. The section of the sectio

SPECIFICATION TABLE NO. 343 (continued)

Composition (continued).	Specifications and Remarks	
	S	0. 043
	a	0, 30 0, 043
	Composition (weight precent	82.0
	ပ	4, 2e 3, 02 6, 49 2, 75
	ŝ	4. 20 6. 49
Par nary	Specimen Designation	Cast iron Silal iron
	Reported Error, "	
	Temp. Range. K	373-673 373-673
	Year	1933
	Method Used	٠
	Ref.	975 976
	Curve Ref.	15

DATA TABLE NO. 343 THERMAL CONDUCTIVITY OF (IRON + SILICON + $\Sigma_{i,j}$) ALLOYS GROUP II

(At least one $X_1 > 0,\,20\%$ or if any of Mn, $|P_1|\,S > 0,\,60\%)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

¥	CURVE 15 (cont.)*	3.2 0.353 3.2 0.385 CURVE 16*	0.372 0.364 0.351 0.343			
۰	CURVE	573. 2 673. 2 CUR	373.2 473.2 573.2 673.2			
¥	/E 10	0,452 0,444 0,402 0,372	0, 360 0, 326 0, 310 7 <u>E_11</u>	0. 393 0. 372 0. 372 0. 356 0. 356 0. 356 0. 289	i. 30 0, 272 i. 10 0, 264 CURVE 12 i. 00 0, 362	CURVE 13 1. 00 0.351 CURVE 14 5. 5 0.598 1. 0 0.577 5. 8 0.558 1. 0 0.569 1. 1 0.506 1. 2 0.499 1. 2 0.491 CURVE 15*
۲	CURVE	342, 60 371, 60 455, 10 529, 00	557, 10 0, 5 631, 20 0, 5 692, 50 0, 5 CURVE, 13	327. 90 429. 50 422. 40 550. 90 623. 10	752. 30 795. 10 CURN 359. 00	CURVE 13 358.00 0.3 358.00 0.3 339.5 0.6 339.5 0.6 339.1 0.6 530.1 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6 530.7 0.6
¥	/E 5	0.410 0.410 0.400 0.410	0, 402 0, 402 0, 397 0, 393	0.000000000000000000000000000000000000	0. 251 0. 251	0.317 0.615 0.652 0.552 0.541 0.341 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343
۲	CURVE	339, 20 363, 70 415, 79 417, 20	431, 20 449, 70 453, 20 465, 20 480, 20	507.20 527.20 527.20 554.20 520.20 653.70 699.70	300.00 0.3	CURVE 8 335.70 0.4 335.70 0.4 334.60 0.0 4711.10 0.0 4711.10 0.0 4711.10 0.0 559.70 0.0 559.70 0.0 559.70 0.0 559.70 0.0 659.70 0.0 658.60 0.0 658.60 0.0 658.60 0.0
w	E 1	0. 251 0. 269 0. 285 0. 293	0, 301 0, 310 0, 312 0, 310	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.240 0.240 E 3 0.561	0 528 0 0 526 0 0 377 0 0 368 0 0 368 0 0 368 0 0 358 0 0 358 0 0 347
۲	CURVE	273, 20 323, 20 373, 20 423, 20	473, 20 523, 20 573, 20 623, 20	299. 20 0. 310. 60 0. 321. 70 0. 327. 320. 327. 326. 327. 327. 340. 90 0. 0.	351 00 0 7f.J. 20 0 CURVE 293. 20 0	223. 20 0 353. 20 0 353. 20 0 360. 20 0 434. 20 0 436. 20 0 446. 20 0 46. 20 0 46. 20 0 476. 20 0 481. 20 0 550. 20 0 551. 70 0 583. 70 0 618. 20 0 702. 70 0

* Not shown on plot

SPECIFICATION TABLE NO. 344 THERMAL CONDUCTIVITY OF [BON + TITANIUM + EX,] ALLOYS

GROUP !

 $(X_{j} < 0,\, 20\% \ except \ C \ {\rm $\leq 2},\, 00\% \ and \ Mn, \ P, \ S, \ Si \ {\rm $\leq 0},\, 60\% \ each)$

Composition (weight percent), Specifications and Remarks	19.70 Ti and 6.09 C.
Reported Name and Error, % Specimen Designation	Ferrotitanium, 37
Reported Error, %	
Temp. Range, K	380
Year	1937
Method Used	٦
Curve Ref. No. No.	204
Curve R	-

Data table no. . 344 - Thermal conductivity of [iron + titanium + Σx_i] alloys

GROUP I

(N; < 0, 20% except C < 2, 00% and Mn, P, S, Si < 0, 60% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K-1]

301. 2 0. 628

GROUP I Specification table no. 345 — Thermal conductivity of [Iron + Tungsten + Σx_{\parallel} alloys

(X₁ < 0.20% except C · 2.00% and Mn, P, S, Si · 6.60% each)

[For Data Reported in Figure and Table No. 345]

Curve Ref. No. No.	Metho	Ref. Method Year No. Used	Temp. Range, K	Reported Error, %	Name and Specimen Designation	. .	Composition (weight per cent) C Mn P S Si	Composition (continued), Specifications and Remarks
1 188	ы	1919	303		S S	1.0	0.3	Annealed at 800 C and Blowly cooled.
2 188	ωì	1913	303		38	1. 0	0.6	Annealed at 900 C and slowly cooled.
3 188	ш	1919	303		4 .	2.0	0.3	Annealed at 900 C and slowly cooled.
4 188	ш	1919	303		4b	2.0	0.6	Annealed at 900 C and alowly cooled.
5 188	ω	1919	303		qe	3.0	0.6	Annealed at 900 C and slowly cooled.
6 188	ш	1919	303		63	5.0	0.3	Annealed at 900 C and slowly cooled.
1 188	ш	1919	303		73	ი.9	0.3	Annealed at 900 C and slowly cooled.
8 188	ા	6161	303		Jb	9.0	0.6	Annealed at 900 C and slowly cooled.
9 188	ш	1919	303		99	10.0	0.6	Annealed at 900 C and slowly cooled.
10 188	ш	1919	303		69	15.0	0.3	Annealed at 900 C and slowly cooled.
11 188	u	1919	303		ą.	15.0	9.0	Annealed at 960 C and slowly cooled.
188	ш	6161	ეცი		10a	20.0	0.3	Annealed at 900 C and slowly cooled.
13 186	ш	1919	303		10b	20.0	0.6	Annealed at 900 C and slowly cooled.
14 198	M	1915	303		113	25.0	0.3	Annealed at 900 C and slowly cooled.
15 188	ш	1919	303		116	25.0	0.6	Annealed at 900 C and slowly choled.
16 188	ш	1919	303		12	1.0	0.6	Annealed at 1100 C and quickly cooled.
17 188	(LL)	1919	303		13	3.0	0.6	Annealed at 1100 C and quickly cooled.
18 183	ш	1919	303		14	6.0	0.6	Annealed at 1100 C and quickly cooled.
188	ш	1919	303		15	20.0	9.0	Annealed at 1100 C and quickly cooled.
20 188	ω	1919	303		91	25.0	0.6	Annealed at 1100 C and quickly cooled.
188	(a	1519	303		26	0.5	E 0	Annealed at 900 C and slowly cooled.

DATA TABLE NO. 345 THERMAL CONDUCTIVITY OF [IRON + TUNGSTEN + 5X₁] ALLOYS

فسوده الإدالالعامات

GROUP I

(X) $\times 0.20\%$ except C $\pm 2.00\%$ and Mn, P, S, Si $\pm 0.60\%$ each)

[Temperature, T, K: Thermal Conductivity, k, Watts $cm^{-1}K^{-1}$]

303. 29 0. 276 303, 20 0, 231 303.20 0.343 303. 20 0. 167 303, 20 0, 419 303.20 0.280 303, 20 0, 182 303. 20 0. 221 303.20 0.238 CURVE 15 CURVE 18 CURVE 13 CURVE 14 CURVE 16 CURVE 17 CURVE 19 CURVE 20 CURVE 21 533.20 0.360 303, 20 0, 402 303, 20 0, 349 303.20 0.356 303, 20 0, 356 303.20 0.333 303, 20 0, 411 303, 20 0, 390 303.20 0.387 303. 20 0. 324 303, 20 0, 309 CURVE 10 CURVE 12 CURVE 11 CURVE 2 CURVE 3 CURVE 6 CURVE 4 CURVE 5 CURVE 8 CURVE 9 CURVE 1 CURVE 7

303.20 0.270

GROUP II SPECIFICATION TABLE NO. 346 THERMAL CONDUCTIVITY OF (IRON + TUNGSTEN + ZX,) ALLOYS

(At least one $X_{\rm l} > 0.26\%$ or if any of Mn, P, S, Si > 0.60%)

(For Data Reported in Figure and Table No. 346)

							-		; 	•						
Curve No.	Ref.	Ref. Metho No. Used	Ref. Method year No. Used	Temp. Range, K	Reported	Name and Specimen Designation	*	ပ	Comp	Composition (weight per cent) Cr Cu Mn Mo	(weigh: Mn	per cen Mo	5 P	s	<u> </u>	Composition(continued), Specifications and Remarks
-	189	1	1934	366-411	2.0-5.0	High speed steel.	18.65	0. 734	4.07	0.066	0.242	0. 730	Trace	0.037	0. 272	4.90 Co, trace TI, 1.93 V; all-quenched from 1300 C.
o)	189	-1 6	1934	368-420	2.0-5.0	High speed steel: GT. 200 C	18.65	0. 734	4. 07	0.066	0.242	0.730	Trace	0. 637	0. 272	4.90 Co, trace Tl, 1.93 V: tempered at 200 C for 30 min and cooled in air.
n	189	i)	1934	358-503	3 2.0-5.0	High speed steet; Gr. 300 C	18.65	0. 734	4.07	0.066	0.242	o. 730	T.ace	0. 037	0. 272	4.90 Co, trace Ti, 1.93 V; tempered at 300 C for 30 min and cooled in air.
4	189	- -	1934	367-526	3 2.0-5.0	High speed steel: ^C T. 400 C	18.65	9, 734	4. 07	0.066	0.242	0. 730	Trace	0. 037	0. 272	4.90 Co, trace Ti, 1.93 V; tempered at 400 C for 30 min and cooled in air.
S	189	-1 -1	1934	363-527	2.0-5.0	High speed steel: GT, 500 C	18.65	0. 734	4.07	0.066	0.242	0.730	Trace	0.037	0. 272	4. 90 Co, trace Ti, 1. 93 V; tempered at 500 C for 30 min and cooled in air.
φ	189	л Г	1934	362-535	2.0-5.0	High speed steel: C _T . 550 C	18.65	0. 734	4.07	0.066	0.242	0.730	Trace	0.037	0. 272	4. 90 Co, trace Tt, 1. 93 V; tempered at 550 C for 30 mln and cooled in air.
~	189	J 6	1934	369-544	2.0-5.0	High speed steel: G _T . 600 C	18.65	0. 734	4.07	0.066	0.242	0. 730	Trace	0. 037	0. 272	4. 90 Co, trace Tl, 1. 93 V: tempered at 600 C for 30 min and cooled in air.
æ	189	1	1934	365-533	3 2.0-5.0	High speed steel: C _T . 650 C	18.65	0, 734	4.07	0. 066	0.242	0. 730	Trace	0.037	0. 272	4. 90 Co, trace Ti, 1. 93 V; tempered at 650 C for 30 mIn and cooled in air.
o	188	-J	1934	373-538	3 2.9-5.0	High speed steel: G _{T, 700} C	18.65	0. 734	4.07	0.066	0.242	0. 730	Trace	0.037	0. 272	4.90 Co, trace Ti, 1.93 V; tempered at 700 C for 30 min and cooled in air.
91	189	٠ ا	1934	368-533	3 2.0-5.0	High speed steel: GT, 800 C	18.65	0. 734	4.07	0.066	0.242	0. 730	Trac	, eu 0	0. 272	4. 90 Co, trace Ti, 1. 93 V; tempered at 800 C for 30 min and cooled in alr.
11	189	9 L	1934	368-537	2.0-5.0	High speed steel:	18.65	0. 734	4.07	0.066	0.242	0. 730	ن د	. 53	. 272	4. 90 Co, trace Tl, 1. 93 V; annealed at 830 C.
12	169	J.	1934	370-419	2, 0-5, 0	UA High speed steel: E _{LI}	19. 2 2	0.674	3, 45	0. 072	0. 165	0. 275	Trac ,	010	0. 535	t. 736 Co, trace Ti, 0.848 V; oil-quenched from 1300 C.
13	189	1	1934	368 -416	2.0-5.0	High speed steel: ET. 200 C	19.22	0.674	3, 45	0.072	0. 165	0.275	Trace	0. 010	0. 535	U. 736 Co, trace Ti, 0.848 V; tempered at 200 C for 30 min and cooled in air.
*	189	ച	1934	365-499	2.0-5.0	High speed steel: ET. 300 C	19. 22	0.674	3, 45	0.072	0. 165	0. 275	Trace	0.010	0. 535	0.736 Co, trace Ti, 0.848 V; tempered at 300 C for 30 min and cooled in air.
15	189	-1	1934	368-540	2. 0-5. 0	High speed steel: ET. 400 C	19.22	0.674	3, 45	0.072	0. 165	0.275	Trace	0.010	0. 535	0.736 Co, trace TI, 0.848 V; tempered at 400 C for 30 min and cooled in air.
91	189	J	1934	371-535	2.0-5.0	High speed steel: ET. 500 C	steel: 19.22 C	0.674	3. 45	0. 072	0. 165	0.275	Trace	0. 010	0. 535	0.736 Co, trace Tl, 0.848 V; tempered at 500 C for 30 min and cooled in air.

SPECIFICATION TABLE NO. 346 (continued)

	Composition (continued), Specifications and Remarks	0.736 Co., trace Ti., 0.848 V; tempered at 550 C for 30 min and cooled in air.	0.736 Co, trace Ti, 0.848 V; tempered at 600 C for 30 min and cooled in air.	0.736 Co, trace Ti, 0.848 V; tempered at 650 C for 30 min and cooled in air.	0.736 Co., trace Ti, 0.848 V; tempered at 700 C for 30 min and cooled in air.	0.736 Co, trace Ti, 0.848 V: tempered at 800 C for 30 min and cooled in air.	0.736 Co, trace 71, 0.848 V; annualed at 830 C.	1. 13 V; quenched from 1300 C.	J. 13 V; tempered at 200 C for 30 min and cooled in air.	1, 13 V; tempered at 300 C for 30 min and cooled in air.	1, 13 V; tempered at 400 C for 30 min and cooled in air.	1, 13 V; tempered at 500 C for 30 min and cooled in air.	1, 13 V. tempered at 550 C for 30 min and cooled in air.	i. 13 V: tempered at 600 C for 30 min and cooled in air.	1, 13 V; tempered at 650 C for 30 min and cooled in air.	1, 13 V; tempered at 700 C for 30 min and cooled in air.	1, 13 V; tempered at 800 C for 30 inin and cooled in air.
	8	0. 535	0. 535	0. 535	0. 535	0. 535	0. 535	0. 075	0. 075	0.075	0. 075	0. 075	0. 07 5	0. 07 5	0. 07 5	0. 075	0, 075
	S	0.010	0.010	0. 010	0.010	0.010	0.010	0.073	0. 073	0. 073	0. 073	0. 073	0. 073	0. 073	0. 073	0. 073	0. 073
	<u>.</u> a.	Trace	Trace	Trace	Trace	Trace	Trace	0.028	0.028	0.028	0.028	0.028	0. 028	0. 028	0.028	0.028	0. 028 0. 028
1000	Wo Cen	0.275 7	275	275	273	0. 275 П	0.275 1	0	0	•	0	0	•	•	•	•	•
		0. 165 0.	165 0.	165 0.	0. 165 0.	0. 165 0.	0. 165 0.	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace
15	90		072 0.	072 0.				Ţ	÷	ř-	ř	Ţ	Ë	Ţ	Ť	Ţ	Ē
	D Ca	5 0.072	0	•	0.072	5 0.072	5 0.072	•	•	•	•	•		•	•		
1	35	3, 45	3, 45	3.45	3, 45	3, 45	3.45	3, 29	5 3.29	3, 29	3.29	3.29	3.29	3, 29	3, 29	3.29	3.29
	ပ	0.674	0.674	0.674	0.674	0.674	0.674	0. 605	0.605	0. 605	0.603	0. 605	0.605	0.605	0.605	0.605	0. 605
	*	19. 22	19. 22	19. 22	19. 22	19. 22	19. 22	15. 53	15. 53	15. 53	15, 53	15, 53	15, 53	15. 53	15. 53	15. 53	15. 53
- 1	Specimen Designation	High speed steel: ET. 550 C	High speed steel. ET. 600 C	High speed steel: E.f., 650 C	High speed steel. ET. 700 C	High speed steel: ET. 800 C	High speed steel:	EA High speed steel: H _O	High speed steel: HT, 200 C	High speed steel; HT. 300 C	High speed steel: HT, 400 C	High speed steel: HT. 500 C	High speed steel: HT. 550 C	High speed steel: HT. 600 C	High speed steel; H _{T.} 650 C	High speed steet; H _T . 700 C	High speed steel: HT. 800 C
	Reported Error, %	2. 0-5. 0	2. 0-5. 0	2. 0-5. 0	2. 0-5. 0	2.0-5.0	2. 0-5. 0	2. 0-5. 0	2. 0-5. 0	2. 0-5. 0	2.0-5.0	2.0-5.0	2, 0-5, 0	2. 0-5. 0	2.0-5.0	2. 0-5. 0	2. 0-5. 0
	lemp. Range, K	366-526	359-533	368-531	365-542	369-535	370-547	359-425	361-425	368-499	365-526	360-535	365-535	370-537	369-534	357-534	366-538
	rd Year	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934
	Ref. Method No. Used	د	<u>.</u>	٦	<u>.</u>	-	٦	٠	_	a	_	٦.	۵	.ı	-1	.	
		189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	185
	Curve No.	1	18	61	20	21	22	23	24	25	76	27	28	29	30	31	33

SPECIFICATION TABLE NO. 346 (continued)

Composition (continued), Specifications and Remarks	1. 13 V; annealed at 830 C.	Trace Ti, 0.864 V; oil-queached from 1300 C.	Trace Ti, 0.864 V; tempored at 200 C for 30 min and cooled in air.	Trace 71, 0.864 V; tempered at 300 C for 30 min and cooled in air.	Trace Ti, 0.864 V; tempered at 400 C for 30 min and cooled in air.	Trace Ti, 0, 864 V; tempered at 500 C for 30 min and cooled in air.	Trace Ti, 0, 864 V; tempered at 550 C for 30 min and cooled in air.	Trace Ti, 0.864 V; tempered at 600 C for 30 min and cooled in air,	Trace Ti, 0,864 V; tempered at 650 C for 30 min and cooled in air.	Trace Tt, 0, 864 V; tempered at 700 C for 30 min and cooled in air.	Trace Ti, 0,864 V; tempered at 800 C for 30 min and cooled in air.	Trace T1, 0.864 V; annealed at 830 C.	0. 110 NI; weter-quenched from 840 C.	0.110 Ni; tempered at 150 C for 30 min and cooled in air,	0.110 Ni; tempered at 200 C for 30 min and cooled in air.	110 Ni; tempered at 250 C for 30 min and cooled in air.
5 	ì		Ē							Ĩ						ö
33	0.075	0. 166	0. 166	0. 166	0.166	0. 166	0. 166	0. 166	0. 166	0. 166	0. 166	0, 166	0, 215	0. 215	0. 215	0. 215
S	0.073	0.026	0. 026	0.026	0. 026	0. 026	0.026	0.026	0 026	0.026	0. 026	0. 026	0.042	0.042	0.042	0.042
_ a	0. 628	Trace (Trace (Trace (Trace (Trace (Trace (Trace	Trace (Trace (Trace (Trace (0. 033 (0. 033 (0.033	0.033
r cent) o	-	L	-	_	-	H	–	1	Ĥ	T.	H	Ġ	Ö	o o	Ö
kht per Mo	ا ا بو	ဘ	ø,	စ္	ø,	ø.	ۍ ع	ø,	ගු	ø.	ø.	ø,	6	t-	Ļ	٠
n (¥ei	Trace	0. 169	0. 169	0. 169	0. 169	0. :69	0. 169	0. 169	0. 169	0. 169	0. 169	0. 169	0.99.7	0.997	0.997	0.997
Composition (weight per cent) 2r Cu Mn Mo	 	0.047	0.047	0.047	0.041	0.047	0.047	0.047	0.047	0.047	0.047	0.047				
Com Com	3. 29	3.24	3, 24	3.24	3.24	3.24	3.24	3.24	3.24	3.24	3. 24	3.24	0. 102	0. 102	0. 102	0. 102
b	0. 605	0. 705	0. 705	0. 705	6. 705	0. 705	0. 705	0. 705	0, 705	0. 705	0. 703	0. 705	1. 03	1. 03	1. 03	1. 03
*	1		15.05	15, 05	15.05	15. 05 (15, 05	15. 05 (15.05 0		15.05 (15.05 (1.02	1. 02 1	1. 02	L 02 1
Name and Specimen Designation	High speed steel; 15,53 H	High speedsteel: 15,05 19	High speed steel: 13 IT, 200 C	High speed steel: 1. T. 300 C	High speed steel: 13 LT, 400 C	High speedsteel: 13 T. 500 C	High speed steel: 1. T. 550 C	High speed steel: 1. IT. 600 C	High speed steel: 1. 1 _T , 650 C	High speed steel: 15, 05 ¹ T, 700 C	High speed steel, 13 IT, 800 C	High speed steel. 18 IA	9	TT. 150 C	T _{T. 200} C	TT. 250 C
Reported Error. %	2.0-5.0	2. 0-5. 0	2. 0-5. 0	2. 0-5. 0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2.0-5.0	2. 0-5. 0	2. 0-3. 0	2.0-5.9
Temp. Range, K	363-530	360-413	357-417	364-496	366-47;	366-529	368-532	367-530	362-531	364-537	369-543	359-533	363-389	362-391	377-430	365-468
Year	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1934	1954	1934	1934	1934	1934
Curve Ref. Method Year	-	٦	_	4	ı.	ــ	1	7	J		~		٦	٦	_	ii.
Ref. N	ន្ទ	169	189	189	189	189	189	189	189	189	189	189	189	189	189	88
Ce Te	g	34	35	36	37	38	39	40	‡	45	43	4	45	46	7	8

SPECIFICATION TABLE NO. 346 (continued)

Composition (continued). Specifications and Remarks	0. 110 Ni; tempered at 300 C for 30 min and cooled in air.	0.110 Ni; tempered at 356 C for 30 min and cooled in air.	0.110 Ni; tempered at 400 C for 30 min and cooled in air.	0. 110 Ni; tempered at 500 C for 30 min and cooled in air.	0. 110 NI; tempered at 600 C for 30 min and cooled in air.	0. 110 Ni; tempered at 700 C for 30 min and cooled in air.	0. 110 M; annealed at 780 C.	0.067 Ni, 0.004 Al, 0.035 as, 1.075 V: annualed at 830 C.	0. 17 Ni; normalized at 900 C.	1, 40 - 1, 75 V.	1. 0 V, annealed.	1.0 V: annealed.	2.0 V; annealed.	Composition unknown; cast fron grade; containing tungsten carbide and's small amount of cobalt binder.	Same as the above specimen.	Composition unknown: steel cutting grade; containing ningsten carbide, titanium carbide and tantalum carbide, and an increased amount of cobait than the above two specimens, CA-4 and K-6.	Same as the above specimen.
35	0.215	0.215	0.215	0, 215	6. 215	0.215	0. 215	0. 30	0. 22		0.25						
s	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.028	0.028								
at)	0.033	0. 033	0. 033	0. 033	0. 033	0.033	0.033	0.018	0.035								
Der ce	 							Trace		3.5/			5.0				
Composition (weight per cent)	0.997	0.997	0.997	0.997	0. 397	0.997	0.997	0.25	0.75		0.30						
Cu								0.064									
Comp	0. 102	0. 102	0. 102	0. 102	0. 102	0. 102	0. 102	4. 26	0.61	1.0	. O	4 .0	4 .0				
ပ	1. 03	1. 03	1. 03	1. 03	1. 03	1. 03	1. 03	0. 715	0.35	0. 83	0. 70						
ż	1.02	1. 02	1. 02	1.02	1. 02	1.02	1.02	18. 45	1. 64	5.0/ 6.0	16. 00	18.0	6.0				
Specimen Specimen Designation	Tr. 300 C	Tr. 350 C	Tr. 400 C	Tr. 500 C	TT. 600 C	T _{T. 700} C	T _A	High speed steel: 18	S ₄	High speed stee ¹ ; [M-1	High speed steel; 18-4-1	High speed steel. T-1	High speed steel. M-2	Tool material; CA-4	Tool material; K-6	Tool material; CA-2	Tool material; K-2s
Reported Error, %	2.0-5.0	2.0-5.0	2. 0-5. 0	2. 0-5. 0	2.0-5.0	2. 0-5. 0	2. 0-5. 0		3.0-5.0			7.0	7.0	7.0	7.0	7.0	7.0
Temp. Range, K	370-493	368-544	368-546	374-548	377-543	372-547	371-545	273-573	373-773	423-623	423-823	420-796	454-841	348-833	350-660	415-819	395-935
Curve Ref. Method Year No. No. Used	1934	1934	1934	1934	1934	1934	1934	1939	1933	1941	1941	1956	1956	1956	1956	1956	1956
Ref. Metho No. Used		٦	٦	J	1	Ļ	-1	ပ	ပ	. 1	٦	7	1	-	1	7	J
e Ref. No.	189	189	189	189	189	189	189	166	129	77 7	212	350	340	340	9	\$	340
Curve No.	49	20	21	35	53	22	55	99	57	58	6 9	8	61	62	និ	\$	65

SPECIFICATION TABLE NO. 346 (continued)

	Composition (continued), Specifications and Remarks	Cart, forged, annealed at 700 C for 2 hrs, quenched in oil at 900 up to 1200 C in steps of 50 C, and then annealed again from 400 C to 650 C in 30 min.	Same as the above specimen.	0.62 V; preparation same as the above specimen.	0.60 V; preparation same as the above specimen.	54 V; preparation same as the above specimen.	0.54 V; preparation same as the above specimen.	0.54 V; preparation same as the above specimen.	0.57 V; preparation same as the above specimen.	0,54 V; preparation same as the above specimen.	0.41 V; preparation same as the above specimen.	0.84 V, 0.06 Co; annealed.	0.84 V, 0.06 Co; the above specimen heated to 1320 C and quenched in oil.	0.84 V, 0.06 Co; the above specimen tempered at 550 C for 40 min and cooled in furnace.	0.54 V, 0.06 Co; the above specimen tempered again at 550 C for 40 min.	0.84 V, 0.06 Co; the above specimen tempered again at 550 C for 40 min.	2.03 V, 5.58 Co; annealed.	2,03 V, 5.58 Co; the above specimen heated to 1330 C and quenched in oil.	2.03 V, 5.58 Co; the above specimen tempered at 550 C for 40 min and cooled in turnace.	2.03 V, 6.58 Co; the above specimen tempered again at 550 C for 40 min.	2,03 V, 5.58 Co; the above specimen tempered again at 550 C for 40 min.
	ő	Ö,	S	0.6	0	ö	ن.	0	9.	0	0.4						0.14 2.0	0.14 2.0	0.14 2.0	0.14 2.0	
	ऊ											0.004 0.11	0.004 0.11	0.004 0.11	0.004 0.11	0.004 0.11	0.003 0.	0.003 0.	0.003 0.	0.003 0.	0.003 0.14
į	S																				0.026 0.0
	ال م	ıc.	r-			_	-	_	•	ور	•	1 0.027	1 0.027	1 0.027	1 0.027	0.027	0.026	0.026	0.026	0.026	
	Mo Mo	1.55	1.57			0.30	1.94	2.90	1.04	1.96	2.89	0.51	0.51	0.51	0.51	0.51	16.0	0.91	0.91	0.91	0.91
	Composition (weight per cent.) Cr Cu Mn Mo											0.32	0.32	0.32	0.32	0.32	0.23	0.23	0.23	0.23	0.23
	Cr	1.67	33.	1.45	1.50	1.51	1.52	1.41	1.42	1.43	1.35	4.40	4. 40	4 . 6	4.40	4.40	4.35	4,35	4, 35	4.35	4.35
	o	0.28	0.29	0.26	0.27	0.28	0.28	0.26	0.25	0.25	0.27	0.70	0.70	0.70	0.70	0.70	0.77	0.11	0.77	0.77	0.77
	3	3.14	4 . 90	3.00	5.02	2.85	3.11	3.09	5.02	4.73	5.14	18.52	18.52	18.52	18.52	18.52	19.31	19.31	19.31	19.31	19.31
	Name and Specimen Designation	8 2	7 Þ	8 >	4 V	νПа	VΠb	VΠc	V []] a	VIII b	∨Ш с	HS steel					High speed				
	Reported Error, %																				
	Temp.	673.2	673.2	673.2	673.2	673.2	673.2	673.2	673.2	673.2	673.2	358-1092	338-823	333-811	340-804	342-1099	330-1099	338-590	333-800	328-790	351-1088
	Year	1943	1943	1943	1943	1943	1943	1943	1943	1943	1943	1938	1938	1938	1938	1938	1938	1938	1938	1938	1938
	Metnod Year Used	4	70	7	4	74	14	φ 4	70	70	4	د	٦	ឯ	-1	ı,	٦	-1	٦	٦.	٦
	Ref.	327	327	327	327	327	327	327	327	327	327	539	539	539	539	539	539	539	539	539	539
	Curve No.	99	67	89	69	70	11	51	73	4.	15	16	77	3 2	19	90	91	82	83	*	85

SPECIFICATION TABLE NO. 346 (continued)

The second secon

Composition (continued), Specifications and Remarks	Quentified and tempered; measured during heating; electrical conductivity 1, 09, 1, 04, 1, 00, 0, 951, 0, 902, 0, 882, 0, 882, 0, 882, 0, 880, 0, 779, and 0, 776 x 104 ohm -1 cm -1 at 37, 126, 200, 282, 381, 445, 500, 558, 599, and 654 C, respectively.	The above specimen measured during cooling; electrical resistivity 1.63, 1.47, 1.36, 1.31, 1.23, 1.10, 0.91, 0.923, 0.877, 0.826, and 0.775 x 10.4 cbm ⁻¹ cm ⁻¹ at 72, 153, 204, 235, 281, 373, 457, 500, 552, 600, and 654 C. respectively.	1. 55 V; quenched at 1250 C; tempered three times at 560 C; measured during heating; electrical resistivity 1.41, 1.39, 1.30, 1.11, 1.98, and 0.973 x 10.4 ohm ⁻¹ cm ⁻¹ at 47, 134, 234, 429, 546, and 652 C; respectively.	The above specimen mensured during cooling; electrical resistivity 1.90. 1.50, 1.32, 1.11, 2.05, and 0.973 x 10 ⁻⁴ ohm ⁻¹ cm ⁻¹ at 154 325, 436. 556, 597, and 652 C. respectively.	Same composition and heat treatment as the above specimen.	 05 Co. 1.40 V; quenched at 1250 C, temporred at 580 C. 	Similar to the above specimen.	Empered at 580 C.	11, 74 Co., 1, 59 V; quenched at 1250 C, tempered at 580 C; measured during heating.
S									
Composition (weight percent) p			01			90		85	~
			1 2.80			2,96		35 5 5 5 5 5 5	£.
U			6 0.81			13 0.85		16 0.78	14.90 0.77
*			15. 06			15, 13		15, 16	
Name and Specim en Designation	K . S	R 1 S	R15Kh3	R 15Kh3	R15Kh3	RISKN3KS	R15Kh3K5	R15Kh3K10	R15Kh3K12
Reported Error, %	E '	?	~	ព ់	Ÿ	<u></u>	ŭ,	n V	m
Temp. Range, K	312-920	:47-920	369-916	388-916	399-671	316-909	305-783	323-877	330-995
Year	196.3	1963	1963	1963	1963	1963	1963	1963	1963
Nethor Used	a.	ω	я	બ	'n	æ	'n	ភា	យ
Ref.	986.	986. 987	986. 987	986, 987	986,	986, 987	986. 987	986. 387	986. 987
Curve No.	<i>9</i> 8	<u>x</u>	x x	S.	8	9.1	9.5	8	3

SPECIFICATION TABLE NO. 346 (continued)

Composition (continued), Specifications and Remarks	The above specimen measured during cooling.	Same composition and heat treatment as the above specimen.	1, 59 V; Quenched at 1250 C; tempered three times at 560 C; electrical resistivity 1, 93, 1, 80, 1, 66, 1, 57, 1, 40, 1, 29, 1, 18, 1, 10, 1, 01, and 0, 972 x 10 ⁴ chm ⁻¹ cm ⁻¹ at 38, 91, 153, 200, 306, 381, 450, 515, 569, and 649 C; respectively.	1. 69 V; quenched at 1200 C, tempered three times at 560 C; electrical resistbyty 2. 14, 1. 82, 1. 63, 1. 23, and 1. 22 × 10 ⁻⁴ chm ⁻¹ cm ⁻¹ at 39, 153, 215, 481, and 508 C, respectively.	1.40 V; quenched at 1220 C, tempered three times at 560 C; electrical resistivity 2.08, 1.82, 1.57, 1.39, 1.22, and 1.23 x 10⁴ obm⁻¹cm⁻¹ 46, 141, 249, 337, 457, and 523 C, respectively.	1. 55 V; quenched at 1240 C, tempered three times at 560 C; electrical resistivity 2. 13, 1. 71, 1. 47, and 1. 15 x 10 ⁻⁴ ohm ⁻¹ cm ⁻¹ at 29, 214. 315, and 525 C, respectively.	1. 09 V; quenched at 1280 C, tempered three times at 560 C; electrical resistivity 1. 85, 1. 73, 1. 44, and 1.21 × 10 ⁻⁴ chm ⁻¹ cm ⁻¹ at ±3, 97, 243, and 400 C, respectively.
Si							
ν,							
اء ر							
percent Mo							
weight Mn							
Sition()							
Composition(weight percent)			4. 13	4. 10	4. 28	4. 13	3, 98
ပ			0. 83	0.79	0.81	0.84	0.75
*			14. 76	7.94	9. 52	12. 25	18. 80
Name and Specimen Designation	R15Kh3K12	R15Kh3K12	R15Kh4	R7	R10	R12	R18
Reported Error, %	<3	හ \'	8 V	۶	: V	e >	₩
Temp. Range, K	417 -995	348-840	361-974	314-753	309-794	308-790	311–668
Year	1963	1963	1963	1963	1963	1963	1963
Method Used	យ	ы	ഥ	ப	ស	យ	வ
Ref. No.	986. 987	986, 987	986, 987	986, 987	986, 987	986, 947	986, 987
Curve No.	95	95	26	8	66	100	101

GROUP II THERMAL UNIDECTIVITY OF (TRON + TUNGSTEN + ΣX_j) ALLOYS 0% or if any of Mn, P, S, Si > 0.60%) (At least one X DATA TABLE NO. 346

1K-1
Watts cm
¥
Thermal Conductivity.
¥
۲
[Temperature,

		Tempera	Teinperature, T. K.; Thermal Conductivity, k, Watts cm .K	onductivity, k, Walts cr	- X		
.	.u	H	+ -	Н Ж	F•	⊢	H
CURVE 1	CURVE 6 (cont.)	CURVE 11	CURVE 16 (cont.)	CURVE 21	CURVE 26 (cont.)	CURVE 31	CURVE 36 (cont.
366, 20 0, 163	484, 20 0, 230	368.20 0.268	453, 20 0, 201	363.70 0.255	443.70 0.197	357, 20 0, 239	414.20 0.205
ت ت	502, 70 0, 230				ن ن		
	•	2			Ö		
CURVE 2	CURVE 7	473, 20 0, 276	£	474, 20 0, 264	CHBVE 27	483, 20 0, 255	CHRVE JA
		9 0	CONVE		7 7 100		
395, 20 0, 167	393. 70 0. 218						
		CURVE 12.	386, 70 0, 213	CURVE 22.	393, 20 0, 205	CURVE 32*	355. 20 0. 201
t andio	451.76 0.226		422,70 0.518	•		366 20 0 278	
ıl	2 2	400.70 0.163		391, 20 0, 272	474, 70 0, 209	io	
	2			Ö			
				Ö			
416, 70 0, 180	CURVE 9.	CURVE 13	981 3A0HO	482, 20 0, 272 500, 70 0, 280	esc GVGID	504 70 0 272	CHRVE 38
202			CON E 18	د ز		538. 20 0. 276	
20	385, 70 0, 226	. 20	359, 20 0, 218		365, 20 0, 226		
		20		CURVE 23*	Ö	JURVE 33	391.20 0.213
CURVE 4			423, 20 0, 218				
		CCHVE 14.		Ó			
366. 70 0. 184	c		475, 70 0, 226	395, 70 0, 176	481. 70 0. 230		
	532, 70 0, 230	o o	495, 70 0, 230	၁			
423, 20 0, 130	3 3 3 3 3 3	o 6		ic many		450, 20 0, 289	
	CURIE 3	41.50 0.184	CHRVE 19*	S CON E	CUBVEAS	564, 20 0, 297	CURVE 39
503, 70 0, 188	372, 70 0, 234	Ö				530, 20 0, 297	
		0		385, 70 0, 172			368. 20 0. 234
						CURVE 34*	
CURVE 5		CURVE 15	422, 70 0, 226	,	417. 20 0. 226		
	20 0.	•		CURVE 25.			
363.20 0.188	515, 20 0, 234	368, 20 0, 188		9	600 00 0 000	394, 20 0, 180	479. 70 0. 24
421 20 0 198	o i		530 70 0.533	001.0	537 20 0.230		
	CURVE	ó	•			CURVE 35*	
475, 70 0, 197		0	CURVE 20	442.70 0.193	CURVE 30.		CURVE 40*
504. 20 0. 201		0				357, 20 0, 180	l
		Ö			368, 70 0, 239		
	428.70 0.268						
CURVE 6		CURVE 16	417, 70 0, 239	CURVE 26	419, 20 0, 239	*36 1110110	423.70 0.239
360 0 00 636	و د و د					CONVESS	
	512.70 0.272	346.20 0.193	507 70 0 247	365. 20 0. 137			
	2					394, 70 0, 197	
449. 20 0. 226							
	1						

Not shown on plot

ATA TABLE NO. 346 continued)

.	CURVE 12*	0.2971	CURVE 73*		2 0.2887		CURVE	7887		CURVE 75.		2 0.2887	26 3130110	या जाय	0 3510			0.336						2 0.302		CURVE //		2 0.240			2 0.269				400 01101	CURVE 18"						2 0.270		
۳	ス	673.2	7		673.2	ě	31	6 623	200	3		673.2	į	i	0 856	2.000	200	531.2	607.2	716.2	785.2	903.2	990.2	1092.2	,	51	236	4	499.2	581.2	627.2	674.2	705.2	823.2	Ċ	į		376	476.2	501.2	3 3	726	811.2	
. ¥	CURVE 65 (cont.)	0.482	0.491	0.493	0.487	0.476	0.464	0.478	0.478	0.478	0.489	0.482	0.493	0.482	0.483	797.0	0.400	0.302	0.485		CURVE 66*		673.2 0.2929		CURVE 67.		0.2887	CHDV5 680		677 0 0 4010		CURVE 69.		0.2887	;	CURVE 70.	****	0.3034	418	CURVE (1)		0.3012		
۲	CURVE	547.1	592.9	622.1	647.1	655.4	656.8	692.9	705.8	727.7	737.3	754.0	760.1	781.8	800.7	845.1	856.8	978.4	034		CUB		673.2		9	•	673.2	1112	}	644	;	COL		673.2		3		673.2		3		673.2		
¥	E 63	0.873	0.850	33.0	0.824	0.839	0.798	0.790	0.764	0.798	0.783	0.756	0.771	0.715	0.696	0.719		CCHVE 64	4	0.510	200	200.0	0.523	0.506	0.497	0.497	0.489	6,433	0.400	0.435	0.467	0.463		CURVE 65		0.485	44.0	0.467	0.470	0.485	0.470	0.485		
1	CURVE 63	359,6	363.7	379.0	388.7	393.0	445.7	448.4	473.4	4.80.4	534.0	535.9	540.1	574.8	640.1	659.6		(E.S.)	. 517	1.0.1	446.5	7.00	506.8	509.6	515.1	553.4	565.1	580.9	637.3	656.8	767	819.3		CUR		395.1	399.0	402.6	412.3	480.4	483.2	519.3		
¥	CURYE 60 (cont.)	0,345	0.347	E 61	1	0.321	0.324	0.332	0.336	348	0.331	0.337	0.334	0.321	0.316	0.331	0.321	0.333	0.215		[0.5]	:	5	1.03	1.06	1.09	1.14	1.02	1.01	5.66.0	0.967	0.537	0.922	0.948	0.937	0.892	n,854	0.824	0.871	979.0	0.809			
۲	CURYE	4.261	796.2	CURVE 61		453.7	459.6	543.7	549.2	500.0	577.7	603.7	609.6	718.7	733.2	133.2	824.1	831.4	£		CUAVE 04	7	1.040	374.0	361.8	410.3	417.9	452.6	456.2	484.8	4.003	7.63.	565.1	584.3	605.4	620.4	698.4	710.1	736.2	799.9	833.2			
×	(, <u>ront,</u>)	0.276	0, 260	15.57			0.371	0.363	0.352	7	E 36		0. 203	0.2.0	0. 223	0.236	0.249	0. 256	9	20	000	502.0	0.214	0.239	0, 251	0.258		CURVE 60	;	0.356	0.352	0.333	350	350	0.350	0.373	0.578	0.353	0.362	0.328	0.325	0,365	0.377	
۲	CURVE 36 (cont.)	523. 2	573.2	CURVE 57	i i	373.2	473.2	573.2	673.2	113.2	CURVE	-	423.2	473.2	573.2	673.2	773, 2	823. 2		CURVESS		423. 2	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 2	773.2	823.2		CUR	ı	419.7	422.3	700	21.0.0	7.50	542.6	548	551.8	660.1	660.1	695. 2	701.2	756.9	750.8	
. *	RVE 52.	0.393	0.385	282.0	0.380	0.389	0.377		RVE 53*	181	0.380	0.385	0.381	0, 365	0.365	0 372		RVE 54.	;	0.398	0.385	0.393	282	28.0	0.381		CURVE 55.		0.385	0.393	0.333	280	385	9 E G		CURVE 56		0.243	0.251	0.259	0.266	0.272		
۲	CURV	374. 2	402.7	436, 2	491.1	521.7	548.2		CUR	377 3	7 107	434. 2	460.2	487.2	523.2	543.2		CUR		372.2	397. 7	431.7	451.7	5.19.2	546.7		CUR		370.7	393. 7	418.2	450.	. c . c	1015		CUR		273.2	320. 2	373. 2	423.2	473.2		
*	£ 46•	0.310	0.314	0.314	0 LT 3	1	0.326	0.322	0.326	9	2	0.372	0.372	0.377	0.368	0.372		E 49		0.372	0.385	0.381	C. 377	200	100.0	CURVE 50*	1	0.372	0.372	0.381	0.372	2.5.0	0.35	200	78.51		0.393	0, 389	0.385	0.389	0.393	0.389	0.385	
ţ=	CURVE	361.7	377.7	390.7	NAME	200	378.7	405.7	429.7		CCAVE	764.7	389.7	418.2	442.7	468.2		CURVE		370.2	394. 2	422. 2	451.7	469. 7	437. 6	CURV		308.3	402, 7	431.2	460.2	2 2 2 2	0.19.0		CURVEST		3.69.2	400.7	423, 2	457, 7	489. 2	517. 2	545. ?	
*	* I + 3	0.955	0.251	0, 259	6.23	0.230	65.0		£ 42.		0.289	0.63.0	297	0.293	0.297	0.297		E 43		0.322	0.314	0.318	0.322	0.338	0.322		# W	-	0.343	. 339	0.335	0.339	0.343	0.000		F 45	2	0, 301	0.305	0.31c				toler and services and
۰	CURVE	1 1 30		416.7	443.7	100.2	500.2		CURVE 42.		364. 2	330.2	413.	1 t-	509.			CURVE		368. 7	393. 7	415.2	4 49. 7	1.6.7	511.7		CURVE 44	!	359. 2	390. 2	421.2	450.2	477.7	212.2	333. 6	SE SUBIL		363. 2		389.2				

Not show on pict

DATA TABLE NO. 346 (continued)

ж	8 (cont.)	0.315	0,343	0,376		E 99	1	0, 213	0, 25,7	0, 286	0.308		100		c. 223	0.236	0.244	0, 251	0, 280	•	E 161		0, 193	0, 201	c. 213	0. 244																							
H	CURVE 98 (cont.)	604.2	687.2	753.2		CURVE 99		309. 2	523, 2	723. 2	28. 2		CURVE 100		308.2	481.2	582. 2	669. 2	790, 2		CURVE 161		311.2	365.2	511.2	668.2																							
×	CURVE 93 (cont.)	0.364	9.466		CURVE 94*	1	0.134	0, 151	0.159	0. 177	0. 196	0 298	0.356	0.410	0.451	0.472		CURVE 95		0, 275	9, 314	0.388	0.434	0.454	0.472		CURVE 96*		0.210	0. 232	0.300	0.369		CURVE 97		0. 206	0.217	0.249	0.282	0, 324	0.367		VE 98*		0.214	0.266	0, 269	0.276	:
H	CURVE	814. 2	H77, 2		CUR		330, 2	348.2	168.2	25.2	523 2	752. 2	828. 2	895. 2	950. 2	995. 2		CUB		417.2	552. 2	773.2	923.2	950.2	995. 2		CUR		348, 2	435.2	569.2	840.2		CUR		361.2	473.2	573.2	721. 2	833, 2	974.2		CURVE		314.2	410.2	423.2	482, 2	: : :
*	CURVE 88 (cont.)*	0.191	0.254	0, 289	0.341		CURVE 89°		0, 137	0, 213	0.248	0.300	0.308	0.341	0.341		CURVE 90*		0, 211	0.231	0.255	0.277		CURVE 91	 	0. 151	0, 159	0. 172	0.261	0, 297	0.364	0.410	,	CURVE 92		0.214	0.251	0.261	0.289	0.312	0.354		/E 93		0, 146	0.177	0, 213	0.286	
(CURVE	506.2	697.2	813.2	916.2		CUR	}	388.2	453.2	598. 2	708.2	825. 2	868. 2	916. 2		CUR		399. 2	473.2	564. 2	671.2		CUR		316.2	349, 2	421.2	704. 2	793, 2	357.2	909, 3		CUR	,	305. 2	386. 2	4.86.2	\$45.2	673.2	783.2		CURVE		323. 2	378.2	569. 2	720.2	
'n	CURVE 84*	0.228	0.238	0.277	0.274	0.276	0.264	0.255		CURVE 85*		0.229	0.252	0.272	0.275	0.285	0.267	0.273	0.260	0.254	0.255		E 36	}	0.106	0. 131	0. 167	0.189	0. 226	0. 246	0.258	0.288		CURVE 87	•	0. 105	0. 167	0.173	0.197	0. 233	0.262	0.271	0.288		CURVE 88*	1	0.148	0.179	
۴	CURV	328, 2	377. 2	206. 7	580. 2	670. 2	730.2	730. 2		CURV		351.2	401.2	489.2	576.2	630.2	783.2	818.2	928.2	1019.2	1088.2		CURVE 36		3,12, 2	399. 2	473.2	555. 2	652. 2	772.2	824. 2	920.2		CURV	1	347.2	422.2	483,2	554.2	643.2	172.2	950.2	920. 2		CURV		368.2	408.2	
¥	E 79*	0. 241	0.244	0.272	0. 290	0.275	0.265	0, 272		E 80*		0.134	0.269	0.292	9, 286	0, 283	0. 276	0.258	0.254		E 81*	ļ	0.31в	0.312	0.313	0.312	0.303	0. 294	5. 2d	6. 292	0. 277	,	E 82	;	0. 176	0.218	0. 235	0.251		E 83*	ļ	0, 218	0.269	0.269	0.268	0, 259	0. 256		
H	CURVE 79	340. 2	379, 2	482, 2	572, 2	665.2	762. 2	804.2		CURVE 80*		342. 2	380, 2	596. 2	660, 2	803.2	865.2	975. 2	1099. 2		CURVE 81*		330.2	381. 2	518.2	858.2	698. 2	798. 2	979.2	1008.2	1098. 2		CURVE		338. 2	394. 2	502. 2	590.2		CURVE 83*		333. 2	403.2	497. 2	660.2	735. 2	800.2		

* Not shown on plot

SPECIFICATION TABLE NO. 347 THERMAL CONDUCTIVITY OF Styte, INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 347]

Curve No.	Ref. No.	Method Used	Year	Temp. Range. K	Reported Error, %	Name and Sperimen Designation	Composition (weight percent). Specifications and Remarks
	521	ပ	1957	300		Sb, Te;	p-type, excess Sy, rhombohedral crystal; hole concentration 70 x 10 ¹⁸ cm ⁻³ ; prepared by sintering, unrealing, and crystallizing by Bridgeman technique.
	585	ı	1961	293-363		Sb, Te ₃	Polycrystal; cylindricai specunen; current carriers 10% cm -3.
	සි		1962	303.2		Sb; Te3	P-type; prepared from 99.99° pure elements by cold-pressing -60 mesh powder at 35 tsi and sinkering at 450 C for 3 hrs in Argon; heat flow perpendicular to pressing direction; electrical resistivity 0.78 x 10 ⁻³ ohm cm and 1.09 x 10 ⁻³ ohm cm at 100-400 C and 150-450 C, respectively.
	83		1962	393,2		Sb _. Te,	p-type; prepared from 99.99° pure elements by cold-pressing -60 mesh powder at 35 tsi and sinkring at 500 C for 3 hrs in Argon; heat flow perpendicular to pressing direction; electrical resistivity 0.21 x 10 ⁻³ ohm cm and 0.61 x 10 ⁻³ ohm cm at 30 C and 150-450 C. respectively.
	936	۲	1965	2.98.2		ያት, T.c.,	2.58 To excess (calculated): p-type: 0.5 x 0.5 x 1 cm; prepared from 99.999 Sb supplied by Consolidated Mining and Smeltang Co., and from 99.97 Te, supplied by Canadian Copper Refiners, Ltd., materials weighed out, erushed, sealed in an ampute in a vircumin of 10° 4 pair. heated at 900 C for 20 hrs, nocked, cooled, zone-molted at a rate of 0.70° 2.5 nr. heated at 900 C for 20 hrs, nocked, concled, zone-molted at a rate of 0.70° 2.5 nr. heat. General conductivity data calculated from measured values of figure of merit, Secheck coefficient, and electrical conductivity reported as 4.33 x 10° ohm "lem" at room temperature.
	936	۴	55.5	298.2		$SP_{r}Te_{3}$	Cut from the same ungot as the above specimen; electrical conductivity reported as 4.33 x 10 ³ ohm ⁻¹ cm ⁻¹ at nom temperature.

and the second of the second o

The fill the state of the state

0.048 CURVE 1 300

CURVE 2

0.0481 0.0473 0.0464 0.0456 0.0456 0.0469 0.0469 0.0464 0.0467 293. 2 298. 2 300. 7 315. 2 326. 2 326. 2 335. 7 348. 2 365. 7 363. 2

303. 2 0. 033 CURVE 3 CURVE 4 303. 2 0. 0449 CURVE 5 298.2 0.0505

CURVE 5

298.2 0.0229

Not shown on plot

SPECIFICATION TABLE NO. 348 THERMAL CONDUCTIVITY OF ASITE, INTERMETALLIC COMPOUNDS

Composition (weight percent), Specifications and Remarks Composition (weight percent), Specifications and Remarks	N-type (excess Te.1); electron optimization of and $\beta = 97$; prepared by verticle zone structure $a = 14.4 \text{ Å}$, $b = 4.05 \text{ Å}$, $c = 9.92 \text{ Å}$ and $\beta = 97$; prepared by verticle zone melting.	Similar to the above specimen except proper cm ⁻³ at 300 K.
Reported Name and Error, % Specimen Designation	As ₂ Te ₃	A 8, Te 3
Temp, Reported Range, K Error, %	300	300
- } - }	1957 3	1957 3
od Year	51	ĭ
Curve Ref. Method	0	1 C
e Re	521	521
Cur	-	73

DATA TABLE NO. 348 THERMAL CONDUCTIVITY OF A82Te3 INTERMETALLIC COMPOUNDS

[Temperature, T, K, Thermal Conductivity, k, Watt cm-1K-1]

T k

CURVE 1*
300 0.025

CURVE 2*
300 0.027

SPECIFICATION TABLE NO. 349 THERMAL CONDUCTIVITY OF Bards INTERMETALLIC COMPOUNDS

Distance of the second	Composition (weight percent). Specifications and remarks	30 4	2. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seebeds coeff. 14. b µ Vr. at 25 C.	quehack coeff. 133, 5 µ v K ⁻¹ at 25 C; electrical resistivity 1.37 x 10 ⁻² ohm cm at 25 C;	figure of merit 0.893 x 104 K-1 at 25 C.	Seebeck coeff. 37.7 μ v K ⁻¹ at 25 C; electrical registivity 1.34 x 10. 0 min cm 2.5 C;	figure of merit 0.83 x 10 * K 'at 25 C.
	Reported Name and	Errer, % Specimen Designation		Barbb; No. 1	i i	Barro; No. 5	Be. Dh. No. 4	
	Reported	Errer, %						
	Temp.	Range, K		298.2		298.2		296.2
		Year		1961		1961		1961
		Used		.	1	H		H
	;	Ref.		3 73	Š	3		%
		Cu rve No	}			8)	ო

DATA TABLE NO. 349 THERMAL CONDUCTIVITY OF Ba₂Pb INTERMETALLIC COMPOUNDS [Temperature, T. K; Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

T k

CURVE 1*
298.2 0.0284

CURVE 2*
298.2 0.0147

CURVE 3*

THERMAL CONDUCTIVITY OF BASSA INTERMETALLIC COMPOUNDS SPECIFICATION TABLE NO. 350

Composition (weight percent), Specifications and Remarks	Seebeck coeff, 14,2 µ vK ⁻¹ at 25 C; electrical resistivity 1,70 × 10 ⁻³ ohm cm at 25 C; figure of merit 0,27 × 10 ⁻¹ K ⁻¹ at 25 C.	1.0 mole percent excess Bu; Stebeck coeff, 19.7 # vK=1 at 25 C; electrical resistivity 1.40 x Bu? ohn on at 25 C; figure of merit 0.303 x 10 bK=1 at 25 C.
Reported Name and Error, 7. Specimen Designation	Ba ₂ Sn; No. 3	Ba ₅ Sn; No. 4
Reported Error, 7		
Tenp. Range, K	2,862	2.98.2
Year	1961	1961
Method Used	-	'n
Ref.	3	<u>x</u>
Curve No.		÷1

DATA TABLE NO. 350 THERMAL CONDUCTIVITY OF Bagsa INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

SPECIFICATION TABLE NO. 351 THERMAL COMPUCTIVITY OF BOx ND, INTERMETALL COMPOUNDS

[For Data Reported in Figure and Data Table No. 354.]

Conference and Betratks	Composition (weight percent), speciments	negated from Re (99.3 pure) supplied by Brush Beryllium Co. and ND (< 99.3 pure)	reparent by Kawecki Chemical Co.; cylindrical specimen 2.5 in. dia, 2.5 in. mgr., aupplied by Kawecki Chemical Co.; cylindrical specimen 2700 to 2800 F for 1 to 2 prepared by hot pressing powdered NuBeg at 2000 psi and 2700 to 2800 F for 1 to 2	hrs. Specimen consists of five vertically stacked cylinders, each 2.525 in, O.D. and 1 in. Specimen consists of five vertically stacked cylinders, each 2.525 in. Over concentric with the axis; fabricated by cold pressing and sintering from Be _H My, powder; deraity 3.23 g cm ³ .
	Reported Name and Error, % Specimen Designation		BegND	Be _n Niz
	Reported Error, %			ဟ
	Temp. Range, K		1052 1691	596-1699
	Year		1959	1962
	Surve Ref. Meihod		æ	æ
	Ref.		446	938
	Curve		7	8

DATA TABLE NO, 351 THERMAL CONDUCTIVITY OF Be_XNb_Y INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm $^{-1}K^{-1}$]

<u>/E 1</u>	0.325 0.325 0.225 0.232 0.234 0.326 0.336 0.356 0.356	u 📶 nadananen undade
CURVE	1051.5 1085.9 1104.3 1165.4 1165.4 1283.2 1283.2 1422.1 1430.4 1475.4 1514.3 1514.3	690 1144 1144 1144 1144 1144 1144 1144 11

SPECIFICATION TABLE NO. 352 THERMAL CONDUCTIVITY OF BOXTAY INTERMETALLIC COMPOUNDS

For Data Reported in Figure and Table No. 352?

Composition (weight percent). Specifications and Remarks	Single phase; 98% of absolute density,	Specimen consisted of 5 hollow cylinders, each 2-5/8 in. O.D., 1/4 in. J.D. and I in. Figh.
Reported Name and Error, % Specimen Designation	Ta2Be1;	TaBe ₁₂
Reported Error, 9,	5.0	o .:
Temp. Range, K	608-1689	721-1694
Year	1962	1961
Method Used	~	=
Ref. No.	583	594
Curve No.	-	es .

DATA TABLE NO. 352 THERMAL CONDUCTIVITY OF BOXTAY INTERMETALLIC COMPOUNDS

[Temperature, T, K, Thermal Conductivity, I., Watt cm-1 K+1]

CURVE 1

			0, 291										
1	698.2	609.3	135.1	7:17: 6	905. 9	1136.5	1136.5	1377.6	1378.2	5.03.5	1547. 2	1574.7	

CURVE 2

1	0, 279	0.279	0.287	O. 287	6, 292	0.292*	0.518	0, 315	0.329	6.325	3.5	0, 3.17	0.343	0.351	U. 35T	987.0
	726.9	\$.TO!	857.6	862, 6	1021.5	1033.2	1162.1	1,66.5	1255.4	1257. 6	1385.9	1397.1	1397.1	1300,2	154.3	2 (0.7)

SPECIFICATION TABLE NO. 353 THERMAL CONDUCTIVITY OF $B_{\mathbf{x}}$ $B_{\mathbf{y}}$ INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 353]

Method Year Temp. Reported Name and Composition (weight percent), Specifications and Remarks Used Year Range, K. Error, W. Specimen Designation	C 1959 :95940 UBe,3 Solid-Solid reaction of UH, and powdered Be in an induction furnace under 1 argon atmosphere at 1559 C and sintered; x-ray density 4, 37 g cm ³ ,
Year	6561
Methor	U
Ref.	556
Culy,	-

DATA TABLE NO. 353 THERMAL CONDUCTIVITY OF BCXUy INTERMETALLIC COMPOUNDS

[Temperature, T. K; Thermal Conductivity, k. Watt cm-1K-1]

CURVE 1

395.2 0.192 406.2 0.236 506.2 0.225 510.7 0.224 523.2 0.224 659.2 0.246 659.2 0.246 659.2 0.246 756.2 0.267 756.2 0.262 823.2 0.262 823.2 0.264 905.2 0.256

SPECIFICATION TABLE NO. 354 THERMAL CONDUCTIVITY OF Begz. INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks	Prepared from Bc (99.3 pure) supplied by Brush Beryllium Co. and ZrH ₂ (98.5 ⁺ pure) supplied by Metal Hydrides Inc.; cylindrical specimen 2.5 in. dia, 2.5 in. long; prepared by hot pressing powdered ZrBe ₁₃ at 2005 jest and 2700 to 2800 F for 2 to 2.50 hr.
eported Name and river, % Specimen Designation	Be ₁₃ Zr
~ ~	
Temp. Range, K	983-1657
Year	1959
Methoc	Œ.
No. No.	446
Curve	-

DATA TABLE NO. 354 THERMAL CONDUCTIVITY OF Beg Zr INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

×	(cont.)*	0.350 0.343
۰	CURVE 1 (cont.)	1657.1
ж	F 1	0.402 0.391 0.391 0.391 0.391 0.391 0.369 0.369 0.369 0.346 0.341 0.340 0.370
۲	CURVE	983, 1 1085, 4 1089, 8 1158, 2 11198, 2 1129, 3 1239, 3 1248, 2 1348, 2 1398, 9 1398,

No graphical presentation

SPECIFICATION TABLE NO. 355 THERMAL CONDUCTIVITY OF BI, Te, INTERMETALLIC COMPOUNDS

(For Data Reported in Figure and Table No. 355)

Curve	Ref.	Method Used	Year	Temp. Runge, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
-	830	LyC	1954	298.2	0. 2 - 3. 0	Вітез	Fine crystalline structure; extruded; current carriers 6, 8 x 10 ¹⁸ cm ³ ; 15 mm dia, 1 to 3 mm thick; electrical conductivity 1506 ohm ⁻¹ cm ⁻¹ at 25 C.
61	202	٦	1850	150-300	r) i	Bi ₂ Te ₃ , No. 1	n-type; cut from impure end of zone refined bar; rectangular specimen; heat flow parallel to zoning direction and the cleavage plane; electrical conductivity 750 olim ² cm ⁻¹ at room temperature.
ö	332	د	1956	127-300	?i ₹	Bi ₂ Te ₃ . No. 2	n-type; intrinsic; zone refined; rectangular specimen; cut from the same bar as the above specimen, heat flow and zoning direction parallel to the cleavage plane; electrical conductivity 200 ohm "l cm "l at room temperature.
7	88	_	1956	150-293	5,2	B12Tc3. No. 3	Similar to the above specimen (adjacent specimen).
· 15	22.55	-1	9861	152-300	?1	BlgTc3, No. 4	p-type single crystal; heat flow parallel to the cleavage plane; electrical conductivity 500 ohm ¹ cm ¹ at room temperature.
Æ	3335	-1	1956	154-300	ે.	Bi ₂ Te ₃ , No. 5	p-type single crystal; heat flow perpendicular to the cleavage plane, eletrical conductivity 500 ohm 4 cm 2 at room temperature.
ι-	2		1956	154-390	₹;	BigTeg, No. 6	Similar to the above specimen.
æ	326	C	1960	333 455		કાર્તારુ	p-type polycrystalline specimen; prepared from Asarco 99, 999° pure Bi and 99, 999° Te, prepared by fusing in vacuo, hexagonal unit cell with constants of; [a = 4.37 Å and c = 30, 62 Å; specimen 12 min dia and 6 mm thick; electrical conductivity = 10³ ohm -1 cm -1; Armco iron used as reference; measured in vacuo of ~10 §mm Hg.
σ	325	۲	1959	300	-	Bi ₂ Te ₃ ; Jb	p-type; electrical resistivity 1, 90 × 10 ⁻³ onm cm.
) <u>2</u>	12.55	, ,	1959	308	-	B12Tc3; 17a	p-type; electrical resistivity 1.07 x 10 ⁻³ ohm cm.
1	311		1960	10-70	ĸ	Bi ₂ Te ₃ ; SBTC 18	p-type single crystal; form factor (F = length/cross-sectional area) - 30, 4; measured in a vacuo of - 5 x 10 ⁻⁵ mm Hg.
1	311	- i	1960	10-70	တ	Вь:Те ₃ ; SВТС 19	p-type single crystal; doped with I, final concentration 0, 027; F = 25, 3; measured in a vacuum of + 5 x 10 ⁻⁵ mm Hg.
=	311	ب	1960	10-70	ia	Bi ₂ Te ₃ ; SBTC 27	n-type single crystal; doped with I, final concentration 0, 0.37; F + 30, 0; measured in a vacuum of + 5 x 10 ⁻⁵ nm Hg.
=	311	ن	1960	10-70	ď	B12Te3; SBTC 16	n-type single crystal; doped with I, final concentration 0.046; F + 24, 0, measured in a vacuum of -5x 10 ⁻⁵ mm Hg.
15	311	1	1949	09-01	u)	Bi ₂ Te ₃ ; SPTC 15	n-type single crystal; doped with 1. final concentration 0, 059; F= 52, 8; incasured in a vacuum of -5 × 10 \delta mm Hg.
16	311	-	194:0	09-01		Br,Tc3; SBTC 10	n-type single crystal; doped with L. final concentration 0.124; F=34, 0; measured in a vacuum of -5×10^{4} mm Hg.
ú	386	٦	1958	: :		Bi ₂ Te ₃ , S 22	p-type single crystal; undoped; measured in a magnetic fixid parallel to the crystal axis heat flow perpendicular to the crystal axis.

SPECIFICATION TABLE NO 355 (continued)

No.	ه ټپا	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
98	ه ا	1	1958	77		BigTe ₃ , S 21	Similar to the above specimen.
386		1 -1	1958	1:		Bi ₂ Te ₃ :S 17	n-type single crystal, doped with 0, 055 I (nominal); magnetic field parallel to the crystal axis, heat flow perpendicular to the crystal axis.
~	90	ن.	8561	; <u>;</u> ;		Bt2Tc3. S 15	Similar to the above specimen except doped with 0, 09 I.
÷	383	ı c.	1960	293-573	± 20	Bi ₂ Te ₃ , 68	p-type: measured in a 1.95 MEV electron beam, heat flow paidlel to crystal planes; electrical resistivity ~5.1 × 10 folia en at room temperature.
i,	38.7	ē.	1960	293-573	+ 20	B ₁₂ Te ₃ ; 64	p-type, measured in a 1.95 MEV electron beam; heat flow perpendicular to the crystal planes; $\rho \approx 9.6 \times 10^4$ ohm cm at room temperature.
-	6 %	a	1960	293-573	± 20	B1, Te3, 59	Similar to the above specimen except $\rho \sim 13.8 \times 10^{-4}$ ohm cm at room temperature.
	387	. 2	1960	293-573	# 50	B ₁₂ Te ₃ , 69	n-type; measured in a 1,95 MEV electron beam; heat flow perpendicular to the crystal planes; $\rho \sim 6.5 \times 10^{-6}$ ohm cm at room tempera. γc_{\odot}
	388	٦	1957	80-370		Ві _с Тез	p-type single crystal; specimen 0, 5 × 0, 5 × 2, 5 cm, prepared by zone melting from Bi (99, 999 pure, supplied by Cerro de Paco Corp.) and Te (99, 999 pure, supplied by American Smelting and Refining Co.). 2 × 10 ¹⁹ excess boles cm ⁻³ .
	34.8	ı	1987	80-370		Bı ₂ Te ₅ ; D-13	n-type single crystal; specimen 9, 5 x 0, 5 x 2, 5 cm. prepared from Bi (99, 999 pure, supplied by Cerro de Paco Corp.) and Te (99, 999 pure, supplied by American Smelting and Refining Co.); 3 x 10 ¹⁷ excess electrons cm. ³ .
	ş	-	1959	311.2	±10	B1, Te3	Supplied by Electronic System Laboratory, M. L. T.
• ••	251	iυ	1957	3100		BigTcs	n-type (exerss Te. 1); electron concentration 5×10^{18} cm ⁻³ at 300 K; thombohedral structure (a ₀ = 10.45 k and α = 24 · 8); prepared by zone melting, quenching and annealing.
••	521	ပ	1957	360		$B_{12}Tv_3$	p-type (excess B). Pb); hole concentration 8 x 10 ¹⁸ cm ⁻³ at 300 K; structure and specimen similar to the above.
	386	,	HS61	(- [-		Bt ₂ Te ₃ ;S 11	n-type single crystal; doped with (nominal.) 9.40 I; heaf flow perpendicular to the crystal axis, a magnetic field parallel to the crystal axis.
	98.6	(-	1965	29 H. C.		Bi ₂ Te ₁	2.03 Te excess (calculated); n-type, 0.5 x 0.5 x 1 cm; prepared from 99.99 pure Bi supplied by Consolidated Mining and Smelting Co., and from 99.9° pure Te supplied by Canadian Copper Refiners, Ltd., materials weighed out, crushed, sealed in an ampule in a vacuum of 10.5 Torr, heated at 900 C for 20 hrs. rocked, cooled, zone-metted at a rate of 0.07 ~0.28 in, hr. I, then cooled and cut; thermal conductivity data calculated from measured values of figure of merit. Seebeck coefficient, and electrical conductivity reported as 1.78 x 10.3 bhm.1 cm.1 at room temperature.
	936	۰	1965	298.2		$\mathrm{Bi}_2\mathrm{Te}_3$	Cut from the same lagot as the above specimen; electrical conductivity reported as 1.75×10^3 obm ⁻¹ cm ⁻¹ at room temperature.
-	936	(1965	170-351		Bi ₂ Te ₃	Similar to the above specimen except electrical resistivity reported as 244, 267, 309, 360, 389, 454, 517, 582, and 721 gohm cm at 171, 183, 203, 219, 239, 256, 241, 304, and 350 K, respectively.

SPECIFICATION TABLE NO. 355 (continued)

Composition (weight percent). Specifications and Nemarks	and the second of the second o	Similar to the above appeciation except electricate constants. ohm '1 cm '1 at room temperature.	(i. 95 Te excess (calculated); n-type; same fabrication method and messuring method as the shove specimen; electrical conductivity reported as 0.24 x 16³ ohm 1 cm 1	at room temperature.
Reported Name and Error, % Specimen Designation		Bi ₂ Te ₃	Bi ₂ Te _{3.08}	
Reported Error, %				
Temp. Range, K		2.98.2	7.863	
Year		1965	1965	
Metbod Used		۲	H	
Surve Ref.		936	936	
Curve No.	:	8	35	

The state of the s

DATA TABLE NO. 355 THERMAL CONDUCTIVITY OF Bi, Te₃ INTERMETALLIC COMPOUNDS [Temperature, T.K; Thermal Conductivity, K. Watt cm⁻¹ K⁻¹]

*	CURVE 27*	0.016	CURVE 28*	0.021		CURVE 29*	,	0. 0ZI	CURVE 30*		0.076	CURVE 31*	ĺ	0.0234		CURVE 32	0000	67.072	20	CORVE	0.0402	0.0364	0.0319	0.0290	0,0278	0.0243	0.0235	0.0232	0.0217		CURVE 34"	•	0.0240	,	CURVE 35		0.0220	
(-	CUR	311.2	CUR	300		E CE		300	CUR	1	77	CUR	{	298.2			ò	2.462	Ę		170 4	182	202.0	217.9	2:36.4	253.2	281.7	304.0	350.9	1			298.2		S		298.2	
×	CURVE 25 (cont.)	0. 036	0.0305	0.0295	0.027	0.030	0.0290	0.0268	0.0305	0.029	0.0340	0.0322	0.038	0.042		CURVE 26		0.0635	0.060	0.053	0.0465	0.040	0.0365	0.0315	0.0298	0.0278	0.0278	0.0274	0.0210	0.0210	0. 0278	0. 0335	0.0330	0, 0360	0.0398	0, 340	0.044	0.046
۲	CURVE	185.9	213.7	243.9	255.1	277.8	285.7	301.2	312. 5	333. 3	347, 2	349. 7	370.4	370. 4		5	;	80.1	85.5	9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	110 9	12.5.0	156.1	169.5	181.2	192.3	204.1	213.7	22B. H	243.9	264.6	271.7	295.7	303.0	310.6	344.8	350, 9	370. 4
74	E 22	0.0159	0.0165	0.0176	0.0184	0.0197	0. 0256	0.0266	0. 0287	0.0295	;	£ 23	0.00650	0.00653	0. 00670	0.00690	0.00710	0. 00730	0.06775	0.00963	6.0107	0.0111	, VC 31	5 2	0,00272	0, 00:314	6, 00335	0. 03398		E 25		0. 0708	0.0588	0,056	0.049	0.0452	0.041	0. 039
H	CURVE	293.2	333.2	373.2	393.2	413.2	493, 2	513.2	553.2	573.2		CURVE 23	293, 2	313.2	333.2	353. 2	373. 2	393. 2	413. 2	493.2	553.2	2.00	'ME SYCHOL		293. 2	413.2	493. 2	573. 2		CURVE		80.0	103.1	114.3	129.0	142.9	156.3	172.4
×	CURVE 15	0.299	0.136	0.071	0.029		CURVE 16	301 0	0.156	0.109	0.083	0.063 0.055		CURVE 17		0.072	•	CURVE 18"	4	0.072	5.	CONVE 13	930 0		CURVE 20		990.0		CURVE 21	!	0.0250	0. 02650	0.0262	0.0238	0.0270	0.0272	0.0274	0.0276
1	CUR	010	2 8 9	20	09		50	•	30	30	40	g 9		CUR		77		5		1.1		5	**	:	CLIR		77		CUR		293. 2	373.2	413.2	473.2	493. 2	513.2	533, 2	573.2
**	CURVE 10	0.0206	CURVE 11	0.590	6.313	0.175	0. 122	0.086	0.060		CURVE 12	0.440	0, 235	0, 143	960 .0	0.075	0.062	0.054	:	CURVE 13	i i	2	0.270	0.00	0.073	0.061	0.052		CURVE 14	!	0.400	6. 220	0, 137	0.098	0.020	0.058	0.051	
Н	COL	300	100 100 100 100 100 100 100 100 100 100	36	20	30	40	2 5	202		5	01	20	30	49	00	09	7.0			•	07	9 6	90 40	. .	99	7.0		Eno CRE		10	20	9: 9:	40	20	60	70	
. ¥	VE 5	0, 0307	0,0234	0.0196	0, 0182	0.0176		VE 6	0.0126	0.0112	0.0104	0.60956	0,00804	0.00771		VE 7		0.0043	0.00818	0, 00753	0.00695	0.00000	0.00622	0.0000	8 3/		0.0243	0.6251	0, 0259	0.0272	0.0282	0,0293		VE 3		0.0199		
۲	CURVE	152.6	205.9	250.9	276.3	300.0		CURVE 6	153.7	177.8	200.0	221.1	265.3	300.0		CURVE		153.7	177.8	200.0	224. 1		27.5. 9	300.0	CURVE		333.0	341.3	365, 0	389, 1	427.4	456.6		CURVE		300		
.	VE 1	0.0180	VE 2	0.0315	0.0295	0.0271	0.0253	0.0232	0.0207	0.0200	0.0195	0.0185		VE 3	}	0.0309	0.0252	0.0282	0.0264	0.0251	0, 0246	0.0233	0.0226	0.0223	0.0224	0, 0231	0, 0234	0.0242		VE 4		0.0287	6.0261	J. 0238	0,0225	0.0215	0.0216	0.0228
⊢	CURVE	298.2	CURVE	0.951	166.7		192. 2	213.0	245.9	261.5	278.5	298. 9		CURVE		127. 4	141.1	148.1	161.9	173.0		196. 3 200. 3	203.6	243.2	259.5	9.6	285. 2	300.0		CURVE		149.6	166.7	185.6	211.1		272 2	293. 3

Not shown on plot

SPECIFICATION TABLE NO. 356 THERMAL CONDUCTIVITY OF $B_X S_{i,y}$ INTERMETALLIC COMPOUNDS

Commosition (weight percent), Specifications and Remarks	ON THE COUNTY OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER	0.5 Ca, 0.5 Cu, 0.430 O, 0.2 Al, 0.2 Fe, 0.2 W, 0.1 Co, 0.1 W, 0.01 E, 0.5 Cu, 0.430 O, 0.2 Al, 0.0 Fe, 0.0 M, 0.014 N, 0.01 Mn, and 0.01 T; polycrystalline; 0.5 in.2 x 0.875 0.04 Cr, 0.02 Mg, 0.014 N, 0.01 Mn, and 2.01 mzade A-200 mesh supplied by Cooper in. long: prepared from anorphous bound of grade A-200 mesh supplied by Union	Michilurgical Associates and 39.37 pt. 10.2 Michilurgical Associates and 39.37 pt. 10.2 Michilurgical Associates and 39.37 pt. 10.2 Michilurgical Associates and 39.37 pt. 10.2 Michilurgical Associates and 1.0 materials (2.8 it o. 18 h) weight) reacted in a dry argon atmosphere orders were coldarat a temperature not exceeding 1330 C for 4 hrs. the boride powders were coldarate with carbon impreparted graphic plungers. machined into rectangular graphic dic with carbon impreparted graphic plungers, machined into rectangular party in 1.32, 1.56, 3.33, 6.49, 8.75, 15.4, 17.7, 21.1, and 28.2 ohm [cm] 0.617, 0.304, 1.32, 1.56, 3.33, 6.49, 8.75, 15.4, 17.7, 21.1, and 28.2 ohm [cm] polycrystalline alumina with 8 to 10% porosity used as comparative material; data polycrystalline alumina with 8 to 10% porosity used as comparative material; data corrected to zero porosity. 0.410 O. 0.2 Ca. 0.2 Ca. 0.064 H, 0.02 Fe. 0.015 N, 0.01 Ni, 0.01 Ti, 0.01 H, and 0.005 Mg; Folycrystalline; 0.5in.2 x 0.275 in. long; prepared from corrected to zero of grade A-200 mesh supplied by Union Carbide Corp., materials and 99 37 pure silicon of -200 mesh supplied by Union Carbide Corp., materials and 99 37 pure silicon of -200 mesh supplied by Union Carbide Corp., materials and 99 37 pure silicon of -200 mesh supplied by Union Carbide Corp., materials and 99 37 pure silicon of -200 mesh supplied by Union Carbide Corp., materials furnace at 1630 C for 4 hrs, dry argen wis fed into the furnace chamber during furnace at 1630 C for 4 hrs, dry argen wis fed into the furnace chamber during furnace at 1630 C for 4 hrs, dry argen wis fed into the furnace chamber during for 2 ores 1500 c and 6400 psi, machined into rectangular bar; bulk density 2.12 for 2 and 500 por sign machined into rectangular bar; bulk density 2.13 ke cm ³ , porosity 15%; porosity used as comparative material; data polycrystalline alumina with 8 to 10% porosity used as comparative material; data corrected to zero porresity.
Name and	Specimen Designation	SiB	SiB ₆
Trous a	Error, %	4.	
	Temp. Range, K	339-441	336.4.37
	Year	1963	1963
	Method Used	S	C
	Ref. No.	362	296
	Curve No.	-	0

No graphical presentation

The state of the s

DATA TABLE NO. 356 THERMAL CONDUCTIVITY OF BASIY INTERMETALLIC COMPOUNDS

Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1)

0.0904 9.0837 0.0765	2 H	0.0954 0.0925 0.0849 0.0766
378.2 411.2 441.2	CURVE	336.2 373.2 412.2 437.2

SPECIFICATION TABLE NO. 357 THERMAL CONDUCTIVITY OF CASE INTERMETALLIC COMPOUNTS

(For Data Reported in Figure and Table No. 357.)

narks	6 ohm ⁻¹ cm ⁻¹ at room	trical conductivity to the [112] plane of the	t room temperature. t room temperature.	le vacuum fractional	own by the zone recrystall) heat flow parallel to the	arallel to the [010], directiv	arallel to the [001] direction	9) direction.	arallel to the [010] directi	arallel to the [001] directive
Composition (weight percent), Specifications and Remarks	No details reported. p-type; judyerystalline specimen; electrical conductivity 0,6 obm ⁻¹ cm ⁻¹ at room temperature.	p-type; single crystal grown by zone recrystalization; electrical conductivity 0.71 chm ⁻¹ cm ⁻¹ at room temperature; heat flow normal to the [112] plane of the crystal.	As above but the electrical conductivity, 0.68 ohm ⁻¹ cm ⁻¹ at room temperature.	AS above but the electrical contacting.	distillation followed by zone refining, specimes ungot grown by the zone recrystations, ton receive the recrystation of 10.1 - 10.4 mm Hg, heat flow parallel to the tion described.	Cut from the same ingot as the above specimen, heat flow parallel to the [010], direction.	Cut from the same ingot as the above specimen; heat flow parallel to the [001] direction.	Similar to the above specimen, heat flow parallel to the (100) direction.	Cut from the same ingot at the above specimen, heat flow parallel to the [010] direction.	Cal from the same ingol as the above specimen, heat flow parallel to the [001] direction.
Name and Specimen Designation	CdS)	CdSb. No. 2	CdSb. No. 3	CdSb. No. 4	r iggs.	CdSb; 2	C.(Sh.)	C-186: 4	CdSb, 5	CulSh; 6
Reported Error. %										
Temp. Range. K	130-350	110-395	95-415	220-395	13 T E T E T	112-406	105 404	106-413	106-391	116-411
Year	1363	1962	1962	1962	1367	+96+	1964	7961 73	1964	1964
Method Used	-1		-1	- ;	-i	_				ı.
Ref.	823	4 61 21	824	R24	94. P. 1.	<u>=</u>	94.1		7 E	941
Curve No.	- 2	ю	7	ဟ	ဖ	t.	- х	; a	· =	: =

DATA TABLE NO. 357 THERMAL CONDUCTIVITY OF CdSb INTERMETALLIC COMPOUNDS [Temperature, T. K. Thermal Conductivity, k. Wattem 4 K-1]

~	CURVE 11*	0.0477	0.0407	0.0282	0.035	0.0233	20.0	0.0190	0.0187	0.0196	0.0205	0.0210	0.020	0.0198	0.0100																														
₽	CUR	901	123	153		199	316	23.5	287	309	328	349	373	395	117																														
*	8 (cont.)	0.0185	0.0189	0.0201	0 000	0.000	0.044	0.0167		VE 9*		0.0241	0.0251	0.0223	0.0205	0.0177	6,0157	9:10.0	0,0152	0.0130	0.0131	0.0127	0.0130	0.0129	0.0135	0.0141	0.0143		CURVE 10*		0.0470	0.0401	0.0331	0.0279	0.0237	0.0200	0.0190	0.0143	0.0133	0.0143	0.0191	0.0198	0.0200	0.0195	0.0187
۲	CURVE	269	292	333	351	372	107	408		CURVE		106	119	138	38	178	1 99	221	239	259	280	315	332	353	371	394	413		CUR		106	126	1	154	177	198	222	241	560	291	605	331	352	377	161
×	VE 6	0.0255	0.0229	0.0153	0 0144	0.0136	98.10.0	0.0141	0.0146	0.0157	0.0167	0.0158	0.0149		VE 7	}	0.0439	0.0393	0.0364	0.0323	0.0299	0.0292	0.0245	0.0202	· 0194	0.0188	0.0194	0.0205	0.0203	0.0195	0.0192	0.0182	0.0141		VE 8		0.0482	0.0374	6,0306	0.0243	0.0225	0.0206	0.0198	0.0188	
۲	CURVE	113	251	3 2	900	082	250	292	319	339	36:	381	401		CURVE	}	112	124	134	142	151	161	180	222	241	262	291	314	336	351	370	390	406		CURVE		107	135	3.	171	192	212	232	เรล	
¥	E 3 (cont.)	0.0234	0.0222	0.0203	0000	0.0203	5 60 0	0.0268	0.0293		CURVE 4	•	0.0502	0.0416	0.0377	0.0331	0.0597	0, 0259	0.0226	0.0192	0.0154	0.0188	0.0197	0. 0205	0.0213	0.0218	C. 0226	0.0238	0.0251	0.0264	0.0285		CURVE 5		0.0176	0.0167	0.0167	0810.0	0.0138	0.0196	0.0213	0.0221	0.0230		
Н	CURVE	185	200	250	9 6	200	200	98	395		S		95	115	120	130	140	150	165	220	250	275	285	300	310	325	355	365	380	330	415		ທິວ		220	240	260	290	310	320	360	380	560		
1 24	CURVE 1	0, 0224	0.0182	0.0163	0.00	S 50	0 0140	0.0140	0.0134	0.0132	0.0136	0.0136	0.0133		CURVE 2		0.0510	0.0444	0.0360	0. 0301	0.0264	0.0226	O. 0188	0.0159	0.0146	0.0121	0.0105	0.0100	9600 0	9600.0	0.0100	0.0102	0.0109	0.0113	0.0126		CURVE 3		0.0444	0, 0393	0.0351	0, 0331	0. 0292	0.0264	
Ħ		130	160	2 S	900	20.		1 6	26C	290	711	333	350		CC		85	100	110	120	130	150	170	195	210	240	270	280	300	315	340	360	380	400	410		DO		110	120	130	135	150	160	

Not shown on plot

SPECIFICATION TABLE NO. 357 THERMAL CONDUCTIVITY OF CASE INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 357]

Curve No.	Ref.	Ref. Method No. Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	823		1963	130-350		CdSb	No details reported,
c1	824	ı	1962	85-416		CdSb, No. 1	p-type: polycrystalline specimen, electrical conductivity 0.6 ohm 4 cm ⁻¹ at room temperature.
ო	824	7	1962	110-395		CdS), No. 2	p-type; single crystal grown by zone recrystallization; electrical conductivity 0.71 ohm ⁻¹ cm ⁻¹ at room temperature; heat flow normal to the [112] plane of the crystal.
4	824	1	1962	95-415		CdSb, No. 3	As above but the electrical conductivity, 0, 68 ohm 4 cm ⁻¹ at room temperature.
ςs	824	1	1962	220-395		CúSb, No. 4	As above but the electrical conductivity, 0.54 ohm 1 cm 1 at room temperature.
ω	940. 2 1.	1	7.5.T	113-401		Cd5h; 1	p-type single crystal; high parity Cd and Sli obtained by triple vacuum fractional distillation followed by zone refining, specimen ingot grown by the zone recrystallization method; measured in a vacuum of 10°3 - 10°4 mm Hg, heat flow parallel to the [100] direction.
	¥ ¥ 1. 5	ᆸ	796	112-406		CdSh; 2	Cut from the same ingot as the above specimen; heat flow parallel to the [010] direction.
တ	Z Z	ı	1361	107-403		CdSb; 3	Cut from the same ingot as the above specimen; heat flow parallel to the [001] direction.
თ	77 78	٦	1964	106-413		CdSb; 4	Similar to the above specimen; heat flow parallel to the (1903 div. e
10	¥ ¥	T.	1964	106-391		CoSh; 5	Cut from the same ingot as the above specimen; heat flow proof (a,b,a,b,a,b) direction.
11	ž <u>i</u>	ы.	1961	106-411		C(Kb); 6	Cut from the same ingot as the above specimen; heat flow paretist to the [001] direction.

SPECIFICATION TABLE NO. 358 THERMAL CONDUCTIVITY OF CATE INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 358]

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	3	ت	1965	240-449		CdTe; 3, 2	Stolchiometric single crystal, p-type; prepared by melting 99, 999 pure Te and Cd, mixed in a $5 \sim 6$ mm dia quartz phial with 1 mm dia x 15 mm long capillary extended at bottom end annealed at 1150 C for 48 hrs; electrical resistivity reported at 228 \sim 455 K was 17, 9 x 10f \sim 123 ohm cm; measured in a vacuum of 10f Torr.
8	94:	<u></u>	1965	124-451	t	CdTe;7	Stoichiometric polycrystalline, p-type: same production method and measuring condition as the above specimen, electrical resistivity reported as $589\sim479$ ohm cm at $134\sim485$ K.
က	340	ני	1965	168-449	۲	CdTe; 6	Single crystal, p-type; same production method and measuring condition as the above specimen; electrical resistivity reported as 41.3 x $10^2\sim 92.1$ ohm cm at $166\sim483$ K.
4	345	1	1965	148-436	t	CdTe; 9	Similar to the above specimen except electrical resistivity reported as 45, 5 x 110 4 ~ 0.273 x 10 4 ohm cm at 167 \sim 441 K.
ĸ	34:	7	1965	189-443	-	CdTe; 8, 2	p-type single crystal, some production method and measuring condition as the above specimen; electrical resistivity reported as $1.8\times10^4-337$ ohm cm at $190\sim444~K_{\odot}$
9	94.	T	1965	348-441	t~	CdTe; 10.2	Similar to the above specimen except electrical resistivity reported as 42, 7 x 10^4 \sim 1, 18 x 10^4 ohm cm at 346 \sim 433 K.
t-	2	ئ	1963	297-450		Carre	p-type; specimen 8 mm in dia, 12-14 mm long; synthesized in evacuated quartz ampule at 10 ⁻¹ mm Hg, heated to above the melting point of the component with higher melting point for 2 hrs, then heated to the melting point of the compound for 8 hrs; annealed at 700-800 C for several hrs and then cooled to room temperature.

DATA TABLE NO. 358 THERMAL CONDUCTIVITY OF CATE INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

*	CURVE 7 (cont.)	0.148	0. 143	0. 129	0, 120																																									
Ţ	CURV	330	369	424	450																																									
ᅶ	CURVE 5	0,0343	0, 0343	0, 0337	0.0329	0,0323	0, 0313	0.0301	0.0239	0.0224	0 0230	0,0262	0.0259	0.0254	0.02513	0.0247	0.0244	0,0241	0.0238	0, 0234	0.0211	0,0231	0.0231	0, 3229	0.0229	9, 0226	0.0225	0.0225		CURVE 6		0.0400	0, 0384	0, 0359	9, 0349	0, 0351	0.0340	0.0329	0, c328 ⁺	9, 0296		CURVE 7		0. 166	0, 148	
+	힑	189	200	208	$\frac{210}{250}$	220	677	243	967	276	286	294	301	308	317	325	332	339	352	357	363	372	377	383	393	411	456	443		<u>ರ!</u>		348	352	369	378	386	394	405	415	447		3		297	318	
*	CURVE 3 (cont.)	0.0295*	0.0290	0.0292	0.0289	0.0277	0.0280	0.0277	0.0280	0.0275		CURVE 4		0.0759	0.0696	0, 0623	0.0628	0.0623	0.0578	0,0510	0.0515	0.0486	0.0489	0.0469	0.0438	0.0416	0.0395	9.0382	J. 0368	0.0359	0.0354	0,0347	0, 0339	0, 03:34	0.0325	0, 032	0.0323	C. 6317	0.0314	0, 9310	0.0307	0.0307	0.0295	0.0295	0.0286	0.0288
H	5	378	387	395	402	411	413	4.0	054	449		J		148	160	163	168	174	183	196	200	212	215	227	232	241	383	272	284	297	301	309	317	323	327	332	339	342	351	357	364	368	386	101	422	435
Ma	CURVE 2 (cont.)	0,0222	0, 0206	0.0193	0.0179	0.0165	0.0160	0.0152	0.0148	0 0142	0.0138	0, 0135	0.0135	0.0128	0.0126	0.0122	0.0123	0.0114	0.0117	0.0113	0.0112		CURVE 3		0. 0711	0, 0733	0.0663	0.0638	0.0638	0.0574	0.0346	0.0528	0.0496	0.0471	0.0469	0.0445	0.0423	0.0385	0.0360	0.0327	0.0318	0. 0301	0.0300	0.0300	0.0300	
H	5			257				302	313			353	357	372	377	387			435		453					169		185	134	203	211	218	232	23:	245	258	272	289	303	322	335	359	365	369	373	
1	CURVE 1	0.02.17	0.0291	0,02-9	0, 6253	0.0277	0.0272	0, 0274	0.027	0.0256	0.025.	0, 0245	0.0245	0,024)	0.023	0, 0235	0, 022::	0.0222	0.0220	0.02I:	0.0212	0.0208	0.020	o. 0234	0.0204	0.0201	0.0201	0.0201	0.019	0,0201		CURVE 2		0.040.0	5. C	0.043	0.04	0.0396	0.0354	0.0327	0.0306	0.0284	0.0267	0.0249	0.0234	
۲	٠,	240	246	248	255	263	9 1	7.27	# / D	26.0	294	298	303	312	320	330	336	342	349	359	369	383	387	350	400	407	414	450	434	449		- 1		124	\$	143	149	155	167	177	186	196	203	202	222	

Not shown on plot

THE PROPERTY OF THE PARTY OF TH

SPECIFICATION TABLE NO. 359 THERMAL CONDUCTIVITY OF CaxPby INTERMETALLIC COMPOUNDS

(For Data Reported in Figure and Table No. 359)

Curve No.	Ref.	Method Used	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
н	878	٦.	1961	298-923		Ca _{2,10} Pb; No. 7	Seebrek coefficient (250) 177. 5 µVK ⁻¹ ; electrical resistivity (250) 1.17 x 10 ⁻³ ohm cm; figure of metrit (250) 0.68 x 10 ⁻³ K ⁻¹ ;
2	<u>%</u>	J	1961	294. 2		Ca ₂ Pb; No. 4	Seebeck coefficient (25C) 102, 3 μVK^{-1} ; electrical resistivity (25C) 5, 75 x 10 $^{-3}$ ohm cm; figure of merit (25C) 0, 258 x 10 $^{-4}$ K $^{-1}$.
ກ	<u>%</u>	Г	1961	2.98.2		Caz gPb; No. 8	Seebeck coefficient (2.33) 228, 5 μ VK ⁻¹ , electrical resistivity (250) 1, 24 × 10 ⁻² ohm cm; figure of merit (257) 0, 718 × 10 ⁻⁴ K ⁻¹ .
4	544	٦	1961	258.2		C22PU; No. 10	Seeback coefficient (25C) 109, 6 $\mu V K^{-1}$, electrical resitivity (25C) 6, 53 x 10 ⁻³ ohra cm, figure of merit (25C) 0, 575 x 10 ⁻⁴ K ⁻¹ .
S	54 8	-1	1961	298. 2		Ca _{2, 19} Pb; No. 12	Secbook coefficient (25C) 84, 8 μ VK ⁻¹ ; electrical resistivity (25C) 4, 28 x 10 ⁻³ ohm cm; figure of ment (25C) 0, 24± x 10 ⁻⁴ K ⁻¹ .

DATA TABLE NO. 359 THERMAL CONDICTIVITY OF CARPS INTERMETALLIC COMPOUNDS [Temperature, T. K. Thermal Cinductivity, k, Watt cin-1 K-1]

CURVE 1

6, 0394 9, 035 9, 0315 6, 028 9, 028 0, 025 0, 021 298, 2 623, 2 673, 2 773, 2 773, 2 873, 2 923, 2

298. 2 0, 0702 CURVE 2

CURVE 3

298, 2 0, 0573

CURVE 4

298.2 0, 632

CURVE 5

298. 2 0. 0677

Andrew Colonia (1986) Andrew Colonia Colonia Colonia (1986) Andrew Colonia (1986) Andrew Colonia (1986) Andrew

SPECIFICATION TABLE NO. 360 THERMAL CONDUCTIVITY OF CaSA INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks	Synthesized; seebeck coeff. $37 \mu v K^{-1}$ at 25 C; electrical resistivity 4.61 x 10^2 ohm cm at 25 C; figure of merit 0.742 x $10^5 K^{-1}$ at 25 C.	Synthesized; seebeck coeff. 17.4 u v K ⁻¹ at 25 C; electrical resistivity 4.29 x 10^4 ohm cm at 25 C; figure of merit 0.280 x 10^4 K ⁻¹ at 25 C.	Synthesized; seebeck coeff. 17.7 $\mu v K^{-1}$ at 25 C; electrical resistivity 8.38 x 10 ⁴ ohm cm at 25 C; figure of merit 0.114 x 10 ⁴ K ⁻¹ at 25 C.
 Temp. Reported Name and Range, K Error, 7, Specimen Designation	Ca _z sa No. 9	Ca _z Sn No. 12	Ca _z Sn No. 13
Reported Error, %			
Temp. Range, K	298.2	298.2	298.2
Year	1961	1961	1961
Method Used	1.1	-1	د
Ref. No.	8. 8.	% *	∑
Curve No.	-	61	m

DATA TABLE NO. 360 THERMAL CONDUCTIVITY OF Ca.Sn INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

T k

<u>CURVE 1°</u>
298.2 0.00256

<u>CURVE 2°</u>
298.2 0.0403

<u>CURVE 3°</u>
298.2 0.0308

No graphical presentation

PART PROPERTY

SPECIFICATION TABLE NO. 361 THERMAL CONDUCTIVITY OF CaSI INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks	Single crystal; supplied by Transitron Electronics.
Reported Name and Error, % Specimen Designation	CoSi
Reported Error, %	± 10
Temp. Range, K	326.2
Year	1959
Method Used	1
Ref.	22
Cure No.	-

DATA TABLE NO. 361 THERMAL CONDUCTIVITY OF COSI INTERNETALLIC COMPOUNDS

(Temperature, T, K: Thermal Conductivity, k, Watt cm" K"1)

CURVE 1*

326.2 0.097

No graphical presentation

SPECIFICATION TABLE NO. 362 THERMAL CONDUCTIVITY OF CUSING, INTERMETALLIC COMPOUNDS

Philipping

Composition (weight percent). Specifications and Remarks	p-type; specimen obtained by fusing ASARCO 99.999 pure elements in carbon-coated quartz tube with agitation, cooling, crushing, recasting in 8 mm uncoated quartz, and zone-leveling; electrical resistivity 1.2 - 1.8 ohm cm; melting point (with decomposition) 485 K, (measuring temperature assumed 25 C).
Reported Name and Error, % Specimen Designation	CuStae
Reported Error, %	
Temp. Range, K	298.2
Year	1962
Method	
No. No.	*
Cul	7

DATA TABLE NO, 362 THERMAL CONDUCTIVITY OF CUSASe, INTERMETALLIC COMPOUNDS

Temperature, T, K; Thermal Conductivity, k, Watt cm 1K-11

CURVE 1*

238.2 0.0170

No graphical presentation

SPECIFICATION TABLE NO. 363 THERMAL CONDUCTIVITY OF Cu3Se2 INTERMETALLIC COMPOUNDS

	Composition (weight percent), Specifications and Remarks	p-type; specimen obtained by fusing ASARCO 99.999 pure elements in carbon-coated 15 mm outside dia quartz tube with agitation, cooling, crushing, recristing in 8 mm uncoated quartz, and zone-leveling; electrical resistivity 0.1 millioim cm; melting point 355 K (decomposition), (measuring temperature assumed 25 C).
	Reported Name and Error, % Specimen Designation	Cu,Se ₂
	Reported Error, %	
	Temp. Range, K	298.2
i	Year	1962
	Method Used	
	No. No	94.4
	Curve No.	~

DATA TABLE NO. 363 THERMAL CONDUCTIVITY OF Cu5Se, INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹K ¹]

CURVE 1*

298.2 0.0240

THE PROPERTY OF

SPECIFICATION TABLE NO. 364 THERMAL CONDUCTIVITY OF GAAS INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 364]

Composition (weight percent), Specifications and Remarks	Impurities of the order of 0,0001%; p-type polycrystalline specimen ~5 mm in dia; current concentration of the order of 10 ¹⁶ cm ⁻² .
Reported Name and Error, % Specimen Designation	GaAs
Reported Error, %	2-3
Temp. Range, K	90-300
Year	1958
Method Used	1
Ref.	519
Curve	-

DATA TABLE NO. 364 THERMAL CONDUCTIVITY OF GAAS INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

0, 397 0, 391 0, 378 0, 378 0, 378 0, 378 0, 358 0,

SPECIFICATION TABLE NO. 365 THERMAL CONDUCTIVITY OF GeTe INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks	Pure: electrical resistivity 1.43 x 10 ⁴ ohin cm. Specimen 6 mm in dia and 4 mm thick; prepared from send-conducting grade Ge (electrical resistivity 40 ohm cm) supplied by Eagle Pichard Co. and semi-conducting (electrical resistivity 40 ohm cm) supplied by Eagle Pichard Co.; electrical resistivity 1.39 ush cm cm 31 300 K.
ported Name and ror, % Specimen Designation	Geте GeTe
Reported Error, %	
Temp. Range, K	300
Year	1960
Method	-
Ref. No.	24 84 8
Curve	- %

DATA TABLE NO. 365 THERMAL CONDUCTIVITY OF GeTe INTERMETALLIC COMPOUNDS

[Temperature, T, K: Thermal Conductivity, k, Watt $cm^{-1}K^{-1}$]

T k

CURVE 1*

300 0.0687

CURVE 2*

330 0.069

* No graphical presentation

SPECIFICATION TABLE NO. 366 THERMAL CONDUCTIVITY OF AUX C.1, INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 366]

Composition (weight percent), Specifications and Remarks	Cast; 1.30 cm long; 0.63 cm² cross sectional area; density 18.34 g cm-3.	The above specimen annealed for 10 hr at 200 C.	The above specimen annealed for 20 hr at 200 C.	The above specimen annealed for 30 hr at 200 C.	The above specimen annealed for 40 hr at 200 C.	Cast, 1.49 cm long, 0.62 cm2 cross sectional area; density 15.05 g cm '.	The above specimen annealed for 10 hr at 200 C.	The above specimen annealed for 20 hr at 200 C.	The above specimen annealed for 30 hr at 200 C.	The above specimen annealed for 40 hr at 200 C.	0.1858 in. dia x 2.41 in. long; successively annealed at 360 C for 30 hrs, 240 C for 110 hrs, and 220 C for 600 hrs; critical temperature lies between 337.5 and 388.2 C; electrocal resistivity reported as 4.2582, 4.3864. 4.8367. 5.2834, 5.6889, 6.2509, 6.6710, 7.2362, 8.2142, 9.3038, 10.6252, 10.6529, 11.3171, 12.1987, 13.6671, 14.0257, 14.0355, 14.0752, 14.1084 and 14.2959 your at 33.30, 43.74, 83.38, 124.04, 160.92, 211.71, 248.80, 278.71, 311.98, 345.78, 373.61, 377.93, 382.60, 385.80, 387.54, 388.19, 390.97, 395.25, 404.20, and 419.77 C respectively (selected from 76 points reported by the authors).
Name and Specimen Designation	CuAu;IV	CuAu;IV	CuAu;IV	CuAu;TV	CuAu;IV	Cu ₃ Au;II	CuyAu;II	CuAu:II	Cu₃Au;∏	CuyAu;II	CuyAu
Reported Error, %											
Temp. Range, K	488.7	483.2	420.7	473.7	395.2	445.7	493.2	401.7	470.2	403.7	407-680
Year	1957	1957	1957	1957	1957	1957	1967	1957	1957	1957	1962
Method Used		نـ ı	ב, נ	۱ ہا	-1	,,,	Ļ	ı	· ~	-	1 1
Ref.	232	2 6	233	232	232	232	232	232	232	233	477
Curve	-	٠,	. e) -1		9		. ac	e on	. 5	2 =

DATA TABLE NO. 366 THERMAL CONDUCTIVITY OF AUXCUY INTERMETALLIC COMPOUNDS

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 11 (cont.)	437.4 1.849	ი •	467.1 1.854	;; ;;	ਜ. ਲ	A67. Z 1. 858.	512.1 1.841		-i .	520.5 1.858	 	1 1.	.i	555 7 1.8417	 5 1.	7	. r.	-i -	000° 4 T 000		: .: :::	608.7 1.657	-i		629.4 1.502 630 0 1.6096	 0	655.3 1.356	662.6 1.121*	1.1	.: 1:	1.1	74.4 1.1	679.3 1.134*			
CURVE 1	488,7 0,561	CURVE 2	482 9 3 803		CURVE 3	400 7 0 774		CURVE 4	ı	473, 7 0, 816	CURVE 5		395. 2 0. 9hi	CIRVE	445.7 0.879		CURVE 7		430. 4 1.003	CURVE 8		401.7 0.745		CURVE 9	420 0 640	CURVE 10		403.7 0.946		CURVE 11	,	406.8 1.833	ري - ا	-i -	-i- x::	4:30. 9 I. 341.

Not shown on plot

mary real

SPECIFICATION TABLE NO. 367 THERMAL CONDUCTIVITY OF "IFB, INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 367.]

Composition (weight percent). Specifications and Remarks	Specimen 0.75 in. O.D. and 0.25 in. 1.D., 0.75 in. long; heat soaked at 3200 F to 3350 F; ground and politished; specimen found cracked on post inspection.	Similar to the above specimen but the specimen broke during experiment.
Reported Name and Error, of Specimen Designation	H Cb ₂ : 1	H(B ₂ ; 2
Reported Error, H	8-7.0	5-7.0
Temp. Range, K	1267-2210	1233-2297
Year	1953	1563
Method Used	g:	Œ
Ref.	4.	4 2
Curve No.	-	81

EATA TABLE NO. 367 THERMAL CONDUCTIVITY OF HIB? INTERMEDIALLIC COMPOUNDS

(Temperature, T. K. Thermal Conductivity, k, Watt em ' K-4)

CURVE 1

0, 621 0, 617 0, 467 0, 463 0, 504 0, 534 0, 535 0, 658 0, 668 0, 845 0, 841 1, 23 1, 22 1, 52 1266.5 1266.5 1126.5 1126.5 1126.5 1129.3 1189.4 1189.4 1189.4 1189.7 11

CURVE 2

0,550 0,555 0,492 0,590 0,500 0,562 0,563

1233. 2 1233. 2 1533. 2 1534. 3 1634. 3 1537. 6 1680. 9 1882. 6 1882. 6 2667. 1 2087. 9 2285. 9 2285. 9 2286. 3 2286. 3

Not shown on plot

المائية والهوي والمباعث الموساية البرية البلاميات يم ملائب كيمة المحاليا الأساء سميس بمليس امتاء بشك بداء كما

SPECIFICATION TABLE NO. 368 THERMAL CONDUCTIVITY OF 1686 INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 368]

1 309 2 309 3 309 4 307 5 303 6 302 7 7 7 9 590 9 542 11 542	o o o a - a o	1957 1957 1959 1959 1954 1958	305-678 305-678 305-678 232-446 7, 5-49 95-773	+ 10 + 10 10	InSb; A InSb; C InSb; C InSb; C InSb; C	p-type indium antimonide; single crystal; 2 x 10 ¹⁵ extrinsic electrons cm ⁻³ , weakly degenerate ever the temperature range; Firth Brown F II. steel used as reference material. n-type, single crystal; 10 ¹⁷ extrinsic electrons cm ⁻³ , weakly degenerate over the temperature range; Firth Brown F. H. steel used as reference material. n-type, single crystal; 2 x 10 ¹⁶ extrinsic electrons cm ⁻³ , stemely degenerate near
	O O A - A O	1957 1959 1959 1954 1958	305-678 305-678 232-446 7, 5-49 95-773	4 10 10 10 10 10 10 10 10 10 10 10 10 10	Jash, B Jash, C Jash Jash Jash	n-type, single crystal, 10 ¹⁷ extrinsic electrons cm ⁻³ , weakly degenerate over the temperature range; Purth Brown F.H. steel used as reference material. n-type, single erystal, 2 x 10 ¹⁶ extrinsic electrons cm ⁻³ , strongly degenerate near
	O 4 4 5	1957 1959 1954 1954	305-678 232-446 7, 5-49 95-773	0 +1	InSb; C InSb InSb InSb InSb	n-tytas, single crystal, 2 x 10 ¹⁸ extraos electrons cm ⁻³ , strongly degenerate near
	a - a o	1959 1959 1954 1958	232-446 7, 5-49 95-773		15.85 (3.87 (3.81 (3.81 (3.81 (3.81	room temperature, Firth Brown F. H. steel used as reference material.
	د <u>ه</u> د	1959 1954 1958	7, 5-49 95-773 330-770		Jn.S.) Jn.S.) Jn.S.) Jn.S.)	Single crystal; 3 x 1017 electrons cm 3, specific heat 12 cal mol 4,
	د ه	1954 1958	95-773		InSta	p-type single crystal; impurity concentration 2, 89 x 10 ¹⁷ cm ⁻³ (from thermal conductivity data); electrical conductivity 14.1 ohm ⁻¹ cm ⁻¹ at 78 K.
	د ه	1958	330-770		- True	No details reported.
	د <u>ه</u>	0301				No details reported,
	၁	Total	300-715		InSb; IS-194	Single crystal, rectangular parallepiped dimensions i 1/2 x 3/3 x 3/8 in.
		1962	308-443	₹50	InSb; E-1	n-type single crystal; donor concentration 10 ¹⁶ cm % specimen 12,3 mm dia, 7,2 mm long; measured in vacao of 5 x 10 % mm Hg.
	၁	1962	445-573	120	InSb; S-1	Similar to the above specimen,
	၁	1962	406-575	₹ 20	InSh; S-1	The above specimen measured in a magnetic field of 1000 gauss.
	J	1962	406-575	±20	InSb; S-1	The above specimen measured in a magnetic field of 2000 gauss.
13 542	၁	1962	406-575	± 20	InSh; S-1	The above specimen measured in a magnetic field of 3000 gauss.
14 542	ပ	1962	406-575	± 20	InSb; 8-1	The above specimen measured in a magnetic field of 5000 gauss.
15 542	၁	1962	44×-575	= 50	InSlu; S-1	The above specimen measured in a magnetic field of 7000 gauss.
16 542	ü	1962	406-575	¥ 20	InSh; S-3	The above specimen measured in a magnetic field of 8000 gauss.
17 611	- -	1959	196-667	4 11	InSh; We	p type single crystal; dislocation concentration 1, 6 x 10% cm $^{-3}$, measured in vacuo of \pm 5 x 10 % tore;
118 611	1	1959	196-667	प 4	InSu; Wd	n-type single crystal, dislocation concentration 1, 2 x 10^{16} cm $^{-3}$, measured in vacuo of \pm 5 x 10^{-5} torr.
19 611		1959	309 - 526	" "	InSb; Wb	p-type single crystal, dislocation concentration 3, 3 x 10^{15} cm $^{-3}$, measured in vacuo of \pm 5 × 10 5 torit.
20 825		1958	368-781		InSh	No details reported.

SPECIFICATION TABLE NO. 365 THERMAL CONDUCTIVITY OF 16.85 INTERMETALLIC COMPOUNDS

For Data Reported in Figure and Table No. 368]

Composition (weight percent). Specifications and Remarks	n-type single crystal; denor concentration 5×10^6 cm ⁻² ; specimen 2.51 cm in dia and 0.27 cm thick; measured in vacuum of $\ge 5 \times 10^5$ torr; measured in a magnetic field of zero gauss.	The above specimen measured in a magnitic field of 1000 gauss.	The above specimen measured in a magnetic field of 2000 gauss.	The above specimen measured in a magnetic field of 5000 gauss.	The above specimen measured in a magnetic field of south gauss.	Large crystals;prepared from highly pure indium and Sb-000 antinrony purified by multiple-zone recrystallization, synthesized in evacuated (10% our Hg) quartz ampoule, slowly cooled; carrier concentration 10% cm ⁻² .	0.26 In ₂ Te ₃ : prepared from highly pure indium, 56-000 antimony, and fellurium purified by multiple-zone recrystallization, synthesized in evacuated (10.3 mm Hg) quartz ampoute, slowly cooled.	$0.77~\mathrm{Lp}_2\mathrm{Te}_3$ same fabrication method as the above specimen.	1.28 In-Te ₃ ; same fabrication method as the above specimen.	Tellurium added as impurity: n-type: carrier concentration reported at 77 K as 1.4 x 10 ^H carriers per cm ² : specimen 1.4 x 3,95 mm in, cross-section; cut from single crystals with axis normal to direction of growth, sandblasted.	Germanium added as impurity; p-type; hole concentration reported at 77K as 2×10^8 holes per cm ² ; specimen 2.3 x 3.55 mm in, cross-section; cut from single crystal with rids normal to direction of growth; sandhlasted.	5 x 10.9 Zr and 5 x 10.9 Cd impurity atoms per cm ² ; p-type: single crystal; specimen 12 mm in, dia and 7 mm -12 mm high; supplied by Exotic Materials Inc.; first 8et.	Similar to the above specimen; second set.	Similar to the above specimen except for 2 x 10 % Zr impurity atoms per cm3; first set.	Similar to the above specimen; second set.	Similar to the above specimen except for 1.3 x 1018 Zr impurity atoms per cm2; first set.	Similar to the above specimen; second set.	3, 32 x 10 ¹⁸ Te impurity atoms per cm ² ; n-type; single crystal; specimen 12 mm in. dia and 7 mm - 12 mm high; supplied by Merk and Co., Rahway, New Jersey; run 1.	Similar to the above specimen; run 2.
Name and Specimen Designation	ln.Sh	InSt	InSh	InSh	InSt)	InSb	lnSh	InSh	InSh	InSb. N	InSb;P	InSb; E-2	InSb; E-2	InSh;S-5	InSb;S-5	InSh, S-4A	InSb.S-4A	InSh,S-1	InSb,S-1
Reported Error, %	21	12	2	77	12					4	C) #1								
Temp. Range, K	345-518	345-518	345-518	345-518	345-518	110-459	113-459	111-452	112-419	1.5-3.4	1.4-3. к	327,416	325-640	328-633	325-494	323-634	325-635	379-621	338-600
Year	1965	1965	1965	1965	1965	1963	1963	1963	1963	1962	1962	1965	1965	1965	1965	1965	1965	1965	1965
Method Used	íu;	(a.	; <u>sa</u>	, <u>(4</u>)	, <u>m</u>	; ₁₄	a.	1		u	ب	ပ	ပ	່ວ	ပ	ပ	ပ	υ	၁
Ref. No.	2 g	3	8	8	3	950 _. 951	950 _. 951	950	950	952	952	953	553	953	953	633	953	953	953
Curve No.	12	66	23	7.	, ¢	*	27	28	53	30	31	32	33	ž	35	36	37	æ	39

DATA TABLE NO. 368 THERMAL CONDUCTIVITY OF 1535 INTERMETALLIC COMPOUNDS

[Temperature, T, K, Thermal Conductivity, k, Watt cm-1 K-1]

**	VE 27	0.238	0.156	0.141	6,119	0.103	0.0943	0.0877*		CURVE 28		0.192	0.147	0.130	0.110	0.0909	a.0794		CURVE 29		0.156	0.108	0.0943	0,0501	0.0800	0.0775	0.0725		CURVE 30			0.4943				1.603			2, 636						
۴	CURVE	113	335	302	355	403	433	459		CUR		111	211	303	361	417	452		CUR		112	211	240	301	338	392	419		CUR	}	1.45	1.85	1.82	1.98	2,30	2.37	2,50	2.65	2.89	2 97	3.25		•		
.×	/E 21	0.087	0.088	0.086		Æ 22*		0.0867	0.0992	0.0871	0.0849		CURVE 23*		c. 0863	0.0999	0.0870	0.0820		CURVE 24*		9.0866	0.0984	0.0864	0.0836		CURVE 25		0.0863	0.0977	0.025	0.0827		CURVE 26		0.0610	0.0455	C. 0353	0.0340	0.0339	0.0353				
⊬	CURVE	345.2	468.2	518.2		CURVE		345.2	428.2	468.2	518.2		5		345.2	428.2	468.2	518.2		CLR		345.2	428.2	468.2	518.2		CUR		345.2	428.2	468.2	518.2		CUR		113	214	305	330	37.3	624	• • •			
×	CURVE 17 (cont.)	0, 133* 0, 126*	0.118	0.110	0. 109	0.100	0.0920	0.0500	0.0879	0.0837		CURVE 18		0.276	0, 236	v. 0920°	0.0900°	,	CHRVE 19°		0.149	0.142	0. 121	0.109	0, 105	0. 09H3		CURVE 20		0.158	0.148	0.130	0. 125	0.115	0.09×	0, 091	0, 085	0, 081							
H	CURVE	370, 4 400, 0	425, 5	454.5	476. 2	512. B	555, 6	588.2	625.0	666.7		CCE		196. 1	215. 1	588.2	666.7		CUS		339.0	350, 9	408.2	2. s	512. B	526.3		CUE	i	368	335	442	450	500	595	667	725	781							
*	CURVE 11	0, 122	0. 0907	•	CURVE 12		0. 121	0. 0922	0. 9903	,	CURVE 1:1		0.120	0. 106	0.0913	0.0887		CURVE 14		0.118	0.105	0.0891	0, 0863		CURVE 15		0. 103	0. 0879	0.0843		CURVE 16"		0.117	0. 103	0.0873	0. 0H32		CURVE 17	!	0.266	0, 197	0, 182	0, 159	0, 144*	;
T-	CUR	406 473	575		CUB		406	47:3	575		5		406	448	473	575		COH		406	448	47.3	575		E C		448	47.3	575		CUB		406	448	473	575		500	}	1.96.1	256.4	274.0	312. 5	344	:
×	CURVE 6 (cont.)	0, 736	0.803		CURVE 7		0.150	0.130	901.0	0.086	0.075		CURVE 8		0. 172		0.149	0.150°	0.141	0.130	0, 120	9, 118	0.105	0.100	0.0952	0.0856	0.0880	0.0830	0.0864		CURVE 9"		0. 14 8	0.122	90.108		CURVE 10		0.110	0, 0943	0.0912	;			
H	CURVE	733. 2	773. 2		CUE		330	400	200	670	770		팅		300	330	330	348	360	385	413	427	477	200	535	230	635	680	715		CC		308	406	443		CUB		445	473	573) •			
¥	5 (cont.)	10.99 8.47	10.3	10.2	10.6	10.1	9. 52	8.93	9.90	в. 70	8.47	8. 00	7.69	7. 14	6.45	6.67	90.9	5.62	5, 32	4, 85	4, 24	3,64	2.94	2.24		VE6		1. 17	1.12	0.527	0.410	0.377	0,356	0, 356	0,356	0, 377	0.410	0.444	0.469	0.485	0.531	0, 552	0.619	0. 703	
⊢	CURVE	18.3	20, 0	21.0	21.5	21.7	21.7	21.8	22. 5	24.0	25. 0	25.9	26. Ս	27.5	27.5	29. 5	30.0	32.0	33, 5	34.0	36.5	39.5	44.5	48.5		CURVE		95. 2	36.2	198.2	279.2	298.2	378.2	415.2	426.2	443, 2	473.2	513, 2	533, 2	555.2	619.2	623, 2	671.2	675.2	
×	VE 1	0.153	0, 126	0.0975	0.0820		VE 2		0.167	0.155	9.126	0.106	0.087		CURVE 3		0. 201	0.184	9.167	0, 126	0,0975		VE 4		0, 233	0.159	0.149	0. 136	0, 123	0.108	0.104		VE S		9. 25	10, 99	13, 3	13.2	12.8	12.7	12.5	11.1	12, 2	11.5	· •
T	CURVE	305	375	200	878		CURVE		305	333	407	200	67 ⁸		5		305	333	365	200	878		CURVE		231. 8	303. 4	313.0	341.9	381.8	420.3	446.0		CURVE		7.5	9.0	10.0	11.5	12. 5	14.0	14.5	15.8			•

* Not shown on plot

0.135 0.113 0.1135 0.104 0.102 0.104 0.104 0.095

SPECIFICATION TABLE NO, 369 THERMAL CONDUCTIVITY OF INAS INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 369]

Composition (weight percent). Specifications and Remarks	n-type; polycrystal; doped with extrinsic carriers of ~1018 cm ~, the doping agent (sulphur) added in the form of an In · S alloy; high grade dense alumina (calibrated against Armeo iren) used as the comparative material; data obtained from two sitteranens of the same succeived.	Similar to the above specimens but doned with 5 x 1016 extension countries	p-type; concentration of current carriers of the order of 10 ¹⁴ cm ⁻³ ; specimen ~5 mm in dis; synthesized from original materials in double evacuated quartz anpules, remelted to obtain the right form with heating rate of 100 C per hr; purified by zone melting (impurity ~0.0001%).	Pure, polycrystal, electron concentration ~: x 10 ¹⁶ cm ³ ; F.H. stainless steel (checked by Armeo 170) used as comparative material, days from these steels.	Similar to the above specimens but sulpher doped to give an electron concentration of $\sim 10^{19}$ cm $^{-3}$.
Name and Specimen Designation	InAs	InAs	IrAs	Indium Arsenide	Indium Arsenide
Reported Error, %	10	0.	2-3	ن 11	بن ب
Temp. Range, K	301-1054	302-1000	90 - 300	309-691	308-693
Year	1954 1954	1958	1958	1960	1960
Ref. Method No. Used	O	ပ	1	ပ	ပ
Ref. No.	300	300	519	578	578
Curve No.	-	63	e '	₹	ഗ

DATA TABLE NO. 369 THERMAL CONDUCTIVITY OF 10 AN INTERMETALLIC COMPOUNDS

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

*	5 (cont.)										9, 121																																		
T	CURVE				502. 2				676.2		693. 2																																		
×	3 (cont.)				0.636				0.552	0. 531	0.519		0.494		0. 502	0.510	0. 531		VE 4°	}	0.256			0.234	0. 187		0, 160	0.143	0. 131	0.114	0. 107	0.102		/E 5				₩. 17.	0. 224		0. 201				
۲	CURVE	951	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300		CURVE		309.2	331.2	335.2	339.2	490.2		453.2	493.2		597. 2	678.2	691.2		CURVE		308. 2		328, 2			100				
м	CURVE 1														0.127		0.111	0.0980	0.0960	0.102	0.0950	0,0923	0.0843	0.0860	0.0835	0.0855	9, 0320		CURVE 2		0.257		0. 167			0.077	IVE 3		906.0	0. x5x	0.816		0.753		
H	5	301.2								469.5			526.3		565.0	578.0	619.6		704.2	714.3	740.7		885.0	934.6	970.9		1053.7		50		302	333	400	200	199	1000	CURVE	Í	90	100	110	120	130	140	

Not shown on plot

SPECIFICATION TABLE NO. 370 THERMAL CONDUCTIVITY OF 1025c3 INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 370]

Samuel Considerations and Bemarks	Composition (weight percent), opening and comment		palmanustal, sometimen ~5.5 mm dia; prepared by zone melting from pure Se and In.	
		Error, % Specimen Designation		Ingles
	Reported	Error, 🧖		~2.5
		Range, K		90-270
		Year		1958
		Sed		
				519
	,			-

DATA TABLE NO. 370 THERMAL CONDUCTIVITY OF 1n₁ Se₃ INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm - K-1]

4

CURVE 1

0.0182	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	•	
96	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	

SPECIFICATION TABLE NO. 371 THERMAL CONDUCTIVITY OF In Te, LITERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 371]

Composition (weight percent), Specifications and Remarks	Polycrystal; sone parified 10-4 carriers cm 3, suscimen 25,5 mm die	Zone relined.
Reported Name and Error, % Specimen Designation	In, Te,	In ₂ Te ₃
Reported Error, %	2-3	
Temp. Range, K	90-270	80-385
Year	1958	1958
Method Used	1	
Ref.	519	825
Curve	1	2

DATA TABLE NO. 371 THERMAL CONDUCTIVITY OF 1n, Te, INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

VE 1	038	036	0. 0339	032	035	3	930	670	029	028	028	027	6	62	9	92	9	05	VE 2	015	013	1	5	0.0116	10	;
CURVE	90	92 5	120	130	140	C.	091	170	180	190	500	210	220	230	240	250	Ö	270	CURV	οō.	125	ō:	ΞŌ.	313) x	•

SPECIFICATION TABLE NO. 372 THERMAL CONDUCTIVITY OF Lase Intermetallic compounds

For Data Reported in Figure and Table No. 372]

Composition (weight percent), Specifications and Remarks	NaCl type compound with nonc-metallic type bending; prepared by pressing powders of the compound under a pressure of about 800ckg.m ² ; sintering in a vacuum of~10 ⁵ . Torr for 1 to 2 brs. at 1600 to 1800 c. electrical resistivity reported as 2.12~6.63 in ohm on in the range 6.451 k. measured in a vacuum of 10 ⁶ × 10 ⁵ km Hz
Reported Name and Error, 7° Specimen Designation	LaSe
Reported Error, "	40 - 45
Temp. Runge: K	82 A 49
Year	1966
irve Ref. Method vo. No. Used	i i
Ref. No.	932,
Curve No.	_

DATA TABLE NO. 372 THERMAL CONDUCTIVITY OF LASe INTERMETALLIC COMPOUNDS

[Temperature, T, K, Thermal Conductivity, k, Watt em-1 K-1]

CURVE 1

82 0.150
97 0.156
109 0.161
128 0.169
148 0.176
199 0.195
201 0.195
213 0.199
236 0.204
318 0.223
331 0.223
338 0.223
349 0.238
445 0.241

SPECIFICATION TABLE NO. 373 THERMAL CONDUCTIVITY OF 'a Te INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table 373]

Composition (weight percent). Specifications and Jemarks	NaCl type compared with ionic-metallic type bending; prepared by pressing powders of the compound under a pressure of about 8000 kg cm ⁻¹ , sintering in a vacuum of $\sim 10^{-3}$ for far 1 to 2 hrs at 1600 to 1800 c. electrical resistivity reported as $1.70 \sim 5.29$ to the range $M \sim 46.3$ K; measured in vacuum of $10^{-4} \sim 10^{-4}$ mm Hg.
Reported Name and Error, W. Specimen Designation	LaTe
Reported Error, **.	±3-15
Temp. Range, K	81-457
Year	1966
Method Used	ı
Ref. No	932. 933
Curve	-

DATA TABLE NG. 373 THERMAL CONDUCTIVITY OF LATE INTERMETALLIC COMPOUNDS

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

SPECIFICATION TABLE NO. 374 THERMAL CONDUCTIVITY OF P5T6 INTERMETALLIC COMPOUNDS

(For Data Reported in Figure and Table No. 374)

Composition (weight percent). Specifications and numerus	Single crystal; hole concentration 2 x 10 ¹⁹ cm ⁻³ ; thermal conductivity calculated from measurements of thermal diffusivity using specific heat values of Parkinson and Quarrington at temperatures higher than room condition, and using 12 cal mole ⁻¹ for temperatures less than room condition.	Data determined by the same method (Improved) as the above.	Polycrystal: electrical conductivity at room temperature, $q = 60$ onm cm.	Similar to the above specimen but $\sigma = 1/40$ onm cm.	Similar to the above specimen but $\sigma = 1200$ ontains cm.	Similar to the above specimen but $\sigma = 430$ ohm.	Similar to the above specimen but $\sigma = 60$ ohm? cm?.	p-type: density 8, 15 g cm ⁻³ .	n-type; density 8, 15 g cm ⁻³ .	p-type stoichiometric single crystal; prepared by melting 99, 999 pure Pb and 1e in a 6 mm dia quartz phini (to which a 1 mm dia x 15 mm long capillary was attached) ander a vacuum of 10.2 Torr at 1000 C for 100 hrs. ameeled at 200 C for 4 to 8 hrs. under a vacuum of 10.2 Torr at 1000 C for 100 hrs. ameeled at 200 C for 4 to 8 hrs. electrical resistivity reported as 0.0144, 0.0233, 0.0142, 0.0160, 0.0187, 0.0230, 0.0274, 0.0324, 0.0476, 0.0622, 0.0735, 0.0963, 0.119, 0.146, 0.174, 0.220, 0.277, 0.312, 0.365, 0.407, 0.406, and 0.219 ohm cm at 113, 122, 132, 183, 175, 191, 211, 234, 275, 301, 313, 336, 357, 382, 394, 415, 450, 478, 493, 508, 658, and 794 K respectively.
Name and Specimen Designation	Pb Te	PbTe	Pb Te	₽bTe	Pb Te	PbTe	P5 Te	Pb Te	PbTe	PbΤc
Reported Error, %										
Temp. Runge. K	112-647	150-700	193-302	170-300	92-446	90-440	79-344	350-700	350-700	106-451
Year	1959	1958	1957	1957	1957	1957	1957	1961	1961	1966
Method Used	۵	Δ.	ں	د	ü	-1	ı		ت	د ۱
Ref.	307	380	381, 329	381, 329	381,329	381, 329	381, 329	548	840	5. 4. 25.
Curve	1	64	n	4	c	9	7	œ	σ	01

Toward a compared to the control of control

DATA TABLE NO. 374 THERMAL CONDUCTIVITY OF 19 INTERMETALLIC COMFOUNDS [Temperature, T, K; Thermal Conductivity, k, Watt cm 4 K-1]

4	CURVE 10 (cont.)	0.6184	0.0130	0.0177	C. 0174	0.0173	0.0169	0.0167	0.0167*	0.0167	0.0165	0.0160	0.0158	0.0156	0.0157	0.53	0.0154	0.0155	0.0157	0.0159	0.0163	0.0166																							
۲	CURV	220	229	242	260	272	281	296	300	308	318	333	342	352	359	368	371	397	408	433	445	451																							
*	CURVE 7	0.0837	0.0741	0.0720	0.0703	0.0586	0.0548	0.0343	0.0310	0.0297	0.0335	0.0293	0.0230	0.0226	0.0224	0.0238	0, 0226		CURVE 8		0.05	0.0175	0.015	0.0135	0.013		CURVE 9	[0.0205	0.0195	0.0175	0.0165	0.016		CURVE 10		0.0232	0.6226	0.0224	0.0219	0.020	0.0204	0.0195	0000	00.00
٦	CO	79	88	88	92	100	108	197	200	206	208	216	295	310	317	338	344		ca		350	400	200	009	200		CC	İ	350	400	200	909	700		DO.	1	106	124	139	149	165	175	2	3 2	F 0
м	CURVE 5 (cont.)	0.0343	0.0335	0.0257	0.0256	0.0257	0,0257	0.0257	0.0259	0,0256	0.0358	0,0256	0.0257	0.0259	0.0260	0.0310	0.0305	0.0300	0.0314	0, 0322	0.0318		CURVE 6	{	0,0690	0,0607	0.0515	0.0477	0.0326	0.0297	0.0310	0.0301	0.0272	0.0243	0.0241	0, 0258	0.0234	0.0230	0.0239	0.0272	0.0293				
H	CURV	205	212	302	303	323	342	350	376	382	385	390	386	405	410	420	427	430	435	4	446		CO	}	06	95	107	113	200	50	210	224	230	300	307	314	346	394	400	431	440				
W	CURVE 1	0.0791	0.0460	0.0283	0.0209	0.0172	0.0146	0.0125	0.0120	0.0115	0.0119	0.0125	0.0130		CURVE 2		0.0361	0.0248	0, 0135	0.0113	0,00937	0.00887	0.00849		CURVE 3)	0,0314	0.0226	0.0218		CURVE 4		0, 0523	0.0427	0, 0351	0.0297		CURVE 5		0. 0770	0.0728	0.0686	0.0565	9920 0	
Ħ	CO	112.2	185.8	237.2	308. 1	364.9	427.7	483. 1	523.7	94T.9	576. 4	620.0	647.0		50		150	200	300	40 0	200	909	200		ino Cri		193	252	302		500		170	195	252	300		SCO	!	92	8	103	126		3

* Not shown on plot

SPECIFICATION TABLE NO. 375 THERMAL CONDUCTIVITY OF Mg,Sh, INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks	Specimen propared by fusing in an inert atmosphere, Mg (electrical conductivity σ , 22.4 x 10° ohm 'em' 1 at 20 C and thermal conductivity k, 1.548 watt cm' 1 k' 1 at 25 C) and 8b $(\sigma = 2.57 \times 10^6$ ohm 'em' 1 at 20 C and k = 0.184 watt cm' 1 k' 1 at 25 C); and 8b $(\sigma = 2.57 \times 10^6$ ohm 'em' 1 at 20 C and k = 0.184 watt cm' 1 k' 1 at 25 C); annealed at 500-600 C for 10-12 hrs; electrical conductivity 0.77 x 10° ohm 'em' 1 at 20 C.	As above except the electrical conductivity, 0.36 x 104 at 20 C.	As above except the electrical conductivity, 0.30 x 104 at 20 C.	As above except the electrical conductivity, 0.22 x 10th at 20 C.
Reported Name and Error, % Specimen Designation	Mg-50 ₂ : 1	Mg,Sb ₂ ; 2	Mg,Sb ₂ : 3	Mg,Sb ₂ : 4
Reported Error, %	9 4	9 '	9 7	9 <
Temp.	333.2	333.2	333,2	333.2
Year	1948	1948	1948	1948
urve Ref. Method				
Ref.	\$ 5	547	7.	547
Curve	-	8	က	4.

DATA TABLE NO. 375 THERMAL CONDUCTIVITY OF MR,Sb, INTERMETALLIC COMPOUNDS

{Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1}

T k

333.2 0.0502 CURVE 2*

333.2 0.0360

CURVE 3

333,2 0.0209

CURVE 4* 333.2 0.0109 No graphical presentation

SPECIFICATION TABLE NO. 376 THERMAL CONDUCTIVITY OF ME, GU INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 376]

	re P. J. J. J. J. J. J. J. J. J. J. J. J. J.
Composition (weight percent). Specifications and Remarks	Stoichiometric composition; polycrystalline; 2.34 cm² x 1, 61 cm long; prepared by fusion of the transistor grade Ge obtained from Eagle Picher Company and 99, 99+ pure sublimed Mg from Dow Metal Products Company, materials weighed and loaded into a graphite erucible, put into a stainless steel tube, evacuated, heated to 500-600 C in an induction furnace, cooled back to room temperature. filled the system with argon to a pressure of 20 psia, heated rapidly to 30-40 C above the melting temperature of pressure of 20 psia, heated rapidly to 30-40 C above the melting temperature of socked for about 5 min. placed the system near the end of the furnace which was then socked for about 5 min. placed the system near the end of the furnace which was then at 15 C hr¹ to a temperature 15 C below the freezing temperature, specimen held at 30 C helow the freezing temperature for about 12 hrs, then cooled to room temperature at 30 C helow the freezing temperature
Year Range, K Error, % Specimen Designation	Mg, Ge
Reported Error, %	9 +
Temp. Range, K	2 80-56 1
Year	1963
Curve Ref. Method	
Ref.	955
Curve	-

DATA 'TABLE NO. 376 THERMAL CONDUCTIVITY OF Mg,Ge INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1																					c. 0410									
3	380	299	312	324	326	340	352	356	37.7	386	398	409	417	431	442	450	458	467	478	484	461	205	505	517	524	53. 24.	240	5.7	553	261

SPECIFICATION TABLE NO. 377 THERMAL CONDUCTIVITY OF MK2 SI INTERMETALLIC COMPOUND

(For Data Reported in Figure and Table No. 377)

Curve

Composition (weight percent), Specifications and Remarks	Stoichlometric composition; polycrystalline; 1,57 cm² x 1,61 cm long; prepared by fusion of the transistor grade Si from Allegheny Electronic Chemicals Company and 90,99 pure sublimed Mg from Dow Metal Products Company, materials weighed (with 1% excess of Si) and loaded into a graphite crucible, put into a stainless steel tube, evacuated, heated to 500 ~600 C in an induction furnace, cooled back to room temperature, filled the system with argon to a pressure of 20 pera, heated rapidly to 30 ~ 40 C above the melting temperature), soaked for about 5 min, placed the system nor the end of the furnace, which was then cooled at 15 C hr 1 to a temperature 15 C below the freezing temperature, specimen held at 30 C below the freezing temperature, specimen held at 30 C below the freezing temperature to room temperature at about 100 C hr 1.
Name and Specimen Designation	MRASi
Reported	ю 4
Temp. F Range, K	281-580
Year	1963
Method Used	1
Ref. No.	955

DATA TABLE NO. 377 THERMAL CONDUCTIVITY OF MESSI INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1 K-1]

!	
	[1]
	8
	51
	Ol

0. 0836 0. 0729 0. 0793 0. 0747 0. 0791 0. 0704	0, 0666 0, 0647 0, 0633 0, 0633 0, 0536 0, 0539 0, 0539 0, 0539 0, 0539	0.0507 0.0507 0.0494 0.0450 0.0472 0.0451 0.0451	0.0414 0.0420 0.0412 0.0413 0.0411 0.0401 0.0398
281 294 304 317 328 338 348	357 365 381 388 388 388 403 420 427 427	407 409 489 496 504 519 538	541 552 553 565 571 578 860

achara in ma Eala a lear a de a de antima da se le minima de se combinar de de se combinar de la combinar de s

SPECIFICATION TABLE NO. 378 THERMAL CONDUCTIVITY OF MR2 Sn INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 3785]

Composition (weight percent). Specifications and Remarks	n-type single crystal; specimen in circular form 12, 5 mm in dia and 7, 2 mm long; measured in a pressure of 5 x 10 ⁻⁵ mm Hg. Inconel 702 used as comparative material.	The above specimen measured with magnetic induction of 8000 gauss; Inconel 702 used as comparative material.
Reported Name and Error, % Specimen Designation	Pt-2; Mg ₂ Sn	P1-2; Mg2Sn
Reported Error, % Spe	±20	627
Temp. Range, K	101-298	100
Year	1962	1962
Method	ပ	ပ
Ref.	242	542
Curve No.	-	çı

and the second second

DATA TABLE NO. 378 THERMAL CONDUCTIVITY OF MR1 SN INTERMETALLIC COMPOUNDS

[Temperature, T, K: Thermal Conductivity, k, Watt cm-1 K-1]

CURVE 1

0.0671 0.0697 0.0604 101 181 298

990.0 103

SPECIFICATION TABLE NO. 379 THERMAL CONDUCTIVITY OF HISE INTERMETALLIC COMPOUNDS

A STATE OF THE STA

emarks	respectively.
Specifications and R	hm ⁻¹ cm ⁻¹ at 25 and
Composition (weight percent). Specifications and Remarks	Electrical conductivity 1840 and 1870 ohm cm 1 at 25 and
Reported Name and Error, % Specimen Designation	H _K Sc
Reported Error, %	0.2-3.0
Temp. Range, K	394.2
Year	1954
Method	1,0
Ref.	39%
Curve	<u> </u>

DATA TABLE NO. 379 THERMAL CONDUCTIVITY OF HgSe INTERMETALLIC COMPOUNDS [Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1*

298.2 0.0176

No graphical presentation

SPECIFICATION TABLE NO. 380 THERMAL CONDUCTIVITY OF HgTe INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 380]

	Composition (weight percent), Specifications and Remarks	Single crystal; specimen ~0.1 x 0.1 x 0.1 in. p-type polycrystalline specimen 2 x 4 x 10 mm; prepared from 99.99° Hg and 99.999 Te; supplied by American Smelting and Refining Co.; acceptor concentration about 1.5 x 10 ⁴⁸ cm ⁻³ ; melting point ~680 C.	p-type; impurity concentration ~3 x 10^{17} cm ⁻³ , measured in a vacuum of ~10° mm HK.	p-type; impurity concentration $\sim 5 \times 10^{11}$ cm ⁻³ ; measured in a vacuum of $\sim 10^4$ mm Hg.	p-type; impurity concentration ~ 10.19 cm '; measured in a vacuum of ~ 10 mm as.
	Name and Specimen Designation	HgTe; No. 18 HgTe			
	Reported Error, %	್ #	છ	9	ဖ
	Temp. R Range, K	91-276	196~330	207-431	57 4 27
i	Year	1960 1958	1965	1965	1965
	Curve Ref. Method No. No. Used	ب د	1	<i>د</i> .	د
	Ref.	520	957.	955 957 957	957 958
	Curve No.	- ~	ო	4	S

DATA TABLE NO. 380 THERMAL CONDUCTIVITY OF HRIE INTERMETALLIC COMPOUNDS [Temperature, T, K; Thermal Conductivity, k, Wait cm ⁻¹ K ⁻¹]

The state of the s

.	CURVE 5	6.1012	0.1001	0.0380	0.0282	0.0244	0.0254	0.0227	0.0230	0.0219	0.0197																										
۲	Ο,	97	108	219	271	292	309	328	337	402	427																										
1	CURVE 1						0.0512	90.0	0.0300		CURVE 2	0.283	0.210	0. 129		0.0790	0.0650	0.0510				0. 3230	CURVE 3	0.0456	0.0364	0.0353	0.0282	6.0271	CURVE 4	0000	0.0380	0.0421	0.0361	0.0282	0.0233	0.0213	0.0224
H	CO.	90.9	103.1	113.4	128.2		170.9	206.2	276.2		딍	ŝ	99	08	62	308	120	139. 5	180	192	239	301. 5	5	196	212	246	295	330	B		202	777	241	291	X	Ş	72

* Not shown on plot

THE PARTY OF THE P

SPECIFICATION TABLE NO. 381 THERMAL CONDUCTIVITY OF MoSi, INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 381]

Composition (weight percent), Specifications and Remarks	Supplied by General Electric Co.; run No. 1.	The above specimen; run No. 2.	Hot pressed; 0.5 in. dia; supplied by NACA; density 6.08 g cm 3; stainless steel used as standard.	Similar to the above except density 6.02 g cm ⁻³ .	Slip cast; 1 in. dis, 1 in. thick; density 5.80 g cm ⁻³ ; measured in a He atmosphere.	Molybdenum distincte; 62.0 Mo, 36.35i, 1.0 Fe, and 0.8 O; furnished by NACA; hotpressed; density 6.08 g cm ⁻³ (97.5% of theoretical density); stainless steel used as comparative maternal.	Similar to the above specimen except density 6.02 g cm 2 (96.5% of theoretical density).	Molybdenum distlictet, 62.0 Mo, 36.3 St, 0.8 Fe, 0.5 O, 0.34 N, and 0.17 C; specimen 3.5 in. long and 0.5 in. in dia; supplied by Lewis Flight Propulsion Lab; density 6.12 g cm ⁻³ (98% of theoretical density).	Molybdenum distlicte; 62. 4-62. 8 Mo, 36. 6-36. 7 St, and 0. 5-1. 0 Te; estimated composition; specimen 0.5 in. in dia and 71n. long; hot-pressed from nonuniform powder and etched with a solution containing 17% HCl and 8% HNO; for 70 min; density ~5. 91 g cm ² ; nickel used as comparative material.
Name and Specimen Designation	MoSi ₂	MoSi ₂	MoSi ₂ ; 1-tc	MoSi2; 2-tc	MoSi2	MoSig; 1-tc	MoSi2; 2-tc	McSi ₂ ; 5-tc	MoSi ₂
Reported Error, %			\$	،	35	\$	so V	10	
Temp. Range, K	424-1517	426-1513	449-1074	471-1097	437-2058	449-1074	471-1097	607-1062	404-840
Year	1954	1954	1954	1954	1961	1954	1954	1954	1950
Method Used			ပ	ပ	æ	ပ	O	J	v
Ref.	575	575	576	576	€14	576	576	571	572
Curve	-	8	ဗ	4	S	ø	Ľ-	- Φ	o,

DATA TABLE NO, 381 THERMAL CONDUCTIVITY OF MOSI, INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K-1]

T	CURVE 7 (cont.)*	.0	Ö	669, 3 0, 332	983. 2 6. 321	ö		CURVE 8*		607.3 0.389	<u>.</u>		664.5 0.368	666.1 0.364	703, 2 0, 354	9	0	6	ó	3 0.	.0	5 0.	0	6 0.	.9 0.30	1061.6 0.297		CURVE 9		0	0.	°	٥. 0.		520.3 0.520		2 0.	Ġ		ö	8 0.
T *	CURVE 4"	6 0.	Ö	580. 5 0. 384	_	778.7 0.346	oʻ	Ö	1097. 0 0. 317		CURVE 5			542. 1 0. 375		0	9	3 0	9 0.1	5 0.	0	÷.	7 0.11	0. 121		CURVE 6*		9	က က	5 0.	8 0.	9	s 0.	957.1 0.320	1073.8 0.317		CURVE 7*		470.6 0.423	517, 4 0, 402	5 0.
T	CURVE 1	Ö	506. 2 0. 423	630, 7 0, 387	781.2 0.356	825. 2 0.318		1033. 2 0. 255		1093, 2 0, 248	o	ن د	2 0.1	1517.2 0.159		CURVE 2		2 0.		-	.0	2	2 0.	.2 0.	2 0.	.2	61 61	0	.0	1513. 2 0. 126		CURVE 3		448.8 0.443	491.3 0.422	552, 5 0, 397	∞	6	.8		1073.8 0.317

SPECIFICATION TABLE NO. 382 THERMAL CONDUCTIVITY OF NISB INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 382]

Composition (weight percent). Specifications and Remarks	Specimen 7 x 7 x 30 mm; electrical resistivity 3.45, 8.01, 8.78, 9.97, 10.75, 10.42, 11.55, 10.06, 14.80, 14.76, 16.15, and 16.68μ ohm cm at 79,214, 241, 274, 281. 289, 325, 376, 416, 424, 474 and 483 K respectively.
Reported Name and Error, % Specimen Designation	NiSb
Reported Error, %	
Temp. Range, K	93456
Year	1966
Method Used	
Ref.	959
Curve	-

DATA TABLE NO. 382 THERMAL CONDUCTIVITY OF NISS INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm 4 K 4]

4

1	9	9	Ç٠	~	~	t-	0.741	~	φ	9
5	93	130	205	229	240	298	311	340	412	466

SPECIFICATION TABLE NO. 383 THERMAL CONDUCTIVITY OF Repast intermetallic compounds

Composition (weight percent). Specifications and Remarks	Electrical resistivity 1.10 x 10^3 ohm cm at 30 C.
Reported Name and Error, % Specifical Designation	Re ₃ As ₁
Reported Error, %	
Temp. Range, K	303.2
Year	1961
Method Used	
Ref.	095
Curve No.	-

DATA TABLE NO. 383 THERMAL CONDUCTIVITY OF Re348, INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

T k

303.2 0.024

o No graphical presentation

And the second s

Specification table no. 384 Thermal conductivity of $Re_\chi Ge_y$ intermetallic compounds

Composition (weight percent), Specifications and Remarks	Hot pressed at 1700 F; density 8.68 g cm ⁻³ ; electrical resistivity 1079, 1601, 1721, 1761, 1810, 1763, 1717, 1774, 1736, 1794, 1743, and 1695 µ ohn cm at 25, 44, 79, 90, 120, 143, 165, 170, 204, 224, 259, and 283 C, respectively.	lectrical resistivity 1.55 x 10 ⁻³ ohm cm at 30 C.
	Hot pressed at 170 1761, 1810, 176 90, 120, 143, 1	Electrical resistiv
Reported Name and Error, % Specimen Designation	ReGe	RuGez
Reported Error, %		
Temp. Range, K	393-263	303.2
Year	1961	1961
Method		
Ref. No.	574	096
Cu r e No.	1	%

DATA TABLE NO. 384 THERMAL CONDUCTIVITY OF REXGE, INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm"'k"]

T K

CURVE 1¢
393.2 0.050
418.2 0.055
433.2 0.065
563.2 0.060
563.2 0.063

CUNVE 2°
303.2 0.072

No graphical presentation

SPECIFICATION TABLE NO. 355 THERMAL CONDUCTIVITY OF ReSective RATERMETABLIC COMPOUNDS

, For this Report, On Figure and Table No. (385)	Composition (weight percent). Specifications and Remarks	Very faint trace of St. electrical resistivity reported as 130%, 819, 650, 773, 773, 976, 660, 773, 61, 513, 513, 513, 523, 257, 263, 304, 257, 25, 257, 25, 257, 257, 257, 257,	Very faint trace of St. electrical resistivity reported as 470, 269, 110, 8, 30, 55, 15, 15, 15, 15, 17, 110, 8, 30, 13, 121, 121, 111, 111, 111, 111, 111,	Electrical resistivity 2000 ohm cm at 30 C.
, For Data Reporte tin F	ported Name and rror, ", Specimen Designation	ReSex	ReSey	ReSes
	Reported Error, "			
	Curve Ref. Method Year Range, K Err	1961 423-873	59×-763	303. 2
	Year	1961	1961	1961
	Method			
	Feef.	F15	15	096
	S S		:1	rt

DATA TABLE NO. 385 THERMAL CONDUCTIVITY OF RUSe, INTERMETALLIC COMPOUNDS

(Temperature, T,K. Thermal Conductivity, k, Watt cm7K1)

•		

CURVE

0.081	0.080	080.0	0.035	9,082	S. 0.3x	080.0	0.080	0.031	0.031	180.0
				603.2						

CURVE 2

0.00	0.050	0.040	0,040 0,040 0,050
			608.2 665.2 763.2

CURVE 3

6 2.3

SPECIFICATION TABLE NO. 386 THERMAL CONDUCTIVITY OF ARSUTY, INTERMETALLIC COMPOUNDS

A STATE OF THE PARTY OF THE PAR

(For Data Reported in Figure and Table No. 386)

p-type; prepared from elements in an ivacuated quartz ampoule by heating to 700 C, mixing and cooling at ~5 C min-1; electrical resistivity reported as 5,04, 5,00, 4,58, 5,14, 4,44, 4,63, 4,56, 3,94, 4,15, 3,91, 4,35, 3,83, 4,24, and 4,07 milliohn cm s 25, 85, 110, 168, 182, 224, 260, 260, 275, 386, 361, 403, 410, and 478 C, respectiv	AKSLTe ₂		30-300	1959	,	1	-
Composition (weight percent). Specifications and Remarks	Reported Name and Error, % Specimen Designation	Reported Error, %	Temp. Range, K	Year	Method Used	Ref. No.	Curve No.

DATA TABLE NO. 386 THERMAL CONDUCTIVITY OF ARST Ter INTERMETALLIC COMPOUNDS [Temperature, T. K. Thermal Conductivity, K. Watt cm-1 K-1]

CURVE 1

30 0.0068 125 0.0095 195 0.0078 273 0.0100 300 0.0107

SPECIFICATION TABLE NO. 387 THERMAL CONDUCTIVITY OF Ag Cu INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks		Specimen ~ 5 cm lang with cross section 0.3 cm ² ; made from Cu (<0.63 of total impurity) supplied by Baker, fused with Ag (99.9 pure); electrical conductivity 4.46 x 10^6 ohm ⁻¹ cm ⁻¹ at 25 C.
Name and	rot, a openine Resignation	
Reported	51101, 4	
Temp.	mange. A	335, 2
Year		1925
Method	0364	J
Surve Ref.		230
Curve	9	7

DATA TABLE NO. 387 THERMAL CONDUCTIVITY OF AR CU. INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm7'K71]

H

335.2 3.14

No graphical presentation

SPECIFICATION TABLE NO. 388 THERMAL CONDUCTIVITY OF Ag, Sc. INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 388]

Composition (weight percent), Specifications and Remarks	Steichlometric crystalline; 12 mm dia x 19.1 mm long; prepared from 99.999 + Se and 99.99 + Agfrom American Smelting and Refining Co., melted in carbon coated quartz type, eye the content of a mm if g heated at 1050 ~ 1100 C for 16 hrs; electrical types of the common of the coatest of the common of the common of the common of the common of the coatest of the common of the coatest of the common of the coatest	Polycrystalline; prepared by melting appropriate amounts of pure elements in a quartz polycrystalline; prepared by melting an graphite boat under controlled vapor pressure at a tube. floating zone melting in a graphite boat under controlled vapor pressure at a speed of 0.5 mm min ⁻¹ for about 25 passages, slowly cooled 15 ~ 10 degree h ⁻¹ , to 150 speed of 0.5 mm min ⁻¹ for about 25 passages, slowly cooled 15 ~ 10 degree h ⁻¹ through the transition temperature (133 C), below the transition temperature the specimen annealed for several hrs; carrier concentration 1.2 x 10 ¹⁸ cm ⁻³ ; electrical resistivity reported as 0.468 ~ 1.98 milliohm cm in the range 85 8 ~ 621.1 K.	Polycrystalline; same fabrication method as the above specimen; carrier concentration 1.5 x 10^{10} cm ⁻³ ; electrical resistivity reported as $0.462 \sim 1.33$ milliohm cm in the range 85.6 ~ 632.9 K.	Polycrystalline; same fabrication method as the above specimen; carrier concentration 5.7 x 10 T cm 3 ; electrical resistivity reported as 0.533 \sim 2.89 milliohm cm in the range 80.4 \sim 645.2 K.	Polycrystalline; same fabrication method as the above specimen; carrier concentration $1.2\times10^{19}\mathrm{cm^{-3}}$.	Polycrystalline; same fabrication method as the above specimn, carrier concentration 1, 0 x 10^{18} cm ⁻³ .	n-type, specimen 8 mm in dia and 12-14 mm long; synthesized in evacuated quartz ampule at 10 ⁻⁴ mm Hg, heated to above the melting point of the component with higher melting point for 2 hrs, then heated to the melting point of the compound for 8 hrs; amenied at 790-800C for several hrs and then cooled to room temperature.
Name and Specimen Designation	AgSe	Ag ₂ Se;S1	Agse;H1	Ag ₂ Se;H2	Ag ₂ Se;H3	AR2Se;F1	A8:50
Reported Error. %		ശ	S	ស	S.	Ŋ	
Temp. Range. K	2K8-373	199-385	84-389	80-585	112-588	80-395	315-451
Year	1960	1962	1962	1962	1961	1962	1963
Method	a a	د	a)	1	-1	نہ	-i
Ref.	551	963	963	963	963	1:96	943
Cure	-	м	က	4	တ	9	t-

DATA TABLE NO. 388 THERMAL CONDUCTIVITY OF AGESC INTERMETALLIC COMPOUNDS

(Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹ K⁻¹)

Η Υ	CURVE 5	1 0.01	oj o	6.	÷ د	4	9	.8 0.027	537.6 0.0279	4	588, 2 0, 0263		CURVE 6		79.9 0.	9 0.010	7 0.011	5 0.01	6 0.	2 0.	0	0.05	93.7 0.0	395, 3 0, 0260		CURVE 7		ò	oʻ	j	⇒	oi :	463 0.0530	;												
×	VE 1	0.0089	0.0010	0.0078	0.0089	0.010		VE 2		0	0.0146	0.0151	5	0.0149	_	022			VE 3		5	5		5	3	Ξ		020	٠.	0.0236		VE 4	0.0120	; 5	200	, ,					0.0269	0.0266	Э.	0.23	0.0210	
Ţ	CURVE	288	313	928	25.	373		CURVE			હુ	274.7		_	-	-	384.6		CURVE		eri.	197.6	257.7	277.0	312, 5	330.0	348.4	366.3	ċ	389. 1		CURVE	6 - 30 I	920.	277 4	0.44.0	334. 4	357. 1	380. 2	387, 6	427.4	446.4		٠.	584. 8	

SPECIFICATION TABLE NO. 389 THERMAL CONDUCTIVITY OF AGATCY INTERMETALLIC COMPOUNDS

DATA TABLE NO. 389 THERMAL CONDUCTIVITY OF AR_XTe_y INTERMETALLIC COMPOUNDS {Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹K⁻¹}

o(ohmcm)⁻¹ k	CURVE 34 T = 298.2	537 0.0125 1247 0.0159	1495 0.0192 1766 0.0172								
O(ohm cm)'' k	$\frac{\text{CURVE}}{T=298.2}$	140 0.0079 202 0.00815	$\frac{\text{CURVE } 2^n}{T=298.2}$	258 0.0081	274 0.0065	258 0.00809	720 0.0125	1050 0.0165	1370 0.01723	1400 0.0182	1497 0.0164

^{*} No graphical presentation

البالياري الموسوق والهوال الألواط ويوهدون المراجاة والموسولة والمهولة والمراجع يترافه المال عمد فسمت للمدر سماما المدرسمان سما

SPECIFICATION TABLE NO. 390 THERMAL CONDUCTIVITY OF STASI TELEGRALIC COMPOUNDS

Considerations and Remarks	Composition (we come to the composition of the comp	Synthesized; seebeck coeff. 21.1 μ v K ¹ at 25 C; electrical resistivity 2.42 x 10 ⁻³ ohm cm at 25 C; figure of merit 0.289 x 10^4 K ⁻¹ at 25 C.
Name and	Error, % Specimen Designation	Sr ₂ Si; No. 1
Postored	Error, %	
	Range, K	298.2
	Year	1961
	Method Used	11
	Ref.	548
	CE TY	-

DATA TABLE NO. 390 THERMAL CONDUCTIVITY OF SIRS INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

T k

298.2 0.00636

No graphical presentation

SPECIFICATION TABLE NO. 391 THERMAL CONDUCTIVITY OF STEEN INTERMETALLIC COMPOUNDS

Composition (weight percent), Specifications and Remarks		Southesized; seebeck coeff. 24.4 $\mu v K^{-1}$ at 25 C; electrical resistivity 3.5 x 10 * onm cm at 25 C; figure of merit 0.692 x $10^4 K^{-1}$ at 25 C.
Remared Name and	Error, % Specimen Designation	Sr ₂ Sn; No. 1
Reported	Error, %	
Tomor	Range, K	298.2
	Year	1961
	Method	
	No.	\$4. 24.
	Culve No.	-

DATA TABLE NO. 391 THERMAL CONDUCTIVITY OF Sr. Sn INTERMETALLIC COMFOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm 1K-1]

r k CURVE 1 298.2 0.0238

No graphical presentation

SPECIFICATION TABLE NO. 392 THERMAL CONDUCTRITY OF TaB, INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 392]

A Service Serv	Composition (Weight percent), specification of the first	concumer 3/4 in, in dia and 3/4 in, long; pressed and binetics, maximum	temperature 2816 K; density 12, 11 g cm.	Similar to the above specimen.	Similar to the above specimen except specimen found of along the above specimen except specimen found to the above specimen except specimen for the above specimen except specimen for the above specimen except specimen for the above specimen except specimen for the above specimen for the above specimen except specimen for the above specimen for the above specimen except specimen for the above specimen for the a	messurements.
	Reported Name and Error, % Specimen Designation		Tab	TaB;	ТаВ	,
	Reported Error, % Spec		ę. S	6.5	ų ų	r.
	Temp. Range, K		595-1174	810-1059		1300-2720
	Year		1962	1160	70.71	1962
	Method		æ	6	Ľ,	¥
	Bef. Me	i :	603		603	603
	Curve	Š	-1		7	3

Data table no, 302 thermal conductivity of the B_1 intermetable compounds

[Temperature, T, K, Thermul Conductivity, k, Watt and K-1]

CURVE 1
594.8 1.06
603.2 1.07
615.4 1.08
615.4 1.08
615.4 0.943
840.9 0.943
840.9 0.943
1092.1 0.490
1092.1 0.490
1113.7 0.425
1174.3 0.470

CURVE 2
810.4 0.802
813.2 0.395
913.2 0.395
913.2 0.395

813.2 0. 905. 813.2 0. 906. 813.7 0. 718 1054.8 0. 415 1058.7 0. 487 CURVE 3 2018.9 0. 614 1305.4 0. 327 1306.2 0. 3306 1583.2 0. 3306

1299. 8 0, 414
1315. 4 0, 327
1300. 2 0, 346
1583. 2 0, 476
1688. 7 0, 453
2011. 0 0, 446
2369. 3 0, 376
2369. 3 0, 400
2372. 1 0, 441
2558. 2 0, 444
2558. 2 0, 444
2558. 2 0, 444
2558. 2 0, 464
2563. 7 0, 464
2563. 7 0, 462
2741. 5 0, 500
2741. 5 0, 500
2741. 5 0, 500
2741. 8 0, 562

SPECIFICATION TABLE NO. 393 THERMAL CONDUCTIVITY OF TAGE, INTERMETALLIC COMPOUNDS

Composition (weight percent), Specifications and Remarks	Electrical resistivity 6.5 x 10° ohm cm.
Temp. Reported Name and Pange, K Error, & Specimen Designation	TaGey
Reported Error, %	
Temp. Punge, K	303.2
Year	1961
Method	
Ref.	360
Cur'e	1

DATA TABLE NO. 383 THERMAL CONDUCTIVITY OF TAGE, INTERNETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt $cm^{-1}K^{-1}$]

CURVE I

303.2 0.043

فماليات فياليالها المتراجي مفروق ويلويها وتدافاتها المثلث إلى المعالم فأسترك مطارع غياف سيدو وفرسيس بالإصاب المتعول معسيس

SPECIFICATION TABLE NO. 394 THERMAL CONDUCTIVITY OF TIPPE INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 394]

Curv So.	. 8 €	Method	Year	Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error."	Reported Error, %	Name and Specimen Designation	Compresition (weight percent)	veight percent)	Composition (continued), Specifications and Remarks
-	ä		1. 1932	15-276		Tl.Pb	66.3	33.7	Specimen 9 mm long, 7.4 mm dia; annealed for 180 hrs at ~ melting point.
cı w	337	י ר	1932 1932	2.0-5.7		Մեթ Մեթ	56.3 66.3	33.7 33.7	The above specimen in superconducting state. The above specimen measured in a 214 gauss magnetic field.
4	337	⊶	1932	2.0-3.9		$T1_2P5$	66.3	33.7	The above specimen measured in a 481 gauss magnetic field.
ıs	337	ı.	1932	3.2,3.7		Tl2Pb	66.3	33.7	The above specimen measured in a 642 gauss magnetic field.
ĸ	337	ų	1902	2.0-5.7		Tl2Pb	66.3	33.7	The above specimen measured in a 7.4 ss magnetic field.
t•	337		1932	3.66		T12Pb	66.3	33.7	The above specimen measured in a 835 gauss magnetic field.

DATA TABLE NO. 394 THERMAL CONDUCTIVITY OF TIPP INTERMETALLIC COMPOUNDS

Watt cm 1K
ᆇ
Γ.
Ξ
O
z
ಹ
*
-
¥
Conductivity,
-5
7
\simeq
ъ
Š
S
_
ਰ
Ε
<u></u>
ž
K: Thermal (
×
۲
ဥ
3
7
nnerature
2
Ē
Temperature.
۲
-

.¥	CURVE 7	0.0116				
H	티	3. 96				
4	VE 1		0.0156 0.0153 0.0153 0.0158 0.0143 0.0136 0.0136 0.0136	0.0147 0.0147	0.0124 0.0133 0.0120 0.0122 0.0129	
(-	CURVE	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.87.00 0.01.0	CURVE 1.97 0 CURVE	2.20 2.21 3.155 3.65 3.88 0.1RVE	3.17 3.65 2.02 3.88 5.69

THE RESERVE OF THE PARTY OF THE

SPECIFICATION TABLE NO. 195 THERMAL CONDUCTIVITY OF ShSry INTERMETALLIC COMPOUNDS

Commence of the Commence of th

[For fata Reported in Figure and Table No. 395].

Curve Ref. Method No. Used 1 545 L 2 545 L 3 545 L 4 545 L	345 545 545 545 545 545 545 545 545 545	jee 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	Error, % 110 110 110 110 110 110 110 110 110 1	Name and Specimen Designation Sectimen Designation Sn Se;	Composition (weight percent), Specifications and Remarks Polycrystal; n _S = x 10 ¹⁷ cm ⁻² ; micro hardness 30 kg mm ⁻² ; specimen 8 x 8 x 8 mm. Single crystal; preparted by the Bridgeman method from spectroscopically pure elements; specimen 8 x 8 x 8 mm; freezing point 629 ± 5 C; n _S + 2 x 10 ¹⁷ cm ⁻³ ; crystal. Singlar to the above specimen except n _S = 6 x 10 ¹⁷ cm ⁻³ . Similar to the above specimen. Similar to the above specimen.
Used Carlo			Year 1961 1961 1961 1961	Temp. Runge, K 241-360 261-359 249-360 251-363	-	Reported Error, % 110 . 110 . 10 . 10 . 10 . 10 . 10 .

DATA TABLE NO, 395 THERMAL CONDUCTIVITY OF SASA, INTERMETALLIC COMPOUNDS

[Temperature, T, K, Thermal Conductivity, k, Watt cm-1 K-1]

241.0 0.0934
250.9 0.0934
250.9 0.0934
250.9 0.0784
CURVE 2
260.6 0.0810
296.3 0.0739
296.3 0.0739
296.3 0.0739
296.3 0.0739
296.3 0.0739
249.1 0.0669
249.1 0.0772
249.1 0.0772
249.1 0.0772
249.1 0.0772
249.1 0.0772
263.2 0.7739
263.2 0.7739
263.2 0.7739

250. 6 0. 0847
269. 5 0. 0784
284. 9 0. 0784
300. 8 0. 0711
326. 9 0. 0711
326. 9 0. 0659
347. 9 0. 0611
363. 6 0. 0600

CURVE 5
243. 9 0. 0153
296. 5 0. 0153
333. 3 0. 0146
344. 8 0. 0136

SPECIFICATION TABLE NO. 396 THERMAL CONDUCTIVITY OF Shite INTERMETALLIC COMPOUNDS

rFor Data Reported in Figure and Table No. 396]

Composition (weight percent), Specifications and Remarks	No information reported. Stoichiometric single crystal; prepared by melting 99.999 pure Sn and Te in a 5 ~ 6 Stoichiometric single crystal; prepared by melting 99.999 pure Sn and Te in a 5 ~ 6 mm dia quartz phial (to which a 1 mm dia x 14 mm long capillary was attached) in a vacuum of 10°2 forr, heared at 100 C higher than the melting point for 100 hrs. pulling-processed through a double melting oven (upper oven 30 ~ 50 C above, and the lower oven 30 ~ 50 C below, the melting temperature) with a velocity 10 mm if anneyed at 100 C for 4 ~ 6 hrs; electrical resistivity reported as 589 ~ 762 µ obm
Reported Name and Error, % Specimen Designation	Sn Te Sn Te
Reported Error, %	
Temp. Range, K	300
l leg	1959 1966
Method Used	a =
Curve Ref. No.	553 964
Curve No.	2 2

DATA TABLE NO. 396 THERMAL CONDUCTIVITY OF SATE INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm -1 K -1]

CURVE 1	0,065	CURVE 2	3		0.0552	0.0548	2	3,5	3	3	0, 6540	0.0548	0, 0566	0, 0563	0.0561	0.0591	0.0582	0.0617	0.0619	0.0293								0:90			0.0641	0.0634	8
<u>173</u>	300	히	116	927	£ 9	160	171	179	185	202	509	223	252	564	274	289	282	306	314	324	330	338	342	351	<u>ጃ</u>	360	396	370	389	4 06	416	426	440

SPECIFICATION TABLE NO. 397 THERMAL CONDUCTIVITY OF TIB. INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 397].

Composition (weight percent). Specifications and Remarks	Specimen 3/4 in, long, 3/4 in, 0, D, and 1/4 in, 1 D.; ground and polished; specimen found cracked on joist inspection, heat-soaked at 3800 F.	Similar to the above specialen except heat-soaked at 3500 ${\rm F}_{\rm F}$ specimen found cracked on the post inspection.	Similar to the above specimen.
Reported Name and Error, % Specimen Designation	T182; 1	T:B2: 3	T1B2, 4
Reported Error, %	5-5	5-7	5-3
Temp. Pange, K	1075-1937	1542-2516	1239-2578
Year	1963	1963	1963
Method	æ	œ	œ
Surve Ref. No. No.	544	7.5	544
Curve	٦	2	က

DATA TABLE NO. 397 THERMAL CONDUCTIVITY OF TEB; INTERMETALLIC COMPOUNDS

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

→	CURVE 3 (cont.)	2456.5 0.447	2456.5 0.50-	3 0.466	٠ ټ	÷																														
×	/E 1	0.341	0.381	0.432			0. 537		0.480	0.463	/E 2	0, 544	0.546								٠c.	6. 590	<u>/E 3</u>	90: 306	0.316	0.319	0.345	0.120		0.340	0.335	0.369	-	45:	ू हर र .9	
(-	CURVE	1074.8	536	1500.5	1527.1	13%.3	1695.9	-	1910.9		CURVE		1544.3	5.5			2109. н	2110.3	2370.4	372.	 2511.5	2515.9	CURVE	1238.7	1236.7		239.				2024. 3	2024, 3	2262. 1	2262.1		

SPECIFICATION TABLE NO. 398 THERMAL CONDUCTIVITY OF TINE INTERMETALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 398]

Sylvend Dan engine of the Control of	Composition (weight percent), Specifications and Actions	Stoichiometric; prepared from Monel nickel shot (99.9% pure) and DuPont high purity sponge, the titanium contained up to: 0.08 Mg, 0.07 Fe, 0.05 Mn, 0.04 Si, and 0.15 other impurities; specimen rod was hot swagged and furnace cooled from homogenized buttons and machined into cylinder of 0.4 cm dia x 3 cm long; grain size ~42 μ ; electrical resistivity reported range from 23.0 ~ 66.8 μ ohm cm at 1.32 ~ 302.7 K, respectively.
V Compa	Reported Name and Error, % Specimen Designation	Z Z
	Reported	ن د
	Temp. Range, K	5, 5 - 272
	Year	4981 4981
	Curve Ref. Method No. No. Used	-:
	Ref.	86.5
	Curve	-

All markets and the second of

DATA TABLE NO. 398 THERMAL CONDUCTIVITY OF TANI INTERMETALLIC COMPOUNDS

(Temperature, T, K; Thermal Conductivity, k, Watt cm 1 K-1)

CURVE 1

0. 0109 0. 0117 9. 6116 0. 0131	0, 0157 0, 0192 0, 0245 0, 0327 0, 0302	0.0462 0.0671 0.0748 0.0703 0.0877	0. 106 0. 105 0. 116 0. 127 0. 151
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	20.1 21.1 22.5 23.5 29.5 29.5 29.5	2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	121. 6 130. 0 158. 1 190. (216. 4

SPECIFICATION TABLE NO. 399 THERMAL CONDUCTIVITY OF WJAS; INTERMETALLIC COMPOUNDS

Specifications and Remarks	n at 30 C.
	Electrical resistivity 2.6×10^4 ohm cm at 30 C.
Temp, Reported Name and Range, K Error, % Specimen Designation	W.AS.
Temp, Reported Range, K Error, % S	303.2
Year	1961
f. Method b. Used	
Curve Ref.	1 960

DATA TABLE NO. 399 THERMAL CONDUCTIVITY OF WyAS, INTERME FALLIC COMPOUNDS [Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

**

CURVE 1

0.032

303.2

No graphical presentation

البالم بالمطالع المتحال المترفون المترفوس في والطالعاط وموووها بالمتحاظ المالك والمتافق ووالمقاتلات سيحد ساسلطها ومدسا

SPECIFICATION TABLE NO. 400 THERMAL CONDICTIVITY OF WIR INTERMETALLIC COMPOUNDS

E.

(For Data Reported in Figure and Table No. 400)

Composition (weight percent), Specifications and Remarks	Specimen 3/4 in. long, 3/4 in. 0.D. and 1/41 D.; ground and polished; specimen found broken on post inspection; heat-soaked at 3300 F.	Similar to the above specimen except heat-soaked at 3350 F; specimen found cracked on post inspection.
Reported Name and Error, % Specimen Designation	WB, 1	W.B, 2
Reported Error, %	S2	ເ- ເລ
Temp. Range, K	1963 1255-2540	1253-2150
Year	1963	1961
Method Used	æ	×
Curve Ref. No. No.	1 24	*
Curve No.	٦	71

DATA TABLE NO. 400 THERMAL CONDUCTIVITY OF WB INTERMETALLIC COMPOUNDS

(Temperature, T, K; Thermal Conductivity, k, Watt cm $^{4}\,\mathrm{K}^{-1})$

CURVE 1

0, 426	7	갂	0, 460	4	7	7	4	7	ž	5	Ξ	7	÷	ŧ	₹	갂	3	41
			1654. x															

CURVE 2

0, 526 0, 461 0, 462 0, 395 0, 410 0, 423 0, 453 0, 1252. 6 1252. 6 1252. 6 1252. 6 1658. 7 1659. 9 1859. 3 1887. 1 1887. 6 1888. 7 2132. 6 2132. 6

SPECIFICATION TABLE NO. 401 THERMAL CONDUCTIVITY OF WSQ INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks		Electrical resistivity 95 ohm em al 30 C.
 Temp, Reported Name and Range, K. Error, S. Speamen Designation		WSe ₂
 Reported Error, %	}	
Temp. Range, K		303.2
Year		1961
Method Used		
Ref.		960
Curve		-

DATA TABLE NO. 401 THERMAL COMPACTIVITY 62 % INTERMETALLIC COMPOUNDS

(Temperature, T. K. Thermal Conducts to, s., Wat' cm²K⁻¹)

T k

303.2 0.34

SPECIFICATION TABLE NO. 402 THERMAL CONDUCTIVITY OF WS12 INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks	No details reported.
Reported Name and Error; % Specimen Designation	WSi ₂
Temp. Reported ange, K Errot, %	
Temp. Range, K	733-1793
Year	1961
Method Used	æ
Ref.	594
Curve Ref. No. No.	-

DATA TABLE NO. 402 THERMAL CONDUCTIVITY OF WS12 INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm⁻¹ K⁻¹

×	CURVE 1 (cont.)*	0, 391	0.400																			
H	CURVE	1789.3	1792.6																			
×	CURVE 1*	0.395 0.393			0.343	0.348		0.336	6.310	0.312	0. 294	0, 299	0, 305	0.299	0.318	0, 322	0.296		0, 325	0.327	0.313	0.367
4	CUR	733.2	749.8	874.8	883.2	883.2	895.4	895.4	1038.7	1041.5	1210.9	1211.5	1368.7	1373.2	1473.2	1481.5	1537.1	1539.6	1645.4	1654.3	1717.6	1766. 5

No graphical presentation

SPECIFICATION TABLE NO. 403 THERMAL CONDUCTIVITY OF WTe₂ INTERMETALLIC COMPOUNDS

Constitution (according to Specifications and Remarks			and the state of the state of the state of the contact of the Co.	Electrical resistantly and a second s
par ower	Company Designation	Range, K. Error, % open men zenemmen		wTe ₂
	Temp. Reported	K Error. %		
	Temp	Range,		303.2
	, to 1	-		1961
	Metho	Osed		
		No.		1 960
ł	บี	-	١.	

DATA TABLE NO. 403 THERMAL CONDUCTIVITY OF WTC. INTERMETALLIC COMPOUNDS

[Temperature, T, K; Thermal Conductivity, k, Watt cm 1K-1]

<u>بد</u>

CURVE 1' 303.2 0.02

No graphical presentation

SPECIFICATION TABLE NO. 404 THERMAL CONDUCTIVITY OF ZASC INTERMEDIALLIC COMPOUNDS

[For Data Reported in Figure and Table No. 404].

Committee (major) nerrepti. Socifications and Remarks		
the contract of the contract o		Hot-pressed, density 5.267 g cm 3.
o part of the second	Temp. Reported baths and Range, K Error, 7. Specimen Designation	ZnSe
	Temp. Reported Sp. Range, K Error, % Sp.	327-695
	Method Year Used	1961
	Ref. No.	996
	Curve No.	-

DATA TABLE NO. 404 THERMAL CONDUCTIVITY OF ZASe INTERMETALIZE COMPOUNDS

[Temperatu.e, T, K; Thermal Conductivity, k, Watt cm $^{-1}$ K $^{-1}$]

CURVE 1

e. 130	0. 121	0. 109	0.105	0.0875	0.0879	0.0795	0.0795	0.0753	0.0711	0.0660
					7					
327.	348.	376.	402.	444	489.	536	572.	608.	650.	500

SPECIFICATION TABLE NO. 405 THERMAL CONDUCTIVITY OF ZASIAS, INTERMETALLIC COMPOUNDS

Composition (weight percent). Specifications and Remarks Stoichiometric p-type polycrystalline; 12 x 4 x 4 mm; prepared by melting appropriate amounts of 199, 1998 pure Zu, p-type Si (~ 500 ohm cm), and 99, 1999 pure As in a carbon coated fused quart; tithe which was filled with argon at 1 ati . heated at 75 carbon coated fused quart; tithe which was filled with argon at 1 ati . heated at 75 carbon coated fused quart; tithe which was filled with a remove blow holes and he 100 cps from about 400 C to the maximum temperature to remove blow holes and 100 cps from about 400 C to the maximum temperature to remove blow holes and you so so in a subject of the mixing, then the Bridgman process was performed at a voids and insure complete mixing, then the Paredman process was performed at a content of the maximum temperature removed; meliting temperature	lowering rate of 5 mm in the many 2 102 dam cm at room temperature.
Reported Name and Error, v. Specimen Designation ZnSiA83; 5	
cthod Year Range, K. Seed L. 1966 298.2	
Curyt Ref. Method Yea	

DATA TABLE NO. 405 THERMAL CONDUCTIVITY OF ZASIAS, INTERMETAILIC COMPOUNDS [Temperature, T. K. Thermal Conductivity, k, Watt cm-1K-1]

CURVE 13

298.2

;

市人有关的 是实际的

THERMAL CONDUCTIVITY OF ZIB INTERMETALLIC COMPOUNDS

For Data Reported in Figure and Table No. 406	Composition (weight percent), operations (Ca. Al, and St; spectmen composition 17.6 B, and 0.30 C, talance Ti, Fe, Ni, Ca. Al, and St; spectmen composition of the co	posed of Zr B plus 21 27. miles of pressed; density 1.1. of the presence long; supplied by Norton Company; hot pressed; density; of theoretical density).	
For Data Reported in	Curve Ref. Method Year Range, K Error, % Specimen Designation	Zr B; C-52	2r B; C-60
	Reported Error, %	Ø	n
	Temp. Range. K	568-1134	1442-2528
	Year	1962	1962
	Method	p;	Œ
	Ref.	603	603
	Curve		61

THE PROPERTY OF THE PROPERTY O

[Temperature, T, K; Thermal Conductivity, k, Watt em^1K^1]

CURVE :

567.6 575.4 805.9 818.7 822.1 822.1 1012.1 1025.4 1105.4 1116.5 1116.5

CURVE 2

0.219 0.224 0.227 0.257 0.247 0.212* 0.255 0.255 0.294 0.394 1441.5 1444.3 1727.6 1731.8 1756.5 2038.7 2038.7 2274.8 2274.8 2276.5 2216.5

* Not shown on plot

SPECIFICATION TABLE NO. 407 THERMAL CONDUCTIVITY OF (Sb.se, + AR, Se + PhSe) MIXTURES

(Sh_Se₃ + Ag₂Se + PbSe : 95.0%; Impurity < 2.0% each)

55.19 Sb ₂ Se ₃ , 33, 85 Ag ₂ Se, and 10.96 PbSe; p-type; specimen obtained by fusing ASARCO 99.999 pure elements in carbon coated quartz tube with agitation, cooling, crushing, recasting in R mm unconfied quartz, and zone-leveling; electrical resistivity 0.21	olan curi (measurant curitoriana amanini
ported Name and rot. % Specimen Designation Aggsb,PtSen	
Reported Error. %	
Temp. Range, K	
Year 1962	
Nethod Used	
Ref. No. 97.1	
Curve No.	

DATA TABLE NO. 407 THERMAL CONDUCITVITY OF (SbySe, + ARSe + PhSe) MIXTURES

(Sb₂Sc₃ + Ag₂Sc + PbSc : 95.0%; impurity < 2.0% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1°

298.2 0.0058

No graphical presentation

SPECIFICATION TABLE NO. 408 THERMAL CONDUCTIVITY OF (Shrte3 + Birte3) MIXTURES

 $(\mathrm{Sb}_2\mathrm{Te}_3+\mathrm{Bi}_1\mathrm{Te}_3) \geq (95,0\%;\ \mathrm{in:purity} \leq 2,0\%\ each)$

[For Data Reported in Figure and Table No. 408]

Sb _{1,2} Bb _{0,3} Te ₃ Sb _{1,2} Bb _{0,4} Te ₃ Sb _{1,2} Bi _{0,8} Te _{3,13} Sb _{1,2} Bi _{0,6} Te _{3,13} Sb _{1,33} Bi _{0,6} Te _{3,13} Sb _{1,33} Bi _{0,6} Te _{3,13} Sb _{1,33} Bi _{0,6} Te _{3,13}		
Sb _{1,2} B _{16,4} Te ₃ Sb _{1,2} B _{16,8} Te _{3,13} Sb _{1,2} B _{16,8} Te _{3,13} Sb _{1,2} B _{16,6} Te _{3,13} Sb _{1,3} B _{16,6} Te _{3,13} Sb _{1,3} B _{16,6} Te _{3,13} Sb _{1,3} B _{16,6} Te _{3,13}	87.6	p-type; prepared by using the powder metallurgical trchniques, pressed and sintered; heat flow perpendicular to the pressing direction.
Sb _{1,2} B _{10,4} Tc ₃ Sb _{1,2} B _{10,8} Tc _{3,13} Sb _{1,2} B _{10,8} Tc _{3,13} Sb _{1,33} B _{10,6} Tc _{3,13} Sb _{1,33} B _{10,67} Tc _{3,13} Sb _{1,33} B _{10,67} Tc _{3,13} Sb _{1,33} B _{10,67} Tc _{3,13}	80.1 15.9	Similar to the above specimen.
Sb _{1.2} Bi _{0.8} Te _{3.13} Sb _{1.2} Bi _{0.8} Te _{3.13} Sb _{1.33} Bi _{0.67} Te _{3.13} Sb _{1.33} Bi _{0.67} Te _{3.13} Sb _{1.33} Bi _{0.67} Te _{3.13}	75.8 24.2	Similar to the above specimen.
Sb _{1.2} Bi _{0.8} Te _{3.13} Sb _{1.2} Bi _{0.8} Te _{3.13} Sb _{1.33} Bi _{0.67} Te _{3.13} Sb _{1.33} Bi _{0.67} Te _{3.13} Sb _{1.33} Bi _{0.67} Te _{3.13}	70.1 29.9	Similar to the above specimen.
Sb _{1, 33} Bi _{0, 67} Ce _{3, 13} Sb _{1, 33} Bi _{0, 67} Ce _{3, 12} Sb _{1, 33} Bi _{0, 67} Te _{3, 13} Sb _{1, 33} Bi _{0, 67} Te _{3, 13}	12.73 44.94	2.33 Te (calculated) p-tyne; specimen size 0.5 x 0.5 x 1 cm; prepared from 99.99 pure B1 and Sb supplied by consolidated M using and Smelting Co., and from 99.97 pure T c supplied by Caradian Copper Refiners Ltd., materials weigned out, crushed, scaled in an ampule in a vacuum of 10° Torr, headed at 900 C for 20 hrs, rocked, cooled then zone-melted at a rate of 0.07 ~0.28 in. hr¹, cooled and cut; thermal conductivity data calculated from measured values of figure of merit. Seebeck coefficient, and electrical conductivity: electrical conductivity reported as 0.83 x 10° 0 hm² cm² 1 at room lemperature.
Sb _{1, 33} B _{10, 67} Te _{3,13} Sb _{1, 33} B _{10, 67} Te _{3,13} Sb _{1, 33} B _{10, 67} Te _{3,13}	52.73 44.94	p-type; same fabrication method and measuring method as 2.33 Te (calculated); the above specimen; electrical relativity reported as 0.116, 0.121, 0.135, 0.136, 0.184, 0.259, 0.259, 0.259, 0.259, 0.259, 0.259, 259, 251, 245, 267, 282, 301, 333, and 357 K, respectively.
Sb _{1.33} Bi _{0.67} Tc _{3.13} Sb _{1.33} Bi _{0.67} Tc _{3.13} Sb _{1.4} Bi _{0.6} Te _{3.13}	59.56 38.07	2.37 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 0.77 x 10 ⁴ ohm "lem" at the temperature.
Sb _{1, 33} Bi _{0, 61} Tr _{2,13} Sb _{1,4} Bi _{0,6} Te _{3,13}		Cut from the same ingot as the above specimen; electrical conductivity reported on 0.69 x 10 ⁴ ohm "fem" at room temperature.
Sb _{1,4} Bi _{0,6} Te _{3,13}		Same composition, fabrication method, and measuring method as the above specimen; electrical resistivity 0.472, 0.509, 0.661, 0.791, 0.910, 1.10, 1.41, 1.76, 1.95, and 2.04 milliohm cm at 173, 185, 212, 232, 248, 269, 301, 335, 351, and 360 K, respectively.
	63.06 34.55	2.39 Te (calculated); p-type; some fabrication method and measuring method as the above specimen; electrical conductivity reported as 0.83 x 103 ohm "lem" at room temperature.

SPECIFICATION TABLE NO. 464 (continued)

Composition (continued), Specifications and Remarks	Cut from the same ingot as the above specimen; electrical conductivity reported as 0.89 x 10° ohm "1cm" at recon temperature.	Similar to the above specimen except electrical conductivity reported as 0.87 x10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	Similar to the above specimen except electrical resistivity rejorted as 0.354, 0.408, 0.467, 0.637, 0.776, 0.917, 1.17, 1.45, and 1.65 milliohm cm at 159, 178, 192, 224, 251, 273, 305, 337, and 357 K, respectively.	2.42 're (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.13 x 103 ohm 'lem 'l at room temperature.	Another run of the above specumen; electrical conductivity reported as 1.39 x 103 ohm "1cm" at room temperature.	2.42 Te (calculated); cut from the same ingot as the above specimen; electrical conductivity reported as 1.18 x 10 ¹ ohm ⁻¹ cm ⁻¹ at room temperature.	2.42 Te (calculated); similar to the above specimen except electrical conductivity reported as 1.22 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	Similar to the above specimen except electrical conductivity reported as 1.17 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	 2. 42 Te (calculated): p-type; same fabrication method and measuring method as the above specimen; electrical resistivity reported as 0.269, 0.306, 0.376, 0.481, 0.539, 0.689, 0.746, 0.859, 1.00, and 1.19 milliohm em at 159, 173, 197, 219, 277, 269, 281, 301, 329, and 352 K, respectively. 	2.45 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.73 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.
i ht percent) BigTes				29.16		20,16	29.16		29.16	23,63
Composition (wer ht percent) SU2Te ₃ B ₂ Te ₃				68, 42		68. 42	68, 42		27 4. 69	13. 92
Name and Specimen Besignation	Sb _{1.4} B _{10.6} Tc _{3.13}	Sb _{1,4} Bi _{0,4} Pe _{3,13}	Sb _{1. 4} Bt _{0. 6} Te _{3. 13}	Sb _{1, \$} B _{10, 5} Te _{2, 13}	Sb _{1.5} B _{19.5} Te _{3.13}	Sb _{1,5} Bi _{0,5} Te _{3,13}	Sb _{1, 5} Bi _{0, 5} Te _{3, 13}	$\mathrm{Sb}_{1,5}\mathrm{Bi}_{6,5}\mathrm{Te}_{3,13}$	Sb _{1, \$} B _{10,} .Tc .	Տել ₍
Reported Error, %										
Temp. Range, K	298.2	298.2	158-360	298.2	298.2	298.2	298.2	298.2	158-358	298.2
	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965
Method Year Used	(۴	⊣	۲	۲	F٠	H	٢	÷	۲
No. C	936	936	936	936	936	936	936	936	936	936
Curve No.	11	12	13	7	15	91	:1	81	19	20

SPECIFICATION TABLE NO. 408 (centinued)

Composition (continued), Specifications and Remarks	2, 45 Te (calculated); cut from the same ingot as the above specimen; electrical conductivity reported as 1, 92 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	2, 45 Te (calculated); similar to the above specimen except electrical conductivity reported as 1, 82 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	 45 Te (calculated); similar to the above specimen except electrical resistivity reported as 0, 210, 0, 226, 0, 283, 0, 293, 0, 337, 0, 400, 0, 462, 0, 513, 0, 618, and 0, 692 millohm cm at 169, 176, 195, 232, 236, 282, 300, 335, and 354 K, respectively. 	2. 51 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 2, 44 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	Cut from the same ingot as the above specimen; electrical conductivity reported as 3, 72 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	Similar to the above specimen; electrical resistivity reported as 0.136, 0.156, 0.168, 0.188, 0.207, 0.229, 0.272, 0.344, 0.356, and 0.385 milliohn em at 168, 183, 200, 217, 233, 255, 284, 304, 337, and 354 K, respectively.	1.12 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1,15 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	3. 45 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 0. 85 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.
ight percent) BigTes	SH 63	23, 63	83 83 83	12, 13			33, 90	3.4. 3.4.
Composition (weight percent) Share,	73. 92	73, 92	73. (22	33,36			÷ (9)	62, 37
Name and Spectimen Designation	Sh _{1. 6} Bio. 4Te3. 13	Sb _{1, 6} Bi _{0, 4} Tc _{3, 13}	Sb _{1, 6} Bt _{0, 4} Tv _{3, 13}	Sb _{1,8} B) _{0,2} Tv _{3,13}	Sb _{1. 6} 8ic. 2Tv _{3. 13}	Sb _{1, 8} Bs _{0, 2} Te _{3, 13}	Sly, eBio, eFra. ce	Sh _{1, 4} Bto, cTc3, 13
Reported Error, "								
Temp. Range, K	298, 2	298, 2	168-353	8 % GE	29%, 2	167-356	298, 2	298, 2
Year	1965	1965	596 4	1965	1965	1965	1965	1965
Method Year Used	<u>-</u>	f ~	(-	H	Н	H	F	1
Ref. 1	936	936	936	936	938	936	936	936
Curve No.	51	22	ñ	7	25	56	F2	57 H

SPECIFICATION TABLE NO. 408 (continued)

Composition (continued), Specifications and Remarks	4.66 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 0.88 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 3.22 x 10³ ohm ⁻¹ cm ⁻¹ at room temperature.	i.13 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.72 x 10³ ohm ⁻¹ cm ⁻¹ at room temperature.	3.49 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.24 x 10 ³ ohm ⁻¹ em ⁻¹ at room temperature.	4.72 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.19 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	1.15 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.52 x 10³ ohm ⁻¹ cm ⁻¹ at mom temperature.	3.54 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.74 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	4.78 Te (calculated); p-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.78 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.
eight percent) Bi ₂ Te ₃	33.75	29.88	29. 55	23. 48.	18.47	23.94	23,36	23.06
Composition (weight percent) Sbyre ₂ Biyre ₃	61, 59	70, 12	69.32	67, 67	66 31	74.91	73 10	72 16
Name and Specimen Designation	Տե _{լ ,} քե _{ն, ն} Te _{3, 26}	$\mathrm{Sh}_{1,5}\mathrm{Bi}_{6,5}\mathrm{Te}_{3}$	Sb _{1, S} B _{16, S} Te _{3, 06}	Sh _{1.5} B _{10.5} Te _{3.19}	$\mathrm{Sb}_{1,5}\mathrm{B}_{10,5}\mathrm{Te}_{9,26}$	$\mathrm{Sb}_{\mathrm{L},6}\mathrm{Bi}_{\mathrm{Q},4}\mathrm{^T}c_{\mathrm{3},o}$	Sh _{1. 2} Bh _{3. 4} Tc _{3. 19}	Sb _{1. 6} Bi _{0.4} Te _{3.26}
Reported Error, %								
Temp. Range, K	298.2	29H. 2	298.2	298.2	298.2	298.2	298.2	298.2
Year	1965	1965	1965	1965	1965	1965	1965	1965
Method Used	H	:-	H	Ħ	ħ	{ -	Ħ	۴
Ref.	936	936	936	936	936	936	935	936
Curve No.	13.0	30	31	32	Ħ	к	38	38

• •

The Date of

DATA TABLE NO. 408 THERMAL CONDUCTIVITY OF (SP,Tc3 + B1,Tc3) MIXTURES

(Sb,Tc, + Bi,Tc, > 95.0%; impurity < 2.0% each)

[Temperature, T, K; Thermal Conductivity, k, Wattem- ${}^{1}\!\mathrm{K}^{-1}\!\mathrm{J}$

T k CURVE 31	298.2 0.0236 CURVE 32* 298.2 0.0181 CURVE 33*	298.2 0.0181 CURVE 34° 298.2 0.0192 CURVE 35¢ 298.2 0.0184	298. 2 0.0219
T k CURVE 23 (cont.)	232.0 1 0.250 257.1 0.0222 281.7 0.0213 301.2 0.02061 331.1 0.0193	298.2 0.0272 298.2 0.0272 298.2 0.0346 298.2 0.0346 166.7 0.0560	RVE RVE
T k CURVE 16*	298.2 0.0158 CURVE 17 298.2 0.0166 CURVE 187	298.2 0.0156 CURVE 19 157.7 0.0348 171.8 0.0258 217.9 0.0255 217.9 0.0205 235.9 0.0205	299.4 0.0168* 327.3 0.0167* 352.1 0.0164* 358.4 0.0169 CURVE 20 CURVE 21 298.2 0.0208 CURVE 22 298.2 0.0198 CURVE 22 298.2 0.0334 175.1 0.0327 194.2 0.0291 212.3 0.0264
T K CURVE 9		RVE RVE	298. 2 0.0141 CURVE 13 157. 7 0.0194 177. 0 0.0200 131. 2 0.0173 224. 5 0.0161 271. 6 0.0154 275. 5 0.0164 375. 7 0.0144 359. 7 0.0144 359. 7 0.0144 359. 7 0.0147 CURVE 14* 298. 2 0.0147
T k	303.2 0.026 CURVE 2 303.2 0.916 CHRVE 3	303.2 0.015 CURVE 4 303.2 0.013 CURVE 5* 298.2 0.0162	164.2 0.0172 170.6 0.0174 183.8 0.0169 202.0 0.0165 221.2 0.0165 249.4 0.0160 284.6 0.0160 280.2 0.0165 301.2 0.0165 301.2 0.0175 357.1 0.0212 CURVE 7 298.2 0.0146

Not shown on plot

SPECIFICATION TABLE NO. 409 THERMAL CONDICITATITY OF (Shife, + Intic,) MIXTURES

(Sb₂Te₃ + In₂Te₃ > 95.0%; impurity > 2.0% each)

Curve No.		Ref. Method No. Used	Year Ru	Temp. Range, K	Reported Error, %	Name and Specimen Pesignation	Composition (weight percent). Specifications and Remarks
-	EE8 .		1962	303.2		Sby Te ₃ - In, Te ₃ :	10 mote % In _t Te _{3;} p-type alloy; pellet was prepared by powder metallurgical techniques; annealed for 8 hrs at 475 C; pellet size = ,50 in, long and ,50 in, in dia; type of heat . Vycor tube,
a	#33		1962	363.2		Sh ₂ Te ₃ - In ₂ Te ₃ ; No. 76	18 mole $^{r_{\rm o}}$ in Te ₃ ; the others are the same as that of the above specimen.
e	833		1962	303.2		S ¹ ₂ Te ₃ - In ₂ Te ₃ ; No. 59	$25~\mathrm{mol}\mathrm{e}^{\mathrm{S}_{2}}\ln_{2}\mathrm{Te}_{3};$ the others are the same as that of the above specimen.
4	833		1962	303.2		Sb ₂ Te ₃ - In ₂ Te ₃ ; No. 10	$33.3~{ m mole} \%$ ln ₂ Te ₃ ; the others are the same as that of the above specimen.
ဟ	833		1962	303.2		Sb ₂ Te ₃ - In ₂ Te ₃ : No. 3384	5 more " In Te $_3$; p-type alloy; pellet was prepared by powder metallurgical techniques; cold pressed and sintered; pellet size = .56 in. long and .50 in. in dia; type of heat - Balzers furnace.
9	833		1962	303.2		SbyTe ₃ = m ₂ Te ₃ ; No. :M21	6 male $\%$ In [Fe]; the others are the same as that of the above specimen.
4	833		1962	303.2		Sb ₂ Te ₁ = In ₂ Te ₃ ; No. 3423	7 mole $^{\sigma}$ In Te ₁ ; the others are the same as that of the above specimen.
or,	833		1962	303,2		Sh ₂ Te ₃ - In ₂ Fe ₃ : No. 3386	to mole "In, Te;; the others are the same as that of the above specimen.
s	833		1962	303,2		Sb ₂ Te ₃ - In ₂ Te ₃ . No. 3330	15 mole $\mathbb Z$ In ₂ Te ₃ ; the others are the same as that of the above specimen.

DATA TABLE NO. 409 THERMAL CONDUCTIVITY OF (Sb,Te3 + ln2Te3) MIXTURES

 $(S^{l}_{\mathbf{k}}Te_{3}+In_{2}Te_{3} \cong 95,0\%; \ impuritv + 2,0\% \ each)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm11K11]

CURVE 16
303.2 0.0152
CURVE 26

303.2 0.0094 CURVE 3

303.2 0.0083

CURVE 4' 303.2 0.0053

CURVE 5

303.2 0.0175

CURVE 6: 303.2 0.0159

CURVE 7

303.2 0.0153

CURVE 87

CURVE 95

303.2 0.0107

303.2 0.0112

No graphical presentation

SPECIFICATION TABLE NO. 410 THERMAL CONDUCTIVITY OF (Bizto, 'Sb;To) MIXTURES

(B),Te₃ + Sb₂Te₃ + 95, 0%; impurity + 2, 0% each)

[For Bita Reported in Figure and Table No. 410.]

Composition (continued), Specifications and Remarks	2.09 Te (calculated); n-type; 0.5 x 0 5 x 1 cm; prepared from 99, 999 pure 1st and 58 supplied by Consolidated Mining and Smeiting Co., and 99. 97 pure Te supplied by Canadian Copper Refiners Ltd. materials weighed out, crushed, scaled in an ampuble in a vicuum of 10.5 Torr. heated at 900 C for 20 hrs. rocked, cooled, cone-melted at a rate of 0.07-0.28 in. hr ⁻¹ , cooled and cut; thermal condictivity data calculated from measured values of figure of merit, Seebeck coefficient, and electrical conductivity; electrical conductivity reported as 1.19 x 103 ohm "lem" at room temperature.	Cut from the same ingot as the above specimen; electrical conductivity reported as 1, 39 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	Similar to the above specimen except electrical conductivity reported as 1,20 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.	Similar to the above specimen except electrical resistivity reported as 311, 340, 423, 524, 579, 721, and 912 gohin em at 163, 275, 209, 240, 259, 302, and 361 K, respectively.	2.14 Te (calculated); n-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 0.7 x 10 ³ ohm "1cm"! at room temperature.	Cut from the same ingot as the above specimen; electrical conductivity reported as 0.75 x 10 ³ ohm 'lem' at room temperature.	Similar to the above specimen except electrical resistivity reported as 0.622, 0.643, 0.736, 0.843, 0.937, 1.03, 1.20, 1.31, and 1.55 milliohm em at 164, 173, 191, 212, 232, 248, 278, 299, and 352 K, respectively.	2.18 To (calculated); n-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 0.70 x 10 ³ ohm 'tem' at room
Composition (continued),	2.09 Te (calculated); n-ti pared from 99, 999 pui Consolidated Mining a pure Te supplied by C materials weighted out pule in a vicenum of 10 for 20 hrs. rocked, or of 0.07-0.2s in, hr ⁻¹ ductivity; data calcula figure of merit, Seelec conductivity; electrica 1.19 x 10² ohm ⁻¹ cm ⁻¹	Cut from the same ingot conductivity reported temperature.	Similar to the above spectory reported as 1,20 temperature,	Similar to the above specreported as 311, 340, gohm om at 163, 375 respectively.	2.14 Te (calculated); n-t; measuring method as conductivity reported ten:perature.	Cut from the same ingot conductivity reported temperature.	Similar to the above spec reported as 0.622, 0, 1.20, 1.31, and 1.55 212, 242, 248, 278, 2	2.18 To (calculated); n-ty and measuring method conductivity reported
ight percent) ShyTe3	7 ਜੰ				20.24			27.50
Composition (weight percent) BigTeg	\$ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.				17.62			70.32
Name and Specimen Designation	B _{11,15} Sh _{9,15} Te _{3,13}	B _{1, 75} Sb _{0, 25} Te _{2, 13}	Bi _{1,15} Sb _{c, 25} Te _{3,13}	Bi _{L:3} Sb _{C:25} Tc _{3:13}	Bi _{1. \$} Sh _{0. \$} Te _{3. 13}	Bi _{1, 5} Sh _{2, 5} Te _{5, 13}	Bi _{t. \$} Sb _{0. \$} Te _{3. 13}	Ri _{1, 25} Sb _{0, 67} Fe _{3, 13}
Reported Error, %								
Temp. Range, K	298. 2	298.2	296.2	163-362	298.2	298.2	162-353	298.2
Year	sg61	1965	1965	1965	1965	1965	1365	1965
Method Used		H	۲	! -	H	۲	۲	٠
Ref. No.	936	936	936	936	936	936	936	386
No.	~	77	ဗ	•	က	9	t~	သ

SPECIFICATION TABLE NO. 410 (continued)

Year 1965	Year Range, P. 1965 164-356	No. Used Year Runge, K Error. T. 938 T 1965 164-356	d Name and Specimen Designation Bit mSb of Te 13	Composition (weight percent) Bi ₂ Te ₃	ht percent)	Composition (continued), Specifications and Remarks Similar to the above specimen except electrical re-
1965 9		6 . S6	B:%JTe3, 13	\$. \$.	б. ?? ??	sistivity reported as 0.089, 0.766, 0.853, 0.546, 1.10, 1.15, 1.32, 1.49, and 1.71 milliohm cm at 1.4, 1.79, 200, 220, 240, 252, 280, 301, and 354 K, respectively. 2.27 Te (calculated); n-type; same fabrication method and measuring method as the above specimen; electrian
1368 1368	5,	61 7 60	BiSDTc ₁₋₁₃			cal conductivity reported as 0.43 x 103 ohm "cm" ⁻¹ xt room temperature. Another ron of the above specimen.
	-	170-355	BiShTe _{1, 17}			Similar to the above specimen except electrical resistivity reported as 1.27, 1.32, 1.49, 1.63, 1.80, 1.95, 2.24, 2.38, and 2.56 milliohm at 171, 181, 203, 218, 233, 250, 280, 302, and 356 K, respectively.
3965	Ξ;	208.2	B11_55\$b0_25Te3_1	8.5.00 2.00	6» .c	1.61 Te (calculated); n-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 0.93 x 103 ohm "lem" at room temperature.
1 965	ēi -	ପ ଏକ୍ଟିପ	Bi _{1, 75} Sb _{0, 25} Tv _{3, 13}	sr. 24	9,78	3.11 Te (calculated); n-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.41 x 10 ³ ohm ⁻¹ cm ⁻¹ at room temperature.
1365	či	29×.2	$B_{1_1, 15}SI_{0_1, 25}Te_{3_1, 25}$	86, 2 &	9.64	4.08 Te (calculated); n-type; same fabrication method and measuring method as the above specimen; electrical conductivity reported as 1.46 x 10 ² ohm ⁻¹ cm ⁻¹ at room temperature.

الأراقي الفرني الأباد ونبط أفأرف البروط استه والمرابس في فالبالوطيف ويستوده ويقارها بالمتفقوس أباد للسحول مددم موسوداة والمامس

DATA TABLE NO. 410 THERMAL CONDUCTIVITY OF (BirTe3 + ShrTe3) MIXTURES

(Bi₂Te₃ + Sb₂Te₃ : 95.0%; impurity 2.0% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

т ж	CURVE 15*	298.2 0.0174																										
אר	VE 8	0.0153	VE 9	0.0175	0.0169	0.0163	0.0143	0.0169		CURVE 10*	0.0158		CURVE 1: *	0.0192	CURVE 12	0.0172*	0.0151	0.0151	0.0148	0.0151	0.0161	0.0178		CURVE 13	0.0186		CURVE 14	0.0156
۲	CURVE	298.2	CURVE	163.7	177.9	218.8	280.1	355.9		CUR	298.2			298.2	CUR	170.4	201.2	216.9	232.6	280.9	300.3	354.6		CUR	298 2	! !	CUR	298.2
¥	VE 1	0.0188	VE 2	0.0197	CURVE 34	0.0193	VE 4	0.0278	0.0262	0.0241	0.0269	0.0200	0.0210	VE 5	0.0170	CURVE 6	0.0150			0.0192	0.0195	9810.0	0.6175	0.0168	0.0169	0.0169*	0.0198	
H	CURVE	298.2	CURVE	298.2	CUR	298.2	CURVE	162.6	174.2	208.3	257 1	302.1	362.3	CURVE	298.2	CUR	298.2		CORVE	162.1		130.5	210.1	231.5	20.00	299.4	353,4	

Not shown on plut

SPECIFICATION TABLE NO. 411 THERMAL CONDUCTIVITY OF (Bi,Te, + Sh,Te, + Sh,Se,) MIXTURES

 $(Bi_2Te_3+Sh_2Te_3+Sh_2Se_3+95.0\%;$ impurity $\sim 2.0\%$ each)

Composition (continued), Specifications and Remarks	p-type; doped with excess Bi; electrical resistivity 0.8 milliohm cm at room temperature.
Composition (weight percent) Bi ₁ Te ₃ Si ₁ Te ₃ Sb ₂ Se ₃	50 40 10
Name and Specimen Designation	
Reported Error, %	
Temp. Range, K	300
Method Year Used	1961
f. Meth	1. 1.
No. No.	3
ر ا ر	1

DATA TABLE NO. 411 THERMAL CONDUCTIVITY OF (BizTe3 + ShrTe3 + ShrSe3) MIXTURES

 $\left(Bi_1Te_3 + Sb_2Te_3 + Sb_2Se_3 + 95,0\%; \text{ impurity } \leq 2,0\% \text{ each}\right)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

.*****

CURVE 1*
300 0.015

No graphical presentation

The state of the s

- F- 28

SPECIFICATION TABLE NO. 412 THERMAL CONDUCTIVITY OF (Bite, + Bi, 3e,) MICTURES

(BkTc3 + BkSc4 * 95.0%; impurity <2.0% each)

[For Data Reported in Figure and Table No. 412]

Composition (continued), Specifications and Remarks	n-type; doped with CuBr; electrical resistivity 0.6 milli- ohn cm at room temp.	80 BiTe, 20 Bi-Se, (weight percent or mole percent not specified); the apparatus comprises two coaxial graphite cylinders 20 mm. I.D. and 50 mm. O.D., separated by a gap 3 mm wide into which the powder specimen is poured, and the annular gap itself 140 mm long; before measurement of the apparatus was sealed up and heated at 600 K for 18-20 hrs then the entire system was placed in vacuum; bismuth used as comparative material.
Composition (weight percent) Bi ₂ Te ₃	21.4	1
Composition Bi ₂ Te ₃	78.6	1
Name and Specimen Designation		
Reported Error, %		2 4
Curve Ref. Method Year Temp, Reported No. No. Used Year Range, K Error, %	300	1965 971-1280
Year	1960	1965
Method Used	-	U
% Fe	947	974.
Curve No.	-	N

العيميسياس والمالية والمرابعة بمناسمة حمد المساول المرابع فيماسية سيمان والمرابعة المرابعة ومساوله والمرابعة والمراب

constitution of the state of

DATA TABLE NO. 412 THERMAL CONDUCTIVITY OF (Bi₁Te₃ + Bi₂Se₅) MIXTURES

 $(Bi_2Te_3+Bi_2Se_3 \otimes 95,0\%;$ impurity $\lesssim 2.0\%$ each)

[Temperature, T, K, thermal Conductivity, k, Watt cm -1K-1]

T k

CURVE 1

300 0.020

CURVE 2

971 0.0635
977 0.0621
1021 0.0712
1076 0.0772
1137 0.0902
1137 0.0902
1137 0.100
1227 0.110

SPECIFICATION TABLE NO. 413 THERMAL CONDUCTIVITY OF (Cdys, + Znys,) MIXTURES

(CdyAs2 + ZnyAs2 > 95.0%; impurity > 2.0% each)

Curve No.	Ref.	Method	Year	Temp. Range, K	Ref. Method Year Temp. Reported No. Used Year Range, K Error, %	Name and Specimen Designation	Composition (CdyAs2	Composition (weight percent)	Composition (continued), Specifications and Remarks
-	972		1965	2.398.2		Cd ₂ , ₅ Zn ₀ , ₅ A5 ₂ ; 1	87.6	12.4	Single crystal: 12 mm dla x 56 mm long; prepared by loading 99.9959 pure Cd, 99.9998 pure Zn, and 9.9955 pure As, in stoichiometric quantities, into a carbon-coated cylindrical quartz crucible, evacuated and sealed, heated till materials completely molten, rocked for a few hours, cooled at a rate of 15 C hr ⁻¹ ; electrical resistivity 0.32 milliohm cm.
03	972		1965	298.2		Cd., 3Zno, 9AS2: 2	87.6	12.4	0.05 Cu: same dimensions and fabrication method as the above specimen; electrical resistivity 1.9 milliohm cm.
m	972		1965	298,2		CdznAs ₂ : 3	73.7	26.3	Same dimensions and fabrication method as the above specimen; electrical resistivity 4.6 milliohm cm.
4	972		1965	298.2		Cd1,6Zn1,1As2: 4	61.6	38.4	Similar to the above specimen; electrical resistivity 12 milliohn cm.

DATA TABLE NO. 413 THERMAL CONDUCTIVITY OF (Cd4As; + Zn4As;) MIXTURES

(Cd3As2 + Zn3As2 > 95.0%; impurity > 2.0% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm71K-1]

×	CURVE 3	0.012	CURVE 46	0.011
'n	CUR	298.2	CUR	298.2
æ	CURVE 1	0.023	CURVE 25	0.016
۲	CUB	298.2	CUR	298.2

No graphical presentation

SPECIFICATION TABLE NO. 414 THERMAL CONDUCTIVITY OF (CdSb + ZnSb) MIXTURES

(CdSb + ZnSb ≥ 95, 0%; impurity ≤2, 0% each)

[For Data Reported in Figure and Table No. 414]

Curve No.	Ref.	Method	Year	urve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error, %	Reported Error, %	Name and Specimen Designation	Composition (weight percent)	ight percent) ZnSb	Composition (continued), Specifications and Remarks
٦	979, 980	ပ	1960	343-433		CdSb · Z nSb	55. 6	44.4	Prepared from spectroscopically pure Zn, Sh, and Cd obtained by repeated vacuum distillation, materials weighed and melted in evacuated Pyrex containers at 620-530 C, vibrated, annealed 24 450-550 C for 5 hrs and at 250 C for 8 hrs; electrical resistivity reported as 0.581 and 0.231 ohm cm at 70 and 130 C, respectively; measured in high vacuum.
8	979, 980	o .	1960	343-433		3CdSb · 2ZnSb	65.3	34.7	Sume fabrication method as the above specimen; electrical resistivity reported as 0.188 and 0.104 ohm cm at 70 and 130 C, respectively; measured in high vacuum.
ო	979, 980	ပ	1960	343-433		7CdSb · 3ZnSb	74.5	25,5	Same fabrication method as the above specimen; electrical resistivity reported as 0.0749 and 0.0425 ohm cm at 70 and 130 C, respectively; measured in high vacuum.

DATA TABLE NO, 414 THERMAL CONDUCTIVITY OF (CdSb + ZnSb) MIXTURES

(CdSb + ZnSb $\geq 95,0\%$, impurity $\leq 2,0\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm ''K-']

۲

CURVE 1

343.2 0.0106 353.2 0.00651 383.2 0.00464 493.2 0.00402 433.2 0.00335

CURVE 2

343.2 0.00782 353.2 0.00602 383.2 0.00364 403.2 0.00335 433.2 0.00293

CURVE 3

343.2 0.0111 353.2 0.00874 333.2 0.00531 403.2 0.00427 433.2 0.00276

SPECIFICATION TABLE NO. 415 THERMAL CONDUCTIVITY OF (CLEIKS) + CLISC) MIXTURES

(CuSbSe₂ + Cu₃Se₂ $\approx 95.0\%$; impurity $\approx 2.0\%$ each)

	Composition (weight percent), Specifications and Remarks	p-type; specimen obtained by fusing ASARCO 99,999 pure elements in carbon-coated quartz tube with agitation, cooling, crushing, recasting in 8 mm uncoated quartz, and zone-leveling; electrical resistivity 9~11 ohm cm; melting point (with decomposition) 450 K (measuring temperature not reported, assumed room temperature).	p-type; same fabrication method as the above specimen; electrical resistivity 10 ~ 16 ohm cm; melting point 440 (eutectic) to 475 K (measuring temperature assumed 25 C).	n-type; same fabrication method as the above specimen; electrical resistivity $6.5 \sim 9$ ohm cm; melting point 450 K (measuring temperature assumed 25 C).	p-type; same fabrication method as the above specimen; electrical resistivity 2 ohm cm; melting point 450 K (measuring temperature assumed 25 C),
	Name and Specimen Designation	(CuSiSc2)0, 6(Cu3Sc2)0,2	(CuSbSe ₂) _{0.} #Cu ₅ Se ₂) _{0.} ;	(CuStsc ₂) _{0,7} (Cu ₅ sc ₂) _{0,3}	(CuShSe2)0, 6(CupSe2)0.4
	Reported Error, %				
	Temp. Range, K	298.2	298.2	298.2	298.2
	Year	1962	1962	1962	7961
İ	Method Used				
	Surve Ref. No. No.	971	971	₹	₹
	Curve No.	-	81	က	7

DATA TABLE NO, 415 THERMAL CONDUCTIVITY OF (CUSKSO, + Cu5So,) MIXTURES

(CuSiSe₂ + Cu₃Se₂ : 95.0%; impurity < 2.0% each)

[Temperature, T. K; Therinal Conductivity, k, Watt cm-1K-1]

CURVE 1* CURVE 1*

298.2 0.0188 298.2 0.0184

CURVE 2*

298.2 0.0225

CURVE 3*

298.2 0.0141

^{*} No graphical presentation

Specification table no, 416 thermal conductivity of $(c_{u_{s}}s_{e_{2}}+c_{t}s)s_{e_{3}}$ mixtures

 $(\mathsf{Cuppe}_2 + \mathsf{CuSlSe}_2 - 95, \theta^{5}_1 \text{ impurity} \approx 2.0\% \text{ each})$

Curve No.	Ref. Met. No. Use	hod Year	Ref. Method Year Temp. Reported No. Used Year Range, K. Error,	Reported Error, C.	Name and Specimen Designation	Composition (Composition (weight percent) Cusses (usises	Composition (continued), Specifications and Remarks
-	† +	1962	29%.2		(CuStas ₂) _{6.25} (CuŞta ₂) _{0.15}	75.29	24.71	p-type; specimen obtained by fusing ASARCO 99, 599 pure elements in earbon-coated quartz tube with agitation, cooling, crushing, recasting in 8 mor uncoated quartz, and zone-levelun; electrical resistivity 0.4 ··· 1,65 milliobin cm; melting point 460 K (measuring temperature assumed 25 C).
61	944	1962	298.2		(CuSke ₂) _{e, g} (Cu _S ke ₂) _{e, g}	80,25	19.75	p-type; same fabrication method as the above specimen; electrical resistivity 0.25 milliohn cm; melting point 1049 K; phase changes at 120 and 560 K (measuring temperature assumed 25 C).
က	444	1962	294.2		(Custisse) _{in f} Cu _i sce) _{in a}	90.14	9.46	p-type; some fabrication method as the above specimen; electrical resistivity 0.35 milliohn cm; melting point 970 K; phase changes at 360 and 435 K (measuring temperature assumed 25 C).
4	94.4	1962	298.3		(CuStSe ₂) _{0.5} (Cu ₂ Se ₂) _{0.5}	68.406	49,61	F-type; same fabrication method as the above specimen; electrical resistivity 12 milliohm cm; melting point 160K/measuring temperature assumed 25 C).
ç	944	1962	298.2		(CuShSe ₂) _{0.4} (Cu ₂ Se ₂) _{0.6}	60,37	29,63	p-type same fabrication method as the above specimen; electrical resistivity. It milliohn cm; melting point 460 K (measuring temperature assumed 25 C).
9	24	1961	298.2		(Cushsey)o, 34(Cussey)o.c.	67,34	95*20	p-type; same fabrication method as the above specimen; electrical resistivity 9,5 ~ 10,5 milliohn cm; melting point 460 K (measuring temperature assumed 25 C).
t~	<u>¥</u>	1962	294.2		(Cushse ₂) _{q, g} (Cu ₃ Se ₂) _{e, 1}	70,32	29,6%	p-type; same fabrication method as the above specimen; electrical resistivity 1.2 milliohn cm; melting point 460 K (measuring temperature assumed 25 C).

[Temperature, T. K; Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

298.2 0.0220

CURVE 2*

298.2 0.6195

CURVE 3*

298.2 0.0190

CURVE 5*

298.2 0.0190

CURVE 5*

298.2 0.0190

CURVE 7:

No graphical presentation

17.5 EACH

SPECIFICATION TABLE NO. 415 THERMAL CONDUCTIVITY OF (InSb + In-Te₁) MIXTUR

(InSb + IntRey > 95, 0%; imparity < 2, 0% each)

(For Data Reported in Pigure and Table No. 417)

Composition (continued), Specifications and Remarks		Prepared from highly pure indum, Sb-000 antimons tellurium by multiple-zone recrystallization. synthesized in evacuated (10") mm Hg) quartz ampoule. slowly cooled.	Same fahrication method as the above specimen.
ight percent)	IntTay	2.55.	11.99
Composition (weight percent)	InSh	97, 45	10 %
Name and	Specimen Designation		
Temp. Reported	Error."		
Temp.	Hunge, K	109-443	111-461
- 0.74	17.31	1963	1963
Method	Csed		٦
Ref.	No. No.	950.	950. 951
Curve		_	÷1

STATE OF THE PROPERTY OF THE P

DATA TABLE NO. 417 THERMAL CONDUCTIVITY OF (InSb + In,Te,) MIXTURES

(InSb + In₂Te₃ > 95.0%; impurity + 2.0% each)

(Temperature, T, K; Thermal Conductivity, k, Watt cm "K")

CURVE 1	0.104 0.0690 0.0571 0.0505 0.0493 0.0442	CURVE 2	0.323 0.164 0.154 0.154 0.147 0.110 0.110
20	109 211 280 302 362 463	3	282 282 300 314 328 409 427 427

SPECIFICATION TABLE NO. 418 THERMAL CONDUCTIVITY OF (In. Te, + Cu, Te + AR, Te) MIXTURES

 $\left(Ir_{i}Te_{j} + Cu_{i}Te + Ag_{i}Te^{-} \cdot 95, 0\%_{i}^{C_{i}} \right)$ impurity $\cdot 2, 0\%$ each)

Composition (continued), Specifications and Remarks	Quadruple covalent semiconductors.
Composition (weight percent) In 1'c Curre Agre	6K, N7 21, 4N 9, 65
Reported Name and Error, % Specimen Designation	AR, 25Cu, 15InTe;
Year Range, K	1960 272.9
sf. Method	55× TE
Curve Ref.	1 7

DATA TABLE NO. 418 THERMAL CONDUCTIVITY OF (bitfol Curte Carte) MIXTURES

(In,Te, +Cu,Te + Ag,Te $\simeq 95,0\%$; impurity $\simeq 2,0\%$ cach)

[Temperature, T, K; Thermal Conductivity, k, Watt em⁺¹K⁻¹]

T k

272.9 0.0125

No graphical presentation

SPECIFICATION TABLE NO. 419 THERMAL CONDUCTIVITY OF (HgTe + CdTe) MIXTURES

(HgTe + CdTe ?95.0%; impurity <2.0% each)

[For Data Reported in Figure and Table No. 419]

Composition (continued), Specifications and Remarks	Dilute solution of cadmium telluride in mercury telluride. Dilute solution of cadmium telluride in mercury telluride.
Composition (weight percent)	2.96
HgTe CdTe	5.22
Composition (w	97 04
HkTe	94,78
Name and	Cd _{0,04} Hg _{0,96} Te; 9
Specimen Designation	Cd _{0,07} Hg _{0,78} Te: 23
Reported	ဟ ဘ
Error, %	H +H
Tento	95-295
Range, K	94-246
Year	1960
Method Year Used	
Ref.	520
Curve No.	- 0

DATA TABLE NO. 419 THERMAL CONDUCTIVITY OF (Rgre + CdTe) METURES

(HgTe + CdTe = 95.0%; impurity < 2.0% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

•

CURVE 1

٥.	۰.	٥.	٥.	٥.	۹.	٥.	٩.	٥.	٥.	٥.	٥.	٥.	۹,	٩.	0.0262	ο.
S	ţ÷	05.	37.	13.	20	28.	37.	8.	59	9.	74	8	S.	22	253.2	95.

VE 2	0.0374 0.0357 0.0342 0.0333 0.0296 0.0266 0.0242
CURVE	93.9 101.9 1133.4 122.4 146.6 163.4 245.7

SPECIFICATION TABLE NO. 120 THERMAI, CONDUCTIVITY OF (AgSbTe; + SbTe) MIXTURES

(AgSbTe₂ + SnTe 2 95.0%; impurity < 2.0% each)

Composition (continued), Specifications and Remarks	60% of SnTe by mole added to p-type AgSbTe ₂ .	25 m/o SnTe.
ght percent) SnTe	43.25	14.48
Composition (weight percent) AgSbTe ₁ SnTe	56.75	85.52
Name and Specimen Designation	AgSbTe ₂ ·SnTe	AgSbTe, SnTe
Reported Error, %		
Temp. Range, K	300	300
Year	1959	1959
Method Used	'n	_
Ref.	553	553
Curve No.	7	81

DATA TABLE NO. 420 THERMAL CONDUCTIVITY OF (AgsbTe, + SnTe) MIXTURES

(AgSbTe₂ + SnTe > 95.0%; impurity $\leq 2.0\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt cn: 1K-1]

T k

CURVE 1*
300 0.018

CURVE 2*
300 0.01

The contract of the contract o

No graphical presentation

SPECIFICATION TABLE NO. 421 THERMAL CONDUCTIVITY OF (SnTe + AgSbTe,) MIXTURES

(SnTe + AgSbTe₃ : 95.0%; impurity < 2.0% each)

80% of SnTe by mole added to p-type AgSbTe2.
32.58
67.02
AgSbTc ₂ ·SnTe
300
1959
1
253
-

DATA TABLE NO. 421 THERMAL CONDUCTIVITY OF (SATE + AgSbTe,) MIXTURES

(SnTe + AgSbTe₂ $\approx 95.0\%$; impurity $\leq 2.0\%$ each)

[Temperature, T, K; Thermal Conductivity. k, Watt cm 1K-1]

T k
CURVE 1*
300 0.026

SPECIFICATION TABLE 1, 422 THERMAL CONDUCTIVITY OF (ZnSi) + Calsi) MIXTURES

(ZnSb.) CdSb. (95, 0%) (impurity 2, 0% each)

[For Data Reported in Figure and Table No. 422]

Composition (continued), Specifications and Remarks	Prepared from spectroscopically pure Zn., Sb., and Cd obtained by repeated vacuum distillation, materials weighed and melted in evacuated Pyrex container at 620-630 C, vibrated unrealed at 450-550 C for 5 hrs and at 250 C for 8 hrs; electrical resistivity reported as 0,285 and 0,155 ohm cm at it and 130 C. respectively: measured in high vacuum.	Same fabrication method as the above specimen; electrical resistivity reported as 0,0715 and 0,0523 ohm cm at 70 and 130 C, respectively; measured in high vacuum.
Composition (weight percent) ZaSb	4.5, 5.	34.9
Composition	54. 5	65. B
Name and Specimen Designation	2CdSb · 3ZnSb	aCdSb - 7ZnSb
Curve Rel. Method Year Temp. Reported N. No. Used Year Runge, K. Error, "Speci		
Temp. Runge, K	979, C 1066 3431-433	343-433
Year	1366	0961
Method	<u></u>	ن
Ped.	979. 980	978 946
Curve No.	_	÷ı

DATA TABLE NO. 422 THERMAL CONDUCTIVITY OF (ZnSb + CdSb) MDCTURES

(2nSb + CdSb $\pm 95.0\%$; impurity $\leq 2.0\%$ each)

(Temperature, T, K; Thermal Conductivity, k, Watt cm $^{\text{-l}} K^{\text{-l}} l$

CURVE 1

0.0116 0.0110 0.00711 0.00594 0.00519 0.00803 0.00628 0.00431 0.00397 0.00314 CURVE 2 343.2 353.2 383.2 403.2 433.2 343.2 353.2 383.2 403.2

العال كالفيط الفيالي والبالط المائك المواقعات مطالعها أطف فالمحظ فيقط المعتمد مانفساه المفاد أمد مدساسد بمنقاه مطاعاتها فالمالك المتعدما المدادة المتعدمات المعاددات المتعددات المدادة المتعددات المعاددات المتعددات المعاددات المتعددات المعاددات المتعددات الم

مماميه بيدي يصمر فالسفهالان فرياف فإكالناس عطاهم الااللاسان مسلولات للأصد مانومين للمحد المفراطال مناطا فالأمالة فلفت

Specification table no. 423 $^{\circ}$ thermal compulctivity of (Bi₂Te₃ + Te) $^{\circ}$ mixtures

 $(B_2 T e_3 \star T e + 95, 0\%; \, impurity \leq 2, 0\% \, \, each \lambda$

Composition (continued), Specifications and Remarks	n-type; prepared from 99,999 pure hismuth supplied by Consolidated Mining and Sinething Co. and from 99,97 pure tellarutum supplied by Canadian Copper Refiners 1,1d., materials weighed and out, crushed, sealed in an ampule in a vacuum of 10°5 Torr, heated at 900 C for 20 hrs, rocked, cooled, zone-melied at a rate of 9,07-6,2% in, hr 1, then cooled and cut; thermal conductivity data calculated from measured values of the figure of merit, seebeck coefficient, and electrical conductivity reported as 1,93 x 10³ ohm 'cm', at room temperature.	n-type; same (abrication method and measuring method as the above specimen; electrical conductivity reported as 2,36 x 103 ohin [cm.] at room temperature.
ight percent) Te	9. 9	3,94
Compusition (weight percent) Bi ₂ Te ₃ Te	97.06	96, 02
Name and Specimen Designation	B1, TC3, 13	Bi ₂ Te _{3, 28}
Reported Error, %		
Ref. Method Year Temp. Reported No. Used Year Range, K Error, 7,	294.2	298.2
Year	2962	1965
Method Used	į -	H
Ref.	9::6	936
Curve No.	1	es.

DATA TABLE NO. 423 THERMAL CONDUCTIVITY OF (Bi₁Te₃ + Te³) MIXTURES

 $(Bi_2^*\mathcal{R}e_3*Te^{-\epsilon}.95, 0\%; impurity \leq 2, 0\%; each)$

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1K-1]

T K
CURVE 17
298.2 0.0279
CURVE 2*
298.2 0.0281

No graphical presentation

SPECIFICATION TABLE NO. 424 THERMAL CONDUCTIVITY OF (BERYLLIUM + BERYLLIUM OXIDE) ALLOYS

(Br + Brd) 759, 50%; imparity 40, 20% each)

[For Data Reported in Figure and Table No. 424]

Curve No.	№ .	Rei, Method icar No, Used	Tear	Temp. Runge, K	Reported Error, "s	Name and Specimen Designation	Composition (Composition (weight percent) Be	Composition (continued), Specifications and Remarks
_	3		1960	4, 0-125			98, 700	1.2	0. 956 Al, 0. 0.05 St, 0. 0.16 Ni, 0. 0.10 Mn, trace B and Li, specimen axis parallel to the pressing axis
ţI	इ		1961	4.0-125			94, 700	1.15	6, 044 A1, 0, 014 Ni, 0, 009 Mn, trace B and Li, specimen axis perpendicular to the pressing axis.
m	~	-1	1958	850-1238	5. 3	YB-9052	99, 160	42.0	
7	111	၁	1953	32:-673		к А. А.	9%.5		0. 13 Al, 0. In Fe, 0. 63 Cu. 0. 05 Cl, the rest BeO and other impurities; chill-east.
13	111	J	1953	324-673		W.H. T.			The above specimen after heat treatment at 700 C.
ප	913		1960	340 - 1400		Y 6825	98, 322	1 , 4 ,	0. 003 Mg, 0. 015 AI, 0. 01 SI, 0. 001 Ca, 0. 002 Ti, 0. 008 Cr, 0. 005 Mn, 0. 015 Fe, and 0. 004 Cu.
t~	513		1960	450-1400		Y 9384	768 %6	10 Pr 10	0, 006 Mg, 0, 05 Al, 0, 008 St, 0, 002 Ca, 0, 004 Tt, 0, 01 Cr, 0, 0, 008 Mn, 0, 15 Fe, 0, 015 Ni, 0, 01 Ca,
¥	513		1960	450-1375		Y 6826	98, 55.4	1, 292	0, 01 Mg, 0, 03 A1, 0, 02 S1, 0, 002 Cn, 0, 002 Ti, 0, 01 Cr, 0, 0, 006 Mn, 0, 15 Fe, 0, 015 Ni, 0, 01 Cu.
e.	3		1960	340-1390		YB 1900	98, 509	1, 229	0. 015 Mg, 0. 03 Al, 0. 008 Si, 0. 002 Ca, 0. 002 Ti, 0. 01 Cr, 0. 01 Ma, 0. 15 Fe, 0. 02 Ni, 0. 015 Cu.
91	51.		1960	450-1400		LYB 1102	143 ,84 1	0, 992	0, 02 Mg, 0, 04 Al, 0, 04 St, 0, 002 Ca, 0, 004 Tr, 0, 02 Cr, 0, 008 Mn, 0, 20 Fe, 0, 02 Nr, and 0, 01 Cu.
Ξ	51.3		1366	310-1035		BMI 5	99, 084	0, 609	0, 015 Mg, e, 01 Al, 0, 01 St, 0, 001 Ca, 0, 003 Tt, 0, 015 Cr, 0, 0093 Ma, 0, 20 Fc, 0, 015 Ni, and 0, 015 Cu.

DATA TABLE NO. 424 THERMAL CONDUCTIVITY OF (BERYLLIUM + BERYLLIUM OXIDE) ALLOYS

(Be + BeO 299, 50%; impurity <0, 20% each)

[Temperature, T. K; Thermal Conductivity, k, Watt cm-1 K-1]

×	CURVE 9 (cont.)	0.607	0.544	0.562		CURVE 10		1. 558	1, 255	1.004	0.900	0, 753	0.628	0.460		CURVE 11		1.778	1.590	1, 506	1. 423	1, 172	1.088	1.046	1.00	0.941	0.920	0.837																
۲	CURVI	1255	1310	1:390		S		480	099	800	890	1060	1325	1400		CUR		310	375	425	480	590	200	150	910	860	920	1035																
×	CURVE 5 (cont.)	1.440	1. 260	1, 130	1, 0:30		CURVE 6	j i	1, 757	1, 632	1.464	1, 172	0.837	9, 628	0.586	0.523		VE 7	İ	1, 569	1,464	1.046	0, 753	0.628	0, 607	0.502		CURVE 8	İ	1, 590	1. 297	1, 172	0.962	0.711	0.628			CURVE 9		1.674	1.590	1, 381	1,088	0. 795
۲	CURVE	373, 2	473.2	573, 2	673.2		25 C C E		340	425	600	820	1100	1255	1315	1400		CURVE		450	610	850	1120	1260	1340	1400		CUR		4	345	780	910	1160	1290	1375		CIR		340	430	520	830	1080
אַ	VE 1	0. 145	0. 22	0. 295	0.375	0.765	8.	2, 36	2.95	3, 15	3, 30		VE 2		0.0845	0, 135	0.183	0.217	0.50	1.07	1.65	2.05	2.45	2. 60		VE 3	ł	6, 869	0.800	0, 774	0.760	0.74		VE 4		1.350	1. 260	1.120	1.040	0.970		VE S	ļ	1.580
L	CURVE	4.0	9.0	ල න	10.0	20.0	40.0	9 .09	90° c	190.0	125.0		CURVE		0.4	6.0	9. O	10.0	20.0	4°C. 0	60, 0	90.0	100.0	125. 6		CURVE 3		850.2	947.6	1032, 8	1139.6	1237, 5		CURVE		323.2	373, 2	473, 2	573, 2	673. 2		CURVE 5		323, 2

and the second of the second o

SPECIFICATION TABLE NO. 425 THERMAL CONDUCTIVITY OF (CHROMIUM + ALUMINUM OXIDE) ALLOYS

(Cr. + Al₂O₃ 295, 9%; imperity 52, 0% each)

Composition (continued), Specifications and Remarks	
Composition (weight percent)	80 20
Name and Cou Specimen Designation	
Temp. Reported Range, i. Error %	
	1955 293.2
Method Year	195
Curve Ref. Metho No. No. Used	981
Curve No.	_

DATA TABLE NO. 425 THERMAL CONDUCTIVITY OF [CHROMIUM + ALUMINUM OXIDE] ALLOYS

 $(C_{\rm P}+A1_{\rm P}O_3\approx95,0\%)$ impurity %2,0% each)

[Temperature, T. K. Thermal Conductivity, k. Watt cm 4 K 4]

T k

293. 2 0. 460

* No graphical presentation

SPECIFICATION TABLE NO, 426 THERMAL CONDUCTIVITY OF [Cu + BeCo] ALLOYS

(Cu + BcCo $^{\circ}$ 99, 50%; impurity $^{\circ}$ 0, 20% each)

[For Data Reported in Figure and Table No. 426.]

Cure	E	Method	Year	Temp.	Curve Ref. Method year Pont. Reported	Name and Specumen Designation	Composition (weight percent)	t) Composition (continued), Specifications and Remarks
Š.	Š	Csed		renige, n				at person to more than the state of at
-	2		1 959	338-968			98.49 1.51	(1.31 Co, 0.2 Be); specumen quencinca men comported 740 C in radial section.
•	:						65 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(2, 52 Co., 0.4 Bc); specimen quenched then tempered at
6	7		1959	350-791				740 C in radial section.
a (: 3		8581	376-810			96, 23	(3.27 Co. 0.5 Be);specimen quenched then tempered at 700 C in radial section.
7	;		990				94,72 5.28	(4.58 Co, 0.7 Be);specimen quenched then tempered at 700 C in radial section.
7	<u>₹</u>		1333				1	(c. so co o n.). specimen guenched then tempered at
ď	145		1959	1959 340-947			93.21 6.79	700 C in ridial section.

DATA TABLE NO. 426 THERMAL CONDUCTIVITY OF (Cu + BeCo) ALLOYS

(Cu + BeCo - 99,50%; impurity <0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

*	E 4 (cont.)	2.24	<u> </u>	1.70			2.03	2.20																										
t	CURVE	868.2 960.2	CURVE	340.2	398.2	201.2	538.			870.2																								
*	VE 1	2.16	r 22 54	. 65 . 65	2.52	34.5	2.26	•	VE 2	•	2.1,	2.5	2.4	7.0	5 C C	2.5	VE 3			2.41	2.46	2.53	5.53	£2.53	2.52	VE 4	2.26	2.39	2.43	2.51	2.55	2.52	2.47	2.30
٠	CURVE	338.2 432.2	567.2	721.2	805.2	361.2	968.2		CURVE		350.2		467.2			791.2	CURVE	376.2	413.2	469.2	508.2	563.2	628.2	13.2	810.2	CURVE	355.2	403.2	473.2	550.2	608.2	675.2	738.2	771.2

SPECIFICATION TABLE NO. 427 THERMAL CONDUCTIVITY OF (GAAS + GaP) MIXTURES

(GaAs + GaP > 95, 0%; impurity < 2,0% each)

[For Data Reported in Figure and Table No. 427]

Curve	Ref.	Method	3,5	Temp.	Reported	Curve Ref. Method Temp. Reported Name and	Composition (weight percent)	t percent)	Composition (continued), Specifications and Remarks
ė.	Ş	Used.	rear	Range, K	Error, %	Specimen Designation	Gaðs	GuP	
-	84 6	٦	946 L 1965	24-239	+10	GaAs _{0.9} P _{0.1} ; FH112	92.8	2.5	n-type Te-doped polycrystalline; 1.0 x 1.5 x 8 mm; pre- pared by a closed tube vapor transport method using PbCl, as the transport agent, the sealed quartz tube moved slowly through a stationary temperature gradient; carrier concentration 4 x 16 ¹⁸ cm ⁻³ .
8	ž	1	1965	88-254	01 -	GaAs _{0.8} P _{0.2} ; 6302	85.2	24. 8	n-type Si-doped polycrystalline; same dimensions and fabrication method as the above specimen; carrier concentration 2 x 10 ¹⁸ cm ⁻³ .
ဗ	34 6	L	1965	22-161	+ 10	GaAs _{0, st} P _{0, 33} ; GM50	74.0	26.0	n-type. Se-doped polycrystalline; same dimensions and fabrication method as the above specimen; carrier concentration 2 x 10 ¹⁸ cm ⁻³ .
~	4	1	1965	66-241	+ 10	GaAS _{0, 66} Po, 35	72.7	27.3	n-type Te-doped polycrystalline; same dimensions; fabrication method, and carrier concentration as the above specimen.
v)	98	7	1965	26-243	+ 10	GaAs _{0.5} P _{0.5} ; 6407	59.0	11.0	Similar to the above specimen, except carrier concentration 3 x 10 16 cm $^{-3}$.

DATA TABLE NO. 427 THERMAL CONDUCTIVITY OF (GAAS + GaP) MIXTURES

(GaAs + GaP : 95.0%; impurity < 2.0% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

*	CURVE 5	25.7 0.212	.1	0	.9	8	۵.	.6	.8	• *																												
¥	VE 1	0.94	0.944	0.944	0.828	0.730	0.619	0.551	0.451	0.396	0.381		•	0.255		VE 2	-	0.322	0.284	0.263	0.221	0.196	VE 3	0.451	0.441	0.435	0.421	0.403	200.0	0.243	0.207	4 37		0.330	0.290	0.227	7 S	_
H	CURVE	24.2		30.2	35.3			64.3	83.4	96.2	1001	133.4	٠.	196.8	239. 4	CURVE	88.1	ä			191.9	254.2	CURVE	21.5	- 1	32.5		-	. 10.	ي ۽	. [3	CLIRVE	;	65, 5	Τ,	٠.	194.1	

SPECIFICATION TABLE NO. 428 THERMAL CONDUCTIVITY OF (Inds + InP) MIXTURES

($\text{InAs} + \text{InP} \geq 95.0\%$; impurity $\approx 2.0\%$ each)

[For Data Reported in Figure and Table No. 428]

Composition (continued), Specifications and Remarks	n-type; free from group VI doping agent; extrinsic carrier concentration 4 x 10 ¹⁷ cm ⁻² ; specimen made from 99, 999 pure arsenic, and commercial white phosphorus purified by repeated steam distillation; specimen prepared in a two-zone tube furnace with carefully controlled phosphorus vapor pressure; FH stainless skeel (checked by Armeo iron) used as the comparative material.	Similar to the above specimen but preapredly diluting specimens of higher phosphorus content with the proper amount of indium and arsenic, scaling off under vacuum, reacting and lovering at a rate of about 2.5 cm hr ⁻¹ through a temperature of gradient at the militing point; extrusic carrier concentration 6 x 10 ¹⁶ cm ⁻² .	Simular to the specimen thAs, ₃₆ P _{0, 95} but with a carrier concentration of 10 ^H cm ⁻³ .	Similar to the above specimen but with a carrier concentration of $2\times 10^{17}~\text{cm}^{-3},$
Composition (weight percent) InAs	5. 1.	(- 	16.11	33.87
Composition InAs	96,11	92.13	83. 89	66, 13
Name and Specimen Designation	InAs _{0, 35} P _{0, 35}	InAs _{0,2} P _{0.1}	InAs _{7,4} P _{5,2}	InAso. &Po. 4
Reported Error, %	01	01	01	10
Ref. Method Year Temp. Reported No. Used Year Runge, K Error, "	1959 310-1063	305-1066	303-1058	298-1075
Year	1959	1959	1959	1959
Method Used	ပ	O	U	ပ
	: 9S	567	267	567
Curve No.	~	61	e	4

DATA TABLE NO. 428 THERMAL CONDUCTIVITY OF (Inas + InP) MIXTURES

The second secon

(InAs + InP : 95, 0%; impurity < 2, 0% each)

["emperature, T, K; Thermal Conductivity, k, Watt cm $^{-1}K^{-1}$]

CURVE 1

0.152 0.155 0.082 0.060 0.0595 0.0590

 CURVE 3

 CURVE 2

SPECIFICATION TABLE NO. 429 THERMAL CONDUCTIVITY OF JMOLYBDENUM *THORUM DIOXDE; ALLOYS

1 Mo + TMO₂ > 99, 50%; impurity < 0, 20% each)

[For Data Reported in Figure and Table No. 429]

Composition (weight percent), Specifications and Remarks	0.001-0.01 Al, 0.001-0 01 Cu, 0.01-0.1 Fe, 0.001-0.01 Nb, 0.01-0.1 Si, trace Ca, Cr and Mg; doped by Thôy 1-2 by volume; greund down to g red with 3 G7 and Al 2 on 12 on 100.
Reported Name and Error, % Specimen Designation	
Reported Error, %	
Temp. Range, K	4-125
Year	1950
Method Used	
Ref. No.	494
Curve No.	-

DATA TABLE NO. 429 THERMAL CONDICTIVITY OF (MOLY EDLY) WE TRADE OF DONODE ALAGES

 $(\mathrm{Mo} = \mathrm{TEO}_{2} - 99, 50\% + \mathrm{trapense}) = 0, 20\% + \mathrm{sock})$

Temperature, T. K. Thermal Conductivity, (k-M) to $\exp\left(i(k-t)\right)$

CURVE 1

9, 155 0, 2, 5	0.325	0,845	1.4.	+	∵ 1.	1.30	- 53	1. 25
9 0 4 9								

SPECIFICATION TABLE NO. 430 THERMAL CONDUCTIVITY OF ISODIUM + DISODIUM OXIDE) ALLOYS

The second secon

(Na + NatO > 99, 50%; impurity < 0.20% each)

Curve	Ref.	Method Used	Year	Temp. Range. K	Reported Error, %	Name and Specimen Decimen	Composition (weight jureant). Specifications and Remarks
-	R68, N67	1	1965	328	< 15		4.9 Na,O.
64	86×, ×67	-1	1965	¥80	:1		5.3 Na ₃ O.
ກ	868, RS7	ت	1965	328	15		7.1 Na ₂ O.
4	868,867	٦	1965	* 25	< 15		7.6 Na,O.
ın	868,867	7	1965	253.4	< 15		7.6 Na ₂ O.
ø	868,867	-:	1985	328	× 15		24.0 Nago.
ţ-	868, 867	-:	1565	328	× 15		25.1 Na ₂ O.
ဆ	968,867	4	1965	324	91 ·		23.2 Na,O.
თ	868,867	٦	1965	328	~ 15		44.4 Na,O.
10	868,867		1965	32 X	> 15		47.7 Na.O.

DATA TABLE NO. 430 THERMAL CONDUCTIVITY OF ISODIUM 'DISODIUM OXIDE) ALLOYS

 $(N\alpha+N\alpha_{\rm p}O)/(99,50\%)$ impurity $\lesssim 0.20\%$ each)

[Temperature, T, K: Thermal Conductivity, k, Watt cm⁻¹K⁻¹]

×	CURVE 10°	÷.				
۴	CUR	328				
×	CURVE T'	0.719	CURVE F	0.708	CURVE 95	3
۲		328		328		32.8
24	CURVE 4*	1. 14	CURVE 5*	1.02	CURVE 6	0.778
٠		328		324		H2C
ĸ	CURVE 1*	1.08	CURVE 24	1.00	CURVE 3	1. 14
۲		328		328		328

^{*} No graphical presentation

and the first of the second of the second second of the second se

SPECIFICATION TABLE NO. 431 THERMAL CONDUCTIVITY OF (TINI · Cu) MIXTURES

(TiNi + Cu > 95.0%; imparity < 2.0% each)

[For Data Reported in Figure and Table No. 431]

Fo.	₹ §	Wethod	Year	Temp. Runge, K	Reported Error. %	Curve Ref. Method Year Temp, Reported Name and No. No. Used Year Range, N. Error, " Specimen Designation	Composition (weight percent) TiNi Cu	it percent) Cu	Composition (continued), Specifications and Remarks
~	965	1	1964	1964 3.3-279	w	TiNi + 2Cu	Ф. ў.	0 .i	Prepared from Mond nickel shot (39.9° pure) and DuPont high purity sponge, the titanism contained up to: 0.08 Mg, 0.07 Fe, 0.05 Mn, 0.04 Si, and 0.15 other impurities; rode were hot swaged and furnace cooled from homogenized buttons and machined into cylinder of 0.4 cm dia x 3 cm long, grain size—46 µ; electrical resistivity reported as 41.0, 41.0, 41.0, 40.7, 41.3, 41.0, 41.2, 41.4, 43.2, 49.2, 52.1, 55.0, 60.3, 67.3, 58.2, 79.6, 78.7, and 80.2 µohm cm at 2.30, 3.29, 3.67, 4.05, 8.61, 12.7, 21.8, 32.0, 48.5, 76.2, 95.1, 78.8, 9.18.9, 158.9, 204.6, 212.3, 291.1, 301.3, and 304.8 K, respectively.
େ	596	ı	1964	1964 2.9-342	w	TiNi + 8Cu	92.0	0.	Same fabrication method and dimensions as the above specimen; grain size ~54 \(\mu\); clectrical resistivity reported as 0.111; 0.112, 0.112, 0.111; 0.111,

DATA TABLE NO. 431 THERMAL CONDUCTIVITY OF (TINI + Cu) MIXTURES

(TiNi + Cu > 95.0%; impurity $\leq 2.0\%$ each)

(Temperature, T, K; Thermal Conductivity, k, Watt cm $^{-1}K^{-1}$)

	CURVE 2 (cont.)	0.0130				0.0260																					
	CURVE	25.5	30.1	35.7	83.8	82.4	9.601	119.4	153,9	191.4	÷	319.2	o.i														
•	<u>/E 1</u>	0.00316		0.00460	0.06715	0.00813	0.0101		۰.	0.0196	0.0324	٥.		0.0573		0.0710	•	Ξ.	0.140	0.151	۲.		. 23	VE 2	0.00457	0.00438	0.00
•	CURVE	3,31		3.88		96.4	5.11	8.30		15.6		26.8			67.3	71.5		150.0	187.1	193.2	215.8	۲.	279.3	CURVE	2, 92	3.12	

1	0.00457	0.00438	0.00589	0.00819	0.00973	0.0129	0.0150	0.0152	0.0135	0.0155	0.0139	0.0114	9.010.0	0.0118	
	2.92	3.12	3.28	3, 70	3.70	4.76	¥.	6, 14	6.46	7.05	7.26	10.9	14.9	20.9	

القرافية المرافق فيستمين يتمرك والقراق فالقال المستمير والمساسات المستميرة والماسيمين ماستمالها والمستميرة والمستميرة والمستميرة والمستميرة والمستميرة والمستميدة وال

SPECIFICATION TABLE NO. 432 THERMAL CONDUCTIVITY OF (TINI + Ni) MIXTURES

(TiN: + Ni \geq 95, 0%; impurity \leq 2.0% each)

[For Data Reported in Figure and Table No. 432]

, .	io:
Composition (continued), Specifications and Remarks	Prepared by mixing Mond nickel shots (99.9° pure) and DuPont high purity sponge; the titanium contained up to: 0.08 Mg, 0.07 Fe, 0.05 Mn, 0.04 Si, and 0.15 other impurities; specimen rod were hot swaged and furnace cooled from homogenized buttons and machined into a cylinder of 0.4 cm dia x 3 cm long; electrical resistivity reported as 27.5, 27.2, 27.6, 27.5, 28.0, 27.8, 28.8, 29.9, 31.0, 34.7, 35.8, 39.0, 42.4, 44.2, 52.2, 59.7, 63.0, and 69.3 μοhn cm at 2.37, 4.13, 5.50, 7.26, 11.8, 19.3, 27.7, 45.1, 59.3, 74.0, 79.4, 95.1, 111.7, 130.6, 167.9, 209.9, 248.3, and 302.0 K, respectively.
ight percent) Ni	<u>~</u>
Composition (weight percent) TiNi	5.2
Name and Specimen Designation	T'IN'S + 18N'S
1 1	က
Curve Ref. Method Year Temp. Reported No. No. Used Year Range, K Error, %	2, 8-271
Year	L 1964
Method	1
Ref.	965
Curve No.	-

DATA TABLE NO. 432 THERMAL CONDICTIVITY OF (TINE + NI) MIXEURES

(TiNi) Ni 95, 0%; impurity $\leq 2.0\%$ each)

[Temperature, T. K; Thermal Conductivity, k, Watt em-1K-1]

CURVE 1

0.00353 0.00466 0.00579 0.00574 0.00533 0.0145 0.0210 0.0420 0.0428 0.0428 0.0428 0.0428 0.0428 0.0428 0.0428 0.0428 0.0428 0.0428 0.0438 27.73 3.01.73 3.01.74 5.01.75

SPECIFICATION TABLE NO. 433 THERMAL CONDUCTIVIT. OF |TUNGSTEN - THOP IUM DIOX TOE | ALLOYS

 $(W+ThO_2^{-1};99,50\%)$ impurity $\pm 6.29\%$ cores.

[For Data Reported in Figure and Table No. 433]

ported Name and Composition (weight percent). Specifications and Remarks	0.001-0.1 Fc, 0.091-0.01 Nb, 0.01-0.1 Si, trace Al, Cr, Cu, Mg, Mn, Mo; doped by TbO, 1-2 by volume: ground to a rod with 3.67 mm dia and 13 cm lone.
teported Name and Error, T. Specimen Designation	
Reported Error, %	
Temp. Range, K	4-125
Year	1960
Method Used	
Ref. No.	26
Curve Ref. No. No.	1

 $(W + TbO_2 > 99.50\%; impurity < 0.20\% each)$

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

CURVE 1

4.0 0.535
6.0 0.83
8.0 1.15
10.0 1.43
20.0 2.75
25.0 3.20
40.0 2.90
60.0 2.20
80.0 1.90
125.0 1.73

SPECIFICATION TABLE NO. 434 THERMAL CONDUCTIVITY OF | URANIUM + CHANIEM DIOXIDE; ALLOYS

 $(U+UO_2 \geq 99.56\%; inspurity < 0.20\%; each)$

Composition (continued), Specifications and Remarks	Spherical uranium powder obtained from National Lead Co. containing impurities: 0.05 Fe. 0.01 Mg. 0.008 Mo. 0.005 Si. < 0.005 K. < 0.005 F. < 0.005 Fr. < 0.005 Ti. < 0.005 Zi. < 0.005 Zi. < 0.005 Zi. < 0.0005 Zi. < 0.0005 Zi. < 0.0005 Zi. < 0.0005 Zi. < 0.0005 Zi. < 0.0006 Ms. < 0.000 Ms. 0.0005 Ni. < 0.0005 Zi. < 0.0005 Zi. < 0.0005 Ni. < 0.0005 Zi. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.00005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. < 0.0005 Ni. <	Similar to the above specimen; measured in nitrogen under pressure in the range 1.68 x $10^2 \sim 5.433 \times 10^3$ mm Hg.	Similar to the above specimen, measured in nitrogen at 1 atm.	Similar to the above specimen; measured in nitrogen under pressure in the range 7.00 x $10^3 \sim 4.842 \times 10^3$ mm Hg.	Similar to the above specimen; measured in nitrogen at 1 atm.	Similar to the above specimen; measured in nitrogen under pressure in the range 4.03 x $10^3 \sim 5370$ mm Hg.	Same impurities, source, and measuring method as the above specimen; mesh size -230 +325; measured in nitregen at 1 atm.	Similar to the above specimen; measured in nitrogen under pressure in the range 7,00 x 10 ³ ~4,55 x 10 ³ mm Ho	Similar to the above specinion; measured in nitrogen at 1 atm.
ght percent)	1.7	1.7	5.1	5.1	13.4	13.4	ж. 4 .	χ. Σ	22.2
Composition (weight percent)	რ. თე	98.3	g. 19	94.9	99'98	36.6	91.6	9.16	77.8
Name and Specimen Designation									
Reported Error, %									
Temp. Range, K	2.08.0	29A. 2	29%.2	298.2	298.2	298.2	29%. 2	299.2	298.2
Year	9961	1968	1966	1966	1966	1966	1966	1966	1966
Method Year Used	•	;	i	•	1	1	1	1	;
Ref.	8. 5.	m 6	n :	n :	r E	n s St 3	ž	2	£ 3
Curve No.	~	7	· ·	σ+ г			•	ac	۰ ۵

DATA TARLE NO. 434 THERMAL CONDUCTIVITY OF [URANIUM + URNAIUM DIOXIDE] ALLOYS

(U + UO₂ > 99.50%; impurity < 0.20% each)

[Temperature, T, K; Thermal Conductivity, k, Watt cm-1K-1]

p(mm Hg) k	CURVE 6	3	2		~	20.9 0.00108		1303 0.00226	5370 0.00235		+		CURVE 7*		298.2 0.00314		p(mm Hg) և		CURVE & T = 298.2	0.00700 0.000669	07	۲.		724 0.00185	1202 0.00206		4955 0.0021H		.¥		CURVE 9*	298.2 0.00205	
אר	CURVE 10	0.00415		R) K		CURVE 2	T = 298.2				0.00145	0.00188	0.00243	0.00289	0.00301	0.00301		×	CURVE 3*	0.00390	K) K		CURVE 4*	298.2		200	0.000481	0.00155	0.00247	0.00269	0.00272	74	CURVE ST
1	CO	298.2		p(mm Hg)		5	<u>.</u>	0.0168	Ξ,	4.17	25.1	61.7	207	1245	3467	K	ı	<u>_</u>	5	298.2	p(mm Hg)		힑	# { —		0.00700	2.57	46.8	513	2985	1842	۲	5

No graphical presentation

0.00326

298.2

SPECIFICATION TABLE NO. 435 THERMAL CONDUCTIVITY OF | ZIRCONIUM + ZIRCONIUM DICKIDE| ALLOYS

(Zr +2 rO2 > 99.50%; impority < 0.20% each)

Composition (continued), Specifications and Remarks	Powder specimen contained in a 0.75 in. dia x 2 in. long stainless steel cylindrical cell; mesh size -70 +60; thermal conductivity measured by using the transient line source method, the heat source was a 36 gauge constantan wire contained in a 0.025 in. O.D. hypoder mic tube soldered along the axis of the cylindrical cell; data calculated from measured line temperatures at two certain times, measured in altrogen at 1 atm.
Composition (weight percent) Zr ZrO,	15.6
Composition (₹
Nume and Specimen Designation	
Reported Error, %	
Temp. Range, K	2 99 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Year	1966
Curve Ref. Method Year No. No. Used	1
Ref.	e इ
Curve No.	Ħ

DATA TABLE NO. 435 THERMAL CONDUCTIVITY OF | ZIRCONIUM + ZIRCONIUM DIOXIDE | ALLOYS

(Zr + ZrO₂ > 99.50%; impurity s 0.20% each)

[Temperature, T. K: Thermal Conductivity, k, Watt cm²¹K⁻¹]

-

CURVE

18.2 0.002

No graphical presentation

REFERENCES TO DATA SOURCES

Ref. No.	TPRC	
1	7666	Adcock, F. and Bristow, C.A., Proc. Roy. Soc. (London), A153, 172-200, 1935.
2	160	Allen, J. F. and Mendoza, E., Proc. Cambridge Phil. Soc., 44, 280-8, 1948.
3	1971	Andrews, F.A., Webber, R. T. and Spohr, D.A., Phys. Rev., 84, 994-6, 1951.
4	7564	Angell, M. F., Phys. Rev., 1, 33, 421-32, 1911.
5	7360	Armstrong, L. D. and Dauphinee, T. M., Can. J. Research, A25, 357-74, 1947.
6	7664	Bailey, L. C., Proc. Roy. Soc. (London), A134, 57-76, 1931.
7	7008	Baillie, T. C., Trans. Roy. Soc. (Edinburgh), 39, 361-82, 1897.
8	7663	Barratt, T., Proc. Phys. Soc. (London), 26, 347-71, 1913-14.
9	58	Berman, R., Phil. Mag., 42, 642-50, 1951.
10	1643	Berman, R. and Mac Donald, D. K. C., Proc. Roy. Soc. (London), A209, 368-75, 1951.
11	1728	Berman, R. and Mac Donald, D. K. C., Proc. Roy. Soc. (London), A211, 122-8, 1952.
12	7139	Bidwell, C. C., Phys. Rev. 2, 28, 584-97, 1926.
13	6259	Bidwell, C. C., Phys. Rev., 2, 56(6), 594-8, 1939.
14	3452	Bidwell, C. C., Phys. Rev., 2, <u>58</u> , 561~4, 1940.
15	101	Bidwell, C. C. and Hogan, C. L., J. Appl. Phys., 18, 776-9, 1947.
16	7434	Bidwell, C. C. and Lewis, E. J., Phys. Rev., 2, 33, 249-51, 1929.
17	16073	Bode, K. H. and Fritz, W., Z. angew. Physik, 10, 470-9, 1958.
18	6226	Bremmer, H. and de Haas, W. J., Physica, 3(7), 672-86, 1936.
19	9866	Brown, W. B., Phys. Rev., 22, 171-9, 1923.
20	816	Bungardt, W. and Kallenbach, R., Z. Metalik., 42, 82-91, 1951.
21	6739	Burr, A. C., Can. J. Technol., 29, 451-7, 1951.
22	9299	Chari, M. S. R. and de Nobei, J., Physica, <u>25(1)</u> , 60-72, 1959.
23	7144	Quick, R. W. and Child, C. D., Phys. Rev., 2, 412-23, 1894.
24	4646	Cox, M., Phys. Rev., 64, 241-7, 1943.
25	23497	Czochralski, J., Z. Metalik., 13, 507-10, 1921.
26	7126	Davey, P. O., Danielson, G. C. and Pearson, G. J., USAEC Rept. ISC-518, 1-24, 1954. [AD 48833]
27	18	Deem, H. W., USAEC Rept. BMI-849, 1-9, 1953.
28	7556	Deem. H. W. and Nelson, H. R., USAEC Rept. BMI-77, 1-12, 1951.
29	135	Deem, H. W. and Nelson, H. R., USAEC Rept BMI-745, 7-15, 1952.
30	6925	Donaldson, J. W., J. Inst. Mctals, 34, 43-56, 1925.
31	6926	Donaldson, J. W., J. Iron Steel Inst. (London), <u>128</u> , 255-76, 1933.
32	9329	Droher, J. J. and Domingo, F.A., (Inman, G. M., Editor), USAEC Rept. NAA-SR-878, 1-118, 1954.
33	1637	Eriksen, V. O. and Halg, W., J. Nuclear Energy, 1, 232-3, 1955.
34	7083	Eucken, A. and Dittrich, K., Z. physik. Chem., 125, 211-28, 1927.
35	10439	Eucken, A. and Gehlhoff, G., Verhandi, deut. pt. 3ik. Ges., 14, 169-82, 1912.
36	7178	Eucken, A. and Warrentrup, II., 7 Elektrochem., 41, 331-7, 1935.
37	7574	Evans, J. E., Jr. 114CA RM E6 1177, 1-15, 1951.
34	1079	Ewing, C. T., G. im., J. A. and Miller, R. R., J. Am. Chem. Soc., 74, 11-4, 1952.
39	765	Fieldhouse, I. B., Hedge, J. C. and Lang, J. L., WADC TR 58-274, 1-79, 1958. [AD 206892]
40	6502	Fieldhouse, I. B., Hedge, J. C., Lung, J. I., Takata, A. N. and Waterman, T. E., WADC TR 55-495, I, 1-64, 1956. [AD 119404]
41	6975	Fieldhouse, I. b., Hedge, J. C., Lang, J. I. and Waterman, T. E., WADC TR 55-495, II, 1-18, 1956. [AD 110510]

Ref. No.	TPRC	
42	6978	Fieldhouse, I. B., Hedge, J. C. and Waterman, T. E., WADC TR 55-495, III, 1-10, 1956. [AD 110 526]
43	6970	Fieldhouse, I. B., Hedge, J. C., Lang, J. I. and Waterman, T. E., WADC TR 57-487, 1-78, [AD 150 954]
44	6722	Forsythe, W. E. and Worthing, A. G., Astrophys. J., <u>61</u> , 146-85, 1925.
45	15794	Francis, E. L. (Compiler), UKAEA Rept. IGR-R/R-304, A4, 1958.
46	10973	Francis, E. L. (Compiler), UKAEA Rept. IGR-R/R-287, 6, 1858.
47	15795	Francis, E. L. (Compiler), UKAEA Rept. IGR-R/R-306, A3, 1958.
48	2434	Francl, J. and Kingery, W. D., J. Am Ceram. Soc., 37, 80-4, 1954.
49	6742	Gehlhoff, G. and Neumeier, F., Verhandl. deut. physik. Ges., 15, 876-96, 1913.
50	15605	Gehlhoff, G. and Neumeier, F., Verhandl. deut. physik. Ges., 21, 201-17, 1919.
51	7151	Gerritsen, A. N. and Linde, J. O., Physica, 22, 621-31, 1956.
52	1994	Goglia, M. J., Hawkirs, G. A. and Deverall, J. E., Anal. Chem., 24, 493-6, 1952.
53	8330	Grard, C. and Villey, J., Compt. rend., 185, 856-8, 1927.
54	7649	Griffiths, E., Proc. Roy. Soc. (London), A115, 236-41, 1927.
55	9372	Griffiths, E. and Schofield, F. H., J. Inst. Metals, 39, 337-74, 1928.
56	4715	Grüneisen, E. and Erfling, H. D., Ann. Physik, 38, 399-420, 1940.
57	22793	Gruncisen, E. and Goens, E., Z. Physik, 44, 615-42, 1927.
58	6704	Grüneisen, E. and Reddemann, H., Ann. Physik, <u>20</u> , 843-77, 1934.
59	7149	de Haas, W. J. and Bremmer, H., Physica, 3, 687-91, 1936.
60	7584	de Haas, W. J. and Capel, W. H., Physica, <u>1</u> , 929-34, 1934.
61	6292	de Haas, W. J., Gerritsen, A. N. and Capel, W. H., Physica, 3, 1143-58, 1936.
62	6257	de Haas, W. J. and de Nobel, J., Physica, <u>5(5)</u> , 449-63, 1938.
63	1970	de Haas, W. J. and Rademakers, A., Physica, 7, 992-1002, 1940.
64	9459	Hall, E. H., Phys. Rev., <u>10</u> (5), 277-310, 1900.
65	6258	Hall, W. C., Phys. Rev., 2, <u>53</u> (12), 1004-9, 1938.
66	10523	Hall, W. J., Powell, R. L. and Roder, H. M., Proc. 1957 Cryogenic Eng. Conf., 2nd, Boulder, Colo., 408-15, 1957.
67	6923	Hanson, D. and Rodgers, C. E., J. Jnst. Metals, 48, 37-45, 1932.
68	6662	Harper, A. F. A., Kemp, W. R. G., Klemens, P. G., Tainsh, R. J. and White, G. K., Phil. Mag., 8, 2, 577-83, 1957.
69	7674	Hattori, D., Sci. Repts. Tohoku Imp. Univ., 26, 190-205, 1937.
70	7031	Holm, R. and Störmer, R., Wiss. Veroffentl. Siemens-Konzern, 2, 9, 312-22, 1930.
71	7672	Honda, K. and Simidu, T., Sci. Repts. Tohoku Imp. Univ., 6, 219-33, 1917.
72	10399	Hornbeck, J. W., Phys. Rev., 2, 217-40, 1913.
73	1092	Hugon, L. and Jaffray, J., Ann. Phys., 2, 377-85, 1955.
74	404	Hulm, J. K., Proc. Roy. Soc. (London), A204, 98-123, 1950.
75	1954	Huim, J. K., Proc. Phys. Soc. (London), <u>B64</u> , 207-11, 1951.
76	774	Hulm, J. K., NBS Circ. 519, 37-41, 1952.
77	6701	taeger, W. and Diesselhorst, H., Wiss. Abhandl. Physiktech. Reichsanstalt, 3, 269-425, 1900.
7 %	7642	Kannuluik, W. G., Proc. Roy. Soc. (London), A131, 320-35, 1931.
79	15555	Kannuluik, W. G., Eddy, C. E., and Oddie, T. H., Proc. Roy. Soc. (London). <u>A141</u> , 159-68, 1933.
80	7643	Kannuluik, W. G. and Laby, T. H., Proc. Roy. Soc. (London), A121, 640-53, 1928.
81	3006	Karwell, J. and Schafer, K., Ann. Physik, 36, 567-77, 1939.
82	77	Kemp, W. R. G., Klemens, P. G., Sreedhar, A. K. and White, G. K., Phil. Mag., 7, 45, 811-4, 1955.
83	727	Kemp, W. R. G., Klemens, P. G. and White, G. K., Australian J. Phys., 9, 180-8, 1956.
8.4	10400	King. R. W., Phys. Rev., 11, 149-50, 1918.
85	7670	Konno, S., Sci. Repts. Tohoku Imp. Univ., 8, 169-79, 1919.

```
TPRC
Ref.
No.
            No.
  86
            9405
                     Kratz, H. R. and Raeth, C. H., USAEC Rept. CP-2315, 1-14, 1945.
  87
            6234
                     Langmuir, I. and Taylor, J. B., Phys. Rev., 2, 50(1), 68-87, 1936.
  88
            9288
                     Lees, C. H., Phil. Trans. Roy. Soc. London, A208, 381-443, 1908.
            6560
                     Lucks, C. F. and Deem, H. W., WADC TR 55-496, 1-65, 1956. [AD 97 185]
  89
            6976
  90
                     Lucks, C. F. and Deem, H. W., WADC TR 55-496, II, 1-14, 1957. [AD 118 168]
  91
            6940
                     Lucks, C. F., Thompson, H. B., Smith, A. R., Curry, F. P., Deem, H. W. and Bing, G. F.,
                     USAF TR 6145, I, 1-127, 1951. [ATI 117 715]
  93
             765
                     Mac Donald, D. T. C., White, G. K. and Woods, S. B., Proc. Roy. Soc. (London), A235,
                     358-74, 1956.
  93
           22782
                     Mannchen, W., Z. Metallk., 23, 193-6, 1931.
  94
            9332
                     Marsh, L. L., Jr. and Keeler, J. R., USAEC Rept. BMI-76, 1-46, 1951.
            83117
                     Meissner, W., Ann. Physik, 4, 47, 1001-58, 1915.
  95
             804
  96
                     Mendelssohn, K. and Olsen, J. L., Proc. Phys. Soc. (London), A63, 2-13, 1950.
  97
            1732
                     Mendelssohn, K. and Rosenberg, H. M., Proc. Phys. Soc. (London), A65, 385-94, 1952.
           22475
                     Griffiths, E. and Shakespear, G. A., J. Inst. Metals, 28, 581-2, 1922.
  98
  99
            6229
                     Michels, W. C. and Cox, M., Physics, 7(7), 153-5, 1936.
            7553
                     Mikol, E. P., USAEC Rept. ORNL-1131, 1-7, 1952.
 100
            6545
                     Moss, M., Rev. Sci. Instr., 26, 276-80, 1955.
 101
 102
           15549
                     Nichols, R. W., Nuclear Eng., 2, 355-65, 1957.
 103
            1652
                     Nicol, J. and Tseng, T. P., Phys. Rev., 92, 1062-3, 1953.
                     de Nobel, J., Physica, 17, 551-62
 194
            1075
                                                       1951
            9240
                     Novikov, I. I., Soloviev, A. N.
                                                                     E. M., Gruzdev, V. A., Pridantzev, A. I.
 105
                     and Vasenina, M. Ya., 3ov. J. Nuclear Energy, (4), 545-560, 1956.
 106
            5251
                     Osborn, R. H., J. Opt. Soc. Am., 31, 428-32, 1941.
            1099
 107
                     Phillips, N. E., Phys. Rev., 100, 1719-25, 1955.
 108
            9024
                     Pott, F. P., Z. Naturforsch., A13(2), 116-25, 1958.
            6680
 109
                     Powell, R. L., Rogers, W. M. and Coffin, D. O., J. Research NBS, 59, 349-55, 1957.
            9897
                     Powell, R. W., Proc. Phys. Soc. (London), 46, 659-79, 1934.
 110
 112
              23
                     Powell, R. W., Phil. Mag., 44, 645-63, 1953.
             733
                     Powell, R. W. and Tye, R. P., J. Inst. Metals, 85, 185-95, 1957.
           19359
                     Powell, R. W. and Tve. R. P., Proc. Conf. of Thermodynamic and Transport Properties of
 113
                     Fluids: Inst. Mech. Engr. (London), 152-7, 1957. (Publ. 1958)
 114
            7690
                     Powers, R. W., Schwartz, D. and Johnston, H. L., USAF TR 264-5, 1-19, 1950.
            7691
 115
                     Powers, R. W., Ziegler, J. B. and Johnston, H. L. USAF TR 264-6, 1-14, 1951. [ATI 105923]
            9856
                     Quick, R. W. and Lanphear, B. S., Phys. Rev., 3(1), 1-20, 1895.
 116
 117
            1920
                     Rademakers, A., Physica, 15, 849-59, 1949.
            6980
                     Rasor, N. S. and Mc Clelland, J. D., WADC TR 56-400, I, 1-53, 1956. [AD 118 144]
 118
 119
            9863
                     Rigney, C. J. and Bockstahler, L. I., Phys. Rev., 83, 220, 1951.
 120
            6264
                     Rodine, M. T., Phys. Rev., 2, 46, 910-6, 1934.
 121
             1679
                     Rosenberg, H. M., Phil. Mag., 7, 45, 73-9, 1954.
 122
             1091
                     Rosenberg. H. M., Phil. Trans. Roy. Soc. (London), A247, 441-97, 1955.
              34
 123
                     Rosenberg, H. M., Phil. Mag., 8, 1, 738-46, 1956.
            10431
                     Sager, G. F., Rensselaer Polytech Inst., Eng. and Sci. Ser., Bull. 27, 3-48, 1930.
 124
 125
            10416
                     Saller, H. A., Proc. Intern. Conf. Peaceful Uses Atomic Energy, Geneva, 9, 214-20, 1955.
             6609
                     Sawyer, R. B., 1-38, 1955. [AD 81 977]
 126
 127
             9911
                     Schoffeld, F. H., Proc. Roy. Soc. (London), A107, 206-27, 1925.
 128
             5585
                     Shalyt, S., J. Phys. (USSR), 8, 315-6, 1944.
                     Shelton, S. M. and Swanger, W. H., Trans. Am. Soc. Steel Treating, 21, 1061-78, 1933.
 129
             9957
 139
             7003
                     Sidles, P. H. and Danielson, G. C., USAEC Rept. ISC-198, 1-24, 1951.
```

A SA CARLO SA LAND

```
Ref.
           TPRC
            No.
No.
 131
            1654
                    Silverman, L., J. Metals, 5, 631-2, 1953.
                    Sladek, R. J., Phys. Rev., 97, 902-15. 1955.
 132
             213
           23513
                    Smith, C. S., Trans., AIME, 89, 84-106, 1930.
 133
            8284
                    Smith, C. S., AIME Tech. Publ. 360, 1-11, 1930. [Also, Trans. AIME, 93, 176, 1931.]
 134
 135
            7184
                    Smith, C. S. and Palmer, E. W., AIME Tech. Publ. 648, 1-19, 1935. [Also, Trans. AIME 117,
                    225-43, 1935.]
 136
            8301
                     Sochtig, H., Ann. Physik, 5, 38, 97-120, 1940.
 137
              27
                     Spohr, D. A. and Webber, R. T., Phys. Rev., 105, 1427-33, 1957.
 138
            6656
                     Tottle, C. R., J. Inst. Metals, 85, 375-8, 1957.
 139
            7561
                     Tyler, W. W., Wilson, A. C., Jr. and Wolga, G. J., USAEC Rept. KAPL-802, 1-25, 1952.
                     USAEC Rept. AECD-3647, 9-40, 1955. [Also, USAEC, Reactor Handbook, Vol. 3, Sec. 1, 9-40,
 140
            7011
            7552
                     Udy, M. C., Shaw, H. L. and Boulger, F. W., Nucleonics, 11(5), 52-9, 1953.
 141
 142
            1674
                     Webber, H. A., Goldstein, D. and Fellinger, R. C., Trans. ASME, 77, 97-102, 1955.
 143
             144
                     Webber, R. T. and Spohr, D. A., Phys. Rev., 106, 927-33, 1957.
 144
            1964
                     Weeks, J. L. and Seifert, R. L., J. Am. Ceram. Soc., 35, 15, 1952.
            1694
                     White, G. K., Australian J. Phys., 6, 397-404, 1953.
 145
              57
                     White, G. K., Proc. Phys. Soc. (London), A66, 559-64, 1953.
 146
 147
            1644
                     White, G. K., Proc. Phys. Soc. (London), A66, 844-5, 1953.
 148
           40872
                     Stefanov, B. I., Timrot, D. L., Totskii, E. E. and Chu, W. H., High Temp., 4(1), 131-2,
                     1966.
 149
              48
                     White, G. K. and Woods, S. B., Can. J. Phys., 35, 248-57, 1957.
             743
 150
                     White, G. K. and Woods, S. B., Can. J. Phys., 35, 656-65, 1957.
            1160
                     White, G. K. and Woods, S. B., Can. J. Phys., 35, 892-900, 1957.
 151
            7477
                     Wilkinson, K. R. and Wilks, J., J. Sei. Instr. and Phys. in Ind., 26, 19-20, 1949.
 152
            9857
                     Worthing, A. G., Phys. Rev., 4(6), 535-43, 1914.
 153
            9992
 154
                     Zavaritskii, N. V. and Zeldovich, A. G., Soviet Phys.-Tech. Phys., 1, 1970-4, 1956.
 155
            9321
                     Zimmerman, J. E., Carnegie Inst. Technol. Doctoral Disseration, 1-54, 1951.
            9291
 156
                     Zwikker, C., Physica, 7, 71-4, 1927.
            9300
 157
                     Chari, M. S. R. and de Nobel, J., Physica, 25(1), 73-83, 1959.
                     Ewing, C. T., Seebold, R. E., Grand, J. A. and Miller, R. R., J. Phys. Chem., 59, 524-8,
 158
            1651
 159
            1760
                     Tyler, W. W., Nesbitt, L. B. and Wilson, A. C., Jr., Trans. AIME, 197, 1104-5, 1953.
            6719
 160
                     Esser, H., Eilender, W. and Putz, E., Arch. Eisenhüttenw., 11(19), 619-22, 1938.
 161
            9365
                     Shelton, S. M., J. Research NBS, 12, 441-50, 1934.
 162
            6247
                     Powell, R. W., Proc. Phys. Soc (London), 48(3), 381-92, 1936.
 163
            5319
                     Maurer, E., Arch. Eisenhüttenw., 10(4), 145-54, 1936.
            9350
 164
                     Awbery, J. H., Chilloner, A. R., Pallister, P. R., and Powell, R. W., J. Iron Steel Inst.
                     (London), <u>134(2)</u>, 83-111, 1946.
 165
            9932
                     Matsushita, T., Sci. Repts. Tohoku Imp. Univ., 8, 79-88, 1919.
 166
           15646
                     Powell, R. W. and Hickman, M. J., Iron and Steel Inst. (London) Spec. Rept. 24, 242-51, 1939
 167
            6718
                     Bollenrath, F. and Bungardt, W., Arch. Eisenhüttenw., 9(5), 253-262, 1935.
 163
            8344
                     Raisch, E., Forsch. Gebiete Ingenieurw., 3, 209-11, 1932.
 169
            7576
                     Krainer, H., Z. tech. Physik, 17(8), 281-2, 1936.
 170
            6928
                     Benedicks, C. and Bäckström, H., J. Iron Steel Inst. (London), 114, 148-72, 1926.
 171
            9931
                     Simidu, T., Sci. Repts. Tohoku Imp. Univ., \underline{6}. 111-22, 1917.
 172
             9937
                     Masumoto, H., Sci. Repts. Tohoku Imp. Univ., 16, 417-35, 1927.
 173
            1156
                     Powell, R. W. and Tye, R. P., J. Iron Steel Inst. (London), 184, 10-17, 1956.
 174
            7129
                     Raezer, S. D., Office Ordn. Research TR 1, 1-36, 1954. [AD 49 544]
            10366
 175
                     Tadokoro, Y., J. Iron Steel Inst. (Japan), 22, 399-424, 1936.
```

THE PARTY OF THE P

Ref. No.	TPRC No.	
176	9934	Matsushita, T., Sci. Repts. Tohoku Imp. Univ., 9, 243-50, 1920.
177	10449	Bessudnova, M. F., Zavodskaya Lab., <u>5</u> , 858-60, 1936.
178	7677	Honda, K., Sci. Repts. Tohoku Imp. Univ., 7, 59-66, 1918.
179	16265	Donaldson, J. W., Engineering, 148, 26-8, 1939.
180	6410	Horak, Z. and Krupka, F., Rev. Sci. Instr., 21(10), 827-30, 1950.
181	11399	British Iron Steel Research Assoc. (ed.), Butterworths Sci. Publ. (London), 1-38, 1953.
182	9176	Deverall, J. E., USAEC Rept. LA-2269, 1-62, 1959.
183	1157	Powell, R. W. J. Iron Steel Inst. (London), 184, 6-10, 1956.
184	9974	Przybycien, W. M. and Linde, D. W., USAEC Rept. KAPL-M WMP-1, 1-24, 1957.
185	15639	Powell, R. W. and Tye, R. P., Brit. J. Appl. Phys., 11, 195-8, 1960.
186	22466	Ellis, W. C., Morgan, F. L. and Sager, G. F., Rensselaer Polytech. Inst., Eng. and Sci. Series, Bull. 21, 1-23, 1928.
187	833	Lefort, P., Genie civil, 132(22), 426-30, 1955.
188	7673	Honda, K. and Matsushita, T., Sci. Repts. Tohoku Imp. Univ., 8, 89-98, 1919.
189	6922	Hattori, D., J. Iron Steel Inst. (London), 129(1), 289-306, 1934.
190	9351	Powell, R. W. and Hickman, M. J., J. Iron Steel Inst. (London), 154, 112-21, 1946.
191	16293	Benedicks, C., Bäckström, H. and Sederholm, P., J. Iron Steel Inst. (London), 114(2), 127-48, 1926.
192	791	Mikryukov, V. E. and Pozdnyak, N. Z., Vestník Moskov. Univ., 9(9), Ser. FizMat. i Estestven. Nauk. (6), 51-9, 1954.
193	8212	Zlunitzin, S. A. and Savel'ev, I. V., Zhur. Tekh. Fiz., 9(9), 805-7, 1939.
194	8156	Vianey, L. R., USAEC Rept. NP-1989, PB 123-175, 1-6, 1951. [AD 140 931]
195	10616	Seibel, R. D. and Mason, G. L., WADC TR 57-468, 1-58, 1958. [AD 155 605]
196	7651	Donaldson, J. W., Proc. Inst. Mech. Engrs. (London), 2, 953-83, 1928.
197	9944	Lorig, C. H. and Schnee, V. H., Trans. Am. Foundrymen's Assoc., 48, 425-48, 1940.
198	9925	Marechal, J. and Listray, J., Rev. Met., 36, 240-50, 1939.
199	9889	Hall, E. H. and Ayres, C. H., Proc. Am. Acad. Arts and Sci., 34, 283-308, 1899.
200	24650	Donaldson, J. W., Iron and Steel Inst. (London), Spec. Rept. 2, 151-61, 1932.
201	9 860	Hall, E. E., Phys. Rev., 19(3), 237-40, 1922.
202	125	Kuprovskii, B. B. and Gel'd, P. V., Liteinoe Proizvodstvo, (9), 16-18, 1956.
203	1463	Von Lohberg, K. and Motz, J., Giesserei, 44(11), 305-8, 1957.
204	10256	Kurnakov, N. N. and Rakhmanovskii, S. D., Bull, acad. sci. URSS, Classe, sci. math. aat., Ser. chim., 757-68, 1937.
205	224	Sinnott, M. J., J. Metals, <u>5</u> , 1016, 1953.
260	7 1 57	Ingersoll, L. R., Mussehl, O. F., Swartz, D. L., Smith, H. F., Thompson, C. G., Mahre, M. A., Frederickson, J. F. and Hubbard, D. R., Phys. Rev., 16, 126-32, 1920.
207	9349	Sykes, C. and Bampfylde, J. W., J. Iron Steel Inst. (London), 129(2), 389-418, 1934.
208	9933	Honda, K., Sci. Repts. Tohoku Imp. Univ., 8, 51-8, 1919.
209	15733	Powell, R. W. and Tye, R. P., J. Iron Steel Inst. (London), 184, 286-8, 1956.
210	3919	Gel'd, P. V., Kuprovskii, B. B. and Serebrennikov, N. N., Teploenergetika, 3(6), 45-51, 1956.
211	170	Mikryukov, V. E. and Pozdnyak, N. Z., Vestník Moskov, Univ., 8(2), Ser. FizMat. i Estestvan. Nauk, 1, 53-68, 1953.
212	22555	Gill, J. P. and Rose R. S., Metal Progr., 40, 283-8, 1941.
213	6271	Schmeissner, F. and Meissner, H., Z. angev. Physik, 2, 423-4, 1950.
214	25045	Powell, R. W., Iron Steel Inst. (London), Spec. Rept. 43, 315-18, 1952.
215	10312	Donaldson, J. W., Engineering, 148, 539-40, 1939.
216	10339	Intern. Nickel Co., Inc., Develop. and Research Div. Tech. Bull. T-38, 1-31, 1959.
217	15777	Zegler, S. T. and Nevitt, M. V., USAE 3 Rept. ANL-5611, 1-15, 1959.
218	23503	Intern. Nickel Co., Inc., Develop. and Research Div., Data Manual, 1-8, 1956.
219	10134	Powers, R. W., Zickler, J. B. and Johnston, H. L., USAF, TR 264-8, 1-14, 1951. [ATI 105 925]

Ref. No.	TPRC No.	
220	20605	Huntington Alloy Products Div., Intern. Nickel Co., Inc., Tech. Bull T-5, 1-30, 1960.
221	23500	Intern. Nickel Co., Inc., Engineering Properties of S-Monel, 1-7, 1954.
222	23501	Intern. Nickel Co., Inc., Develop. and Research Div., Engineering Properties of Cast Monel, 1-7, 1954.
223	6203	Kempf, I., W., Smith, C. S. and Taylor, C. S., Trans. AIME 124, 287-99, 1937.
224	9946	Williams, H. M. and Bihlman, V. W., Trans. Am. Inst. Min. Met. Engrs., 69, 1065-9, 1923.
225	9374	Maybrey, H. J., Metal Ind. (London), 33, 5-6, 1928.
226	10135	Powers, R. W., Ziegler, J. B. and Johnston, H. L., USAF TR 264-7, 1-10, 1951. [ATI 105 924]
227	654 8	Powell, R. W. and Hickman, M. J., Metallurgia, 41(241), 15-20, 1949.
228	6230	Bremmer, H. and de Haas, W. J., Physica, 3(7), 692-704, 1936.
229	9398	Berman, R., Foster, E. L. and Rosenberg, H. M., Brit. J. Appl. Phys., 05), 181-2, 1955.
230	7272	Smith, A. W., Ohio State Univ. Eng. Exp. Sta. Bull. 31, 1-61, 1925.
231	9951	Deem, H. W., Wood, W. D. and Lucks, C. F., Trans. Met. Soc., AIME, 212, 520-3, 1958,
232	9855	Zolotukhin, G. E., Phys. Metals and Metallog. (USSR), 4(2), 124-30, 1957.
233	6660	Kemp, W. R. G., Klemens, P. G., and Tainsh, R. J.: Australian J. Phys., 10, 454-61, 1957.
234	1144	Kemp, W. R. G., Klemens, P. G., Tainsh, R. J. and White, G. K., Acta Met., 5 303-9, 1957.
235	9972	Raeth, C. H., USAEC Rept. CP-2332, 1-25, 1944.
236	17223	Kemp, W. R. G., Klemens, P. G. and Tainsh, R. J., Phil. Mag., 8, 4(43), 845-57, 1959.
237	239	Mendelssohn, K. and Olsen, J. L., Phys. Rev., <u>80</u> , 859-62, 1950.
238	9936	Masumoto, H., Sci. Repts. Tohoku Imp. Univ., <u>16</u> , 321-32, 1927.
239	10823	Argonne Nat'l Lab., USAEC Rept. ANL-WHZ-122, 1-85, 1947.
240	133	Kemp, W. R. G., Klemens, P. G., Sreedhar, A. K. and White, G. K., Proc. Roy. Soc. (London) <u>A233</u> , 480-93, 1956.
241	9883	Schulze, F. A., Physik. Z., 12, 1028-31, 1911.
242	9407	Russell, H. and Deem, H. W., USAEC Rept. MDDC-342, 1-9, 1946.
243	16656	Yaggee, F. Y. and Untermyer, S., USAEC Rept. ANL-4458, 1-27, 1950.
244	1098	Renton, C. A., Phil. Mag., 7, 46, 47-52, 1955.
245	16807	Schlegel, R., USAEC N-1880, MUC-RS-4, 1, 1945.
246	8315	Sedström, E., Ann. Physik, 4, 59, 134-44, 1919.
247	3684	Akhmetzyanuov, K. G., Mikryukov, V. E. and Twrovskii, Y. A., Zhur. Tekh. Fiz., $20(2)$, 203-16, 1950.
248	55	Mikryukov, V. E. and Tyapunina, N. A., Fiz. Metal. i Metalloved., Akad. Nauk SSSR, Ural. Filial, 3, 31-41, 1956.
245	40589	Powell, R. W., Tye, R. P. and Woodman, M. J., J. Less-Common Metals, 12, 1-10, 1967.
250	8345	Donaldson, J. W., Foundry Trade J., <u>63</u> , 141-4, 1940.
251	10758	Abeles, B., Cody, G. D., and Novak, R., RCA Lab., 1-33, 1959. [AD 225 854]
252	15582	Donaldson, J. W., Proc. Inst. Brit. Foundrymen, 32, 125-32, 1938-9.
353	16211	Kemp, W. R. G., Klemens, P. G. and Tainsh, R. J., Ann. Physik, (Leipzig) 7, 5, 35-41, 1959.
254	15511	Reddemann, H., Ann. Physik, 5, 14, 139-63, 1932.
255	16668	Allen, R. D., Glasier, L. F., Jr. and Jordan, P. L., J. Appl. Phys., 31(8), 1382-7, 1960.
256	40588	B. W., Tye, R. P. and Powell, R. W., J. Less-Common Metals, 11, 388-94, 1966.
257	7309	Mortgomery, H., Proc. Roy. Soc. (London), A244, 85-100, 1958.
258	8293	Weber, R., Ann. Physik, 4, 11, 1047-70, 1903.
259	10768	Jenkins, R. J., Parker, W. J. and Butler, C. P., Research and Develop. TR USNEDL-TR 348, 1-24, 1959. [AD 226 896]
260	10959	Abeles, B. and Cody, G. D., RCA Lab., USAF Progr. Rept., 1-8, 1960. [AD 233 193]
261	40032	Reo, K. V., Phys. Letters, 24A(1), 39-40, 1967.
262	8318	Söhnehen, E., Arch. Eisenhüttenw., 8(5), 223-9, 1934.
263	7017	Steele, M. C. and Rosi, F. D., J. Appl. Phys., 29(11), 1517-20, 1958.

Ref. No.	TPRC No.	
264	1938	Grieco, A. and Montgomery, H. C., Phys. Rev., 86, 570, 1952.
265	6760	Ewing, C. T., Seebold, R. E., Grand, J. A. and Miller, R. R., Naval Research Lab. Rept. 4506, 1-11, 1955. [AD 59 252]
266	10418	Carlson, O. N., Chiotti, P., Murphy, G., Peterson, D., Rogers, B. A., Smith, J. F., Smutz, M., Voss, M. and Wilhelm, H. A., Proc. Intern. Conf. Peaceful Uses of Atomic Energy, 9, 74-106, 1955.
267	142	Mc Carthy, K. A. and Ballard, S. S., Phys. Rev., 99, 1104, 1955.
268	7671	Kikuchi, R., Sci. Repts. Tohoku Imp. Univ., 21, 585-93, 1932.
269	10088	Deem, H. W., Winn, R. A. and Lucks, C. F., USAEC Rept. BMI-900, 1-16, 1954. [AD 85 812]
27 0	9858	King, R. W., Phys. Rev., 6(6), 437-45, 1915.
271	7210	Chubb, W. F Metal Ind. (London), <u>52</u> , 579-80, 1938.
272	6687	de Nobel, J., Physica, 23, 261-9, 1957.
273	7189	Krishnan, K. S. and Jain, S. C., Brit. J. Appl. Phys., 5(12), 426-30, 1954.
274	1452	Rosenberg, H. M., Proc. Phys. Soc. (London), A67(8), 837-40, 1954.
275	6305	Kemp, W. R. G., Sreedhar, A. K. and White, G. K., Proc. Phys. Soc. (London), A66(11), 1077-8, 1953.
276	6200	Weeks, J. L. and Seifert, R. L., Rev. Sci. Instr., 24(10), 1054-7, 1953.
277	7641	Kaye, G. W. C., Proc. Roy. Soc. (London), A170, 561-83, 1939.
278	9862	Lewis, E. J., Phys. Rev., 34, 1575-87, 1929.
279	42	Girton, W. Z. and Potter, J. H., ASTM Bull. 172, 47-52, 1951.
280	6299	Cinnamon, C. A., Phys. Rev., 2, 46, 215-21, 1934.
291	41439	Andrew, J. F., J. Phys. Chem. Solids, 28, 577-80, 1967.
282	10622	Goodwin, T. C., Jr. and Ayton, M. W., WADC TR 56-423, II, 304-58, 1957. [AD 157 169]
283	1123	Powell, R. W., Bull. Inst. Intern. Froid, Annexe 1955-1, 115-35, 1955.
284	162.37	Powell, R. W., Bull, Inst. Intern. Froid, Annexe 1954-2, 111-18, 1954.
285	1988	Detwiler, D. D. and Fairbank, H. A., Phys. Rev., 86, 574, 1952.
286	9376	Miller, R. F., Smith, G. V. and Jennings, P. A., Metals and Alloys, 16, 881-5, 1942.
297	25870	Lemmon, A. W. Jr., Deem, H. W., Eldridge, E. A., Hall, E. H., Matolich, J., Jr. and Walling, J. F., BMI, NASA, BATT-4673-T7, 1-34, 1964.
289	45	Neimark, B. E., Teploenergetika, <u>2</u> (9), 22-6, 1955.
289	10820	Murphy, H. J., Office of Naval Research NR-384-399, Tech. Rept. 2, 1-45, 1959. [AD 230 598]
290	7580	Detwiler, D. P. and Fairbank, H. A., Phys. Rev., 2, 88(5), 1049-52, 1952.
291	23498	Zavaritskii, N. V., Soviet Phys. JETP, <u>12</u> (5), 831-3, 1961.
292	16828	Danielson, G. C., USAEC Rept. ISC-577, 1-13, 1954.
293	7699	Lapides, M. E. and Brubaker, R. C., USAEC Rept. APEX-244, 1-66, 1955. [AD 99 560]
294	15512	Goens, E. and Grüneisen, E., Ann. Physik, <u>14</u> , 164-80, 1932.
295	6991	Mc Creight, L. R., USAEC Rept. TID-10062, 1-19, 1952.
296	19513	Smith, A. W., Ohio State Univ. Eng. Exp. Sta. Bull, 20, 1-85, 1921.
297	8470	Amirkhanov, Kh. I., Bagduyev, G. B. and Kazhlaev, M. A., Soviet Phys. "Doklady", 2, 556-8, 1957.
298	15796	Francis, E. L., UKAEA Rept. IGR-R/R-303, A5, 1958.
299	22779	Jacob, M., Z. Metallk., 16. 353-8, 1924.
300	10914	Bowers, R., Ure, R. W., Jr., Bauerle, J. E. and Cornish, A. J., Westinghouse Research Lab., Thermoele cricity Progr. Rept. 7, 1-16, 1958. [AD 217 227]
301	6580	Deem, H. W. and Lucks, C. F., TML Rept. 39, 1-34, 1956. [AD 90 949]
302	1402	Busch, G. and Schnieder, M., Helv. Phys. Acta 27, 196-8, 1954.
303	15573	Mielczarek, E. V. and Frederikse, H. P. R., Phys. Rev., 115(4), 888-91, 1959.
304	16736	Battelle Memorial Institute, DMIC Memo, 1, 1-23, 1958. [PB 161 152]
305	6458	Bell, I. P. and Mc Donald, J. J., UKAEA Rept. R & DB(C) TN-24, 1-12, 1953. [AD 212 934]
306	7213	Hunt, L. B., Metal Ind. (London), 71, 339-42, 1947.

A STATE OF THE PARTY OF THE PAR

```
TPRC
Ref.
No.
            No.
           10412
                     Kania, Y. and Nii, R., J. Phys. and Chem. Solids, &, 338-9, 361-2, 1959.
307
                     Peletzskii, V. E. and Voskresenskii, V. Yu., Teplofiz. Vysok. Temp. 4(3), 336-42, 1966.
308
           42003
            6608
                     Stuckes, A. D., Phys. Rev., 107, 427-8, 1957.
 309
 310
            7582
                     Hogan, C. L. and Sawyer, R. B., J. Appl. Phys., 23(2), 177-80, 1952.
                     Walker, P. A., Proc. Phys. Soc. (London), 76(1), 113-26, 1960.
311
           16686
                     Meyer, R. A. and Koyama, K., General Atomic Rept. GA-4621, 1-12, 1963.
 312
           43747
 313
           33076
                     Cutler, M., Advanced Energy Conversion, 2, 29-43, 1962.
           24654
                     Jacob, M., Z. Metallk., 18, 55-8, 1926.
 314
                     Garfinkel, M. S., Ph.D. Thesis, Rutger Univ., 60 pp. 1957.
 315
           19915
                     Hall, W. C., Ph.D. Thesis, Univ. of Kansas, 81 pp., 1936.
 316
           33319
 317
            7207
                     Atlee, Z. J., Modern Metals, 1, 7-8, 1945.
 318
           42006
                     Peletskii, V. E. and Voskresenskli, V. Yu., High Temperature, 4(3), 329-33, 1966.
           42010
                     Dutchak, Ya. I. and Panasyuk, P. V., Teplofiz. Vysok. Temp., 4(4), 592-3, 1966.
 319
                     Dutchak, Ya. I. and Panasyuk, P. V., High Temperature, 4(4), 560-1, 1966.
 320
           43664
 321
            9975
                     Chiotti, P. and Carlson, O. N., USAEC Rept. ISC-709, 16, 1956.
 322
           34083
                     Aliev, N. G. and Velkenshtein, N. V., Fizika Tverdogo Tela, 7(8), 2560-1, 1965.
 323
           43908
                     Rodine, M. T., Ph.D. Thesis, Univ. of Wisconsin, 33 pp., 1937.
 324
             788
                     Clifford, J. M., Ph.D. Thesis, LeHigh Univ., 82 pp., 1955.
            9870
                     Harman, T. C., Cann, J. H. and Logan, M. J., J. Appl. Phys., 30(9), 1351-9, 1959.
 325
 326
           15900
                     Morris, R. G., Physics Dept. S. Dakota School of Mines and Tech., 2964(01), 1960. [AD 239 000]
            3550
                     Hohage, R., Volker, W. and Tintl, R., Arch. Eisenhüttenw., 17(3), 57-64, 1943.
 327
 328
              86
                     Powell, R. W., Research (London), 7, 492-501, 1954.
 329
            7330
                     Devyatkova, E. D., Sh. Techn. F(s., 27(3), 461-6, 1957.
           36600
                     Amundsen, T. and Olsen, T., Phil. Mag., 11(111), 561-74, 1965.
 330
           40688
                     Alsup, D. L., M.S. Thesis, North Texas State Univ., 1964.
 331
 332
             828
                     Goldsmid, H. J., Proc. Phys. Soc. (London), B69, 203-9, 1956.
 333
           22303
                     Kaye, G. W. C. and Higgins, W. F., Phil. Mag., 7, 8, 1056-9, 1929.
                     Murnin, J. J., WADC Materials Lab., WCRT TN-54-51, 1-18, 1954. [AD 51 791]
 334
            7136
           34381
                     Morris, R. G., AD 622 246, 1-8, 1965.
 335
 336
             171
                     Deem, H. W., USAEC Rept. BMI-853, 1-12, 1953.
            6737
                     de Haas, W. J. and Bremmer, H., Communs. Kamerlingh Onnes Lab. Univ. Leiden, (220C),
 337
                     323-8, 1932,
            6270
 338
                     Cone, E. F., Trans. Am. Foundrymen's Assoc., 41, 330-46, 1933.
 339
           38926
                     Vandevyver, M. and Albany, H. J., Phys. Letters, 19(5), 376-8, 1965.
                     Loewen, E. G., Trans. ASME, 78, 667-70, 1956.
 340
             131
                     White, G. K. and Woods, S. B., Phil. Mag., 7, 45, 1343-5, 1954.
 341
              62
             259
                     Mendelssohn, K. and Rosenberg, H. M., Proc. Roy. Soc. (London), A218, 190-205, 1953.
 342
 343
             764
                     White, G. K. and Woods, S. B., Phys. Rev., 103, 569-71, 1956.
            10413
                     Abeles, B., J. Phys. Chem. Solids, 8, 340-3, 1959.
 344
            9742
 345
                     Devyatkova, E. D. and Smirnov, I. A., Soviet Phys.-Tech. Phys., 2, 1805-9, 1957.
            10414
                     Kettel, F., J. Phys. Chem. Solids, 10(1), 52-8, 1959.
 346
             9279
                     Baransky, P. (, and Konoplyasova, N. S., Zhur. Tekh. Fiz., 28(8), 1621-30, 1958.
 347
 348
           15592
                     Pankove, J. I., Rev. Sci. Instr., 30(6), 495-6, 1959.
             9280
                     Abdullaev, G. B., Aliev, G. M. and Chetverskov, N. I., Zhur. Tekh. Fiz., 28(11), 2368-71, 1958.
 349
                     Golf, J. and Klontz, E. E., USAEC Rept. COO-104, 1-17, 1953.
  350
             7524
  351
              179
                     Ioffe, A. V. and Ioffe, A. F., Doklady Akad. Nauk SSSR, 97(5),821-2, 1954.
                     Goff, J. F. and Pearlman, N., Purdue Univ. Semiconductor Research Quarterly Rept. 6, 9-12,
            10620
  352
                     1957. [AD 156 245]
  353
            10997
                     Goff, J. F. and Pearlman, N., 9th Quar. Rept. 9-12, 1958. [AD 212 815]
```

Ref. No.	TPRC No.	
354	1168	Carruthers, J. A., Geballe, T. H., Rosenberg, H. M. and Ziman, J. M., Proc. Roy. Soc. (London), A238, 502-14, 1957.
355	1692	White, G. K. and Woods, S. B., Can. J. Phys., 33, 58-73, 1955.
356	1682	Kuprovskii, B. B. and Gel'd, P. V., Fiz. Metal. i Metalloved., Akad. Nauk SSSR, Ural. Filial, 3, 182-3, 1956.
357	1738	Kurtener, A. V. and Malyshev, E. K., J. Tech. Phys. (USSR), 13(11-12), 641-4, 1943.
358	10208	Abdullaev, G. B. and Bashshaliev, A. A., Soviet PhysTech. Phys. 2, 1827-31, 1957.
359	49	Orthmann, H. J. and Ueberreiter, K., Kolloid Z., 147(3), 129-31, 1956.
360	16304	Sayce, E. D., J. Proc. Roy. Soc. N. S. Wales, 51, 356-63, 1917.
361	7308	Aliev, G. M. and Abdullaev, G. B., Doklady Akad. Nauk SSSR, 116(4), 598-600, 1957.
362	3604	Alicy, G. M., Izvest. Akad. Nauk Azerbaidzhan SSR, (9), 3-8, 1957.
363	8165	Aliev, G. M. and Abdullaev, G. B., Doklady Akad. Nauk SSSR, 120(1), 76-8, 1958.
364	8781	Abdullaev, G. B. and Aliev, M. I., Doklady Akad, Nauk SSSR, 114, 995-6, 1957.
365	8453	White, G. K., Woods, S. B. and Elford, M. T., Phys. Rev., 2, 112(1), 111-3, 1958.
366	10396	Wold, P. I., Phys. Rev., 7, 169-93, 1916.
367	8296	Cartwright, C. H., Ann. Physik, 5, 18, 656-78, 1933.
368	180	Amirkhanov, Kh. I., Daibov, A. Z. and Zhuze, V. P., Doklady Akad. Nauk SSSR, 98(4), 557-60,
369	11371	1954. Amirkhanov, Kh. I., Bagduev, G. B. and Kazhlaev, M. A., Doklady Akad. Nauk SSSR, 124(3),
		554-6, 1959.
379	152	Fischer, G., White, G. K. and Woods, S. B., Phys. Rev., 106, 480-3, 1957.
371	15978	Devyatkova, E. D., Moizhes, B. Ya. and Smirnov, I. A., Fiz. Tverdogo Tela, 1(4), 613-27, 1959.
372	50	White, G. K. and Woods, S. B., Can. J. Phys., 35, 346-8, 1957.
373	8423	Sandenaw, T. A. and Gibney, R. B., J. Phys. Chem. Solids, 6(1), 81-8, 1958.
374	16645	Sandenaw, T. A., USAEC Rept. AECU-4127, 3-12, 1958.
375	10946	Parker, D. S., General Electric Co. Rept. USAEC APEX-558, 12, 1960.
376	16620	Morral, F. R. and Wagner, H. J., Battelle Memorial Inst. DMIC Memo. 66, (PB 161 216), 5-6, 1960. [AD 243 903]
377	6690	Mikryukov, V. E., Vestnik Moskov, Univ., Ser. Mat. Mekhan., Astron. Fiz. i Khim., 12(3), 57-64, 1957.
378	6616	Mikryukov, V. E., Vestník Moskov. Univ Ser. Mat. Mekhan., Astron. Fiz. i Khim., 12(2), 85-93, 1957.
379	9097	Mendelssohn, K. and Montgomery, H., Phil. Mag., 8, 1(8), 718-21, 1956.
380	9130	Nii, R., J. Phys. Soc. Japan, 13(7), 769-70, 1958.
381	8472	Deviatkova, E. D., Soviet PhysTech. Phys., 2(3), 414-18, 1957.
382	39906	Malm, H. L. and Woods, S. B., Can. J. Phys., 44(10), 2181-532, 1966.
383	793	Mikryukov, V. E., Tyapunina, N. A. and Cherpakov, V.P., Vestnik Moskov, Univ., Ser. Mat. Mekhan., Astron. Fiz. i Khim., 11(1), 127-36, 1986.
384	8380	White, G. K. and Woods, S. B., Can. J. Phys., 36, 875-83, 1955.
385	16359	Khalileev, P. A., Zh. Eksptl. i Teor. Fiz., 10, 40-57, 1940.
386	12345	Bowley, A. E., Delves, R. and Goldsmid, H. J., Proc. Phys. Soc. (London), 72, 401-10, 1958.
387	16954	Parker, W. J. and Jenkins, R. J., U.S. Naval Radiological Defense Lab. Research and Develop. USNRDL-TR-462 (PB 159 931), 1-32, 1960. [AD 245 557 L]
388	20736	Satterthwaite, C. B. and Ure, R. W., Jr., Phys. Rev., 108(5), 1164-70, 1957.
289	15566	Mendelssohn, K., Physica (Supplement), 24, S53-S62, 1958.
390	7706	Zolotukhin, G. E., Fiz. Metal. i Metalloved., Akad. Nauk SSSR, Ural. Filial, 3, 508-12, 1956.
391	15609	Pott, F. P., Z. Naturforsch., 13a(3), 215-21, 1958.
392	16806	Battelle Memorial Inst. USAEC Rept. CT-2632, 307-8, 1945.
39 3	8139	Deem, H. W., Pobereskin, M., Lusk, E. C., Lucks, C. F., and Calkins, G. D., USAEC Rept. BMI-986, 1-19, 1955.
J94	179	Weeks, J. L., Trans. AIME, 203, 192, 1955.

Ref. No.	TPRC No.	
395	20487	Lucks, C. F. and Deem, H. W., USAEC Rept. BMI-1273, 7-9, 1958.
396	16648	Westphal, R. C., USAEC Rept. AECD-3864, 1-4, 1954.
397	6249	Powell, R. W., Phil. Mag., <u>27</u> (185), 677-86, 1939.
398	1174	de Nobel, J. Physica 15, 532-40, 1949.
399	6706	Barratt, T. and Winter, R. M., Ann. Physik. 77(9), 1-15, 1925.
400	25	Mendelssohn, K. and Renton, C. A., Phil. Mag., 7, 44, 776-81, 1953.
401	9313	White, G. K. and Woods, S. B., Phil. Trans. Roy. Soc. (London), A251, 273-302, 1959.
402	9414	Skinner, G. B., Beckett, C. W. and Johnston, H. L., USAF TR 162-AC4912-100-4, 1-47, 1950. [ATI 81 813]
403	6500	Sims, C. T., Wyler, E. N., Gaines, G. B. and Rosenbaum, D. M., WADC TR 56-319, 1-224, 1956. [AD 110 596]
404	10567	Andrews, F. A., Webber, R. T. and Spohr, D. A., Naval Research Lab., 1-11, 1950. [AD 147 716]
403	4312	Hase, R., Heierberg, R. and Walkenhorst, W., Aluminium, 22, 631-5, 1940.
406	10367	van Dusen, M. S., J. Opt. Soc. Am., <u>6</u> , 739-43, 1922.
407	15552	Konno, S., Phil. Mag., 6, 40, 542-52, 1920.
408	9935	Masumoto, H., Sci. Repts. Tohuku Imp. Univ., 13, 229-242, 1925.
409	9735	Zavaritskii, N. V., Zhur. Eksptl. i Teoret. Fiz., <u>34</u> , 1116-24, 1958.
410	7577	Eucken, A. and Warrentrup, H., Z. tech. Physik, 16, 99-104, 1935.
411	9763	Powell, R. W. and Tye, R. P., Proc. 9th Intern. Congr. Refrig., 1, 2083-7, 1955.
412	141	Mendelssohn, K. and Renton, C. A., Proc. Roy. Soc. (London), A230, 157-69, 1955.
413	15899	Bell. I. P., UKAEA Rept. R & DB(C) TN-127, 1-10, 1955.
414	10511	Bell, I. P. and Makin, S. M., UKAEA Rept. RDB (C)/TN-70, 3-12, 1954. [AD 50 064]
415	10715	Bates, J. C., UKAEA Rept. R = BD(W) TN-78, 1-5, 1953. [AD 212 839]
416	17011	Babbitt, J. D., Dauphince, T. M., Armstrong, L. D. and Peria, W., Atomic Energy of Canada Ltd. Rept. AECL-326, CRR-438, 1-37, 1956. (first issued in 1949.)
417	15889	Kratz, H. R., USAEC Rept. CT-861, 10-4, 1943.
418	15739	Plott, R. F. and Raeth, C. H., USAEC Rept. CP-228, 1-7, 1942.
419	16438	Crucible Steel Co. of America, Crucible Steel Co. Data Sheet A-110AT, 3, 1958.
420	3511	Pearson, G. J., Davey, P. O. and Danielson, G. C., Proc. Iowa Acad. Sci., 64, 461-5, 1957.
421	23495	Zegler, S. T. and Nevitt, M. V., USAEC Rept. ANL-6116, 32-50, 1961.
422	23496	Battelle Memorial Inst., USAEC Rept. CT-2700, 1-39, 1945.
423	16781	Powell, R. W., Dollie Rept. BR-669, 1-13, 1945. Powell, R. W., Dollie Rept. BR-669, 1-13, 1945.
424	6577	White, G. K. and Woods, S. B., Phil. Mag., 8, 3(28), 342-59, 1958.
425	7084	Eucken, A. and Neumann, O., Z. physik. Chem., 111, 431-46, 1924.
426	15505	Rause , K., Ann. Physik, 6, 1, 190-206, 1947.
427	10013	Sitton, W. H., J. Am. Ceram. Soc., 43(2), 81-6, 1960.
428	6974	Mc Clelland, J. D., Rasor, N. S., Dahleen, R. C. and Zehms, E. H., WADC TR 56-400, II, 1-6, 1957. [AD 118 243]
429	6284	Gabler, F., Physik, Z., 38(3), 75-82, 1937.
430	15517	Sedstrom, E., Ann. Physik, 75, 549-55, 1924.
431	5505	Mikryukov, V. E. and Rabotnov, S. N., Uchenye Zapiski Moskov, Gosudarst, Univ. Im. M. V. Lomonosova, 74, 167-79, 1944.
432	6682	Powell, R. L., Roder, H. M. and Rogers, W. M., J. Appl. Phys. 28(11), 1282-8, 1957.
433	4303	Aoyama, S. and Ito, T., Nippon Kinzoku Gakkaishi, 4, 3-7, 1940.
434	15572	Powell, R. L., Roder, H. M. and Hall, W. J., Phys. Rev., 115(2) 314-23, 1959.
435	6711	Grüneisen, E., Ann. Physik, 4, 3, 43-74, 1900.
436	6298	Grüneisen, E. and Adenstedt, H., Ann. Physik, 5, 31(8), 714-44, 1938.
437	15510	Schaufelberger, W., Ann. Physik, 7, 589-630, 1902.
438	15604	Meissner, W., Verhandl. deut. physik. Ges., 16, 262-72, 1914.

Ref.	TPRC No.	
439	6744	Ranque, G., Henry, P. and Chaussain, M., Congr. Intern. Mines Met. Geol. Sec. de Metallurgie, 2, 303-9, 1935.
440	4305	Aoyama, S. and Ito, T., Nippon Kinzoku Gakkaishi, 4, 37-40, 1940.
441	9962	Mikryukov, V. E., Vestnik Moskov, Univ., Ser. Mat. Mckhan., Astron. Fiz. i Khim., 12(5), 73-80, 1957.
442	15802	Bing, G., Fink, F. W. and Thompson, H. B., USAEC Rept. BIM-65, 1-19, 1951.
443	10945	Parker, D. S. and Huffine, C. L., General Electric Co. Rept. USAEC APEX-561, 1-38, 1959.
444	9898	Powell, R. W., Proc. Phys. Soc. (London), <u>51</u> , 407-18, 1939.
445	10901	Laubitz, M. J., Can. J. Phys., 38, 887-907, 1960.
446	10880	Paine, R. M., Stonehouse, A. J. and Deaver, W. W., WADC TR59-29(2), 1-119, 1959. [AD 244 758]
447	5315	Guareschi, P., Atti accad. sci. Torino, Classe Sci. Fis., Mat. e Nat. 75(1), 552-70, 1940.
448	6495	Grüneisen, E. and Adenstedt, H., Ann. Physik, 29, 597-604, 1937.
449	15515	Weber, S., Ann. Physik, <u>54</u> , 165-81, 1917.
450	16235	Birch, J. A., Kemp, W. R. G., Klemens, P. G. and Tainsh, R. J., Australian J. Phys., 12(4) 455-65, 1959.
451	15508	Johansson, C. H. and Linde, J. O., Ann. Physik, <u>5</u> , 762-92, 1930.
452	1106	Laredo, S. J., Proc. Roy. Soc. (London), A229, 473-92, 1955.
453	7396	Shiffman, C. A., Proc. Phys. Soc. (London), 71(4), 597-607, 1958.
454	9920	Graham, G. M., Proc. Roy. Soc. (London), A248, 522-38, 1958.
455	1645	Goodman, B. B., Proc. Phys. Soc. (London), A66, 217-27, 1953.
456	9191	Garfinkel, M. and Lindenfeld, P., Phys. Rev., 110(4), 883-7, 1958.
457	776	Hulm, J. K., Nature, 163, 368-9, 1949.
458	9941	Zavaritskii, N. V., Soviet Phys. JETP, 6, 837-47, 1958.
459	24057	Grossman, G., Ann. Physik Beib., 29, 178-81, 1905.
46 0	6689	Cherpakov, V. P., Vestnik Moskov, Univ., Ser. Mat. Mekhan., Astron. Fiz. i Khim., <u>12</u> (3), 129-34, 1957.
461	771	Webber, R. T. and Spohr, D. A. Phys. Rev., <u>84</u> , 384-5, 1951.
462	1678	Olsen, J. L. and Renton, C. A., Phil. Mag., 7, 43, 946-8, 1952.
463	15559	G'Day, M. D., Phys. Rev., <u>23</u> , 245-54, 1924.
464	15521	Peczalski, T., Ann. Physique, 7, 185-224, 1917.
465	15500	Macchia, P., Atti accad. nazl. Lincei, Rend., Classe sci. fis., mat. e nat., 16, 507-17, 1907.
466	23199	Wolff, C. L., Univ. of Illinois TR 1, OOR-2791, 1-54, 1961. [AD 253 117]
467	7102	Koemig, J. H. (Director), Rutgers, Univ. N. J. Ceram. Research Sta. Progr. Rept. 4, 1-35, 1953. [AD 29 335]
468	7597	Mendelssohn, K., NBS Circ. 519, 33-6, 1952.
469	7640	Kaye, G. W. C. and Roberts, J. K., Proc. Roy. Soc. (London), A104, 98-114, 1923.
470	229	Nishioka, S., Mem. Coll. Sci., Kyoto Imp. Univ., A25, 147-54, 1949.
471	6741	Giebe, E., Verhandt, deut. physik. Ges., $\underline{2}$, 60-6, 1903.
472	6295	Grüneisen, E. and Gielessen, J., Ann. Physik, 5, 28(3), 225-39, 1937.
473	7183	Reddemann, H., Ann. Physik, 5, 20, 441-8, 1934.
474	1752	Grünelsen, E., Rausch, K. and Weiss, K., Ann. Physik, 7, 1-17, 1950.
475	6286	Grüneisen, E. and Giclessen, J., Ann. Physik, 5, <u>26</u> (5), 449-64, 1936.
476	40268	Powell, R. W., Ph.D. Thesis, London University, 1-79, 1938.
477	25854	Lindenbaum, S. D. and Quimby, S. I., AD 272-561, 1-31, 1962.
478	741	Rosenberg, H. M., Phil. Mag., 7, 45, 767, 1954.
479	15645	Powell, P. W., Iron Steel Inst. (London) Spec. Rept. 24, 253-68, 1939.
48U	235 <u>2</u> 0	Powers, A. E., USAEC Rept. KAPL-2143, 1-23, 1961.
481	21000	loffe, A. V. and loffe, A. F., Soviet Phys. Solid State, 2(5), 719-28, 1960.
482	21176	Berman, R.: Bull. Inst. Intern. Froid, Annexe 1952-1, 13-20, 1952.

Ref.	TPRC No.	
483	21181	Laredo, S. J., Bull, Inst. Intern. Froid, Annexe 1952-1, 63-8, 1952.
484	21182	Mendelssohn, K., Bull. Inst. Intern. Froid. Annexe 1952-1, 69-79, 1952.
455	21184	de Nobel, J., Bull. Inst. Intern. Froid, Annexe 1952-1, 89-100, 1952.
456	15587	Powell, R. W., Proc. Roy. Soc. (London), A209, 525-41, 1951.
437	7650	Gray, J. H., Proc. Roy. Soc. (London). <u>56</u> , 199-203, 1894.
438	15612	Holm, R., Z. tech, Physik, 19, 621-3, 1929.
439	24656	De Mastry, J. A., Moxk, D. P., Epstein, S. G., Bauer, A. A. and Dickerson, R. F., USAEC Rept. BMI-1536, 1961.
490	24428	Hogan, C. L., Lehigh Univ. Doctoral Dissertation, 1-43, 1950.
491	8370	Johnston, H. L., Ohio State Univ. Research Foundation, USAF Proj. MX-588, Rept. 20, 3, 1948. [ATI 45 490]
492	15738	Powell, R. W. and Tye, R. P., Engineer, 209, 729-32, 1960.
493	16355	Jakob, M., Z. Ver. deut. Ingr., <u>66</u> , 688-93, 1922.
494	16667	Powell, R. L., Harden, J. L. and Gibson, E. F., J. Appl. Phys., 31(7), 1221-4, 1960.
495	9416	Powers, R. W. and Schwartz, D., Johnston, H. L., Editor), Ohio State Univ. Research Foundation, 3-10, 1949. [ATI 52 496]
496	4648	Aoyama, S. and Ito, T., Nippon Kinzoku Gakkaishi, 4, 8-9, 1940.
497	9409	Johnston, H. L.: Ohio State Univ. Research Foundation, Liquid Hydrogen Progr. Rept. 20, 3, 1949. [ATI 54 990]
498	1553	Howling, D. H., Mendoza, E. and Zimmerman, J. E., Proc. Roy. Soc. (London), A229, 86-109, 1955.
499	6351	Starr, C., Phys. Rev., <u>51</u> (5), 376-7, 1937.
500	2129	Francl, J. and Kingery, W. D., J. Am. Ceram. S∞., <u>37</u> , 99-197, 1954.
591	24455	Calverley, A., Mendelssohn, K. and Rowell, P. M., Cyrogenics, 2, 26-33, 1961.
502	16815	Ewing, C. T. and Grand, J. A., NR13835 (PB-105-058), 1-18, 1951.
503	24130	Bode, K. II., Allgem. Warmetech., 10(7), 125-42, 1961.
504	18917	Parker, W. J., Jenkins, R. J., Butier, C.P. and Abbott, G. L., J. Appl. Phys., 32(9), 1679-84, 1961.
505	10653	Kapciner, S. M., USAEC Rept. PWAC-349, 1-33, 1961.
506	7036	Koenig, J. H. (Director), Rutgers Univ. N. J. Ceram. Research Sta. Progr. Rept. 1, 1-33, 1953. [AD 5552]
507	39911	Laubitz, M. J. and Vander Meer, M. P., Can. J. Phys., 44(12), 3173-84, 1966,
508	6566	Mendelssohn, K. and Olsen, J. L., Proc. Phys. Soc. (London), A63, 1182-3, 1950.
509	110	Ruh, E., J. Am. Ceram. Soc., <u>37</u> (5), 224-9, 1954.
510	1991	Suzuki, H., Kuwayama, N. and Yamauchi, T., Yogyo Kyokai Shi, 64(726), 161-6, 1956.
511	22670	Lussana, S., Nuovo, Cimento, <u>15</u> , 130-70, 1918,
512	23491	White, G. K. and Woods, S. B., Proc. Intern. Conf. on Low Temp. Phys., and Chem. (Wisconsin), 367-70, 1957.
513	15793	Ho. J. and Wright, E. S., Lockheed Missiles and Space Div. Rept. LMSD 288140, $\underline{2}$, H. Sec. 3, 1-7, 1960. [AD 241 410]
514	25801	Pashaev, B. P., Soviet PhysSolid State, 3(8), 1773-5, 1962.
515	6235	Grootenhuis, P., Powell, R. W. and Tye, R. P., Proc. Phys. Soc. (London), B65, 502-11, 1952.
516	16288	Cook, M. and Tallis, W. G., J. Inst. Metals (London), 67, 49-65, 1941.
517	9075	Lomer, J. N. and Rosenberg, H. M., Phil. Mag., <u>4</u> , 467-83, 1959.
51~	18514	Olsen, T., J. Phys. Chem. Solids, <u>12</u> (2), 167-74, 1960,
519	15839	-Sirota, N. N. and Berger, L. I., Inzhener-Fiz-Zhur, Akad. Nauk. Belorus SSR, 1(11), 117-20, 1958.
520	15779	Biair, J., M.I.T. Electronic Systems Lab. Scientific Rept. 2, 63-95, 1960. [AD 241 277]
521	12246	Harman, T. C., Paris, B., Miller, S. E. and Goering, H. L., J. Phys. Chem. Solids, 2(3), 181-90, 1957.
522	24490	Abdullaev, G. B., Aliev, M. I. and Akhundova, S. A., Soviet PhysSolid State, 3(2), 234-5, 1961.

Ref. No.	TPRC No.	
523	19180	Zimmerman, J. E., J. Phys. Chem. Solids, 11, 299-302, 1959.
524	16663	Powell, R. L., Hall, W. J. and Roder, H. M., J. Appl. Phys., 31(3), 496-503, 1960.
525	6745	Bollenmith, F. and Bungardt, W., Jahrb. Deut. Versuchsanstalt Luftfahrt E. V. (1937), 348-50, 1938.
526	16136	Adolphson, D. R., Sandia Corp., SCTM 300-58 (16), 8, 1958.
527	6244	Euringer, G. and Hanemann, H., Metallwirtschaft, 14(20), 389-91, 1935.
528	7530	Harrington, R. H., Barker, L. B., Sayre, M. F. and Holley, C. H., Metal Progr., <u>63</u> (5), 90-4, 1953.
529	9010	Kura, J. G. and Lang, R. M., Am. Soc. Testing Materials Proc., 58, 775-90, 1958.
530	6547	Chentsov, R. A., Zh. Eksp. Teor. Fiz., 27, 126-8, 1954.
531	6280	Cook, M., J. Inst. Metals, <u>58</u> , 151-71, 1936.
532	21007	Fairbank, H. A. and Lee, D. M., Rev. Sci. Instr., 31(6), 660-1, 1960.
533	15801	Richards, L. E. and Robinson, H. E., USAEC Rept. NBS-4038, 1-6, 1955.
534	8361	Krahizhanovskii, R. E., Teploenergetika, USSR, 5(1), 44-8, 1958.
535	16034	Spann, J. R., Ewing, C. T., Walker, B. E., and Miller, R. R., Naval Research Lab, Rept. NRL-5144, 1-9, 1958. [AD 240 782]
536	20970	O'Sullivan, W. J., Jr., Proc. ASTM 55, 757-64, 1955.
537	18087	Aoyama, S. and Ito, T., Nippon Kinzoku Gakkaishi, 4, 40-2, 1940.
538	15776	Saller, H. A., Dickerson, R. F., Bauer, A. A. and Daniel, N. E., Battelle Memorial Inst. Rept. BMI-1123, 1-32, 1956.
539	14103	Kikuta, T., Tetsu-to-Hagane (Japan), 24, 524-8, 1938.
540	26020	Cezairliyan, A., Purdue Univ. Thermophysical Properties Research Center, Ph.D. Thesis, TPRC Rept. 14, 1-140, 1962. [AD 422 069]
541	22818	Mal'tsev, M. V., Mikryukov, V. E. and Chou, S. C., Phys. of Metals and Metallography, 8(1), 119-24, 1959.
542	21261	Kosteleckey, R. J., S. Dakota School of Mines and Technology, Tech. Rept. No. 7, 1-61, 1962. [AD 288 825]
543	29303	Semchyshen, M. and Barr, R. Q., Climax Molybdenum Co. ONR Project Rept., 1-428, 1955. [AD 90 229]
544	26008	Pears, C. D. (Project director), Southern Research Inst. Tech. ASD-TDR-62-765, 1963. [AD 298 061]
545	24406	Busch, G., Frohlich, C., Hulliger, F. and Steigmeier, E., Helvetica Physica Acta, 34, 359-68, 1961.
546	16988	Mueller Brass Co., Bull. FM-3026, 1960.
547	7479	Boltaks, B. I. and Zhuze, V. P., Zhur. Tekh. Fiz. 18, 1459-77, 1948.
548	25065	Luft, L. (Editor), General Elec. Co., 1-171, 1961. [AD 266 019]
549	10955	Lyden, H., Air Force Cambridge Research Center Rept. AFCRC-TN-60-125, 52-7, 1959. [AD 233-257]
550	24182	Orrall, F. Q. and Zirker, J. B., Astrophys. J. (USA), 134(1), 63-71, 1961.
55 1	17092	Conn., J. B. and Taylor, R. C., J. Electrochem. Soc., 107(12), 977-82, 1960.
552	16671	Taylor, P. F. and Wood, C., J. Appl. Phys., <u>32</u> (1), 1-3, 1961.
553	10958	Cody, G. D., Dismukes, J. P., Hockings, E. F. and Richman, D., Quarterly Progress Rept. 3, RCA, 1-19, 1959. [AD 231-579]
554	18654	Smith, K. F. and Chiswik, H. H., USAEC Repts, ANL-5257, 17-18, 1954.
555	26081	Smith, K. F. and Chiswik, H. H., USAEC Repus., ANL-5339, 1-15, 1956.
556	9980	Tripler, A. B., Jr., Snyder, M. J. and Duckworth, W. H. Battelle Memorial Institute Rept. No. BMI-1313, 20-2, 1959.
557	16650	Mc Kee, J. M., Jr., NDA 14-12 (AECD-4059), 1-26, 1953.
55⊀	10836	Zalar, S. M., Stone, L. P. and Cadoff, L. New York Univ. Quarterly Rept. 12, 1-5, 1960. [AD 234-950]
559	23502	The Intern. Nickel Co. Inc., Data Manual, The Intern. Nickei Co. Inc., 1-8, 1956.
560	172	Mikryukov, V. E. and Pozdnyak, N. Z., Vestnik Moskov Unov, §(9), Ser. Fiz. Mat. i Estestven Nauk, No. 6, 97-108, 1953.

Ref. No.	TPRC No.	
561	16291	Marue, H., J. Iron Steel Inst. (Japan), 11, 571-7, 1925.
562	9413	Powers, R. W., (Johnston, H. R., Editor), Res. Foundation, OSU, USAF, 3, 1949. [ATI 58926, No. 25]
563	16260	Taitz, N. Yu., Domez, 7, 41-60, 1935.
56 F	10632	Francis, R. K., Brown, R., Mc Namara, E. P. and Tinklepaugh, J. R., WADC Tech. Rept. 58-600 (PB 151 664), 1-69, 1958. [AD 205 549]
565	9411	Powers, R. W. and Schwartz, D., (Johnston, H. R., Editor), Res. Foundation, OSU, USAF, 3, 1949. [ATI 58926, No. 23]
566	4532	Stuckes, A. D. and Chasmar, R. P. Rept. Meeting on semiconductors Rugby, 119-25, 1956. [AD 151-505]
567	9031	Bowers, R., Bauerle, J. E. and Cornish, A. J., J. Appl. Phys., 30(7), 1050-4, 1959.
568	26007	Mc Elroy, D. L., Godfrey, T. G. and Kollie, T. G., Trans. of ASM, 55(3), 749-51, 1962.
569	15775	Mac Pherson, H. G., Oak Ridge Nat'l Lab., USAEC, CRNL-2973, 1-90, 1960.
570	32051	Fenton, E. W., Rogers, J. S. and Woods, S. B., Cen. J. Phys., 41, 2026-33, 1963.
571	7127	West, E. D., Ditmars, D. A. and Ginnings, D. C., WADC TR 53-201 (PB 138 009), V. 1-19, 1954. [AD 49 098]
572	6242	Long, R. A., NACA, Res. Memo. E50F22, 1-34, 1950.
573	16564	Powell, R. L., Bunch, M. D. and Gibson, E. F., J. Apppl. Phys., 31(3), 504-5, 1960.
574	23100	Engineering Div., Chrysler Corp., Progr. Rept. 5, 1-5, 1961. [AD 259 104]
573	19100	Kingery, W. D. and Norton, F. H., USAEC, NYO-6446, 1-6, 1954. [AD 53808]
576	7132	Ewing, C. T. and Walker, B. E., WADC, TR 54-185, pt 1, 1-27, 1954. [AD 50 565]
577	15603	Gehlhoff, G. and Neumeier, F., Verhandl, Deut. Physik Ges., 15, 1069-81, 1913.
575	17231	Stuckes, A. D., Phil. Mag., 8, 5, 81-99, 1960.
579	8245	de Haas, W. J. and Biermasz, Th., 7 ^e Congn. intern. Froid, 1 er Comm. intern. Raports et Communic., 204-16, 1936.
550	15739	Powell, R. W., Mem. Scientifiques de la Revue de Metallurgie, 5602), 181-6, 1959.
551	5119	Deissler, R. G. and Bocgli, J. S., Trans. ASME, <u>80</u> , 1417-25, 1958.
552	10157	Powell, R. L. and Coffin, D. O., NBS Rept. 3517, 189-93, 1955. [AD 125-047]
553	25961	Hedge, J. C., Kopec, J. W., Kostenko, C. and Lang, J. L., ASD-TDR-63-597, 1-128, 1963, [AD 424-375]
554	15659	Powell, R. L., NBS Rept. 2609, Tech. Memo. 18, 1-3, 1953.
5%5	24563	Movlanov, Sh., Abdullaev, G. B., Bashshaliev, A., Kuliev, A. and Kerimov, I., Doklady Adak. Nauk Azerbaid-zhan, <u>17</u> (5), 375-9, 1961.
586	23062	Mikryukov, V. E. and Chou, S. C., Vestnik Moskov Univ. Ser. Mat. Mekh., Astron. Fiz. 1 Khim., <u>13</u> (3), 129-38, 1958.
547	5	Zavaritskii, N. V. and Zeldovich, A. G., Zhur, Tekh. Fiz., 26, 2032-6, 1956.
544	2/4437	Danilova, G. P., Tikhonova, G. S., Moiseeva, I. S., Seleznev, L. I. and Mel'nikeva, L. V., Redkie Metally i Splavy, Trudy Pervogo Vsesovuz, Sovesbehaniya posplavam Redkikh Metal Akad. Nauk SSSR, Inst. Met. im A. A. Baikova, Moseow, 63-71, 1960.
589	27344	Engelke, W. T. and Pears, C. D., USAEC UCRL-13061, 1-39, 1962.
590	19519	Abeles, B., Cody, G. D., Dismukes, J. P., Hockings, E. F., Lindenblad, N. F. and Richman, D., RCA Enb. Quarterly Progress Rept. No. 7, 1-24, 1960. [AD 258 953]
591	27111	Jones, T. I., Street, K. N., Scoberg, J. A. and Baird, J. A., Canadian Met. Quart., <u>2</u> (1), 53-72, 1963.
592	20699	Nikol'skit, N. A., Kalakutskaya, N. A., Pehelkin, I. M., Klassen, T. V. and Vel'tishcheva, V. A., Veprosy Teploobmero, Akad, Nauk. SSR, Energet, Inst. in: G. M. Krzhizhanovskozo, 11-45, 1959.
593	29512	Booker, J., Faine, R. M. and Stonehouse, A. J., WADD TR 60-889, II, 1-82, 1962. [AD 284 945]
594	24810	Booker, J., Paine, R. M. and Stonehouse, A. J., WADD TR 60~899, 1-133, 1961. [AD 265-625]
595	20484	Baxter, W. G. and Welch, F. H., USAEC, APEX-623, 1-89, 1961.
596	24315	Flynn, D. R., MBS Rept. 7740, 1962. [AD 411 157]
597	25306	Pashaev, B. P., Soviet PhysSolid State, 3(2), 303-5, 1961.
594	20961	Nettleton, H. R., Proc. Phys. Soc. (London), 26, 28-42, 1913.

17. (1. 美數 [金屬]

Ref. No.	TPRC No.	
599	15245	Cutier, M., Snodgrass, H. R., Cheney, G. T., Appel, J., Mallon, C. E. and Meyer, C. H., Jr., USAEC Rept., GA-1939, 1-99, 1961.
600	25130	Lebedev, V. V., Phys. Metals and Metallog., USSR, 10(2), 31-4, 1960.
601	29510	Hoch, M. and Nittl, D. A., ASD TR 61-528, 1-59, 1962. [AD 284-544]
602	25348	Gumenyes 17, 5; and Lebedev, V. V., Phys. Metals and Metallog., USSR, 11(1), 30-5, 1961, 4AD 262 C.
603	26074	Neel, D. (1997) (2007), C. D. and Oglesby, S., Jr., WADD 60-924, N62-12987, 58-201, 1962, [AD 275-536].
604	13974	Racth and Sing, CSAEC Rept. ep-1087, 18-9, 1943,
605	16782	Snyder, T. M. and Kamm, R. L., USAEC Rept. C-192, A-230, 1-56, 1955,
606	26084	Bell, I. P., UKAEC, RDB(c) TN-101, 1-16, 1954.
607	2 4956	Danielsen, G.C., (Chiotti, P. and Carlon, O.W.), USAEC ISC-452, 35-9, 1954.
608	25252	Zavaritska, N. V., Soviet Phys-JETP, 37, 1069, 1069-76, 1960.
609	28703	Metal Industry (London), <u>84</u> (10), 190, 1954.
610	29593	Powell, R. W., Tye, R. P. and Woodman, M. J., J. Less-Common Metals, 5, 49-50, 1963.
611	17914	Busch, G., Steignseier, E. and Wettstein, E., Helvetica Physica Acta, 32, 465-5, 1050.
612	24255	Erdmann, J. C. and Jahoda, J. A., Boeing Scientific Res. Lab., D1-82-0180, 1-21, 1962, [AD 286-859]
613	31786	Francis, R. K., Mc Namara, E. P. and Tinklepaugh, J. R., State Univ. of N. Y., College of Ceramic at Alfred Univ., Progr. Rept. No. 5, Aeronautical Res. Lab., WADC, 1958, [AD 154-872]
614	24812	Fieldhouse, I. B. and Lang, J. I., Armour Res. Foundation, WADD-TR-60-904, 1-119, 1961, [AD 268 304]
615	28100	Adamantiades, A., Heat Trans. Lab., MIT, USAEC Rept. NYO-9458, 1-32, 1962.
616	20404	Sweeny, W. O., Trans. Am. Soc. Mech. Engrs., 69, 569-51, 1947.
617	17441	Mikryukov, V. E., Vestaik Moskov, Univ., Ser. Mat., Mekh. Astron., Fiz. i Khim., <u>12</u> (6), 57-67, 1957.
615	16074	Fritz, W. and Bode, K. H., Z. angew. Phys., 12(3), 121-4, 1960.
619	25393	Schott, R., Verhandl, deut. Physik. Ges., 15, 27-34, 1916.
620	25469	Mikryul ov, V. E., Vestnik Moskov, Univ., Ser. Mat., Mekh. Astron., Fiz. 1 Kinne., 11(2), 59-70, 1956.
621	9412	Powers, R. W. and Schwartz, D., Øohnston, H. R., Editor), Res. Foundation OSU, USAF, 3, 1949. [ATI 58-926, No. 24]
622	20060	Taga, M., Bull, Japan Soc. Mech. Engrs., 3(11), 346-52, 1960.
623	17245	White, G. K. and Tainsh, R. J., Phys. Rev., 119(6), 1869-71, 1960.
624	23590	– Mikryukov, V. E., Teploprovodnost i Elektroprovodnost Metalov i Splavov, Moscow Metallurgizdat, 1-269, 1959.
625	16025	Oak Ridge National Lab., USAEC Rept. ORNL-2964, 85-4, 1960.
626	16699	Abeles, B., Beers, D., Cody, G., Novak, R. and Rosi, F., WADD TR 60-266, 1-51, 1989, [AD 246-620]
627	33440	Godfrey, T. G., Fulkerson, W., Kollie, T. G., Moore, J. P. and Mc Elroy, D. L., USAEC Rept. ORNI, 3556, 1-67, 1961.
625	9736	Lucks, C. F. and Deem, H. W., ASTM Spec. Tech. Publ. No. 227, 1-29, 1958.
629	6944	Hedge, J. C. and Fieldhouse, I. B., AECU-3381, 1-10, 1956.
630	24852	Powerl, R. W., Progress in International Research on Thermodynamic and Transport Properties, ASME 2nd Symposium on Thermophysical Properties, 494-65, 1962.
631 1	24853	Powell, R. W., Hickman, M. J., Tve, R. P. and Woodman, M. J., Progress in International Research on Thermodynamic and Transport Properties, ASME 2 nd Symposium on Thermophysical Properties, 466-73, 1962.
632	32772	Flynn, D. R., NBS Rept. 7836, 1-22, 1963. [AD 407-802]
633	2561⊭	Laubitz, M. J., Canadian J. Phys., 41(10), 1663-78, 1965.
634	29160	Taylor, R. E., ASD-TDR-62-348, 1-22, 1962. [AD 275 417]
6.15	9473	Gel ¹ d, P. V., Zh. Tekh, Fiz., <u>27</u> (1), 113-8, 1957.

The state of the state of

Ref. No.	TPRC No.	
636	25459	Bodnar, J., Broz. J., Smirous, K. and Trousil, Z., Czechoslovak Jour. Phys., 4, 345-9, 1954.
6:37	31323	Vel'tishcheva, V. A., Kalakutskaya, N. A. and Nikol'skii, N. A., Teploenergetika, $\underline{5}(10)$, 80-2, 1958,
638	17877	Zaitseva, L. S., Soviet Physics-Tech. Physics, 4(4), 444-50, 1959.
639	23574	Powell, R. W. and Tye, R. P., in "International Developments in Heat Transfer", ASME, No. 103, 856-62, 1961.
640	26030	Schliermacher, A., Ann-Physik (Leipzig), 36, 346-57, 1889.
641	16314	Nettleton, H. R., Proc. Phys. Soc. (London), 27, 129-48, 1915.
642	16218	Berget, A., Compt. rend. Acad. Sci., 105, 224-7, 1887.
643	15519	Augström, A. J., Ann. Phys. u. Chemie, 123, 628-40, 1564.
644	5292	Weber, H. F., Ann. Physik, 3, <u>10</u> , 472-500, 1880,
645	26797	Powell, R. W. and Tye, R.P., Brit. J. Appl. Phys., 14, 662-6, 1963.
616	24727	Carter, F. F., Am. Inst. Mining Mei. Engrs., Inst. Metals Div., Tech. Publ. No. 70, 1-24, 1928.
647	2126	Kannuluik, W. G. and Carman, E. H., Proc. Phys. Soc. (London), B65, 701-9, 1952.
648	29422	Martin, J. J. and Sidles, P. H., Rept. No. IS-1015, Ames, Lab., USAEC, 1964,
649	124	de Nobel, J., Bull, Inst. Intern. Froid, Annexe 1956-2, 97-109, 1956.
650	26618	Kudryaytsev, E. V. and Chakalev, K. N., USAFC Rept. No. AEC-TR-4934, 1-9, 1960.
651	23560	Zwikker, C., Archives Neerlandaises des Sciences exactes et Naturelles, IIIA, <u>9</u> , 207-339, 1925.
652	23587	Tye, R. P., J. Less-Common Metals, 3, 13-8, 1961.
653	23277	Cutler, M. and Cheney, G. T., J. Appl. Phys., 34(6), 1714-8, 1963.
654	2*174	Wheeler, M. J., Brit, J. Appl. Phys., 1669, 365-76, 1965.
655	27034	Tepper, F., Murchison, A., Zelenak, J. S. and Rochlich, F., ML-TDR-61-42, 1-66, 1964, [AD 448-772]
656	22950	Timrot, D. L. and Peletskin, V. E., High Temp. USSR, 1(2), 147-51, 1963.
657	21430	Istrati, M. I., Ann. Sci. Univ. Jassy. 14, 23-7, 1926.
638	38399	Powell, R. W., Tve, R. P. and Metcalf, S. C., Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 3rd Symposium on Thermophysical Properties, ASME, 289-95, 1965.
659	35305	Powell, R. W., Tve, R. F. and Woodman, M. J., Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 3rd Symposium on Thermophysical Properties, ASME, 277-88, 1965.
660	29561	Kiem, A. H., Shanks, H. R. and Danielson, G. C., USAEC Ames Lab., Rept. 18-835, 747-55, 1964.
661	35024	Richter, F. and Kohthaas, R., Z. Naturforsch., 19a(13), 1632-4, 1964.
662	29270	Bode, K. H., PTB-Mittelbingen, No. 5, 416-20, 1964.
663	6302	Kannuluik, W. G. and Catman, E. H., Australian J. Ser. Research Ser., A4, 305-14, 1951.
661	2515 i	Perova, V. I. and Knorez, L. I., Tsentral, Nauch-Issledovatel, Inst. Tckhnol, Mashinostroen, 79, 159-74, 1957.
665	23506	Powell, R. W., Tve. R. P. and Woodman, M. J., Platmum Metals, Rev., 6(4), 138-43, 1962.
666	32964	Hopkins, M. R. and Graffith, R. L., Z. Phys., <u>150</u> , 325-31, 1958.
667	31192	Riokin, R. L., Parker, W. J. and Jenkins, R. J., Temperature - Its Measurement and Control in Science and Industry, 2, 2, 523-34, 1962.
065	36350	F(hippov, L. P. and Simenova, Yu. N., High Temp. (Translation of Teplofizika Vysokikh Temperatur), $\underline{2}\Omega_{3}$, 165-8, 1964.
669	36119	Platinov, E. S. and Federov, V. B., High Temp. Cranslation of Teplotizika Vysokikh Temperatur), $\underline{2}(i)$, $568-52$, $196i$.
670	36721	Arajs, S., Oliver, B. F. and Dunaevic, G. R., J. Appl. Phys., 36(7), 2210-2, 1965.
671	24133	Bäcklund, N. G., Phys. Chem. Solids, 2001-2), 1-16, 1961.
67.2	30584	Gladun, C. and Holzmauser, W., Monatsber, deut. Akad. Wiss. Berlin. 6(4), Normal and
67.3	22061	Kikuch), K., Kinzeku-no-Kenkyuh (Japan), 200, 209-40, 1902,
67.1	37565	Powell, R. W., Hickman, M. J. and Tve, R. P., Metaliurgia, <u>70</u> (120), 159-63, 1964.

Ref. No.	TPRC No.	
67.5	36264	Powell, R. W., Tye, R. P. and Hickman, M. J., Int. J. Heat Mass Transfer, 8, 679-88, 1965.
676	19412	Rowell, P. M., Proc. Roy, Sec. (London), <u>254A</u> (1279), 542-50, 1960.
677	25761	Cherdhuri, K. D., Mendelssohn, K. and Thompson, M. W., Cryogenies, 1(1), 47-8, 1969.
678	25110	Bohone, R., Kendall, L. F. and Vought, R. H., TCREC Tech. Rept. 62-112, 1-31, 1962, [AD 207-918]
679	24131	Thompson, J. C. and Younglove, B. A., Phys. Chem. Solids, 20(1/2), 146-9, 1961.
680	26857	Holland, M. G., Proc. Intern. Conf. Low Temp. Phys., 7th, Toronto, Canada, 1960, 280-4, 1961.
681	20948	Shanks, H. R., Maycock, P. D., Sidles, P. H. and Danielson, G. C., Phys. Rev., <u>130</u> (5), 1743-8, 1963.
682	22 (16	Zavaruskii, N. V., Soviet Phys. JETP, <u>11</u> (6), 1205-14, 1960.
683	32481	Davey, G. and Mondelssohn, K., Phys. Letters, 7(3), 183-4, 1963.
654	33122	Glassbrenner, C. J. and Slack, G. A., Phys. Rev., 131 (IA), A 1058-69, 1964.
685	22537	Smith, C. F., NASA N63-23040, 1-26, 1963,
686	26320	Nermark, B. E., Lyusternik, V. E., Anichkina, E. Y. and Bykova, T. I., Teplofizika Vysokikh Temp., <u>1</u> (1), 12-6, 1963.
687	19720	Broghy, J. H. and Sinnott, M. J., Trans. Am. Soc. Metals, <u>52</u> , <u>567-81</u> , <u>1960</u> ,
tinn	37965	Kulemski, G. L., Wagner, P. and Cowder, L. R., J. Less-Common Metals, 7(5), 383-92, 1964.
659	36430	Kobushko, V. S., Merisov, B. A. and Khotkevich, V. I., Inzhenerno Fiz. Zh., 2(1), 58-63, 1965.
690	H5521	Kobushko, V. S., Merisov, B. A. and Khotkevich, V. L., J. Eng. Phys., <u>S</u> (1), 43-6, 1965. Also Intern. Chem. Eng., <u>5</u> (3), 485-8, 1965.
691	10581	White, G. K., Woods, S. B. and Mac Donald, D. K. C., Bull. Inst. International du Proid Annexe (10), 91-5, 1956.
692	26946	Martin, J. J., M.S. Thesis, Tech. Rept. No. 6, Solid State Physics Prop., Dept. of Physics, S. Dakota School of Mines and Technology, 1-39, 1932. [AD 284-751]
693	25628	Watson, J. H. P. and Graham, G. M., Canadian J. Phys., 41(10), 1738-43, 1963.
694	34567	Grosse, A. V., Temple Univ., Philadelphia, Pa. Research Inst., TID-21737, 1-76, 1964.
695	38626	Banaey, A. M. and Chekhovskoi, V. Ya., High Temp. (USSR), 2(1), 47-52, 1965.
696	35485	Banaey, A. M. and Chekhovskoi, V. Ya., Teplotiz, Vysokikh Temperatur, Akad. Nauk SSSR, 2(1), 57-63, 1965.
697	6470	Reddemann, H., Ann. Physik, 5, <u>22</u> , 28-30, 1935.
698	23559	Powell, R. W. and Tye, R. P., J. Less-Common Metals, 3, 226-33, 1961.
699	35577	Kohlhaas, R. and Kierspe, W., Arch. Eisenhüttenw., 36(4), 301-9, 1965.
700	34977	Martin, J. J., Sidles, P. H. and Danielson, G. C., USAFC Rept. 18-1261, 1-11, 1965.
791	16596	Kratz, H. R. and Raeth, C. H., USAEC Rept. No. CT-539, 8, 1943.
703	21737	Tewfik, O. E. Eckert, E. R. G. and Jurewicz, L. S., Univ. of Minn. Heat Transfer Lab. Rept. No. HTL-TR-NO-38. Air Force Office of Scientific Research No. AFOSR-1397, 44-57, 1961, [AD 266 568]
703	19127	Smoke, E. J., Illyn. A. V., Ejchbaum, B. R., Snyder, N. H., Lass, G. and Nussbaum, T., N. J. Cerataic Res. Station, Rutgers Univ. Progr. Rept. No. III, 1-7, 1955. [AD 74093]
704	30850	Amundsen, T. and Olsen, T., Physica Norvegica, 100, 167-71, 1963.
705	25953	Connolly, A. and Mendelssohn, K., Proc. Roy. Soc. (London), A266(1327), 429-39, 1962.
706	8294	Lorenz, L., Ann. Physik Chem., 3, <u>13</u> , 582-606, 1881.
707	26011	Rosenthal, M. W., Pb. D. Thesis, MIT, 1-200, 1953.
705	31223	Pashney, B. P., Teplo (Massoperenos, Pervoe Vses Sovesheh), Minsk 1, 126-30, 1962.
709	31219	Gumenyuk, V. S., Ivanov, V. E. and Lebedev, V. V., Teplo i Massoperenos, Pervoc Vses, Sovesheh., Minsk, 1, 94-101, 1962.
710	20077	Osborn, R. H., Ph. D. Thesis, Univ. Pittsburg, 1-20, 1938.
711	3 - 100:	ton, C. K. and Boch, M., Adv. Ther. Prop. Extreme Temp. 1.c., 3rd ASME Symp Ther. Prop. Puraue Univ. Ind., 296-300, 1965.
712	25218	Zavaritskii, N. V., Soviet Phys., $\underline{12}$ (6), 1093-7, 1961,
713	100%)	Norton, F. H., Kingery, W. D., Mc Quarrie, M. C., Adams, M., Loeb, A. L. and Francl. J., M.1.T., USAFC Rept. NYO-3603, 1-124, 1953. [AD 13940]

Ref. No.	TPRC No.	
714	16454	Bishop, F. L., Proc. Am. Acad. Arts and Sci., 41, 671-89, 1906.
715	23588	Powell, R. W. and Tye, R. P., J. Less-Common Metals, 3, 202-15, 1961.
716	27803	Berger, L. and Rivier, D., Helv. Phys. Acta, 35(7-8), 715-32, 1962.
717	16635	Rudkin, R. L., Res. and Development Tech. Rept. USNRDL-TR-433, 1-19, 1960.
718	33175	Rigney, C. J., Ph. D. Thesis, Northwestern Univ., 1-37, 1951.
719	36698	Taylor, R., Brit. J. Appl. Phys., <u>16</u> (4), 509-15, 1965.
720	19417	Heal, T. J., Proc. U.N. Intern. 2nd Conf. Peaceful Uses of Atomic Energy, 5, 208-19, 1958.
721	24355	Sharkoff, E. G., Ph. D. Thesis, MIT, 1-78, 1953.
722	33455	Stephenson, A. E., M. S. Thesis, Univ. of Missouri, Rolla, Mo., 1-37, 1963.
723	39229	Feith, A. D., USAEC GE-TM-65-10-1, 1-25, 1965.
724	16290	Powell, R. W., J. Inst. Metals, 85, 553-4, 1957.
7.5	30847	Radbakrishna, P. and Nielsen, M., Research Establishment Riso Rept. No. 71, Danish Atomic Energy Commission, 1-13, 1963. [AD 434-743]
726	22643	Pozdnyak, N. Z. and Akhmetzyanov, K. G., High Temperature (USSR), 1(27), 280-2, 1963.
727	14239	Zavaritskii, N. V., Zhur. Ekspll. i Teoret. Fiz., 39, 1193-97, 1960.
728	36929	Raag, V. and Kowger, H. V., J. Appl. Phys., 36(6), 2045-8, 1965.
729	36074	Watson, J. H. P., Ph. D. Thesis, Univ. of Toronte, 1-67, 1963.
730	13787	Plott, R. F. and Raeth, C. H., USAEC Rept. No. N-1936, 1-4, 1945.
731	17326	Nicol, J., Ph. D. Thesis, Ohio State Univ., 1-165, 1952.
732	33805	March, R. H. and Symko, O. G., Bull. Inst. Intern. Froid, Annexe 1965-2, 57-62, 1965.
733	29400	Ruese, W. and Steyert, W. A. Jr., Rev. Sci. Instr., 33(1), 43-7, 1962.
734	9867	Angell, M. F., Phys. Rev., <u>27</u> , 820, 1926.
735	38948	Yurchak, R. P. and Filippov, L. P., High Temperature 3(2), 299-1, 1965.
736	33804	Mendelssohn, K., Sharma, J. K. N. and Yoshida, I., Bull. Inst. Intern. Froid, Annexe 1965-2, 49-50, 1965.
737	39349	Niemark, B. F. and Bykova, T. I., Inzhen, -Fiz, Zhur, <u>8</u> (3), 361-3, 1965.
735	33098	Andrews, F. A., Ph. D. Thesis, Yale Univ., 1-128, 1950.
739	23844	Guénault, A. M., Proc. Roy. Soc. (London), A262, 420-34, 1961.
740	54877	Peshkov, V. P. and Parshin, A. Ya., Proc. 9th Intern. Conf. on Low Temp. Phys. Columbus, Ohio, 517-20, 1965.
741	38942	Timrot, D. L. and Peletskii, V. E., High Temperature, 3(2), 199-202, 1965.
742	36395	Krzhizhanovskii, R. E., High Temperature, <u>2</u> (3), 359-62, 1964.
743	36392	Kirichenko, P. I. and Mikryukov, V. E., High Temperature, 2(2), 176-180, 1964.
744	32129	Filippov, L. P., Intern. J. Reat Mass Transfer, 2(7), 681-91, 1966.
745	29545	Martin, J. J. and Morris, R. G., Proc. Black Hills Summer Conf. on Transport Phenomen, 21-23, August 1962, 24-32, 1962.
746	25102	Morris, R. G. and Hust, J. G., Phys. Rev. <u>124</u> , 5, 1426-30, 1961.
747	14094	Hust, J. G., South Dakota School of Mines Dept. of Physics, Tech. Rept. No. 2 on Solid State Phys., 1-87, 1961. [AD 251 689]
7.14	35217	Slack, G. A., J. Appl. Phys., 25, 12, 3460, 1964.
749	23856	Younglove, B. A., University Microfilms Inc. Ann Arbor, Michigan, Mic 51-1381, 1-53, 1961.
750	25053	Abeles, B., Cody, C. D., Desmakes, J. P., Hockings, E. F., Lindensia, N. E., Richman, D. and Rosi, F. D., RCA Lab. Quar. Rept. No. 8, 1-92, 1961. [AD 266 128] Nguyen, V. D., Vandevyver, M. and Pham N. T. Phys. (France). 24(7), 464-6, 1963.
751	39507	
7.52	32535	Beers, D. S., Cody, G. P. andAbeies, B., Proc. Intern. Conf. Phys. Semicond. Exeter, Engl. 1962, 41-8, 1962.
7.53	28211	Yans, F. M. and Gardner, N. R., Elec. Mfg. 64, 181-87, 1959.
754	30576	Grenier, C. G., Reynolds, J. M. and Sybert, J. R., Phys. Rev., 132(1), 55-75, 1907.
755	25463	Gallo, C., Chandrasekhar, B. S. and Sutter, P. H., Theo, Quar. Prog. Rept. No. 4, Westinghouse Research Lab., 1-34, 1962.
756	29753	Kapelner, S. M. and Bratton, W. D., USAEC Rept., (PWAC-376), 1-31, 1962.

Ref. No.	TPRC No.	
7.57	1990	Briggs, L. J., J. Chem. Phys., 26(4), 784-6, 1957.
758	22013	Powell, R. W., Woodman, M. J. and Tye, R. P., Brit, J. Appl. Phys., 14, 432-5, 1963.
739	8051	Plumb, H. H., Univ. Microfilms (Ann Arbor, Mich.) Publ. No. 9265, 1-71, 1954.
760	19702	Wecks, J. L. and Smith, K. F., Trans. Am. Inst. Mining Mct. Eng., 203, 1010, 1955.
761	28208	Lundin, C. E. and Klodt, D. T., USAEC TID-6228, 1-33, 1959.
762	35916	Mamiya, T. et. al. Phys. Soc. (Japan), 20(9), 1559-67, 1965.
763	23638	Cooke, J. W., USAEC, ORNL-3399, 1-151, 1964.
764	32806	Cooke, J. W., J. Chem. Phys., 49(7), 1902-9, 1964.
765	7288	Powell, R. W., J. Sci. Instr., 34, 485-92, 1957.
766	25869	Deem, H. W. and Matolich, J. Jr., BMI, NASA BATT-4673-T6, 20-4, 1963.
767	28102	Waldron, M. B., Garstone, J., Lee, J. A., Mardon, P. G., Marples, J. A. C., Polis, D. M. and Williamson, G. K., Proc. 2nd U. N. Intern. Conf. Peaceful Uses of Atomic Energy, 6, 162-9, 1958.
768	37409	Anderson, H. H. and Nielson, M., Danish Atomic Energy Commission, Risö Rept. No. 77, 1-22, 1964. [AD 143-218]
769	27484	Rudney, I. I., Lyasheako, V. S., and Abramovich, M. D., Soviec J. At. Energy, 11(3), 877-80, 1962.
770	38999	Evangelist, R. and Isacchini, F., Intern. J. Heat Mass Transfer, 2(19), 1393-17, 1965.
771	35486	Cezairliyan, A. and Touloukian, Y. S., Teplofizika Vysokikh Temperatur, 3, 75-85, 1965.
772	38628	Cezairliyan, A. and Touloukian, Y. S., High Temperature, 3, 63-75, 1965.
773	38401	Cezairliyan, A. and Touloukian, Y. S., Advances in Thermophysical Properties at Extreme Temperatures and Pressure, 3rd Symposium on Thermophysical Properties, ASME, 301-13, 1965.
774	39716	Powell, R. W., Ho, C. Y. and Liley, P. E., (Thermophysical Properties Research Center), Standard Reference Data on the Thermal Conductivity of Selected Materials, NSRDS-NBS-8, 1-168, 1966.
775	34926	Israel, S. L., Hawkins, T. D. and Hyman, S. C., NASA CR-402, 1-46, 1966.
776	35243	Slack, G. A., Phys. Rev., 139(2A), A507-A515, 1965.
777	35465	Powell, R. W. and Jolliffe, B. W., Physics Letters, 14(3), 171-2, 1965.
778	5156	Sidles, P. H. and Danielson, G. C., J. Appl. Phys., 25(1), 58-66, 1954.
779	9071	Geballe, T. H. and Hull, G. W., Phys. Rev., 110, 773-5, 1958.
750	20744	Slack, G. A. and Glassbrenner, C., Phys. Rev., 120(3), 782-9, 1960.
781	31952	Glassbrenner, C. J., Ph. D. Thesis, Univ. of Connecticut, 1-208, 1963.
782	17010	Cohen, A. F., USAEC, ORNL-2413, 1-69, 1957.
783	24481	Devyatkova, E. D. and Smirnov, I. A., Soviet PhysSolid State, 2(4), 527-32, 1960.
754	$\beta 1627$	Goff, J. F., Ph. D. Thesis, Purdue Univ., 1-194, 1962.
745	2559⊀	Keyes, R. W. and Sladek, R. J., Phys. Rev., <u>125</u> (2), 478-83, 1962.
756	19926	Toxen, A. M., Ph. D. Thesis, Cornell Univ., 1-100, 1958.
757	27169	Nguyen, V.D., Pham, N. T. and Vandevyver, M., Compt. Rend., 256(8), 1722-5, 1963.
788	31596	Moss, M., Ph. D. Thesis, Cornell Univ., 1-125, 1963.
789	27805	Carruthers, J. A., Cochran, J. F. and Mendelssohn, K., Cryogenics, 2(3), 160-6, 1962.
79 0	30877	Thompson, J. C. and Mc Donald, W. J., Phys. Rev., 132(1), 82-4, 1963.
791	31316	Aliev, B. D., Abdullaev, G. B. and Aliev, G. M., Tr. Inst. Fiz., Akad. Nauk Azerb. SSR, 11, 5-10, 1963.
792	33420	Abdullaev, G. B., Aliev, G. M. and Barkinkhoev, Kh. G., Fiz. Tverd. Tela, <u>5</u> (12), 3614-15, 1963.
793	36241	Mogilevskii, B. M. and Chudnovskii, A. F., InzhFiz. Zh., Akad. Nauk Belorussk, SSR, 7(12), 23-31, 1964.
794	6555	Mendelssohn, K., Physica, 1999, 775-87, 1953.
795	26775	Powell, R. W., Woodman, M. J. and Tye, P. P., Phil. Mag., 7, 1183-6, 1962.
796	31262	N. M., Mostovlyanskii, N. S. and Strod, R. K., Phys. Metals Metallography (GB), 15(5), 139, 1961.
707	17241	Jones, R. E. and Toxen, A. M., Phys. Rev., 120(4), 1167-70, 1900.

Ref. No.	TPRC No.	
7.05	29069	Jones, R. E. and Toxen, A. M., Proc. 7th Intern. Conf. on Low Temp. Phys., 407-9, 1961.
790	35302	Lindonfeld, P. and Rohrer, H., Phys. Rev., <u>A139</u> (1), 206-11, 1965.
800	39027	Howl, D. A., J. Nuclear Materials, 19, 9-14, 1966.
891	29025	Timeheoko, I. N. and Shalyt, S. S., Soviet Physics-Solid State, 4(4), 685-92, 1962.
802	24638	Cutler. M. and Mallon, C. E., J. Chem. Phys., 37, 2677-83, 1962.
800	26526	Smirnov, I. A. and Shadrichev, E. V., Soviet PhysSolid State. 4(7), 1435-6, 1963.
204	26227	Süsmann AL, Wiss, Z. Martin-Luther-Univ., Halle-Wiltenberg MathNat. Rethe/Germany). 10(1), 53-5. Tool.
805	39913	Abdull'acv, G.B., Mckhtryeva, S.G., Abdulov, D.Sh., and Alrey, G.M., Phys. Letters, 23(3), 215-6, 1966.
806	39914	Abdullaev, G. B., Dzhalilov, N. Z. and Aliev, G. M., Phys. Letters, 23(3), 217-9, 1966.
307	32511	Colvin, R. V. and Arajs, S., Phys. Rev., <u>A133</u> (4), 1076-9, 1964.
505	34290	Aliev. N. G. and Volkenshtein, N. V., Soviet PhysSolid State, 7(8), 2068-9, 1966.
809	34139	Arajs, S. and Dunmyre, G. R., Physica, 31(10), 1466-72, 1965.
810	30066	Devvatkova, E. D., Zhuze, V. P., Golubkov, A. V., Sergeeva, V. M. and Smirnov, I. A., Soviet PhysSolid State, 6(2), 343-6, 1964.
811	24302	Ames Lab. Staff, Iowa State College, USAEC Rept. ISC~508, 1-13, 1954.
512	391-6	Arajs, S. and Dunmyre, G. R., 5th Rare Earth Research Conf., AFOSR-65-1917, 63-73, 1965, [AD 627-222]
813	28698	Little, N. C., Phy., Rev., <u>28</u> , 418-22, 1926.
51+	34361	Alicy, N. G. and Volkenshtem, N. V., Seviet PhysJETP, 22(1), 17-8, 1966,
515	32242	Arajs, S. and Colvin, R. V., J. Appl. Phys., 2, 35(3), 1043-4, 1964.
510	37713	Arajs, S. and Colvin, R. V., Phys. Rev., A136(2), 439-41, 1964.
817	39719	Aliyev, N. G. and Volkenshtein, N. V., Phys. Metals Metallog., 19(5), 141, 1965.
515	35995	Arajs, S. and Colvin. R. V., 4th Rare Earth Research Conf., CONF-405-23, 1-10, 1964.
519	26740	Lee, J. A., Progress in Nuclear Energy, Series V: Metallurgy and Fuels, III, 453-67, 1961.
\$20	39139	Aliev, N. G. and Volkenshtein, N. V., Soviet PhysJETP, 22(5), 997-8, 1966.
821	13921	Jaffee, R. L., Advanced Papers of an International Symposium on High Temperature Technology, 80-108, 1959. [AD 249-297]
322	18730	Campbell, J. E., Goodwin, H. B., Wagner, H. J., Douglas, R. W. and Allen, B. C., DMIC Rept. 160, 1-79, 1961.
52.1	31463	Print, I. M. and Anatychuk, L. I., Ukr. Fiz. Zh., 8(7), 756-61, 1963.
521	26512	Pilat, L. M., Anatychik, L. I. and Lyubchenko, A. V., Soviet PhysSolid State, $\underline{4}(6)$, 1210-14, 1962.
825	26145	Sayder, P. E., Somers, E. V., Johnston, W. D., Miller, R. C. and Mazelsky, R., AD 215 962, 1-37, 1958.
526	23637	de Birna, A., Rev. Aluminium, <u>11</u> , 2311-32, 1934.
₹27	31936	Towner, R. J., Metal Progr., <u>73</u> , 70-6, 176, 178, 1958,
434	16867	Johnson, E. W., Chem. Eng., <u>67</u> (16), 133-6, 1960,
829	24696	Meyer-Rässler, E., Metaliwirtschaft, 19, 713-21, 1940,
530	చేస్తే ర్వేస్తే	Baker, D. E., J. Less-Common Metals, 2(6), 435-6, 1965.
5.11	Sm)65	Ziegler, W. T., Mullins, J. C. and Hwa, S. C. P., Advan. Cryog. Eng., S. 268-77, 1963.
5.32	23415	Mc Hugh, J. P., AD 410 434, 1-11, 1962,
8.,.}	24250	Johnson, R. G. R., AD 410 434, 1-45, 1962.
8.14	36196	Daunt, J. G., ML-TDR-61-176, 1-11, 1961, [AD 608-041]
505	34461	Walton, A. J., Proc. Roy, Soc. (London), <u>A289</u> (1418), 377-401, 1966.
5.16	19917	Boxer, A. S., Ph. D. Thesis, Univ. of Connecticut.1-74, 1968.
507	41166	Pearson, G. J., Whrich, C. W., Gueths, J. E., Mitchell, M. A. and Revnolds, C. A., Phys. Rev., <u>154</u> (2), 329-37, 1967.
533	40519	Dutchak, Ya. I, and Panasyuk, P. V., Soviet PhysSolid State, 8(9), 2244-6, 1967.
X 339	35735	Yurchak, R. P. and Filippov, L. P., Teplofiz, Vysck, Temp., 3(2), 323-5, 1965.
840	39517	Dauphinee, T. M., Armstrong, L. D. and Weods, S. B., Can. J. Phys., <u>41</u> (9), 2035-9, 1966.

Ref. No.	TPRC No.	
841	42778	Powell, R. W. and Tye, R. P., Intern. J. Heat Mass Transfer, 10(5), 581-96, 1967.
842	43358	Lucks, C. F., J. Appl. Phys., 38(4), 1973-4, 1967.
840	39869	Swift, D. L., Intern. J. Heat Mass Transfer, 9(10), 1961-74, 1966.
844	40873	Pigalskaya, L. A., Yurc'ak, R. P., Makarenko, I. N. and Filippov, L. P., Teplofiz, Vysok, Temp., 4(1), 143-7, 1966.
845	40574	Pigalskaya, L. A., Yuvchak, R. P., Makarenko, L. N. and Filippov, L. P., Pigh Temperature, 4(1), 137-7, 1966.
546	40040	Jam, S. C., Goel, T. C. and Chandra, I., Phys. Letters 24A(6), 320-1, 1967.
847	40.364	Kuhn, G., Comm. Energie M. (France), Rappt. CEA-R 2808, 1-116, 1966.
848	40866	Voskresenskii, V. Yu., Peietskii, A. E. and Timret, D. L., High Temperature, 4(1), 39-42, 1966.
849	40496	Jun, C. K. and Hoch, M., AFML-TR-66-367, 1-17, 1966, [AD 807 299]
850	40282	Staebler, J., Pn. D. Dissertation, Technischen Hochschule zu Breslau, 1-35, 1929.
851	33669	Wright, W. H., M. S. Thesis, Georgia Institute of Technology, 1-225, 1960.
332	7,32,8	Van Disen, A. S. and Shelton, S. M., NBS J. Res., 12, 429-40, 1934.
853	33318	Evangelisti, R. and Isacchini, F., Energia Nucleare (Milan), 12(11), 691-4, 1965,
554	33844	Lengmon, A. W., Jr., NASA-CR-93582, BATT-1673-Q-12, 1-12, 1963,
855	26133	L. () 元, A. W., Jr., Deem, H. W., Eldridge, E. A., Hall, E. H., Matolich, J., Jr. and Wall C. J. F., NAS. CR-54015, 1-66, 1963.
8.56	27032	Match w. J 1st and Decast H. W. Chemmon, A.W., Jr. compiler NASA CR-51699, 1-15, 1962.
857	40875	Steranov, B. I., Tarast, D. L., Totskir, E. E. and Chu, W. H., Teplefiz, Vysok, Temp., $\underline{4}(0)$, 141-2, 1966.
858	3 3927	Stander, R. F. and Microsures, E. V., Phys. Rev., <u>158</u> (3), 639-6, 1967.
859	8 52 16	Typper, F., Zelenck, J., Roeinich, F. and May, V., AFML-TR-65-99, 1-103, 1965. JAD 464 (28)
960	34532	Rochlich, F. and Tepper, F.: Electrochem, Technol., 309 (10), 234-9, 1965.
561	35713	Rechlich, U., Jr., Electrochem. Soc. 125th Meeting, CONF-641018-1, 1-21, 1964.
862	2023-9	Cleary, R. E. and Kapelner, S. M., Proc. 1962 High-Temp. Liquid-Metal Heat Transfer Technol. Meeting, BNU-756(C-35), 19-39, 1963.
860	49729	Tepper, F. and Roehlich, F., AFML-TR-66-206, 1-67,1966, [AD 487 987 L]
50 i	21357	Grosse, A. V., J. Inorg. Nucl. Chem., $28(9, 795-802, 1966)$
865	40421	Calowell, R. T. and Walley, D. M., AFAPL-TR-66-104, 1-05, 1966. [AD 804-896]
566	27966	Rudsey I. I., Lynshenke, V. S. and Abramovich, M. D., Atom. Energ. (USSR), <u>11</u> (3), 230-2, 1961.
*67	44182	Kozlev, F. A. and Antonov, I.N., Soviet J Atomic Energy, 19(i), 1333-4, 1965.
~1,~	12392	Kozlev, F. A. and Antonov, I. N., Atominana Energin (USSR), 19(4), 391-2, 1965.
~69	37 470	Powell, R. W., Cobatt. 24, 145-50, 1964.
87.1	30225	Smyder, N. H., Smoke, E. J., Wisely, H. R. and Ruh, E., PB 162 945, 1-87, 1949. [AD 89 089]
~71	31444	Cooke, J. W., USAEC ORNL-3605 (v.1), 66-87, 1964.
41.5	10935	Binget, S. M. and Manchon, D. D., Jr., Phys. Letters, 24A(3), 147-8, 1967.
573	35680	Hochman, J. M. and Bomilla, C. F., Nucl. Sci. Eng., 22(4), 434-42, 1965.
57.1	37313	Hochman, J. M. and Bonilla, C. F., Trans. Am. Nucl. Soc., 7, 101-2, 1964.
×75	29122	Gettireb. M., Zoliweg, R.J., Richardson, L. S., DeSteese, J. G., Taylov, C. R. and Ennuiat, D. F., AD 276 411, 1-28, 1962.
876	30068	Getthen, M. and Zollwag, R. J., Advan. Energy Conversion, 3, 37-48, 1963.
877	39371	Neimark, B. F. and Bokova, T. I., J. Eng. Phys. SSR, 569, 250-2, 1965,
474	4.3375	Ciszek, T. F., M. S. Thesis, Iowa State Univ., 1-57, 1966.
879	40546	O' Hagen, M. E. and Heller, R. B., AFOSR 66-2481, 1-8, 1966. [AD 642-245]
441)	38751	Lindenfeld, P., Lynton, E. A. and Soulen, R., Phys. Letters, <u>19</u> (4), 365, 1965.
511	21266	Gottheb, M., Zollweg, R. J., DeSteese, J. G., Taylor, C. R. and Ennulat, D. F., AD 287-519, 1562.

E CONTRACTOR CONTRACTOR OF THE

Ref. No.	TPRC No.	
882	40771	Achener, P. Y., USAEC AGN-8232, 1-26, 1967.
883	41174	Albany, H. J. and Vandevy, vor. M., J. Appl. Phys., 38(2), 425-30, 1967.
884	36858	Vook, F. L., Phys. Rev., A138(4), 1234-41, 1965.
886	38259	Albany, H. J. and Vandevyver, M., J. Phys. (France), 25(11), 978-80, 1964.
886	38572	Aliev, M. I., Fistul', V. I. and Arasly, D. G., Soviet PhysSolid State, 6(12), 2962, 1965,
887	38162	Aliev, M. I., Fistul', V. I. and Arasly, D. G., Fiz. Tverd. Tela, 6(12), 3700-1, 1964.
888	26515	Devyatkova, E. D. and Smirnov, I. A., Fiz. Tverd. Tela, 4(6), 1669-71, 1962.
889	26514	Devyatkova, E. D. and Smirnov, I. A., Soviet PhysSolid State, 4(6), 1227-8, 1962.
890	44060	Timrot, D. 1., Peletskii, V. E. and Voskresenskii, V. Yu., Teptofiz. Vysok. Temp., 4(6), 574-5, 1966.
891	44061	Timrot, D. L., Peletskii, V. E. and Voskresenskii, V. Yu., High Temperature, 4(6), 808-9, 1966.
892	30253	Roizin, N. M., Mostovlyanskii, N. S. and Strod, R. K., Fiz. Tverd. Tela, 5(4), 1216, 1963.
893	32605	Roizin, N. M., Mostovlyanskii, N. S. and Strod, R. K., Soviet PhysSolid State, 5(4), 887, 1963.
594	37785	Moore, J. P., Fulkerson, W. and Mc Elroy, D. L., ONRL-P-149, 1-30, 1964.
895	32412	National Physical Laboratory, England, National Physical Laboratory Rept. for 1964, 128-30, 1965.
896	32053	Tainsh, R. J. and White, G. K., Can. J. Phys., 42(1), 208-9, 1964.
897	35616	Aliev, N. G. and Volkenshtein, N. V., Fiz. Metal. i Metalloved., 19(5), 793, 1965.
498	43055	Abdullaev, G. B., Mckhtieva, S. I., Abdunov, D. Sh., Aliev, G. M. and Alieva, S. G., Phys. Status Solidi, <u>13</u> (2), 315-23, 1966.
399	38972	Vook, F. L., Phys. Rev., A140(6), 2014-9, 1965.
9(4)	45933	Watson, T. W., Flynn, D. R. and Robinson, H. E., J. Res. NBS, 71C(4), 285-91, 1967.
901	35550	Holyer, R. J., M. S. Thesis, S. Dakota School of Mines and Technology, 1-44, 1965. [AD 621 152]
902	42506	Benbow, R. L., M. S. Thesis, S. Daketa School of Mines and Technology, 1-36, 1967. [AD 649 626]
903	39961	Van Baarle, C., Roest, G. J., Roest-Young, M. K. and Gorter, F. W., Physica, 32(10), 1700-8 1966.
904	33346	La Marre, D. A., Simpson, G. R. and Thorburn, M. R., AD 437 864, 1-41, 1962.
905	34336	Simonova, Yu. N. and Filippov, L. P., J. Appl. Mech. Tech. Phys., (1), 102-3, 1965.
906	35778	Simonova, Yu. N. and Filippov, L. P., Zh. Prikl. Mekhan, i Tekhn. Fiz., (1), 111-2, 1965.
907	41761	Pigal'skaya, L. A., Filippov, L. P. and Borisov, V. D., High Temperature, 4(2), 290-2, 1966.
908	41760	Pigal'skaya, L. A., Filippov, L. P. and Borisov, V. D., Teplofiz, Vysok, Temp., $\underline{4}(2)$, 293-5, 1966.
909	40463	Southern Research Inst., AD 638-631, 1-200, 1966.
910	41371	Chiotti, P. and Carlson, O. N., USAEC ISC-314, 1-26, 1953.
911	42905	Garlick, A. and Shaw, D., J. Nucl. Materials, <u>16</u> , 333-40, 1965.
912	2.8009	Deem, H. W. and Lucks, C. F., USAEC BMU-1315, 7-9, 1959.
913	35324	Rhodes, B. L., Moeller, C. E. and Sauer, H. J., Cryogenics (GB), 5(1), 17-20, 1965.
914	44539	Benguigui, L., Phys. Kondens. Materie, <u>5</u> (3), 171-7, 1966.
915	11985	Carlson, R. O., Phys. Rev., <u>111</u> (2), 476-8, 1958.
916	39110	Fulkerson, W., Moore, J. P. and Mc Elroy, D. L., J. Appl. Phys., 37(7), 2639-53, 1966.
917	35138	Grieg, D. and Harrison, J. P., Phil. Mag., <u>12</u> (115), 71-9, 1965,
915	37006	Fenn, R. W., Jr., Glass, R. A., Needham, R. A. and Steinberg, M. A., Proc. 5th AIAA Annual Conf. on Structures and Materials, 92-104, 1964.
919	23215	Kutateladze, S. S., Borishanskii, V. M., Novikov, I. I. and Fedynskii, O. S., Translation of Atomnaia Energia, Suppl. No. 2, 1-12, 147-9, 1959.
920	20698	Nikol'skii, N. A., Kalakutskaya, N. A., Pchelkin, J. M., Klassen, T. V. and Vel'tishcheva, V. A., USAEC-TR-4511, 1-36, 1962. [AD 261 775]
921	44864	Sandenaw, T. A. and Gibney, R. B., USAEC LADC-3052, 1-19, 1957.

Ref.	rPRC No.	
922	2.0137	Shpil'ram, E. E., Soldatenko, Yu. A., Yakimovich, K. A., Fomin, V. A., Savchenko, V. A., Belova, A. M., Kagan, D. N. and Krainova, I. F., High Temperature, 3(6), 870-4, 1965.
923	33050	Shpifrain, E. E., Soldatenko, Yu. A., Yakimovich, K. A., Fomin, V. A., Saychenko, V. A., Belova, A. M., Kagan, D. N. and Krainova, I. F., Teplofiz, Vysok, Temp., <u>3</u> (6), 930-3, 1965.
924	19559	Anthony, F. M., Merrihew, F. A., Mistretta, A. L. and Dukes, W. H., WADC TR 59-744, 1-263, 1961. [AD 264-861]
925	32024	Matolich, J., Jr. and Deem, H. W. (Lemmon, A. W., Jr., Project coordinator), CFSTI and NASA X63-16010, 7-9, 1962.
926	21144	Yaggee, F. L. and Dunworth, R. J., USAEC ANL-6330, 55-8, 1960.
927	36601	Mallon, G. E. and Cutler, M., Phil. Mag., 11(112), 667-72, 1965.
928	41741	Peletskii, V. E. and Voskresenskii, V. Yu., High Temperature, 1(3), 293-4, 1966.
929	41740	Peletskii, V. E. and Voskresenskii, V. Yu., Teplotiz, Vysok, Temp., $\underline{4}(2)$, 296, 1966.
930	42732	Collins, C. G., USAEC GEMP-61, 157-69, 1966.
931	42315	Scott, D. B., USAEC WCAP -3269-41, 1-68, 1965.
902	39991	Golubkov, A. V., Devvatkova, E. D., Zhuze, V. P., Sergeeva, V. M. and Smirnov, L. A., Fiz. Tverd. Tela. <u>5</u> (6), 1761-71, 1966.
933	39992	Golubkov, A. V., Devyatkova, E. D., Zhuze, V. P., Sergeeva, V. M. and Smirnov, I. A., Soviet Phys., -Solid State, 866 (1403-10, 1966)
934	39345	Mogrifevskir, B. M. and Chadnevskir, A. F., AD 627-112, 1-15, 1966.
935	42 (53)	Haen, P. and Meaden, G. T., Cryogenius, 5(4), 194-8, 1965.
936	36382	Champness, C. H., Chiang, P. T. and Parekh, P., Can. J. Phys., 43(4), 653-69, 1965.
937	23669	Watson, T. W. and Robinson, H. E., ASME J. Heat Transfer, 83(4),403-8, 1961.
9.38	28808	Truesdate, R. S., Lympany, B. B., Bielawskii, C. A., Grafa, E. M. and Beaver, W. W., ASD-TDR-62-476, 1-251, 1962. [AD 278-807]
539	31570	Mc Gee, W. M. and MARKEWS, B. R., USAF ASD-TDR-62-335 (2a), 1-413, 1962, [AD 298 765]
940	32155	Pilat, J. M. and Anatychok, J., J., Fiz. Tverd. Tela. <u>6</u> (1), 25-8, 1964.
941	33423	Pitat, I. M. and Anatychuk, E. I., Soviet PhysSolid State, $\underline{\phi}(1)$, 18-21, 1964.
942	34016	Horch, R. and Nicke, H., Ann. Physik, <u>10</u> (5/6), 289-99, 1965.
943	.31001	Akhundev, G. A., Abdallaev, G. B., Alteva, M. Kh. and Efetdinov, G. A., Proc. 4th All-Union Conf. on Semiconductor Materials, 83-i, 1963.
911	31.390	Pollak, P. I., Conn, J. B., Sheehan, E. J. and Kirby, J. J., PB 163-503, 1-11, 1962.
945	35236	Amith, A., Kudman, I. and Steigmeier, E. F., Phys. Rev., A138(4), 1270-6, 1965.
916	38491	Cartson, R. O., Slack, G. A. and Silverman, S. J., J. Appl. Phys., <u>36</u> (2), 505-7, 1965.
947	16995	Rosi, F. D., Dismukes, J. P. and Hockings, E. F., Elec. Eng., <u>79</u> (6), 450-9, 1960.
948	26090	Bierly, J. N., (r., Ph. D. Thesis, Temple University, 1-126, 1961,
949	.12729	Morris, R. G., Burdick, D. L. and Redin, R. D., South Dakota School of Mines and Technology, Technical Rept. No. 15, 1-11, 1965.
950	32152	Altev, M. I. and Dzhangirov, A. Yu., Fiz. Tverd. Tela. <u>5</u> (11), 3338-41, 1963.
95 1	27732	Aliev. M. I. and Dzhangirov, A. Yu., Soviet PhysSolid State, 5(11), 2247-9, 1964.
9.52	28073	Challis, L. J., Cheeke, J. D. N. and Harness, J. B., Phil. Mag., 7, 1941-9, 1962.
953	42631	Redin, R. D., Ault, E. F., Rodenberg, O. C. and Morris, R. G., P.oc. South Dakota Acad. Sci., <u>44</u> , 169-75, 1965.
954	34929	Nichuus, E. and Nicke, H., Ann. Physik, <u>17</u> (1/2), 77-88, 1966.
955	27263	La Botz, R. J. and Masen, D. R., J. Electrochem. Soc., <u>110</u> (2), 121-6, 1963.
956	19721	Wagner, R. K. and Kline, H. E., Trans. Am. Soc. Metals, <u>52</u> , 713-27, 1960.
957	34025	Kolosov, E. E. and Sharavskii, P. V., Fiz. Tverd. Tela. 7(7), 2247-9, 1965.
958	34026	Kolosov, E. E. and Sharavskii, P. V., Soviet PhysSolid State, 5(7), 1814-5, 1966.
959	33523	Wagmi, H., Z. Naturf., <u>21a</u> c3, 362, 1966.
960	2490s	Chryster Corp., AD 265 949, 1-19, 1961.
961	41928	Adams, A. R., Baumann, F. and Stoke, J., Phys. Stat. Sol., 23(c), K99-104, 1967.
962	27254	Feigelson, R. S. and Kingery, W. D., Am. Ceram. Soc. Bulletin, 42(11), 688-93, 1963.

Ret. No.	TPRC No.	
963	22207	Baer, Y., Busch, G., Fröhlich, C. and Steigmeier, E., Z. Naturt, <u>17a</u> (19), 886-9, 1962.
:10-1	45(5)	Beleites, F. and Nicke, H., Ann. Physik., <u>18</u> (5/6), 258-67, 1966,
965	22519	Geff, J. F., NOTTR-64-70, 4-37, 1960, [AD 047-575]
966	30915	1 add, 4., 8., AD 321 48, 1-13, 1963.
967	41597	Masumoto, K., Isonaira, S. and Goto, W., J. Phys. Chem. Solids, 27(11-12), 1939-17, 1966.
905	31325	Bewley, J., G., ASD-TDR-63-201, 1-1 (, 1963, [AD 402 966]
969	39232	Rigney, D. V., Kapelner, S. M. and Cleary, R. L., USAEC TIM-854, 1-11, 1965.
9%0	3668	Bradbay, W. D., Jr., M. S. Thesis, Georgia Inst. of Tech., 1-89, 1959.
971	31491	Pollak, P. J., Com, J. B., Sheelam, F. J. and Kirby, J. J., PB 163-592, 1-19, 1962.
972	36772	Castellion, G. A. and Beegle, L. C., J. Phys. Chem. Solids, 26(1), 767-74, 1965.
97.3	10217	Tve, R. P., Engineer, 221, 968-71, 1966,
97.1	1894.1	Osipova, V. A. and Pedorov, V. L. High Temperature, 2(2), 200-7, 1965.
975	357.34	Osipova, V. A. and Fedorev, V. L. Teploby, Austle, Temp. , 2(2), 248-53, 1965.
976	20800	Naeser, G.: Stahl u. Tises: 53600; 1312-3; 1933;
277	270.50	Krzhichmeysku, R. E., Metailoved, a Term. Obrabotka Metal., (2), 48-9, 1962.
975	30679	Krziazbanovska, R. F.: Metal Science and Heat Treatment of Metals: (1/2), 77-8, 1962.
979	17111	Pilat, I. M., Boroumers, G. S., Kosyachenko, I. A. and Marke, V. L. Fiz. Fyerd, Tela. 2-7:, 1522-5, 1999.
980	27698	Pilat, I. M., Borodinets, G. S., Kosya henko, L. A. and Mulko, V. L. Soviet PhysSolid State (27), 431-3, 1999.
951	28870	Sabley, 4. 10. Altere, C. M., Zielenbech, W. 4., Peterson, C. 1., and Geidthwarte, W. II., WADC-TR-58-gag, 1-52, 1958. [AD 203-787]
0.2	5253	Matolieli, J., Jr. (NASA)-CR+54151, 1-25, 1965.
983	.02650	 Міктуйкоў, А., Г., Родінейк, N. Z., and Akhanetz, эку К. G., Підіс Генфетстаге (<u>1</u>50), 646-59. 1965.
954	32619	Mikryakov, V. I., Pozdavsk, S.Z. aisł Akhinetzeriov K. G., Teploliz, Avsok, Temp., <u>d</u> e5e, 695-9, 1965.
985	30808	Mikryakov, V. E. and Pozdavak, N. Z., Soviet Powder Met., via 200 act. 1963.
956	5.067.5	Gelfer, Yu. A., Morsecy, V. I., and Koltanov, A. A., Metalloved, a Term. Obrabetka Metal., 90, 2-7, 1963.
987	30672	Geller, Yu. A., Moiscey, V. F., and Keitmoy, A. A., Metar Science and Heat Treatment, 69-160, 403-7, 1964.
2155	39225	Vandeviver, M. Roulsena, P. and Albany, H. J., Revue Plass, Appl. (101), 25-31, 1986.
989	31162	Karambell, W. G. and Law, P. G., Proc. Roy. Sec. Victoria, <u>58</u> , 1-41, 142-56, 1947.
996	6707	Fr. Img. II. D. and Grenersen (E Asn., Physik., <u>31</u> (2), 89-99, 1942.
591	33782	Hagen, M., Γ., Ph. D. Dissertation, National University of Ireland, 4-Ves. Piete.
20:02	40149	Eres. G. and Even. U., J. Appl. Phys., 27 (13), 4035-4, 1998
99.1	14005	Martin, J., J., Sidles, P. H. and Danielson, G. C., J. Appl. Phys. <u>18</u> (8), 3075-8, 196.
bbi	351.35	Alicy, N. G. and Volkenshtem, N. A., Zb. Fkspff, a feeret, Piz., gudo, 1450-2, 1965.
595	5319	Eran, C. S. and Deissler, R. G., U.S. Nut'l Adv. Com. Acronauties. Res. Memo. F53G04-1-12, 1953.
990	11520	Blickiand, N. G., J. Phys. Chem. Scints. 28(11), 2219-23, 1967.
997	41515	Shpifram, E. E. and Kramov, A. F., Teplotiz, Avsol., Temp., 5(1), 55(5) 1967.
998	450000	Shpifram, E. F. and Krimievi J. L., High temperature, §40, 56-57 (165).
444)24	(e.15),	Williams, R. K. and Mc Erroy, D. L., USAPC ORNL-TM-1424, 1-31, 1966.
Lacci	159.72	Flyna, D. R. and O'Hagan, M. E., J. Res. NBS, <u>71</u> (i), 255-81, 1967.
1.0.1	2945	Norea, B. and Beckman, O., Arkay Evsak, 25(4), 567-75, 4004.
1002	46110	Ying, W., M., and Stofker, E., J., Appl. Phys., <u>38</u> 159, 5241-9; Ph.7.
10000	21 (81	Marskin, P. G., Nichors, J. L., Pearce, J. H. and Poole, D. M., Nature, <u>180</u> 555-8, 1911.
1000	H41.5	Brona, H. G., Jatera, Z. Gasalaerme, <u>15</u> (7), 207-18, 1966.
1 ~5	4,390 (7)	Brown, H. M., Ph. D. Thesis, Univ. of Colu., Betkeley, 1-21, 1927.

Rel. No.	TPRC No.	No. 1 N. 1 N. 1 N. 1 N. 1 N. 1 N. 1 N. 1
1006	a77B	Billian, C. J., DDC SCA-35500, 1-68, 1963. [AD 297-876] Stander, K. F., Dh. D. Thesis, The Catholic Univ. of America (1986) 1966.
tuof	34875	Stander, I. U., Ph. D. Thosis, Ph. Cambridge 1, 725, 24, 1934.
1005	6781	Stander, R. G. G. W. M. Physica, J. 725, 24 (1934). dellius, W. J., and Capet, W. H. Physica, J. 725, 24 (1934).
1009	15490	Talley, C. P., J. Phys. Chem. <u>65</u> 311, 1959. Prefmann, J., Schutz, R., and Appel J., Z. Xaturforsch <u>A12</u> (2), 171-1 (1957). Prefmann, J., Schutz, R., and Appel J., Z. Xaturforsch (2008) 531-54 (1961).
1010	17201	Predmann, J., Schmitz, H., and Apper and Chalcur (Paris) 8(1-51) Food. Martinet, J. Journeys Intern. Trasmission Chalcur (Paris) 8(1-51) Food Physics-Solid State 5(12) (2051) 2
1011	0.0047	Marrinet, J. Journeys Intern. Trasmission Chalcur (Carts) Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and Barkinkhoey. Kh.G., Soviet Physics-Solal State. 5(12): 2051-2 Abdullaev. G.B. Miey. G.M., and
1011	33421	Abdullary, G.R. (Micy, G.M.), and parkdoon 1964. Fulkerson, W. Meore, J.P., Williams, R.K., Grayes, R.S., and McFiroy D.J., Phys. Rev., 501 1968.
1013	47-97	Pulkerson, W. Moore, J.P., Williams, R.R., 1987, Ph. 2 167(4), 765-52, 1968. Pt. 2 167(4), 765-52, 1968.

1014 50027 Wilkes, K.E., M.S. Thesis, Purdue University, 93 pp., 1968.

MATERIAL INDEX TO THERMAL CONDUCTIVITY COMPANION VOLUMES 1, 2, AND 3

Material Name	Vol.	Page	Material Name	Vol.	Page
'A" mekel	1	239, 241, 1029,	A1S1 304	1	1161, 1165, 1168
Acetone [(CH ₃)₂CO]	3	1039	AISI 310	1	1167, 1165
Acetone - benzene system	3	440	AISI 316	1	1165,
Acety lene (CHCH)	3	1 33			1166
Acetylene - arr system	.3	381	AISI 347		1165, 1166,
Acid potassium sultate (KHSO ₄) (see potassium hydrogen sultate)			A1S1 403	1	1165
Acheson graphite	$\frac{1}{2}$	7;	AISI 410	1	1150
Acrylate rubber	2	952	A1SI 420	1	1162
Acrylic rubber	2	082	AIS1 430	1	1154
Adiprene rubber	2	982	AISI 440 C	1	1154
ADP (see ammonium dihydrogen ortho- phosphate)	: 		AISI 446	1	1155, 1156
Advance	1	564,	A3S1 1010	1	1185
African ivory	2	1076	AlSI 1095 (sec SAE 1095)	}	
AgCu	1	1335	AlSI 2515	1	1198, 1199,
Ag _{v.25} Cu _{v.35} InTe ₂	1	1406		}	1200
Aggregate concrete (see under modifiers)		}	AISI 4130 (see SAE 4130)	1	
Ag _i Sb _c PbSc ₁₃	1	1379	AISI 4140 (see SAE 4140)		1
AgS5Te ₂	1	1.335	AISI 4340	1	1213 1214
AgS6Te ₂ + SnTe	1	1410	AISLO INTO (SAF 1010)		1214
AgS6Te ₂ ·SnTe	1	1411	(AISI C 1010 (see SAE 1010) (AISI C 1015	1	1186
AggSc	1	1339	AISI C 1020 (See SAE 1020)	1	1130
Ag _{2-x} Te	1	1342	Alloy steef	1	1214
AgaTe	1	1342	Alloy steel, high	1	1214
Air	3	512		}	451
Air - carbon monoxele system	3	383	Alpax	1	1
Air - methane system	3	355	Alpax gamua	1	915
AISI ::01	1	116.5	Alum	$\begin{array}{c c} 2 \\ \hline 1 \end{array}$	1015
A181 302	1	1161	Alume1	1	1035
A1S1 303	1	 1165. 1168	Alumina (see aluminum oxide)		

Material Name	Vol.	Page	Material Name	Vol.	Page
Alumina + Mullite	2	322	Aluminum alloys (specific types) (continued)		
Alumina fused brick	2	897	2014 (same as aluminum alloy 148)	1	901
Alumina porcelain	2	937	2024 (same as aluminum alloy 24S)	1	898, 991
Aluminate silicate 723 glass	2	923	23.58	1	481
Aluminum	1	1	3003 (same as aluminum alloy 3S)	1	912
Aluminum + Antimony	1	469	•	1	912
Aluminum + Copper	1	470	3004 (same as aluminum alloy 4S)	İ	1
Aluminum + Copper + ΣX_i	1	895	5052 (same as aluminum alloy 528)	1	478, 909
Aluminum + Iron	1	474	5083 (same as aluminum alloy LK183).	1	909
Aluminum + 1ron + EX	1	905	50 ome as aluminum alloy K186)	1	909
Aluminum + Magnesium	1	477	5154 (same as aluminum alloy A548)	1	475,
Aluminum + Magnesium + ΣN	1	908	6150		909
Aluminum + Manganese + \$X ₁	1	911	5456	1	909
Aluminum + Nickel + EN ₁	1	914	6063 (same as aluminum alloy 638)	1	909
Aluminum + Silicon	1	430	7075 (same as aluminum alloy 758)	1	923
Aluminum + Silicon + FN	1	917	A548 (see aluminum alloy 5154)	<i>!</i>	11
Aluminum + Tin	1	453	Alpax	1	451
Aluminum + Uranium	1	484	Alpas gamma	1	915
Aluminum + Zinc	1	447	Alusil	1	451
Aluminum + Zinc + ΣN_1	1	922	British 21-11	i]	900
Aluminum + ΣN_i	1	925	British L-3	1	923
Aluminum alloys (specific types)		İ	British 15	1	599
28 (see aluminum alloy 1100)			British Y-1		900
38 (see aluminum alloy 3003)		İ	British Y-2	,	900
48 (see aluminum alloy 3004)		!	Cond-Al	1	906
12	1	597.	D (zeppelin)	1	900
		899, 900	DIN 712	1	475
145 (see aluminum ailoy 2014)			Duralumin	1	896
248 (see aluminum alloy 2024)	!		German Y alloy	1	896. 898
52S (see aluminum alloy 5052)	Ì		J51	ļ ,	906
638 (see aluminum alloy 6063)	:		Japanese 2E-5	1	899
758 (see aluminum alloy 7975)	}		Japanese M-1	1	ษยย
132 (see aluminum alloy Lo-Ex)			K186 (see aluminum alloy 5086)		
1100 (same as aluminum alloy 2S)	1	906,	K-S alloy 245	1	920
1		920	K-S alloy 280	1	920

Material Name	Vol.	Page	Material Name	Vol.	Page
Aluminum alloys (specific types) (continued)			Aluminum oxide (Al ₂ O ₃) (continued)		
K-S alloy special	1	902	E98	2	101
LK183 (see aluminum alloy 5083)		1	Gulton HS. B	2	103
Lo-Ex (same as aluminum alloy 132)	1	919	Hi xiumina	5	ยย
Magnalium	1	478	Ignited alumina	2	106
Nelson-Kebbenleg 10	1	896	Linde synthetic supphire	2	94
RAE 40 C	1	915	Lucalox	2	106
RAE 47 B	1	915	Norton 35-900	2	103,
RAE 47 D	1	915	Sapplure	2	104 1 93
RAE 55	1	! 915	Synthetic sapphire	2	94
RR 50	1	915.	TC 352	2	107
	 	1 919. 920	Wesgo Al-300	! ::	101.
RR 53	1	: 901		! •	107. 105
RR 53 C	1	915	Aluminum oxide + Aluminum silicate	2	321
RR 59	1	505	Aluminum oxide + (d) Chromium trioxide	: 2	324
RR 77	1	923	Aluminum oxide + idi?Manganese (trioxide	2	.127
RR 131 D	1	909	Aluminum oxide + Silicon dioxide	2	325
SA 1	1	1 515,	Aluminum oxide 4. Scheon dioxide 4. ΣX_1	. 2	453
	1	919	Aluminum oxide + Titanium dioxide + \(\sum_{1}\)	2	456
SA 44	1	915, 919	Aluminum oxide + Zirconinin dioxide	2	331
Silumin, sodium modified	1	, 920	Aluminum oxide - chromium cermets	2	707
y-Silumin, modified	,	920	Aluminum silicate (3Al ₂ O ₃ *28iO ₂)	2	254
Y-alloy	1) 8 96.	Aluminum stheate + Aluminum oxide	2	334
Aluminum borosilicate complex, natural	į	רטר :	Alundum	2	456
(see tourmaline)	İ		Alusil	1	451
Aluminum bronze	1	1 531.1 1 532.1	Amalgam	1	216
	!	953	Amber glass	! 2	924
Aluminum fluosificete (2AIFO+SiO ₂)	2	251	American white wood	2	1090
Brazil topaz	2	252	Ammonia (NH ₃)	3	95
Aluminum nitride (AlN)	2	653	Ammonia - air system	:3	442
Aluminum oxide (AL ₂ O ₂)	2	98	Ammonia - carbon monoxide system	3	444
AP-30	2	99	Ammonia - ethylene system	а	446
AV30	2	102	Ammonia - hydrogen system	.3	445
B4F	2	101	Ammonia – nitrogen system	3	451
Corundum	2	94. 99	Ammonium acid phosphate NH ₄ H ₂ PO ₄ (see ammonium dihydrogen phosphate)		

Material Name	Vol.	Page	Material Name	Vol.	Page
Ammonium perchlorate (NH4ClO4), reagent			Argon - carbon dioxide system	3	297
grade	2	757	Argon - deuterium system	3	299
Ammonium dihydrogen phosphate (NH ₄ H ₂ PO ₄)	2	679	Argon - helium system	3	251
Ammonium dihydrogen orthophosphate [NH ₄ H ₂ PO ₄] (see ammonium dihydrogen phosphate)			Argon - hydrogen system	3	301
Ammonium hydrogen sulfate (NH ₄ HSO ₄)	2	687	Argon - hydrogen - deuterium - nitrogen system	3	507
Ammonium phosphate, monobasic [NH ₄ H ₂ PO ₄] (see ammonium dihydrogen phosphate)			Argon - hydrogen - nitrogen system	3	493
Ammonium biphosphate [NH ₄ H ₂ PO ₄] (see ammonium dihydrogen phosphate)			Argon - hydrogen - nitrogen - oxygen system	3	508
Aminonium bisulfate [NH4HSO4] (see			Argon - krypton system	3	263
ammonium hydrogen sulfate)			Argon - krypton - deuterium system	3	488
AMS 4908 A (see Ti-8Mn)			Argon - krypton - hydrogen system	5	496
AMS 4925 A (see titanium alloy C-130 AM, or titanium alloy RC-1308)			Argon - krypton - xenon system	3	483
AMS 4926 (see titanium alloy A-110AT)			Argon - krypton - xenon - deuterium system	3	506
AMS 4928 (see Ti-6A1-4V)			Argon - krypton - xenon - hydrogen system	3	505
AMS 4929 (see Ti-155A)			Argon - methane system	3	304
AMS 4969 (sec Ti-155A)			Argon - neon system	3	258
AMS 5355 C (see Haynes stellite alloy 21)			Argon - nitrogen system	3	306
Angora wool	2	1092	Argon - oxygen system	3	311
Angren brown coal	2	808	Argon - oxygen - methane system	3	485
Anthracene [C ₆ H ₄ (CH) ₂ C ₆ H ₄]	2	985	Argon - propane system	3	316
Anthracin [C ₆ H ₄ (CH) ₂ C ₆ H ₄] (see anthracene)			dimethyl ether Argon - propane - thouse system	3	499
Anumony	1	10	Argon - xenon system	3	267
Antimony + Aluminum	1	488	Argon - xenon - hydrogen - deuterium system	3	510
Antimony + Beryllium + ΣΧ _i	1	926	Armalon lamintes (nonmetallic)	2	1032
Antimony + Biamuth	1	489	Armco iron	1	157,
Antimony + Cadmium	1	492		-	158, 159,
Antimony + Copper	1	495			160, 161,
Anumony + Lead	1	496	j		163
Antimony - tellurium intermetallic compound Sb ₂ Te ₄	1	1241	Arsenic Arsenic - tellurium intermetallic compound	1	15
Antiniony + Tin	1	497	As ₂ Te ₃	1	1244
Antimony telluride [Sb ₂ Te ₃] (see antimony - tellurium intermetallic compound)			Arsenic telluride [As ₂ Te ₂] (see arsenic - tellurium intermetallic compound)		
Argentum (see silver)			Asbestos cement board	2	1107
Argon	3	1	Asbestos fiber	2	1135
Argon - benzene system	3	295	Ash	2	1059

e a complete as a second

Material Name	Vol.	Page	Material Name	Vol.	Page
Ashkhabad clay	2	804 805	Barytes concrete	2	871
Asphalt-glass wood pad	2	1108	Basalt	2	797
Asphaltic bituminous concrete	2	863	NTS basalt	2	798
As ₂ Te ₃	1	1244	Olivine basalt	2	798
ASTM B 265-58T, grade 6 (see titanium	_		Ba ₂ Sn	1	1246
alloy A-110AT)	ļ	<u> </u>	Bauxite brick	2	901, 902
ASTM B 265-58T, grade 7 (see Ti-8Mn)	1		Beef fat	2	1072
Astrolite	2	1029, 1030,	Be ₁₂ Nb	1	1248
	}	1052	1	i	
Aurum (see gold)	•		Be ₁₇ Nb ₂	1	1248
Austenitic stainless steel	1	1165,	Benzene (C ₆ H ₆)	3	135
	į	1183	Benzene, p-dibromo (C ₈ H ₄ Br ₂)	2	986
Balsa	2	1060	Benzene, p-dichloro (C ₆ H ₄ Cl ₂)	2	987
Pseudo	2	1060	Benzene, p-dirodo (C ₈ H ₄ I ₂)	2	988
Waterproofed	2	1060	Benzene - hexane system	3	357
Ba₂₽b	! !	1245	Beryl	2	800
Barium-lead intermetallic compound Ba ₂ Pb	1	1245	Brazil	2	501
Barium-tin intermetallic compound Ba ₂ Sn	1	1246	India	2	801
Barium difluoride (BaF ₂)	2	627	Beryllia (see beryllium oxide)		
Barium oxide (BaO)	2	120	Beryllium	 1	18
Barium oxide + Silicon dioxide + ΣX_1	2	457	Beryllium + Aluminum	1	498
Barium oxide + Strontium oxide	2	337	Beryllium + Beryllium oxide	1	1416
Barium oxide + Strontium oxide + ΣX_1	2	460	Beryllium + Fluorine + ΣX_i	1	929
Barium stannide [Ba ₂ Sn] (see barium - tin		<u> </u>	Beryllium + Magnesium	1	499
intermetallic compound)	 	į	Beryllium + Magnesium + ΣΧ	1	932
Barium titanates	ļ		Beryllium - niobium intermetallic compounds	ļ 1	
BaTiOs	2	257	Ве _х Nb _y	1	1247
BaO·2TiO ₃	2	260	Be ₁₂ Nb	1	1248
Barium metatitanate (BaTiO3)	2	257	Be ₁₇ Nb ₂	1	1248
Barium metatitanate + Calcium metatitanate	2	340	Beryllium - tantalum intermetallic compounds	(1
Ca _{0.034} Ba _{0.996} TiO ₃	2	341	Be _x Ta _v	1	1250
Ca _{0,099} Ba _{0,801} TiO ₃	2	341	TaBe ₁₂	1	1251
Ca _{0.19} Ba _{0.61} TiO ₃	2	341	Ta ₂ Be ₁₇	1	1251
Barium metatitanate + Magnesium zirconate	2	343	Beryllium - uranium intermetallic compounds	-	
Barium metatitanate + Manganese niobate	2	344		1	1253
Barium dititanate (BaTi Ob)	2	260	Be _x U _y		1203

Material Name	Vol.	Page	Material Name	Vol.	Page
Beryllium - uranium intermetallic compounds			Biphenyl [CeHsCeH5] (see diphenyl)		
UBe ₁₃	1	1254	Biphenyl + o-, m-, p-Terphenyl + Higher phenyls (see santowax R)	:	
Beryllium - zirconium intermetallic com- pounds Be ₁₃ Zr	1	1256	BiSbTe _{3.13}	1	1390
Beryllium bronze	1	539	B _{11,33} Sb _{0,67} Tc _{2,13}	 1	1389
(di)Beryllium carbide (Be ₂ C)	2	571	B11.5Sb0.5Te3.13	1	1389
Beryllium copper	1	539	Bi _{1.75} Sb _{c,25} Te _{3,1}	1	1390
Beryllium oxide (BeO)	2	123	Bi _{1,75} Sb _{0,25} Te _{3,13}	1	1389
3005 (refractory grade)	2	125	Bi _{1.15} Sb _{0.25} Te _{3.16}	ı	1390
4811 BeO porcelain	2	124	Bi 1.75Sly0,25Te 3.26	1	1390
AOX grade	2	127,	Bismuth	1	25
		129	Bismuth + Antimony	1	502
BD-98	2	125	Bismuth + Cadmium	1	505
Brush SP grade	2	125	Bismuth + Cadmium + ΣX_1	1	935
Clifton metal grade	$\begin{bmatrix} 2 \\ \end{bmatrix}$	127	Bismuth + Lead	1	508
Grade I	2	125	Bismuth + Lead + EX,	1	938
Grade II	2	125	Bismuth - lead eutectic	1	509
Porcelain	2	124	Bismuth - tellurium intermetallie compound	ļ	
Triangle beryllia	2	126	Bi ₂ Te ₃	1	1257
UON grade	2	124, 127, 128,	Bismuth + Tin Bismuth alloys (specific types)	1	511
to another and a Alemana wide of EV	į ,	129	Hutchin's alloy	1	512
Beryllium oxide + Aluminum oxide + \sum_{i}	2	461	Lapowitz alloy	1	939
Beryllium oxide + Magnesium oxide + ΣX_1	2	464	Rose metal	1	939
Beryllium oxide + Thorium dioxide + ΣX_1	2	467	Wood's metal	1	939
Beryllium oxide + Uranium dioxide	2	347	Bismuth stannate [B ₁₂ (SnO ₃) ₃]	2	261
Berythum oxide + Zirconium dioxide + ΣX_i	2	470	Bismuth tristannate (Bi2(SnO3)3) (see bis-		
Beryllium oxide - beryllium cermets	2	708	muth stamuate)		
Beryllium oxide - beryllium - molybdenum cermets	2	711	Bismuth telluride [Bi ₂ Te ₃] (see bismuth - tellurium intermetallic compound)		
Beryllium oxide - beryllium - silicon cermeis	2	714	Bi ₂ Te ₃	1	1257
Beskhudnikov elay	2	804	Bi ₂ Te ₃ + Bi ₂ Se ₃	1	1393
Be ₁₂ Ta	1	1251	Bi ₂ Te ₃ + Sh ₂ Te ₃	1	1358
Be ₁₁ Ta ₂]	1251	$Bi_2Te_3 + Si_2Te_3 + Si_2Se_3$	1	1392
	1 1	1254	Bi ₂ Te ₃ + Te	1	1415
Be ₁₂ Zr	1	1256	Bi ₂ Te _{3.19}	1	1415
bella.		1.00	Bi ₂ Te _{3,26}	1	1415

Material Name	Vol.	Page	Material Name	Vol.	Page
Bitter spar (see dolomite)	 		Brass (specific types) (continued)		-
Bitumen	2	1155	Cast	j .	980
Bitumin concrete	2	863	High (see yellow brass)	ļ	
Bituminous concrete aggregate, blended	2	863	High tensile	1	980
Black temper cast iron	1	1137	Leaded free cutting	1	981
Bone chur	2	1156	MS 58	! 1	980
Bone fat	2	1072	MS 76/22/2	; i 1	 980
Boralloy (see boron nitride)	!	į	Red	1	591
Boric anhydride (B ₂ O ₃) (see boron oxide)			Red. German	1	981
Boric oxide (B ₂ O ₃) (see boron oxide)		:	Rolled	1	980
Boron	1 1	, 41	Yellow	1	981.
Boron - silicon intermetallic compounds	1 2	: I			982
SiB ₄	1	1262	Brazil beryl	2	801
$S_1B_{\tilde{\mathfrak{C}}}$	1	1262	Brazil topaz	2	252
(tetra)Boron carbide (B ₄ C)	2	572	Brazil tourmaline	2	855
(tetra)Boron carbide + Sodium metasilicate	! 2	541	Bricks	2	859
(tetra)Boron carbide - aluminum cermets	2	 717	Alumina fused	2	897
Boron trifluoride (BF ₃)	3	99	Aluminous fire clay	2	ები
Boron nitride (BN)	: 2	656	Bauxite	2	329, 901,
Boron oxide (B ₂ O ₃)	2	138			902
Boron sesquioxide (B ₂ O ₃) (see boron oxide)	į	: ;	Carbofrax	2	897
(di)Boros trioxide [B ₂ O ₃] (see boron oxide)	i		Carbofrax carborundum	2	895
Boron silicides (see boron - silicon inter- metallic compounds)			Carbon	2	890, 896
Boronated graphite	2	61	Carsiat carborundum	2	895
Borosilicate glass	2	923	Cement porous	2	890
Ţ	· · ·	924	Ceramic	2	890
Borosilieate 3235 glass	2	923	Chamotte	2	890
Borosilicate crown glass	2	923	Chrome	2	454,
Bowwood	2	1061			897, 898
Brass	1	591. 592.	Chrome fire brick	2	897
!	i	950.	Chrome magnesite	2	S90
į		951. 952	Chromite	2	473,
Brass (specific types)			GI v		599
70/30	1	590	Chromomagnesite	2	451
B. S. 249	1	981	Common	2	492, 897

Material Name	Vol.	Page	Material Name	Vol.	Page
Bricks (continued)	+	 	Bricks (continued)	- 	1
Corundum	2	454, 905	Magnesia	2	455, 897,
Dense	2	4-13, 904	Magnesite	<u> </u>	\$98, 899 475,
Dense tirectay	2	403	Ç	 I	483, 892,
Diatomaceous	2	890, 890,			895, 905
Diatomaceous insulating	2	906. 907	Magnesite fire Magnezit	2 2	. 899,
Dinas	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	591			902
Egyptian tire clay	2	191,	Marksa	2	890
Fire	2	901	Metallurgical	2	892, 893
FITC	-	491. 891.	Metallurgical porous	, 2 İ	853
	}	902. 903	Mica	2	j^{-892}
Fireclay		i	Missourr fire	. 2	492. 905
1 areguly	i ~	403, 404, 490, 491, 596,	Novmal	: : 2 !	488, 489, 900,
		901.	Ordzhonikidze	! 2	901 899
Fire clay, dense	; 2	903	Penn, fire	1 2	905
Fire clay, superduty	2	890	P- rous	2	: 894
Georgia fire	2	896	Porous concrete	2	594
Hand-burned face	2	591	Porous fire (Italy)	2	1 895
High temp. Insulating	2	591	Red	2	± 405, 492,
High temp, insulating blast turnace	i 2	j 453. - 509		 	i 898
Hytex hydraulic pressed building	! 2	! - 5 96	Red, hard burned	2	596
Insulating	' 2	443.	Red, soft burned	2	896
·	į	891 904	Red shamotte	2	: 405
Insulating fire	1 2	891	Retractory insulating	2	892
Kaolin tire	: 1 2	i i 404.	Refractory insulating common chamotte	2	\$92
	į	405, 904	Shamotte	2	492, 1894, 898
Kaolin insulating refractory	: 2	895	Shanyatta nhiti	i	
Light weight	. 2	488, 489,	Shamotte, white Silica	2	1 405 1 + 405
		892, 899, 900			489. 482. 502.
Lime sand	2	892			894. 896.

Material Name	Vol.	Page	Material Name	Vol.	Page
Bricks (continued)			British Y-1	1	900
Silica (continued)	2	897,	British Y-2	1	900
		998, 900, 902, 904, 906	British steel	1	1114, 1118, 1187
Silica fire	2	894, 895, 905	Brom-graphite Bromine	1 2 1 3	768 13
Silica refractory	2	185	Bromyride (see silver bromide)		 -
Silicon carbide	2	! 555, ∶586, ∶895	Bronze	1	585 556 976 980
Silicon carbide, refrax	2	586, 906	Bronze, aluminum	1	531 532 953
Silicious	j ²	492, 902	Bronze, beryllium	1	539
Sillimanite	2	329, 902	Bronze, phosphor	1	585, 586, 976
Sillimanite refractory	2	329, 403, 902, 903	Bronze, silicon Bronze, silver		973
Sil-O-Cei		 896	Divise, since	1	980
Sil-0-Cel, calcined	2	896	B ₄ Si	1	1262
Sil-O-Cel, natural	2	896	B ₆ Si	1	1262
Sil-O-Cel, special	2	1 896	Butane, $1-(i-C_4H_{10})$: 3 i	139
Sil-O-Cel, super	2	 896	Butane, n-(n-C ₄ H ₁₆)	3	141
Slag	2	898	Butaprene E rubber	2	952
Spinel fire	2	905	Butter of zinc (see zinc dichloride)	İ	1
Star-brand	2	185	Cadmium	1	45
Tripolite	: 2	894	Cadmium + Antimony	1	514
Vermiculite		894	Cadmium - antimony intermetallic compound CdSb	1	1264
Zirconia	2	535,	Cadmium + Biemuth	1	517
		895, 905	Cadmium + Bismuth + ΣX_i	1	941
Brimstone (see sulfur)			Cadmium - tellurium intermetallic compound CdTe	 	2 167
British 2L-11	1	900	Cadmium + Thallium	1	520
British C-32	1	948	Cadmium + Tin	1	521
British carbon steel	1	1186	Cadmium + Zinc	1	524
British L-5 British L-8	1	955 899	Cadmium + Zme Cadmium antimonide [CdSb] (see cadmium - antimony intermetallic compound)		324

Material Name	Vol.	Page	Material Name	Vol.	Page
Cadmium germanium phosphide (CdGeP ₂)	 2	759	Ca _{2,02} [7],	1	1271
Cadmium telluride [CdTe] (see cadmium - tellurium intermetallic compound)			Ca _{2,18} [3])	1	1271
Calcia (see calcium oxide)		¦	Ca _{2.18} Pb	1	1271
Calcite	. 2	761	Carbofrax brick	. 2	897
Calcium - lead intermetallic compounds	i	į į	Carbofrax carborundum brick	¦ 2	895
Ca _v Pb _v	1	1270	Carbon	2	. 5
X y Ca ₂ Pb	2	1271	Diamond	2	9
Ca _{2,X} Pb	,	i 1271	Graphite (see each individual graphite)	į	
Ca _{2,15} Pt ₀	: 1	1271	Lampblack	2	. 6
Ca _{2,19} Pb	1	1271	Petroleum coke	1 2	6
Calcium - tin intermetailic compound			Carbon + Oxygen	2	764
1		1.550	Carbon + Volatile materials	2	765
Casn	1	1273	Carbon brick	2	890.
Calcium carbonate (CaCO ₃)	, 2	759 		ļ	896
Calcium carbonate (CaCO ₃)			Carbon tetrachloride (CCl ₄)	3	156
Black marble	2	: 761 	Carbon monoxide (CO)	` 3 1	151
Brown marble	2	761	Carbon monoxide - hydrogen system	3	405
Calcite	. 2	761	Carbon dioxide (CO ₂)	3	145
Marble	2	760. 761	Carbon dioxide and ethylene system	3	389
Mark I manual an	: : : 2	760,	Carbon dioxide - hydrogen system	! 3	391
Marble powder	ند . ا	. 761	Carbon dioxide - nitrogen system	3	396
Natural (see limestone)	į	!	Carbon dioxide - oxygen system	. 3	401
White marble	: 2	: 761	Carbon dioxide - propane system	3	403
White Alabama marble	2	761	Carbon steel	1	1118.
Calcium difluoride (CaF ₂)	. 2	630		i i	1119,
Calcium oxide (CaO)	. 2	141		i	1180, 1185
Calcium phosphate + Lithium carbonate + Magnesium carbonate	! ! 2	763	Carbon steel. British	1	1156
Calcium stannate (CaSnO ₃)	2	264	Carbon steel, Japanese	1	1155
Calcium stannide (Ca ₂ Sn ² (see calcium - tin intermetallic compound)	į		Carborandum	2	553, 553, 596
Calcium metatitanate (CaTiO ₃)	2	267	Carboxy nitrile rubber	2	982
Calcium tungstate (CaWO4)	j , 2	270	Cardboard	2	1109
Calcium wolframate (CaWO ₄) (see calcium tungstate)	İ		Carsiat carborundum brick	2	 895
Canadian natural graphite	: 2	54	Cartridge brass 70% (see brass 70/30)		1
Ca ₂ Pb	1	1271	Ca ₂ Sn	1	1273

Material Name	Vol.	Page	Material Name	l Vol.	 Page
Cassiopeium (see lutetium)		†	Cellular glass	 	923
Cast from	1	1129.	Cellulose fiberboard	1	1110
	!	1130, 1133.	Celtium (see hamium)	İ	
	i	$\frac{1134}{1136}$	Coment	į	:
	!	1137. 1205.	Bydraulic (see Portland cement)	ļ 2	861
()	:	1222	Portland	1 2	861
Cast from (specific types)	! ,	1,,,,,,	Slag	. 2	501
Black temper	1	1137	Slag - Portland	2	561
Gray	. 1	1130. 11135	Cement porous brick	2	$\mathbb{L}_{\sqrt{90}}$
Heat resistant	į 1	11146	Ceramic brick	: -	550
High duty		1133 1135	Ceramics, miscellaneous	i 2	1 915
Hot mold, gray	. 1	11.35	Cerum	· 1	. 20
Nickel-resist	1	1203	Cernam dioxide (CcO ₂₎	2	i 144
Nr 1510, spherical	1	1222	Certain clioxide + Magnesium oxide	ļ 2	1 550
Nr 1520, pearlitte matrix	1	1222	Cernan dioxide = Uraniam dioxide	1 2	3.53
	1	11.35	Certain sulfides		
Soft, gray	1	11.03	Ces	2	697
Watte	1	11.55	Ce ₂ S ₃	1 2	698
White temper	1	:11:17	Cermets (see each individual cermet)	:	
CdgAs; + ZngAs;	1	1.000	Cesnan	: <u>1</u>	ñ-l
Cd _{CoM} Hg _{vor} Te	1	11108	Cesium bromide (CsBi)	2	j 565
Cd _{v,vi} Hg _{z,D} Te	. 1	l ^{14es}	Cestum todide (CsI)	1 2	561
Cdsb	. 1	1264	Clamotte brick	2	₁ 890
CdSb + ZaSb	1	1.397	Chamotte cha	; 2	504
CdSb • ZnSb	! 1	1398	Channel carbon black	2	1 204
2CdSb * 3ZnSb	ı 1	1413	Charcoal	. 2	1157
::CdSb • 2ZnSo	i 1	1398	Chlorine		17
3CdSb+7ZnSb	1	$!_{1413}$	Chlorodifluoromethane CICHF2 :see Freen	!	-
7CdS0+3ZnS0	! 1	1398	22)		
CdT e	1	1267	Chlorotorm (CHCl ₃)	: .;	101
$\operatorname{Cd}_{1,6}\operatorname{Zn}_{1,4}\operatorname{As}_2$; . 1	1.596	Chioroform - ettyl ether system		479
Cd ₂ ZnAs ₂	 1	1.396	Chloromethane CH3Cl : (see methyleniovide	i	
Cd _{2,6} Zn _{3,6} A _{8,2}	1	1396	Chloroprene rubber	1 2	95.1
 Cedar	! 2	1062	Chlorotrifluoromethane CICF ₃ ; (see Freon-13)	:	!
Cerba (see kapok)	!	!		İ	!

Chrome breek	Material Name	! Vol.	Page	Material Name	Vol.	Page
S87, S88 Cobalt + Chromaum 1 52	Chroman	1	1018	Cobalt	1	64
888 Cobail + Chromatum 1 52	Chrome brick	: 2		Cobalt + Carbon	1	526
Chrome magnesite brick		!		Cobalt + Chromium	1	! 527
Chromotol 502	Chrome fire brick	. 2	897	Cobalt + Chromium + \(\sum_{i}\)	1	947
Chromotel A	Chrome m agnesit e briek	2	890	Cobalt + Iron + ΣX_1	1	950
Chromet C	Chromel 502	1	1210	Cobalt + Nickel	1	528
Chromite brick 2 473, 899 British C-32 1 94	Chromel A	1	698	Cobalt + Nickel + ΣN_i	1	: 951
Cheomite brick 2 473, 809 British C-32 1 94	Chromet C	. 1	1036	Cobalt - silicon intermetallic compound		:
Supplementary 1 00 1 1415 1 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1 1415 1 1 1415 1 1415 1 1415 1 1415 1 1415 1 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1415 1 1 1 1 1 1 1 1 1	Ckromel P	1	698	CoSi	1	1274
Chromium	Chromite brick	. 2		Cobalt alloys (specific types)		!
Chromium - Aluminum oxide		:		British C-32	1	948
Chromium + Fron + EN				Haynes stellite 21	1	948
Chromium - Nickel		i		Haynes stellite 23	1	948
Chrommum alloy, Terrochromium	·	;		8 816	1	948
Standard Chamatan trioxide + Magnesium oxide + 2 473		!		WI 52	1	945
Conder aggregate concrete		. 1	940	X -40	1	948
S70		<u> </u>	473	(tri)Cobalt strontium metatitanate(Co3SrTiO3)	 2	271
Clays	Cinder aggregate concrete	: 2		Cobalt zmc ferrate [Co(Zn)Fe ₂ O ₄]	2	272
Ashkhabad			:	Coke, petroleum	2	765
So Colorless glass 2 92		!		Colloidai aggregate polystyrene	2	965
Chamotte	Ashithabad	. 2		Colorless glass	2	924
Tire clay	Beskhudnikov	. 2	804	Columbium (see mobium)	İ	1
Kuchin 2 804 85 85 85 85 85 85 85 8	Chamotte	: 2	804	Columbium alloys (see niobium alloys)	!	:
Sandy clay 2 805 870	Fire clay	! 2	504	Commercial castable concrete	2	871.
Sandy clay 2 805 870	Kuchin	l 2	F04		:	875. 876,
1 1198, 1213 Concretes 2 86 Coal	Sandy clay	: 2	805		ĺ	877, 878
Climax	Clay aggregate concrete, expanded burned	2	870	Common brick	 2	492,
Angren brown coal 2 808 Barytes 2 85 Donets anthracite 2 808 Bitumin 2 80 Donets gas coal 2 808 Bituminous aggregate, blended 2 80 Coal tar tractions 2 1158 Cinder aggregate 2 80	Climax	j 1		Concretes	2	597 862
Donets anthracite 2 808 Bitumin 2 50 Donets gas coal 2 808 Bituminous aggregate, blended 2 80 Coal tar tractions 2 1158 Cinder aggregate 2 80	Coal	! . 2	807	Asphaltic bituminous	2	563
Donets gas coal 2 808 Bituminous aggregate, blended 2 808 Coal tar tractions 2 1158 Cinder aggregate 2 80	Angren brown coal	! 2	805	Barytes	2	571
Coal tar tractions	Donets anthracite	: 2	808	Bitumin	2	563
.	Donets gas coal	; 2	508	Bituminous aggregate, blended	! : 2	: - 863
. 5			1158		2	: : 869,
	Coatings, applied (nonmetallic)	2	1009			570 870

THE PLANT OF THE

Materiai Name	Vol.	Page	Material Name	Vol.	Page
Concretes (continued)			Copper, electrolytic tough pitch	1	70, 72
Commercial eastable	2 	871, 875,	Copper, free-cutting	1	582
		876. 877. 873	Copper, oxygen-free high-conducting	1	 69, 74
Diatomaceous aggregate	2	574	Copper, phosphorus deoxidized	1] 72
Haydite aggregate	2	870	Copper-126, leaded	1	555
Leuna slag	2	864	Copper + Aluminum	ı	 530
Light weight	2	574	Copper + Aluminum + ΣX	1	952
Light weight, journed	2	581	Copper + Antimony	. 1	534
Lamestone aggregate	2	869	Copper - antimony - selenium intermetallie	i i	
Limestone gravel	. 2	864.	compound CuSbSe ₂	1	1275
Lummite econent	2	571	Copper + Arsenic	1	535
			Copper + Berylhum	1	538
Metallurgical pumice	2	563, 864	Copper + Beryllium + ΣX_1	1	955
Parattin	. 2	863	Copper + Cadmium	1	541
Portland coment	. 2	571	Copper + Cadmium + \$X	1	956
Sand coment	. 2	574	Copper + Chromium	1	542
Sand and gravel aggregate	2	 868, 869	Copper + Cobalt	1	5 4 .5
Slag	2	864,	Copper + Cobalt + \(\Sigma \text{X}\)	1	957
	į	850. 881	Copper - Gold	! 1	548
Slag, direct process	. 2	864	C pper + Iron	1	551
Slag, expanded	: 2	: : 878, : 879	Copper + from + ΣX_1	1	960
Slag aggregate, Irmestone treated	. 2	870	Copper + Lead	1 1	554
Cond-Al	1	i 906	Copper + Lead + ΣX_1	1	961
Constantion	1	564	Copper + Manganese	1	557
Contracid	1	1036	Copper + Manganese + ΣX_1	1	964
Contractd B 7 M	1	.036	Copper + Nickel	1	561
Copoly (chloroethylene-vinyl-acetate)	. 2	943	Copper + Nickel + ΣX_1	1	969
	, ,	943	Copper + Paliadium	1	565
Copoly - 1, 1-difluoro - ethylene - hexafluoro - propenc 2, Viton A rubber (see Viton rubber)	İ	:	Copper + Phosphorus	1	571
Copolyttormaldehyde - urea)	2	944	Copper + Platinum	1	574
Соррег	1	68	Copper - selenium intermetallic compound Cu ₃ Se ₂	1	1276
Copper, coalesced	1	69,	Copper + Silicon	1	575
	.	72	Copper + Silicon + ΣX _i	1	972
Copper, electrolytic	1	72. 73	Copper + Silver	1	578

10.5 Ya. 2000年1月1日 1

Material Name	Vol.	Page	Material Name	Vol.	Page
Copper + Tellurium	1	581	Copper alloys (specific types) (continued)		
Copper + Tin	1	554	Cuppralloy type 5, Russian	1	543
Copper + Tm + \(\Sigma\)X_1	1	975	Cupro nickel	1	970
Copper + Zinc	1	588	Cupro nickel, NM-81, Russian	1	562
Copper + Zirc + \(\Sigma X\)	1	979	Eureka	1	563
Copper + Zircomum + \(\Sigma\)X_1	1	985	German silver	1	980
Copper alloys (specific types)					951
Advance	ì	970	Gun-metal, admiralty	1	976
ASTM B301-58T	1	582	Gun-metal, ordinary	1	976
Beryllium copper	. 1	539	Lohm	1	504
Bruss	1	591,	Mangania	1	965
		592, 950,	Manganin NM Mts	1	965
		951, 952	Navy M	1	977
Bruss 70/30	1	7u	Nickel silver	1	951
Brass B.S. 249	1	9-1	SAE bearing alloy 40	1	970
Brass, cast	1	950	SAE bearing alloy 62	1	976
Bruss, high tensile	1	950	SAE bearing alloy 64	1	, 970
Brass, leaded free cutting	. 1	951	SAE bearing alloy 66	1	962
Bruss MS 58	. 1	980	Copper glance see (dr)copper sulfide,		
Brass MS 76, 22-2	1	9+0	Copper iodide Cul)	2	56 2
Brass, red, German	1	591. 981	Copper hemioxide (Cu ₂ O) 'see (di)copper oxide :		
Brass, rolled	. 1	950	(di)Copper oxide (Cu ₂ O)	2	147
Brass, ye)low	:	95 1 . 952	Copper protooxide (Cu ₂ O) see (dr)copper oxide		:
Вт опис	1	586, 586,	Copper sclemde [Cu ₃ Sc ₂], (see copper = sclemum intermetallic compound)		! !
		976, l 980	(dr)Copper sulfide (Cu ₂ S)	2	699
Bronze, aluminum	1	531, 532,	(dr)Copper sulfide + from sulfide + (tri)Nickel disulfide	2	700
		953	(di Copper sulfide + (tri)Nickel disulfide	2	701
Bronze, beryllium	1	j 539	Copperous oxide (Cu ₂ O) see (dicopper oxide)		į
Bronze, phosphor	. 1	585, 586, 976	Copperous sulfide (Cu ₂ S) see (dr)copper sulfide [
Bronze, silicon	. 1	973	Cordierite	2	91 ₄
Bronze, silver	1	579.	Cordierite 202	2	919
Straint, Street	<u>*</u> :	580	Rutgers	2	919
Constantan	1	564	Steatite	2	1 919

一个自己的學習的

Material Name	Vol.	Page	Material Name	Vol.	Page
Cork	2	1063	(CuSbSe ₂) _{0.8} (Cu ₃ Se ₂) _{0.2}	1	1400
Corning 0080 glass	2	511, 928	(CuSoSe ₂) _{0,9} (Cu ₃ Se ₂) _{0,1}	1	1400
Corning 7740 glass	2	933	Cu ₃ Se ₂	1	1276
Cornstalk wallboard) 2	1111	Cu ₃ Se ₂ + CuSbSe ₂	1	1401
Corronal	1	1032	"D" nicke!	1	1039
Corundum		94.	Decane, n-(C ₁₀ H ₂₂)	3	164
Cormingin	2	59	Dense brick	2	443,
Corundum brick	2	454, 905	Deuterium	3	904
Cotton	2	1065	Deuterium - hydrogen system	3	407
Waste	2	1070	Deuterium - ratrogen system	3	410
Medical	2	1069,	D ramond	2	9
Cotton fabric		1070	Туре 1	2 -	10
	! 2	1093	Туре 11	2	10
Cotton silicate felt fabric	2	1094	Diatomaccous aggregate concrete	2	874
Cotton wool	2	1096	Diatomaceous brick	2	890,
Crucible HNM	1	1168			891
Crucible steel, Japanese	1	1204	Diatomaceous earth	2	514
Cu + BeCo	1	1420	Diatomaceous insulating brack	2	906,
CuAu	1	1251	Diatomite (see diatomaceous earth)		
Cu ₃ Au	1	1281	Diatomite aggregate	2	1112
Cupralloy, Russian, type 5	, 1	543	Sil-O-Cel coarse grade	2	1112
Cupronickel	:	970 -	Dichlorodifluoromethane [Cl ₂ CF ₂] (see Freor		
Cupronickel, Russian, NM-51	1	562	12)		
Cupram (see copper)	i		Dichlorofluoromethane . Cl ₂ CHF ₁ (see Freon 21)		
CuSbSe ₂	1	1275 !	1, 2-Dichloro-1, 1, 2, 2-tetrafluoroethane		
CuSoSe ₂ + Cu ₃ Se ₂	1	1400	[CClF ₂ CClF ₂] (see Freon 114)		
(CuSbSe ₂) _{0.1} (Cu ₂ Se ₂) _{0.9}	1	1401	Diethylamine - ethyl ether system	3	472
(CuSbSe ₂) _{0,2} (Cu ₃ Se ₂) _{0,8}	1	1401	Dimethyl ketone {(CH ₃) ₂ CO ₇ (see acctone)		
(Cushse Ju ₃ se ₂) _{0.76}	; 1 i	1401	Dimothyl methane [Calls, (see propane)		
(CuShSe ₂) _{6,3} (Cu ₃ Se ₂) _{9,7}	<u>.</u> 1	1401	Dinas brick	2	1.68
(CuShSe ₂) _{0,33} (Cu ₂ Se ₂) _{0,67}	· 1	1401	Diphenyl (C ₀ H ₅ C _C H ₅)	2	959
$(CuShSe_2)_{\theta,4}(Cu_3Se_2)_{\theta,C}$	1	1401	Diphenylamine [(C _c H ₅) ₂ NH]	2	991
(CuShSc ₂) _{0.5} (Cu ₃ Sc ₂) _{0.5}	1	1401	Diphenylmethane + Naphthalene	2	994
(CuSbSe ₂) _{0.6} (Cu ₃ Se ₂) _{0.4}	1	1400	Diphenyl oxide [(C ₆ H ₅) ₂ O]	2	990
(CuShSe ₂) _{9,3} (Cu ₂ Se ₂) _{9,3}	1	1400	Dolomite	2	510

Material Name	Vol.	Page	Matorial Name	Vol.	Page
Dolomite (continued)			Enamel (continued)	<u> </u>	
NTS dolomite	 2	811	Silicon	2	921
Domestic graphite, Japan	2	56	Erbium	1	86
Donets anthracite coal	2	804	Ethane (C ₂ H ₆)	3	167
Donets gas coul	2	808	Ethanol [C2H5OH] (see ethyl alcohol)		
Dow metal	1	999	Dimethyl ether	3	454
Duralumin	1	896	Dimethyl other Bilmost - methyl formate system	3	474
Duranickel	1	101	Dimethyl ether Hithanol - propine system	3	450
Duranickel alloy 301 (see duranickel)		! !	Ethyl alcohol (C ₂ H ₅ OH)	з	169
Duroid 5600	: 2	965	Ethyl ether (C ₂ H ₆) ₂ O	3	179
Dyna quartz fiber	2	1144	Ethylene (CH ₂ CH ₂)	3	173
Dysprosium	1	· 82	Ethylene - hydrogen system	3	413
Larth	2	513	Ethylene - methane system	3	415
Diatomaccous	2	; ; 514	Ethylene - mtrogen system	3	417
Kieselguhr	2	1 514	Ethylene glycol (CH ₂ OHCH ₂ OH)		177
Kies⊬lguhr, ignited	2	14	Eureka	1	563
Kaeselguir, ordinary	ن : ن	74	Europium	1	90
Easy-Plo silver solder silver alloy	1	1059	Excelsion	22	1113
Ebonite rubber	2	971	Fat	2	1072
Egyptian fire clay brick	2	491,	Beet	2	1072
	•	j 501	Bone	2	1073
EJ-257, Russian	1	1166. 1214	Pig	2	1073
E1-435, Russian	1	1022	Ferrocarbontitanium, Russian	1	1081
El-572, Russian	1	1165	1 errochromam, Russian	ı	945
E1-606, Russian	1	1167	Ferromanganese, Russian	1	1.54,
E1-607, Russian	1	1019. 1020.	Ferromanganese, low carbon, Russian	1	1010
		1021	1 crromanganese, normal, Russian	1	1010
E1-802, Russian	- 1	1156, 1157	Ferromolybdenum, Russian		650.
E1-855. Russian	1	1214			1013
Elastomer rubber	2	974	Ferroellicon, Russian	1	765
Elekton 2	1	טטט	Ferrosilicon 45%, Russian	1	1218
Electrical porcelain	, 2	937	Ferrotitanium, Russian	1	1225
Electrolytic iron	1	157,	Ferrotungsten, Russian	1	1090
		159	Ferrovanadium, Russian	1	575
Enamel	1 2	921	Ferrum (see iron)		<u> </u>

Material Name	Vol.	Page	Material Name	Vol.	Page
Fiberglass	2	1115	Fused quartz [see silicon dioxide (fused)]	·	
Fiberite	2	1052	GaAs	1	1277
Fir	2	1073	GaAs + GaP	1	. 142 3
Fir plywood	2	1114	GaAs _{0,5} P _{0,5}	1	1424
Fire brick	2	491	GaAs _{0,65} P _{0,36}	1	1424
	į	591, 895,	$GaAs_{0,67}P_{v,33}$	1	1424
	:	902, 900	$GaAs_{0,8}P_{0,2}$	1	1424
Fire clay	. 2	504	GaAso, Po, 1	i	1424
Fire clay, Aluminous	2	450	Galstero	2	 816
Fire clay, light veight	2	403,	Gadolinium	1	93
		404	Gadolmium oxide + Samarium, oxide	. 2	356
Fire clay, pressed	2	403	Gallium	1	i 1 57
Fire clay brick	2	403, 404, 490,	Gallium - arsenic intermetallic compound GaAs	1	1277
		491, 596, 901,	Gallium arsenude [GaAs] (see gallium - arsenie intermetallic compound)		
Fire clay brick, aluminous	.,	. 900	$Garnet \left[M_3^{-11} M_2^{-111} (S_1 O_4)_3 \right]$	2	278
Fire clay brick, dense	2	1	Genetron 11 [Cl ₂ CF] (see Freen 11)		:
	. 2	90.1	Genetron 12 [Cl _f CF ₂] (see Freen 12)		
Fire clay brick, superduty	2	390	Genetron 13 [CICF ₃] (see Freon 13)		
Fissium alloy	1	1095	Genetron 22 'ClCHF2' (see Freen 22)	-	-
Flowers of tin (see tin dioxide)			Genetron 113 CCl ₂ FCClF ₂ (see Freen 113)		1
Fluorine	3	26	Genetron 114 [CCIF2CCIF2] (see Freen 114)		
Foun glass	2 !	924. 925	Georgia fire brick	2	896
Forsterite (Mg ₂ SiO ₄)	. 2	275	German chromin	1	J015
Freon 10 [CCl4] (see carbon tetrachloride)	i.	:	German silver	1	980,
Freon 11 (Cl ₂ CF)	3	183		}	951
Freon 12 (C1,CF ₂)	3	167	German steel	1	1118
Freon 13 (CICF ₁)	! ; 3	191	German Y alloy	1	გენ, 898
Freen 20 [CHCl ₂] (see chloroform)			Germanium	1	108
Freon 21 (Cl ₂ CHF)	3	193		1	597
Freon 22 (CICHF ₂)	3	197	Germanium - tellurium intermetallic		
Freon 113 (CCi ₂ FCCIF ₂)	3	201	compound GeTc	1	1280
Freen 114 (CCIF ₂ CCIF ₂)	3	205	Germanium 74, enriched	1	112
Fuel-filled graphite	2	545, 548,	Germanium telluride [GeTe](seegermanium- tellurium intermetallie compound)		
		505	GeTe	1	1240

्रहा । जन्म के के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के क जन्म के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस के किस क

Material Name	Vol.	Page	Material Name	Vol.	Page
868	2	922	Glasses (continued)	!	
Aluminate silicate 723	2	923	Soda-lime silica	2	511 924
Amber	2	924			927
Borosilicate	2	923,	Soda-lime silica plate 9330	2	923
		924	Soft	2	511
Borosilicate 3235	2	923	Solex 2808 plate	2	923
Borosilicate crown	2	923	Solex 2808 X	2	925
Cellular	2	923	Solex "S"	2	925
Colorless	2	924	Soldex "S" plate	2	923
Corning 9050	2	- 511, 928	Thuringian	2	92
Foam	2	924, 925	Vycor-brand	:	92
Golden plate (see amber glass)	1	:	White plate	2	92 92
Green	2	923	Window	2	92
Jena Gerate	2	924		1	92
Lead	2	923	X-ray protection	2	92
Monax	2	924	Glass fiber blankets (same as fiberglass)	2	. 111
Phoems	2	924	Insulation	2	111
Plate	2	923,		2	111
		924, 925,		. 2	112
	:	926	Glucinum (see beryllium)		
Pyrex	2	499 923		3	. 2
	:	924 926		. 2	ا
	ì	927	Cold	: 1	. ; 1
Pyrex 7740	2	499 923	, Gold + Cadmium	1	. :
	i	924	.	, 1	1 6
	!	926		,	1 6
Quartz	2	923 924	i, ii		1 (
Silica				!	
	! }	927		1	$1 \begin{array}{c c} 1 & 12 \\ \hline \end{array}$
Silica, fused	2	92	1	!	1 1:
Silicate		51.	Cu yA u	į	1 1:
Soda		2 92	Gold + Palladium		1
Soda -lime		2 92	6 Gold + Platinum		1 .
Soda-lime plate		2 92	Gold + Silver	į	1 ;

Material Name	Vol.	Page	Material Name	Vol.	Page
Gold + Zinc	1	623	Graphite (continued)		-
Golden plate glass (see amber glass)	Ì		Grade CEQ	2	63, 65
Government rubber-styrene rubber	2	977	Grade CFW	! 2	67
Granite	2	817	Grade CFZ		67,
NTS granite	2	618	Grade CT Z	-	71.
Graphite Acheson	2 2	53 73	Grade CS	2	54,
Boronated	2	61	Grade CD	-	55, 56,
British reactor grade A	2	69			64
British reactor grade carbon	2	69,	Grade CS-112	2	63
, and the second		70	Grade CS-312	2	63
Brom-graphite	2	765	Grade CSF	2	55
Brookhaven	2	26	Grade CSF-MTR	2	63
Canadian natural graphite	2	54	Grade EY 9	2	69, 70,
Carbon resistor	2	73			71
Deposited carbon	2	332	Grade EY 9A	2	70
Domestic, Japan	2	56	Grade G-5	2	60, 61
Fuel-filled	2	545, 548, 558	Grade G-9	2	60, 61
Grade 875 S	2	45	Grade GBE	2	54,
Grade 590 S	2	49			55
Grade AGA	2	64	Grade GBH	2	55
Grade AGHT	2	57	Grade H4LM	2	61
Grade AGOT	2	13	Grade JTA	2	70, 72
Grade AGOT-KC	2	17	Grade L-117	2	63
Grade AGOT-CSF-MTR	2	17	Grade MH4LM	2	70
Grade AGSR	2	57, 58,	Grade P1	2	35
		63, 64	Grade R-0008	2	60
Grade AGSX		64	Grade R0025	2	71
Grade ATJ		20	Grade RT-0003	2	54
Grade ATL	2	64	Grade RVA	2	66,
Grade ATL-82		71			67
Grade AUC	2	63,	Grade RVD	2	67
Orane 1800		64. 65	Grade SA-25	2	42
Grade AWG	2	24	Grade TS-148	2	59
Grade CDG	2	65	Grade TS-160	2	59

Material Name	Vol.	Page	Material Name	Vol.	Page
Graphite (continued)			Greenheart	2	1074
Nuclear grade TSP	2	60	Gulton HS, B aluminum oxide	2	103
Grade ZT	2	60	Gun metal, admiralty	1	976
	1	: 61, 71	Gun motia, ordinary	1	976
Grade ZTA	2	65,	"H" Monel	1	1032
		66, 70	Hainia (see hainium oxide)	}	
Grade 2TB	2	66	Hafnium	1	138
Grade ZTC	2	56 E	Hafnium - boron intermetallic compound		
Grade ZTD	2	äű	НВ2	1	1254
Grade ZTE	2	66	Hatnium + Zirconium	1	624
Grade ZTF	2	66	Hafnum carbide (HfC)	2	575
Graphitized carbon black	2	60	Hafnum nitride (HfN)	2	659
Karbate	i 2	ı 59	Hafnium oxide (HfO ₂)	2	150
Korite	2	55	Hair felt	2	1099
Moderator graphite	; 2	 70	Hand-burned face brick	2	891
Natural Ceylon block	: 2	55	Hardwood	2	1075
Ohmite	2	์ 73	Hastelloy A	1	1036
Pencil lead graphite	2	65	Hastelloy B	1	1042
Porous-40	2	i : 63	Hastelloy C	1	1018
Porous-60	2	63	Hastelloy R-235	1	1019
Pyrolytic	2	32	Haydite aggregate concrete	2	870
Pyrolytic graphite filament		i 32	Haynes alloy N-155	1	1177
Reactor grade carbon stock	2	73	Haynes alloy Nb -752	1	1056
Spektral Kohle 1	2	! j 54	Haynes stellite alloy 21	1	948
Supertemp pyrolytic	2	72	Haynes stellite alloy 23	1	945
U. B. carbon	j 2	i 62	Haynes stellite alloy 27	1	1029
U. B. graphite	2	62	Haynes stellite s. y 31 (same as cobalt alloy X40)	1	945
Graphite + Bromine	2	767	Heavy hydrogen (see deuterium, or tritium)	}	}
Graphite + Thorium dioxide	2	544	Helium	3	29
Graphite + Uranium dicarbide	2	770	Helium - air system	3	318
Graphite + Uranium dioxide	2	547	Helium - argon - krypton system	3	481
Gray cast iron	1	1130,	Helium - argon - nitrogen system	3	486
	{	1135		3	479
Gray cast iron, hot mold	1	1135	Helium - n-butane system	3	320
Green glass	2	923	Helium - carbon dioxide system	3	322

Material Name	Vol.	Page	Material Name	Vol.	Page
Helium - cyclopropane system	3	325	Hydrargyrum (see mercury)		
Helium - deuterium system	3	327	Hydriodic acid [Hi] (see hydrogen iodide)	1	
Helium - ethane system	3	329	Hydrochloric acid [HCl] (see hydrogen chloride)		!
Helium – ethylene system	3	331)		
Helium – hydrogen system	3	333	Hydrogen	3	41
Helium - krypton system	3	276	Hydrogen - oxygen system	}	429
Helium - krypton - xenon system	3	480	Hydrogen - nitrogen system	3	419
Helium - methane system	3	338	Hydrogen - nitrogen - ammonia system	3	500
Helium - neon system	3	271	Hydrogen - nitrogen - oxygen system	3	498
Helium - neon - deuterium system	3	489	Hydrogen - nitrous oxide system	3	427
Helium - neon - xenon system	j	482	Hydrogen chloride (HCI)	3	101
Helium - nitrogen system	3	340	Hydrogen iodide (HI)	3	103
Helium -nitrogen - methane system	3	487	Hydrogen sulfide (H ₂ S)	3	104
Helium – oxygen system	3	343	Hypalon S2 rubber	2	983
Helium - oxygen - methane system	3	484	Hypo (see sodium thiosulfate)		
Helium – propane system	! ! 3	345	Hytex hydraulic pressed building brick	2	896
Helium – propylene system	3	347	Ignited alumina	2	106
Helium – xenon system	3]] 280]	Illinium (see promethium)		[]
Heptane, n-(C ₁ H ₁₆)	3	211	inAs	1	1292
Hevea rubber	2	983	lnAs + lnP	1	1426
Hexane, n-(C ₈ H ₅₄)	3	214	InAs _{0.6} P _{0.4}	1	1427
H⊞ ₂	ı	1284	InAs _{0.8} P _{0.2}	1	1427
HgSe	1	1320	InAs _{0.9} P _{0.1}	1	1427
HgTe	1	1321	InAs _{0,96} P _{0,06}	1	1427
HgTe + CdTe	1	1407	Inco ''713 C''	1	1022
Hi alumina	2	99	Inconel	1	1018, 1019,
High carbon steel, Japanese	1	1119			1021
High-perm-49	1	1199	Inconel alloy 600 (see inconel)		
High temp, insulating brick	2	891	Inconel alloy 702	1	1022
High temp, insulating blast furnace brick	2	899	Inconel alloy 713 (see Inco "713 C")		
High zircon porcelain	2	937	Inconel alloy X-750 (see inconel X)		
Holmium	1	142	Inconel X	1	1018
Honey comb structures (metallic - nonmetallic)		1015	India beryl	2	801
Honeycomb structures (nonmetallic)		[[Indiana limestone	2	821
Hutchins alloy	2 1	1010 512	Indium	1	146

THE PROPERTY OF THE PARTY OF

Materiul Namo	Vol.	Page	Material Name	Vol.	Page
Indi an - antimony intermetallic compound	1	1287	Iron	1	156
inSt	•		Iron + Aluminum + ΣX_i (I)	1	1142
Indium - arsenic intermetallic compound InAs	1	1292	Iron + Aluminum + $\Sigma X_{1}^{-}(\Pi)$	1	1145
Indium + Lead	1	627	Iron + Carbon + $\sum X_{j}$ (1) (C $\leq 2.00\%$)	1	1113
Indium - selenium intermetallic compound	1	i [1295		1	1124
In ₂ Se ₃ Indium – tellurium intermetallic compound	- !		Iron + Carbon + ΣX_i (1) (C > 2.00%)	1	1128
In ₂ Te ₃	1	1298	Iron + Carbon + ΣX_i (II) (C > 2.00%)	1	1132
Indium + Thallium	1	630	Iron + Chromium + ΣX_i (1)	1	1148
Indium + Tin	1	634		1	1152
Indium antimonide [InSb] (see indium - antimony intermetable compound)	 	:	Iron + Chromium + Nickel + $\sum_{i=1}^{n} (1)$	1	1160
Indium arsenide [InAs] (see indium -	! :	:	Iron + Chromium + Nickel + ΣX_i (II)	1	1164
arsenc intermetallic compound)	! !		Iron + Cobalt + ΣX_{i} (II)	1	1176
Indium oxide (InO)	2	153	Iron + Copper + ΣX_i (1)	1	1179
Indium selenide [ln ₂ Sc ₂] (see indium - selenium intermetallic compound)	 		Iron + Manganese + ΣX_i (1)	1	1152
Indium telluride (In ₂ Te ₃) (see indium -	{	i	Iron + Manganese + $\sum X_{i}$ (II)	1	1191
tellurium intermetallic compound)			Iron + Molybdenum + $\Sigma X_{\hat{1}}$ (II)	1	1194
Ingot iron	1	1134	Iron + Nickel + ΣX_i (1)	1	1197
InSb	1	1257	Iron + Nickel + ΣX_i (II)	1	1202
inSb + in ₂ Te ₃	1	1403	Iron + Nickel + Chromium + \sum_{i} (1)	1	1209
ln ₂ Se ₃	1	1295		1	1212
Insulating brick	2	443 891		1	1216
		904		1	1217
Insulating fice brick	2	891	Iron + Silicon + ΣX_{i} (II)	1	1221
Insulation fiberglass	2	1117		1	1225
Insurok	2	1023 1024		1	1226
T- T-	1	1298	Iron + Tungsten + ΣX_{i} (II)	1	1229
In ₂ Te ₃ In ₁ Te ₃ + Cu ₂ Te + Ag ₂ Te	1	1406	Iron, Armco	1	157, 158,
Intermetallic compounds (see each individual intermetallic compound)	-				159, 160, 161,
lnyar	1	1199		ĺ	163
Invar, free cut	1	1205	Iron, electrolytic	1	157, 159
Iodine	2	st	Iron, nodular	1	1222
Iodyride [Agl] (see silver iodide)			Iron, silal	1	1222,
Ionium (see thorium)	İ				1223
Iridium	1	15:	Iron, Swedish	1	158

The First market section

Material Name	Vol.	 Page	Material Name	Vol.	Page
Iron, wrought	1	1185, 1219	Kieselguhr earth	2	814
tri∄ron carbide (Fe₃C)	2	578	Kieselguhr earth, ignited	2	814
trijiron tetraoxide (Fe ₃ O ₄)	1 2	154	Kieselguhr earth, ordinary	2	814
from oxide, magnetic [Fe ₃ O ₄] (see (tri)iron	1 -		Knapic	1	327
tetraoxide)	1		Koldboard	2	1125
Isotron 11 (see Freon 11)			Korite graphite	2	55
sstron 12 (see Freon 12)			Kovar	1	1203
sotron 13 (see Freon 13)	Ì		Krupp steci	1	1113
sotron 22 (see Freon 22)			Krypton	1 3	1164 50
sotron 113 (see Freon 113)		-	Krypton - deuterium system	3	1 349
sotron 114 (see Freon 114)			Krypton - hydrogen system	3	351
vory	2	1076	Krypton - neon system	3	254
African	2	1076		ļ	
apanese 2E-8	1	599	Krypton - mtrogen system	:3	35
apanese fish-plate	1	1119	Krypton - oxygen system	3	350
apanese M-1	1	599	Krypton - xenon system	3	250
apanese steel	1	1195. 1210	Kuchin elay	; 2 !	50
ena Geräte glass	2	924	"L" mekel	1	239 239
odium (see jodine)		!	Lamicoid	2	102:
'K" Monel	1	1032	}		102
C.S. alloy 245	1	920	Laminates (metallic - nonmetallic)	2	·1039
C.S. alloy 280	1	 520	Laminates (nonmetallic)	2	±102
C.S. alloy special	1	902	Armalen	2	103
C.S. magnet steel	1	1177	Astrolite	2	1029 1030
(alium (see potassium)	}		Insurok	: <u>2</u>	102
Caolin fire brick		404.		i	102
		405, 904	Lamicoid	2	102: 102:
Golin insulating retractory brick	2	895 	Scotchply	2	1025
Capok	2	1077	Laminate, epoxy resin (see scotch ply	ĺ	
Karbate graphite	2	59	laminate \	į	!
Ke1-1 ^c	2	970	Lampblack	2	'
Kel-F 3700	2	983	Lanthanum	1	j 17
Cennametals K161B	2	728	Lanthanum 4 Neodymium 4 ΣX_1	1	98
Ketopropane ((CII3)2CO), (see accione)		ì	Lanthanum - selemum intermetallic compound		
Kirso T., Russian	1	1019	LaSe	1	1.30

Material Name	Vol.	Page	Material Name	Vol.	Page
Lanthanum - tellurium intermetallic			Lignum Vitae	2	1079
LaTe	j 1 1	1304	Lime sand brick	2	892
Lanthanum tritluoride (LaF ₃)	1 2	633	Limestone	. 2	i 820
Lanthanum selenide [LaSe] (see lanthanum -	İ	!	Indiana	. 2	821
selenium intermetallic compound)	İ		Queenstone grey	; 2	821
Lanthanum sulfide (LaS)	2	702	Rama	: 2	521
Lanthanum telluride [LaTe] (see lanthanum - tellurium intermetallic compound)	:		Limestone aggregate concrete	. 2	1 80A
LaSe	1	1301	Limestone gravel concrete	: 2	* 564, 565
LaTe	1	1304	Lipowitz alloy	1	· 939
Laughing gas (see nitrous oxide)	:	!	Lithia (see lithium oxide)	ļ	:
Lead	· ; 1	175	Lithium	1	i i 1 92
Lead, pyrometric standard	<u>i</u> 1	183,	Lithium + Boron + SX	1	1 992
	: 1	184 -	Lithium + Sodium	i 1	• 655
Lead + Antimony	1	637	Lithium + Sodium + ΣX_j	ļ 1	¹ 995
Lead + Antimony + ΣN_1	1	991 	Lithium fluoride (LiF)	2	636
Lead + Bismuth	1	640 	Lithium fluoride + Potassium fluoride + ΣX_1	2	641
Lead + Indium	1 1	643	Lithium hydride (LiH)	2	773
Lead + Silver	1	- 646 -	Lithium oxide (Li ₂ O)	2	1 157
Lead - tellurium intermetallic compound		:	Loinn	1	564
PbTe		1307	Low alloy steel	1	$^{\dagger}_{1213}$
Lead + Thallium	1	649	Low-exp-42	: 1	, 1205
Lead + Tin	1	652	Lowell sand	! 2	1 834
Lead alloy, SAE bearing alloy 12	1 1	991			+ 835
Lead glass	. 2	923	Lucalox	2	106
Lead oxide + Silicon dioxide	1 2	359	Lummite cement concrete	2	. 87λ
Lead oxide + Silicon dioxide + ΣX_1	1 2	1 474	Lutetium	1	198
Lead telluride (PbTe) (see lead - tellurium intermetallic compound)		!	Macloy G steel	1	1213
Lead metatitanate (PbTiO ₃)	2	279	Magnalium	1	478
Lead zirconate (PbZrO ₃)	1 2	282	Magnesia (see magnesium oxide)		
Light weight brick	! 2	485,	Magnesia brick	2	485 897
	j L	489, 892,		!	599
	;	899, 900	Magnesite brick	2	1 478
Light weight concrete	2	574			483 1 892
Light weight concrete, foamed	2	881			- j. 895 - j. 905

Material Name	Vol.	Page	Material Name	Vol.	Page
Magnesite fire brick	2	597	Magnesium aluminates (continued)		
Magnesium	1	202	Natural ruby spinel	2	284
Magnesium + Alaminum	1	658	Spinel	2	284
Magnesium + Aluminum + ΣN	1 1	995	Synthetic spinel	2	287
Magnesium - antimony intermetallic	 - -		Magnesium aluminate + Magnesium oxide	2	362
compound Mg ₃ S0 ₂	1	1316	Magnesium aluminate + Silicon dioxide	2	365
Magnesium + Cadmium	1	661	Magnesium aluminate + (di)Sodium oxide	2	368
Magnesium + Calcium	i 1	662	Magnesium metaaluminate (MgAl _{\$\infty\)₄) (see magnesium aluminate)}		! :
Magnesium + Cerium	; . 1	1 663	Magnesium antimonide Mg ₃ Sb ₂) (see mag- nesium - antimony intermetallic compound)	 	! !
Magnesium + Cerium + EX	 	i 1001	Magnesium carbonate (MgCO ₃)	2	! 776
Magnesium + Cobalt + ΣX_i	1	1004	Magnesium oxide (MgO)	2	i ; 158
Magnesium + Copper	1	! - 666	Magnesium oxide + Beryllium oxide	2	: ! 3 71
Magnesium + Copper + EX	1	! 1005	Magnesium oxide + Calcium oxide + ΣN_1	2	! 477
Magnesium - germanium intermetallic compound	! ! 	 	Magnesium oxide + (dr)Chromium trioxide + ΣN_1	2	 480
Mg ₂ Ge	1	1311	Magnesium oxide + Clay	$\frac{1}{1}$ 2	374
Magnesium + Manganese	1 1	669	Magnesium oxide + (di)lron (rioxide + ΣΧ ₁] 2	483
Magnesium + Nickel	1	672	Magnesium oxide + Magnesium aluminate	2	375
Magnesium + Nickel + ΣN_1	1	1008	Magnesium oxide + Magnesium orthosilicate	2	378
Magnesium + Silicon	1	675	Magnesium oxide + Nickel oxide	2	381
Magnesium - silicon intermetallic compound			Magnesium oxide + Silicon dioxide	2	384
Mg ₂ Si	1	[1314] 	Magnesium oxide + Silicon dioxide + EX	<u> </u> 2	484
Magnesium + Silver	1	678	Magnesium ovide + Tale	! 2	i ⊹ 550
Magnesium + Tin	1	679	Magnesium oxide + Tin dioxide] 2	387
Magnesium - tin intermetallic compound	į	1	Magnesium oxide + Uranium dioxide	2	390
Mg ₂ Sn	1	1317	Magnesium oxide + Zinc oxide	2	391
Magnesium + Zinc	1	680	Magnesium silicate (see Forsterite)	İ	
Magnesium alloys (specific types)			Magnesium orthosilicate + Magnesium oxide		394
AN-M-29	1	999	Magnesium silicide [Mg ₂ Si] (see magnesium -	İ	
AZ 31 A (see magnesium alloy, AN-M-29)			silicon intermetallic compound)		<u> </u>
Dow metal	ļ j 1	999	Magnesium stannate (MgSnO ₃)	2	289
Elekton 2	1	999 	Magnesium stannide (Mg ₂ Sn) (see magnesium - tin intermetallic compound)		
Magnesium aluminates			Magnesium titanate porcelain	2	937
MgO·Al ₂ O ₃	2	283	Magnezit	2	385,
MgO+3, 5Al ₂ O ₃	j 2	286			481

Material Name	Vol.	Page	Material Name	Vol.	Page
Magnezit briek	2	899, 902	Marsh gas (see methane)		
Mahogany	2	1080	Marksa brick	2	899
Manganeso	1	208	Medical cotton	2	1059, 1070
Manganese + Copper	1	 683	Mercury	1	212
Manganese + Iron	1	684	Mercury - selenium intermetallic compound	. • :	
Manganese + Iron + ΣX_i	1	1009	HgSe	1	1320
Manganese + Nickel	1	685	Mercury + Sodium		686
Manganese + Silicon + ZX,	1	 1012	Mercury - tellurium intermetallic compound	•	. 000
i Manganese alloys (specific types)	-	!	НgТe	1	1321
Ferromanganese, Russian	1	684, 1010	Mercury selenide (RgSe) (see mercury - selenium intermetallic compound)	• •	1021
Silicomanganese, Russian	1	1010, 1012	Mercury telluride (HeTe) (see mercury - tellurium intermetallic compound)	! 	
Manganese ferrate (MnFe ₂ O ₄)	2	292	Metallurgical brick	2	892,
Manganese oxides					893
MnO	2	168	Metallurgical porous brick	2	893
Mn ₃ O ₄	2	170	Metallurgical pumice concrete	2	. 863, 864
Manganese monoxide [MnO] (see manganese oxides)		 	Methaerylate rubber	2	983
(dr)Manganese trioxide + Aluminum oxide	2	397	Methane (CH ₄)	3	218
(di)Manganese trioxide + Magnesium oxide	2	395	Methane - propane system	3	432
(dr)Manganese trioxide + Silicon dioxide	2	399	Methanol [CH ₃ OH] (see methyl alcohol)	i 	
(tri)Manganese tetraoxide [Mn ₃ O ₄] (see manganese oxides)	2	170	Methanol - argon system Methanol - hexane system	3 3	458 460
Manganese zinc ferrate [Mn(Zn)Fe ₂ O ₄]	2	295	Metnyl alcohol (CH ₂ OH)	 	223
Manganin	1	965	Methyl chloride (CH ₃ Cl)	!	227
Manganin NM Mts, Russian	 1	965	Methyl formate - propane system	! 3	402
Manganomanganic oxide (Mn ₃ O ₄) (see (tri)manganese tetraoxide)	İ		Mg₂Ge	1	1311
Maple	2	1051	Mg •Sb ₂	1	1310
Marbles			Mg 2S1	1	1314
Black	2	761	Mg ₂ Sn	1	1317
Brown	2	761	Mica	2	823. 892
Powder	2	760, 761	Canadian phlogopites	 2 	524, 824, 825
White	2	761	Granulated vermiculite	2	: i 825
White Alabama	2	761	Madagascan phlogopites	2	824

Material Name	Vol.	Page	Material Name	Vol.	Page
Mica (continued)			Monel alloy 505 (see "S" monel)		
Synthetic	2	825	Monel alloy 506 (see "H" monel)		
Mica, bonded	2	625	Monel alloy K-500 (see "K" monel)		
Micanite	2	1138	Monel alloy R-405 (see "R" monel)		!
Mild steel	1	1186	Monolithic wall	2	1126
Mineral cotton (see mineral wool)			MoSi ₂	נו	1324
Mineral fiber	2	1139	MSM-4Al-4Mn (see titanium alloy C-130 AM		
Mineral wool	2	1147	or titanium alloy RC-1308)	}	
Mineral wood, processed	2	1140	MSM-6Al-4V (see Ti-6Al-4V)		
Board	2	1141	MST-6A!-4V (see Ti-6Al-4V)		
Felt	2	1141	MST-8Mn (see T8Mn)	 	
Mipora	2	944	Mullite	2	254, 934
Missouri firebrick	2	905	Mullite + Alumina	2	335
Moderator graphite	2	70	Multimet N-155	1	1165
Molybdenum	1	222	Mystic slag	2	1150
Molybdenum + Iron	1	690	N.S. nickel	1	708
Molybdenum + Iron + ΣX _i	1	1013	Naphthalene (C ₁₀ H ₈)	2	995
Molybdenum - silicon intermetallic com-	}		Naphthalin [C ₁₀ H ₈] (see naphthalene)		
pound			Naphthol (C ₁₀ H ₇ OH)	2	998
MoSi ₂	1	1324	Natrium (see sodium)		
Molybdenum + Thorium dioxide	1	1429 	Natural Ceylon graphite	2	55
Molybdenum + Titanium	1	691	Navy M	1	977
Molybdenum + Tungsten	1	694	 Nelson - Kebbonleg 10	1	896
Molybdenum alloy, ferromolybdenum, Russian	1	690,		1	230
	ļ	1013	Neon	3	56
(di)Molyhdenun carbide (Mo ₂ C)	2	579	Neon - argon - deuterium system	3	490
Molybdenum disilicide [MoSi2] (see malyb- denum - silicon intermetallic compound)			Neon - argon - hydrogen - nitrogen system	3	509
Monax glass	2	924	Neon - argon - krypton system	3	478
Monel	1	1032	Neon - argon - krypton - xenon system	3	504
Monel, cast	1	1032	Neon - carbon dioxide system	3	358
Monel, "H"	1	1032	Neon - deuterium system	Э	360
Monel, "K"	1	1032	Neon - hydrogen system	3	362
Monel, "R"	1	1032	Neon - hydrogen - nitrogen system	3	494
Monel, "S"	1	1032	Neon - hydrogen - oxygen syntem	3	492
Monel alloy 400 (see monel)	<u> </u>		Neon - krypton - deuterium system	3	491

17. 6. 19 使有毒素

Material Name	Vol.	Page	Material Name	Vol.	Page
Neon - nitrogen system	3	365	Nickel + Iron	1	707
Neon - nitrogen - oxygen system	3	495	Nickel + Iron + XX	1	1035
Neon - oxygen system	3	368	Nickel + Manganese	1	710
Neon - xenon system	3	291	Nickel + Manganese + ΣX_i	1	1038
Neptunium	1	234	Nickel + Molybdenum + ΣX_1	1	1041
80 Ni-20 Cr (see chromel A)			Nickel + ΣX _i	1	1044
Ni-Cr steel	1	1167,	Nickel alloys (specific types)		
		1168, 1210, 1213	"A" nickel	1	711
Nickrom (see chromel A)		1213	Alumel	1	1015, 1039
Nichrome	1	1015,	Chroman	1	1018
		1019,	Chromel A	1	698
Nichrome N	1	1036	Chromel C	1	1036
Nichronie V (see chromel A)	1	698	Chromel P	1	698
Nickel	1	237	Contracid	1	1036
Nickel, "A"	1	239,	Contracid B7M	1	1036
The state of the s		241.	Corronil	1	1032
	į	1029, 1039	"D" nickel	1	1039
Nickel, "D"	1	1039	Duranickel	1	1015
Nickel, electrolytic	1	235, 239,	EI-435, Russian	1	1022
		240	EI-607, Russian	1 1	1019,
Nickel, "L"	1	238, 239			1020, 1021
Nickel, "O"]	239	German chromin	1	1015
Nickel, "Z" (see duramckel)	, ,	239	Grade A	1	711.
Nickel 200 (see nickel, A)			H monel	1	1044
Nickel 211 (see nickel, D)			Hastelloy A	1 1	1032
Nickel + Aluminum + DX	1	1014	Hastelloy B	1	1036
Nickel - anti-nony intermetallic compound	ì		Hastelloy C	1	1018
NiSo	1	1227	Hastelloy R-235	1	1019
Nickel & Chromium	1	697	Haynes steilite 27	1	1029
Nickel + Chromium + EX,	1	1017	HyMn-80	1	1036
Nickel + Cobalt	1	700	INCO "713 C"	1	1022
Nickel + Cobalt + ΣΧ,	1	1028	inconel	1	1016
Nickel + Copper	1	703			1019. J021
Nickel + Copper + ΣX,	1	1031	Inconel 702	1	1022

Material Name	Vol.	Page	Material Name	Vol.	Page
Nickel alloys (specific types) (continued)	 		Nickel alloys (specific types) (continued)		
Incomel alloy 713 (see Inco "713C")	1		Refralloy 26	1	1029
Inconel X	1	1018	Rene 41	1	1022
Inconel X-756 (see inconel X)	:	}	"S" monel	1	1032
inor-s	1	1042	Silicon monel	1	1032
K monel	1	1032	"Z" nickel (see duranickel)		}
KhsoT, Russian	1	1019	Nickel antimonide (NiSb) (see nickel -		! !
"L" mckel	1	238, 239	antimony intermetallic compound) Nickel bronze	1	1032
M 252	1	1022	Nickel oxide (NiO)	2	171
Monel	1	1032	Nickel silver	1	951
Monel, cast	1	1032	Nickel silver 12% (see german silver)	1	
Monel alloy 400 (see monel)	į		(tri)Nickel disulfide (Ni ₃ S ₂)	2	705
Monel alloy 505 (see "S" monel)	!		Nickel zinc ferrate [Ni(Zn)Fc ₇ O ₄]	2	298
Monel alloy K-500 (see "K" monel)			Nicrosilal, British	1	1204
50Ni-20Ci	1	1019	Nigrine (sec rutile)		
Nichrome	1	1018,	Nil alba (see zinc oxide)		
		1019, 1021, 1036	Nimocast 713 C	1	1022
Nichrome N	1	698	Nimonie 75	1	1019
Nickel bronze	1	1032	Nimonie 73, French	1	1619
Nimocast 713 C	1	; ;1022	Rimonic 80	1	1018
Nimonie 75	1	1019	Nimonic 80/80 A, French	1	1019
Nimonic 75, French	1	1019	Nimonie 90	1	1019
Nimonic 80	1	: 1018	Rimonie 85	1	1019
		1019	Nimonic 100	1	1029
Nimonic 80/80A, French	1	1019	Nimonie 105	1	1029
Nimonic 90	1	1019	Nimonic 115	1	1029
Nimonic 95	1	1019	Nimonic DS, French	1	1213
Nimonic 100	1	1029	Nimonic PE 7	1	1206
Nimonic 105	1	1029	Niobium	1	245
Nimonic 115	1	1029	Niobtum + Molybdenum + EX _i	1	1046
N.S. nickel	1	708	Niobium + Tantalum + EX	1	1049
"O" nickel	1	239	Niobium + Titanium + ΣX _i	1	1052
OKh 205 60B	1	1022	Niobium + Tungsten + EX	1	1055
"R" monel	1	1032	Niobium + Uranium	1	713

Material Name	Vol.	Page	Mater ial Namo	Vol.	Page
Niobium + Zirconium	1	716	Ny lon	2	945
Niohium alloys (specific types)			Nylon 6 (see polyhexahydro-2H-azepin-2-	}	
D-26 (see niobium alloy No-10W-52r)			one)		
Haynes alloy No-752	1	1056	"O" nickel	1	239
Nb~5Mo-5V-1Zr	1	1047	Oak -	2	1082
Nb-27Ta-12W-0.2Zr	1	1050	White	2	1082
Nb-10T1-5Zr	1	1053	Octane, n-(C _g H ₁₆)	2	233
Nb-15W-5Mo-1Zr-0.05C	1	1056	Ohmite graphite	2	; 7 3 I
Nb-10W-1Zr-0. 1C	1	1056	OKh20 N60 B, Russian	1	1022
Nb-10W-5Zr	1	1056	Olivine (see forsterite)		
Nb-0.5Zr	1	717	Olivine basalt	2	798
Niobium carbide (NbC)	2	552	Ordzhonikidze brick	2	899
NISO	1	1327	Osmiuni	1	254
Niton (see radon)			Oxygen	3	76
Nitric oxide (NO)	3	106	Palladium	1	258
Nitrile rubbor	2	952	Palladium + Copper	1	720
Nitrogen	3	64	Palladium + Gold	i	723
Nitrogen - oxygen system	3	434	Palladium + Platinum	1	726
Nitrogen - oxygen - carkon dioxide system	3	497	Palladium + Silver	1	727
Nitrogen - propane system	3	438	Paper	2	1127
Nitrogen - propage system Nitrogen dioxide [NO ₂] (see nitrogen per-		130	Paraffin concrete	2	863
Nitrogen peroxide (NO ₂)	3	108	Pearlitic matrix cast iron, Nr. 1520	1	1307
	,	105		_) !
Nitrogen monoxide [N ₂ O] (see nitrous oxide)		1601	Pearlitic ply iron, Russian	1	1137
Nitrophenol (NO ₂ C ₄ H ₄ OH)	2	1001	Pencil lead graphite	2	65
Nitrous oxide (N ₂ O)	3	114	Penn. fire brick	2	905
Nivac	1	238	Pentane, n-(C ₅ H ₁₂)	3	236
Nodular iron	1	1137, 1222	Periclase	2	160
Nonane, n-(C ₃ H ₂₀)	3	230	Perlite	2	827
Normal brick	2	488.	Petalite	2	935
	Ì	489, 900,	Petroleum coke	2	765
		901	Phenar.threne (C ₁₄ H ₁₀)	2	1004
NTS basalt	2	798	Phenanthrin [C ₁₄ H ₁₀] (see phenanthrene)		
NTS dolomite	2	811	Phenyl other [(CgHg)40] (see diphenyloxide)		
NTS granite	2	818	Phoenix glass	2	924

Material Name	Vol.	Page	Material Name	Vol.	Page
Phosphor bronze	1	585,	Poly ethy lene	2	956
		586, 976	Polyethylene, chlorosulfonated (see rubber, hypalon)	ŀ	
Phosphorus	2	86	Polyhexahydro-2H-azepin-2-one, silon	2	959
Pig fat	2	1073	Poly(methyl methacrylate) [same as	-	
Pines	2	1083	plexiglas]	2	960
Pitch	2	1083	AN-P-44A	2	961
White	2	1083	Perspex	2	961
Pitch pines	2	1083	Polystyrene	2	963
Pladurans	1	416	Colloidal aggregate	2	965
Plaster	2	887	Styrofoam	2	965
Plate glass	2	923, 924,	Polysulfide rubber (see rubber, Thiokol)		}
		925, 926	Polytetrafluoroethylene (same as Teflon)	2	967
Platinoid	1	981	Polytrifluorochloroethylene	2	970
Platinum	1	262	Polyurethane (see rubber, Adiprene)		}
	1	730	Polyvinyl chloride	2	953
Platinum + Copper	_	133	Porcelains	2	936
Platinum + Gold	1		Alumina	2	937
Platinum + Iridium	1	734	Electrical	2	937
Platinum + Palladium	1	737	High zircon	2	937
Platinum + Rhodium	1	738	MgTiO3 porcelain	2	937
Piatinum + Ruthenium	1	743	Porcelain 576	2	937
Platinum + Silver	1	745	Wet process	2	937
Plexigiza	2	960	Porous brick	2	894
Plexiglus AN-P-44A	2	961	Porous concrete brick	2	894
Pliofoam	2	950	Porous fire brick (Italy)	2	895
Pluton cloth	2	1100	Portland cement	2	861
Plutonium	1	270	Portland cement concrete	2	871
Plutonium, α-	1	271	Potassium	1	274
Plutonium + Aluminum	1	746	Potassium + Sodium	1	748
Plutonium + iron	1	747	Potassium acid phosphate [KH ₂ PO ₄] (see	*	140
Plutonium alloy, delta-stabilized	1	746	potassium dihydrogen phosphate)		}
Polychloroethylene (polyvinyl chloride)	2	953	Potassium bromide (KBr)	2	566
Polychloroethylene (polyvinyl chloride),	2	954	Potassium bromide + Potassium chloride	2	779
·	-	# D42	Potassium chloride (KC1)	2	613
Polychlorotrifluoroethylene (see polytri- fluorochloroethylene)		1	Potassium chloride + Potassium bromide	2	782

•

Material Name	Vol.	Page	Material Name	Vol.	Page
Potassium chrome alum salt	2	889	Quartz fiber	2	1143
Potassium chromium sulfate [KCr(SO ₄) ₂ ·		640	Dyna	2	1144
dideuterium Potassium didutteen phosphate (KD ₂ PO ₄)	2	688 680	Quartz glass	2	187, 188,
Potassium dihydrogen arsenate (KH2A8O4)	2	785		; !	923, 924
Potassium dihydrogen phosphate (KH ₂ PO ₄)	2	684	Quartz sand	2	834,
Potassium hydrogen sulfate (KHSO4)	2	691		!	835, 836,
Potassium nitrate (KNO3)	2	647		1	837
Potassium phosphate, monobasic (KH ₂ PO ₄) (see potassium dihydrogen phosphate)			Queenstone grey limestone Quick silver (see mercury)	2	521
Potassium biphosphate [KH2PO4] (see	<u> </u>		"R" monel	1	1032
potassium dihydrogen phosphate)	!	·	Radon	3	84
Potassium diphosphate [KH ₂ PO ₄] (see potassium dihydrogen phosphate)	1		Rama limestone	2	621
Potassium rhodanide [KSCN] (see potassium thiocyanate)	<u> </u>		RCA N91	1	701
Potassium sulfocyanate [KSCN] (see potassium thiocyannate)	 		RCA N97	1	701
Potassium sulfocyanide (KSCN) (sec Potassium thiocyanide)	<u>}</u>		RegAs ₁ Red brass	1	591
Potassium thiocyanate (KSCN)		500	Red brass, German	1	961
Powders (nonmetallic)	2	758	Red brick	2	405,
,	2	1040			492, 898
Praseodymium	1	251	Red brick, hard burned	2	896
Promethium	1	285	Red brick, soft burned	2	896
Propane (C ₃ H ₈)	3	240	Redwood	2	1084
2-Propanone ((CII ₃) ₂ CO) (see acetone)	<u>;</u> 	¦	Bark	2	1084
Pseudo balsa	2	1060	Red wood fiber	2	1091
Pyrex	2	499, 923,	Refractory insulating brick	2	892
		924, 926, 927	Refractory insulating common chamotte brick	2	892
Pyrex 7740	2	499,	Refralloy 26	1	1029
		923, 924	Refrax	2	586
	;	925, 926	ReGe	1	1331
Pyroacette acid (see acetone)			ReGe ₂	1	1331
Pyroceram 9606	2	940	Rene 41	1	1022
Pyroceram brand glass-ceramic	2	939	Rene 41 cloth	2	11022
Pyrolytic graphite	2	30	Rese,	1	1332
Quartz [see silicon dioxide (crystalline)]	_	"	Rex 78	1	1213
			10		1213

THE PROPERTY OF THE PARTY OF TH

Material Name	Vol.	Page	Material Name	Vol.	Page
Rhenium	1	288	Rubbers (continued)	<u>i</u>	
Rhenium - arsenic intermetallic compound			Nitrile	2	982
Re ₂ As ₇	1	1330	Poly(ethyl acrylate)	2	983
Rhemum - germanium intermetallic			Polysulfide (see rubber, Thiokol)		
ReGe	1	1331	Resin-cured butyl	2	383
ReGe ₂	1	1331	Rubatex	2	981
Rhenium - selenium intermetallic compound			Rubatex R203-H (sume as Buna-N foam)	2	981
ReSe ₂	1	1 1332	Silicone	2	983
Rhenjum selenide [ReSe2] (see rhenium selenium intermetallic compound)			Tellurace-cured butyl	2	983
Rhodiun	1	. 292	Thiokel ST	2	982
Rock	İ	i l	Viton	2	983
Rock cork	2	528	X-ray protective	2	981
	-	1146	Rubidium	1	296
Rock wool	2	1148	Rubidium + Cesium	1	751
Rose metal	1	939	Russian alloy	1	1192,
Rubatex rubber	2	981			1218,
Rubates R203-H rubber	2	981	Russian cupralloy, type 5	1	543
Rubbers	2	980	Russian cupro nickel, NM-81	1	562
Acrylate	2	982	Russian stainless steel (see stainless steel)		
Acrylic	2	982 i	Russian steel	1	1118
Adiprene	2	982	Rutgers cordierite	2	919
Buna-N foam (see rubber, Rubatcx R203-H)			Ruthenium	1	300
Butaprene E	2	952	Rutile	2	203
Carboxy nitrile	2	982	"S" monel	1	1032
Chloroprene	2	983	SAE 1010	1	1183
Dibenzo GMF-cured butyl	2	983	SAE 1015 (see AISI C 1015)		
Ebonite	2	971	SAE 1020	1	1183
Elastomer	2	974	SAE 1095	1	1114
Government rubber-styrene	2	977	SAE 4130	1	1153
Hard	2	972,	SAE 4140	1	1155
	! 	981	SAE 4340 (see AISI 4340)] 	
Hevea	2	983	SAE bearing alloy 10	1	1070
Hypalon S2	2	983	SAE bearing alloy 11	1	1070
Kel-F 3700	2	983	SAE bearing alloy 12	1	991
Methacrylute	2	983	SAE bearing alloy 40	1	976

Material Name	Vol.	Page	Material Name	Vol.	Page
SAE bearing alloy 62	1	976	Sb _{1.4} Bi _{0.6} Te _{3.13}	1	1381
SAE bearing alloy 64	1	976	Sb _{1.4} Bi _{0.6} Te _{3.19}	1	1383
SAE bearing alloy 66	1	962	Sb _{1.4} Bi _{0.6} Te _{3.26}	1	: 1384
Salt, gnome	2	832	Sb _{1.5} Bi _{0.5} Te ₃	1	1381
Samarium	1	305	Sb _{1.5} Bi _{0.6} Te _{3.06}	1	1384
Sand	2	833	Sb _{1.5} Bi _{0.6} Te _{3.13}	1	1382
Lowell	2	834,	Sb _{1,5} Bi _{0,5} Te _{3,19}	1	1384
Quartz	2	834, 835,	Sb _{1.6} Bi _{6.6} Te _{3.28} Sb _{1.6} Bi _{0.4} Te ₃	1	1384
		836,	Sb _{1.6} Bi _{6.4} Te _{3.06}		1381
Silica	2	441,	Sb _{1.6} B _{10.4} Te _{3.13}	1	1383
		837	Sb _{1.6} Bi _{0.4} Te _{3.19}	1	1384
Sand cement concrete	2	874	Sb _{1.8} B1 _{0.4} Te _{3.26}	1	1384
Sand and gravel aggregate concrete	2	868, 869	Sb _{1.7} Bi _{0.3} Te ₃	1	1381
Sandstone	2	840	Sb _{1.8} Bi _{0.2} Te ₃	1	1381
Berca	2	541. 542	Sb _{1.8} Bi _{0.2} Te _{3.13}	1	1383
Berkeley	2	841,	Sb ₂ Se ₃ + Ag ₂ Se + PbSe	1	1379
Deficiely		842	Sb ₂ Te ₃	1	1241
St. Peters	2	841	Sb ₂ Te ₃ + Bi ₂ Te ₃	1	1380
Teapot	2	842	Sb ₂ Tc ₃ + In ₂ Te ₃	1	1356
Tensleep	2	841, 842	Scandium	1	309
Tripolite	2	842	Scotchply laminate (nonmetallic)	2	1029
Sandwiches (nonmetallic)	2	1044	Sea-weed product	2	1129
Sandwiches (metallic - nonmetallic)	2	1047	Selenium	1	313
Sandy clay	2	805	Selenium + Bromine	1	754
Santowax R	2	1005	Selenium + Cadmium	1	755
Sapphire	2	93	Selenium 4 Chlorine	1	756
Sapphire, synthetic	2	95	Selenium + Iodine	1	757
Sapphire, Linde synthetic	2	94	Selenium + Thallium	1	758
Satin walnut	2	1089	Shamotte brick	2	894 898
Sawdust	2	1085	Sheep wool	2	1092
Sb _{1,2} Bi _{0,8} Ti _{3,13}	1	1381	Silat iron	1	1222
Sb _{1,23} Bi _{0,67} Te _{3,13}	1	1381			1223
Sb _{1.4} Bi _{0.6} Te _{3.08}	1	1383	Silica (see silicon dioxide)		

19.19年19日

Material Name	Vol.	Page	Material Name	Vol.	Page
Silica brick	2	408,	Silicon dioxide (SiO ₂)		
	Ì	489, 492,	Crystalline	2	174
1		502, 894,	Domestic (USA)	2	175
		896, 897,	Foamed fused silica	2	184
1		898, 900,	Fused	2	183
	İ	902,	Linde silica	2	184
01		906	Slip 10	2	159
Silica fire brick	2	894, 895,	Slip 1s	2	185
	.	905	Quartz glass	2	187,
Silica glass	2	923, 925,			188
		926	Silica gel	2	185
Silica glass, fused	2	925	Silica refractory brick	2	185
Silica sand	2	837	Slip cast fused silica	2	154
Silicate glass	2	511	Star-brand brick	2	185
Silicous brick	2	492, 902	Vitreous	2	184, 185,
Silicomanganese. Russian	1	1010, 1012	Silicon dioxide + Aluminum oxide	2	187 402
Silicon	1	326	Silicon dioxide + Aluminum oxide + ΣX_1	2	487
Silicon + Germanium	1	761	Silicon dioxide + Bariam oxide + ΣX_i	2	495
Silicon + Iron	1	764	Silicon dioxide + Boron oxide + ΣX_i	2	498
Silicon alloy, ferrosilicon, Russian	1	765	Silicon dioxide + Calcium oxide	2	407
Silicon bronze	1	973	Silicon dioxide + Calcium oxide + ΣX_{i}	2	501
Silicon carbide (SiC)	2	585	Silicon dioxide + (di)lron trioxide	2	410
Crystolon SiC	2	586	Silicon dioxide + Lead oxide + ΣX_i	2	504
SiC brick, refrax	2	586	Silicon dioxide + (di)Potassium oxide + ΣX_i	2	507
Silicon carbide, refractory (see refrax)		į l	Silicon dioxide + (di)Sodium oxide + ΣX_i	2	510
Silicon carbide + Graphite	2	789	Silicone rubber	2	983
Silicon carbide - silicon cermets	2	718	Silk fabric	2	1105
Silicon carbide + Silicon dioxide	2	553	Sillimanite	2	454,
Silicon carbide + Silicon dioxide + ΣX_i	2	554	SOL marks 1 of 1		845
Silicon carbide brick	2	895	Sillmanite brick	2	902
Silicon carbide brick, refrax	2	556, 906	Sillimanite refractory brick	2	902, 903
Silicon enumel	2	921	Sil-O-Cel brick	2	896
Silicon monel	1	1032	Sil-O-Cel brick, calcined	2	896
(tri)Silicon tetranitride (Si ₂ N ₄)	2	662	Sil-O-Cel brick, natural	2	896

The same of the sa

Material Name	Vol.	Page	Material Name	Vol.	Page
Sil-O-Cel brick, special	2	896	Silver chloride (AgCl)	2	620
Sil-O-Cel brick, super	2	896	Silver iodide (AgI)	2	563
Sil-O-Cel coarse grade diatomite aggregate	2	1112	Silver nitrate (AgNO ₃)	2	650
Silon	2	959	Silver selenide (Ag ₂ Se ₂) (see silver -		j
Silumin, sodium modified	2	920	selenium intermetallic compound)		1050
y-Silumin, modified	1	920	Silver solder, Easy-Flo Silver steel	1	1059
Silver	1	340]	1	1114
Silver + Antimony	1	767	Silver telluride [Ag ₂ Te] (see silver + tellurium intermetallic compound)		{
Silver - antimony - tellurium intermetallic compound			Slag aggregate concrete, limestone treated	2	870
AgSbTe ₂	1	1.335	Slag brick] 2	898
Silver + Cadmium	1	770	Slag cement	ند	861
Silver + Cadmium + ΣN_i	1	1058	Slag concrete	2	564, 580,
 Silver + Copper	1	773]]	881
Silver - copper intermetallic compound	}	}	Slag concrete, direct process	2	564
AgCu	1	1335	Slag concrete, expanded	2	875. 879
Silver + Gold	1	774		2	304
Silver + Indium	1	177	Slag-Portland cement	2	861
Silver + Lead	1	780	Slag wool (same as mineral wool)	2	1151
Silver + Mangane se	1	783	Slate	2	 546
Silver + Palladium	1	786	SnSe ₂	1	1352
Silver + Platinum	1	790	SnTe	1	1355
Silver - selenium intermetallic compound			SnTe + AgSbTe ₂	1	1411
Ag ₂ Se	1	1339	Soapswne	2	853
Silver - tellurium intermetallic compounds			Soda glass	2	923
$A_{g_{2-x}}Te$	1	1342	Soda-lime glass	2	926
Ag₂Te	1	1342	Soda-lime plate glass	2	926
Silver + Tin	1	791	Soda-lime silica glass	2	511,
Silver + Zinc	1	792		}	924, 927
Silver + EX	1	1061	Soda-lime silica plate glass, 9330	2	923
Silver alloy, silver solder, Easy-Flo	1	1059	Sodium	1	349
Silver antimony telluride (AgSbTe ₂) (see silver - antimony - tellurium inter- metallic compound)			Sodium + Mercury Sodium + Potassium	1	795 798
Silver bromide (AgBr)	2	569	Sodium + (di)Sodium oxide	1	1432
Silver bronze	1	579,	Sodium acetate (NaC ₂ H ₃ O ₂ ·3H ₂ O)	2	1006
Silver Oronze		980	South access (NaC211302 - 31120)	<u>_</u>	1900

!					
Material Name	Vol.	Page	Material Name	Vol.	Page
Sodium chloride (NaCl)	2	621	Stainless steels (specific types)	1	
Sodium fluoride (NaF)	2	642	1 Kh 18 N9T (Russian)	1	1168
Sodium fluoride + Beryllium difluoride	2	645	15 Kh 12 VMF, Russian (see steel EI 802, Russian)		
Sodium fluoride + Zirconium tetrafluoride + ΣX_1	2	646	17-4 PH	1	1168
Sodium hydrate (NaOH) (see sodium hydroxide)			17-7	1	1165
Sodium hydrogen sulfate (NaHSO ₄)	2	692	17-7 PH	1	1166
Sodium hydroxide (NaOH)	! - ! 2	790	15-8	1	1161. 1162.
Sodium nitrate (NaNO ₃)	2	651			1167. 1168
rdr Sodium oxide - sodium cermets	1 2	721	416	1	1168
Sodium hyposulfite [Na ₂ S ₂ O ₃ +5H ₂ O] (see	-	'**	3754	1	1161
sodium thiosultate?	į		AISI 301	1	1165
Sodium thiosulfate ($Na_2S_2O_3^+ 5H_2O$)	2	693	AIS1 302	1	1161
Sodium tungsten bronze (Na _N WO ₃)	2	301	AISI 303	1	1165, 1168
Sodium tungsten oxide [Na_WO ₃] (see sodium tungsten bronze)		 !	AlSi 304	1	1161, 1165,
Soft cast iron, gray	1	1135		1	1168
Soft glass	2	511	AISI 310	1	1168
Soft steel	1	1126	AISI 316	1	1165, 1166,
Soil	2	847	·	-	1169, 1170
Solder, soft	1	540	AISI 347	1	1165,
Solex 2808 plate glass	2	923			1166, 1168
Solex 2808 X glass	2	925	AISI 403	1	1149
Solex "S" glass	2	925	AISI 410	1	1150
Solex "S" plate galss	2	923	AISI 420	1	1162
Spektral Kohle 1	2	54	AISI 430	1	1150,
Spherical cast iron, Nr 1510	1	1222			1154
Spinel	2	254,	A1S1 440 C	1	1154
	İ	369, 848	AISI 446	1	1149, 1150,
Spinel, natural cwby	2	284			1155, 1156
Spinel firebrick	3	905	AM 355 (Russian)	1	1168
Spodumene	2	851	AS 21	1	1161
Spruce	2	1086	Austenitic	1	1165.
Sr ₂ Si	1	1343	Consultate 1994		1183
Sr ₂ Sn	1	1344	Crucible HNM	1	1168
			El 572, Russian (same as stainless steel 18-8)	1	1165

Material Name	Vol.	 Page	Material Name	Vol.	Page
Stainless steels (specific types) (continued)	!		Steels (specific types) (continued)	;	
EY a 1 T (see stainless steel 1 Kh 18 N9 T)		! ! !	AISI C 1010 (see steel SAE 1010)	i	
F. H. (British)	1	1161	AISI C 1015 (same as steel SAE 1015)	1	1186
Russian	1	1150,	AlSI C 1020 (same as steel SAE 1020)	:	!
	 	1161	Alloy steel	' 1	1214
SF 11, British (see stainless steel AISI 403)	 !		Alloy steel, high	:	1214
Staybrite	; 1	1161	AMS 2713	1	1210
Stannic anhydride (SnO ₂) (see tin dioxide)	:	:	AMS 2714	1	1213
Stannic selenide (SnSe ₂) (see tin - selenium	į	:	Haynes alloy N-155	1	1177
intermetallie compound)			High carbon, Japanese	1	1119
Stannous telluride [SnTe] (see tin -tellurium intermetallic compound)	-	I	High-perm-49	1	1199
Stannum (see tin)	<u> </u>		High speed	j 1	1230, 1231,
Staybrite steel, British	l : 1	$\left _{1161}\right $:	1232 1234
Steam - air system	: 3	i 464	High speed, 18	1	1233
steam - carbon dioxide system	: ! ;	466	High speed, 18-4-1	1	1233
steam - nitrogen system	: ; 3	468	High speed, M1	1	1195
Steam bronze (see navy M)	! !	:	High speed, M2	1	1233
Steatite	! i 2	852	High speed, M10	1	1195
10 B 2	i : 2	853	High speed, T1	1	i 1233
12 C 2	: 1 2	: 853	Invar	! : 1	1199
228	2	: 853	Invar, free cut	; ; 1	1205
Soapstone	2	 853	Jupanese	1	1195,
Steatite cordierite	 2	' 919		; - I	1210
Steels (specific types)	<u> </u>	:	Jessop G 17, British	1	1213
1 Kh 14 N 14 V2M (see steel EI 257)	:		Kh Zn (Russian)	1	1210
5 ZA 2, Russian	1	1213	Kovar	1	1203
12 MKH, Hussian	: ; 1	 1192	Krupp	1	1115, 1184
AISI 1010	! :	 1185	K. S. magnet	1	1177
AISI 1095 (see steel SAE 1095)	! !	: 	Low alloy	1	1213
AISI 2515	. 1	1198,	Low-exp-42	<u>,</u>	1205
	I	1199, 1200	Low Mn	1	1153
AISI 4130 (see steel SAE 4130)	; İ		Macloy G	i	1213
AISI 4140 (see steel SAE 4140)	<u> </u>		Mild steel		1186
AISI 4340	1	1213.	Ni-Cr steel	1	1 1167.
		1214	M-OI Steel	<u> </u>	$\frac{1167}{1168}$

Material Name	Vol.	Page	Material Name V	ol.	Page
teels (specific types) (continued)	+	 	Steels (specific types) (continued)		
N ₁ -Cr steel (continued)	1	1210 1213	Crucible	1	1204, 1213
NI-span-C	1	1214	E1-257 (Russian)	1	1166, 1214
Nichrom.	1	$\begin{array}{c c} 1210 \\ 1213 \end{array}$	EI-606 (Russian)	ì	1165
Nicrosilal, British	1	1204	E1-802 (Russian)	1	1156
Nimonic DS, French	1	1213	EI-555 (Russian)	1	1214
Nimonic PE7	1	1200 :	11	1	1154.
Oil-hardening non-deforming	1	112	11		1186
R7 (Russian)	1	1230	En 19 (British)	1	1153
R10 (Russian)	1	1123	En 31 (British)	1	1153, 1154
R12 (Russian)	1	123	En 32 A (BGKI), British	1	1192
R15 (Russian)	1	123 	Era ATV (British)	1	1213
R18 (Russian)	1	123	EYA-2	1	1166
R15 Kh 3 (Russian)	1	į123	Terrosilicon 45°. Russian	1	$\frac{1}{1215}$
R15 Kit 3 K 5 (Russian)	: 1 :	123	Ferrotitanium, Russian	1	1225
R15 Kh 3 K 10 (Russian)	1 1	1123	3.1	1	11119
R15 Kh 3 K 12 (Russian)	1	$\begin{vmatrix} 12 \\ 12 \end{vmatrix}$	5,	1	1213
R15 Kh 4 (Russian)	1		- 11	1	1165 1213
R20. British	<u> </u>	110	11	1	111:
Rex 75	1	12.	- 11	! 1 ! 1	115
Russian	¦ 1	11	II		1115-
Russian alloy	! . 1	:	11. 27. British	1 ,	113
THE STATE OF THE S	:	12	22	1 ,	115
SAE 1010	1		11	1	1
SAE 1015 (see steel AISI C 1015)	į	i	SAE 1695	1	111
British		1 11	s	1	115
	ļ	11	11	1	115
Carbon	<u> </u>	$egin{array}{ccc} 1 & 11 \\ & 11 \end{array}$	18, SAE 4340 (see steel AISI 4340)		
		11	26. Silver steel 50.	1	111
		1	Soft Soft	1	112
Carbon, British		1 1	86 St 42, 11 (German)	1	$\frac{118}{121}$
Carbon, Japanese		1 1	85 Stainless steels (see separate entries		
Chromel 502		1 1	under stainless steels)		
Climax			193. Tool steel 213	1	11.

Material Name	Vol.	 Page	Material Name	Vol.	Page
Steels (specific types) (continued) Vacromin F WF 100 (Russian)	 	1 1213 1166	TaBe ₁₂ (see beryllium - tantilum interm, comp.) Ta ₂ Be ₁₁ (see beryllium - tantalum interm, comp.)	; ; ;	
Stibium (see antimony)			TaGes	1	 1348
Strontia (see strontium oxide)	:		Tantalum	;] 355
Strontium - silicon intermetallic compound	! !		Tantalum - boron intermetallic compound	i	i I
Sr _S ,	! • 1	$ _{1343}$	TaBy	1	1345
Strontium - tin intermetallic compound	!	:	Tantalam - germanium intermetallic	:	1
Sr ₂ Sn	į 1	1344	compound		i
Strontium diffuoride ± ΣN ₁	: -2	791	TaGe ₂	. 1	1345
Strontium oxide (SrO)	. 2	: 194	Tantalum + Niobium	1	NO1
Strontium oxide + Lithium aluminate + EX	1 2	513	Tantalum + Niobium + ΣN_1	1	1062
Strontium oxide + Lithium zirconium silicate + ZX		i 514	Tantalum + Tungsten	1	802
Strontium oxide + Titanium dioxide + \(\Sigma\)X	: .,	317	Tantlum + Tungsten + ΣN _j	1	1 065
,	!	.	Tantalum alloys (specific types)	į ,	
Strontium oxide + Zinc oxide + \(\Sigma\)\text{N}_1 Strontium silieide (\Sr\Si\) (see strontium -	į -	20	T 222	1	1066
silicon intermetallic compound)	Į.	.	Ta-30Nb-1, 5V	1 1	103
Strontium stammde SrSn (see strontium - tin intermetallic compound)	 	! : :	Tar-SW-2HI Tartalum boride TaB ₂ (see tantalum -	1	1066
Strontium metatitanate (8rTiO ₃)	J 1 2	+ .304	boron intermetalite compound)		! !
Stromium metatitanate - cobalt cormets		 722	Tantalum carbide (TaC)	2) 589 :
Strontium zirconate (SrZiO3)	1 2	: 307	Tantalum mirride (TaN)	2	665 (
Styrotoam polystyrene	2	965	Teak	1 2	1057
Sulfothiorine [Na S2O3+5H2O] (see sodium thiosulfate)	<u> </u>	: 	Technetium Tetlon	1	
 Sultur	 2	1 1 89	Tetlon, Duroid 5600	1 2	l 968
Sulfur dioxide (SO ₂)	 3	110	Tellurum	i i 1	366
Sulfurous acid anhydride [SO _{2]} (see sulfur dioxide)		:	Tellurium + Arsenic + ΣX_{j}	1	1068
Supertemp pyrolytre graphite	; } , 2	72	Tellurium + Selemum	i 1	: 805
Swedish iron	1	i 158	Teliurium + Thallium	1	, 505
Systems, miscellaneous (metallic - non- metallic)		1055	Terbium Tkallium	; ! !	372 376
Systems, miscellaneous (nonmetallic)	i 2	j 1051	Thallium + Cadmium	1	811
Ta-30Nb-7, 5V	1	1063	Thallium + Indium	! 1	812
Ta-SW-2Hf	1	1066	Thallium + Lead	1	815
TaB ₂	1	1 11345		!	!

Material Name	Vol.	Page	Material Name	Vol.	 Page
Thallrum - lead intermetallic compound		i	TiB ₂	1	1358
$\mathrm{Tl}_2\mathrm{Pb}$	1	1349	Tin	1	389
Thallrum + Tellurium	1	815	Tin + Aluminum	1	823
Thallium + Tin	1	821	Tin + Antimony	1	824
Thallium bromide (TlBr)	2	570	Tin + Antimony + $\sum X_i$, 1	1069
Thallium carbide (TIC)	2	625	Tin + Bismuth	1	827
Thiokel ST rubber	2	982	Tin + Cadmium	¦ 1	1 830
Thorra (see thorrum droxide)	į	i	Tin + Cepper	1	833
Thorrum	1	381	Tin + Copper + ΣΝ ₁	1	1072
Thorium + Uranium	1	822	Tin + Indium	1	834
Thorium carbides	i	!	Tin + Lead	1	839
ThC	2	1 592	Tin + Mercuty	1	542
ThC ₂	2	593	Tin - selenium intermetallie compound		i ·
Thorium dioxide (ThO ₂)	$\frac{1}{1}$	195	SnSe ₂	1	1 1352
Thorium dioxide + Graphite	2	557	Tin + Silver	1	845
Thorium dioxide + Uranium dioxide	2	413	Tin - tellurium intermetallie compound		į
Thoron (see radon)			SnTe	1	1355
Thulium	1	355	Tin + Thallium	,	846
Thuringian glass	$\frac{1}{1}$	923, 924	Tin + Zine	1	847
Ti-130 A	1	850	Tin alloys (specific types)	ļ	
Ti-140 A	1	1081	SAE bearing alloy 10	1	1070
Ti~150 A	1 1	1078.	SAE bearing alloy 11	1	1070
11-130 A	1	1089	Soft solder	1	840
Tr=155 A	1	1074	White bearing metal	1	1070
T1-2, 5 A1-16V	1	1057	Tin unhydride [SnO ₂] (see tin dioxide)	1	!
Ti-3Al-11Cr-13V	1 1	1057	Tin ash [SnO ₂] (see tin dioxide)		i
Ti-4Al-4Mn (see titanium alloy C-130 AM, or titanium alloy RC-1305)			Tin dioxide (SnO ₂)	2	199
T1-4Al-3Mo-1V	1	 ₁₀₇₄ ,	Tin dioxide + Magnesium oxide	2	416
		1075	Tin dioxide + Magnesium oxide + $\Sigma X_{\hat{1}}$	2	523
T ₁ -5A ₁ -1, 4C ₁ -1, 5F ₂ -1, 2M ₂ (see T ₁ -155 A)	Ì	!	Tin dioxide + Zinc oxide	2	419
Ti-5Al-2, 5Sn (see titanium alloy A-110 AT)	j	i i	Tin dioxide + Zinc oxide + ΣX_1	2	 524
Tr-GA1-4V	1	1074	Tin peroxide [SnO ₂] (see tin dioxide)		
T1-2C1-2Fe-2Mo (see T1-140 A)	}		Tini	1	1361
Ti-5Mn	1	850	TiNi + Cu	1	1433
T ₁ -13V-11Cr-3Al	1	1087	TiNi + Ni	1	1436

Material Nume	Vol.	Page	Material Name	Vol.	Page
Titama (see titanium oxide)	i		Titanium alloys (specific types) (continued)		
Titanic acid anhydride [TiO ₂] (see titanium dioxide)	i i		C-130 AM	1	1074
Titanic anhydride [TiO ₂] (see titanium dioxide)			C-110 M (see Tr-8Mn) MSM-4Al-4Mn (see titanium alloy		
Titanic oxide (TiO ₂) (see titanium dioxide)			C-130 AM, or titanium alloy RC-1308)		Í
Titanium	,	410	MSM-6A1-4V (see titanium alloy Ti-6A1-4V)		
Titanium, rodide	1	411	MST-6Al-4V (see titanium alloy		
Titanium + Aluminum	1	848	Ti-6A!-4V)		1
Titanium + Aluminum + ΣX_{1}	1	1073	MST-8Mn (see titanium alloy Ti-8Mn)		
Titanium - boron intermetallie compound			RC-1305	,	1084
T ₁ B ₂	1	1355	T1-130 A	1	550
Titanium + Chromium + ΣN_1	1	1077	T1-140 A	1	1081
Titanium + Iron + ΣX	1	1050	T1-150 A	1	1078. 1089
Titanium + Manganese	1	549	T ₁ -155 A	1	1074
Titanium + Manganese + $\Sigma \kappa_{_{\rm I}}$	1	1083	T1-2. 5A1-16V	1	108,
Titanium - nickel intermetallic compound	!		Tr-3A1-11Cr-13V	1	1087
TiNi	1	1361		•	
Titanium + Oxygen	1	852	T1-4Al-4Mn (see titanium alloy C-130 AM, or titanium alloy RC-1308)		
Titanium + Vanadium + ΣX_1	1	1086	Ti -4A1-3Mo -1V	1	1074
Titanium + SX _i	i 1	1089			1075
Titamum alloys (specific types)	1		Ti+5Al-1, 4Cr-1, 5Fe-1, 2Mo (see titanium alloy Ti-155 A)		
120 VCA	1	1087	Ti-5A1-2, 5Sn (see titanium alloy		
A-110 AT	1	1074	A-110 AT)		14.54
AMS 4908 (see titanium alloys Ti-8Mn)	!		T1-6A1-4V	1	1074
AMS 4925 A (see titanium alloys C-130 AM, or titanium alloys RC-130s)			Ti-2Cr-2Fe (2Mo (see titanium alloy Ti-140 A)	Ì	ļ
AMS 4926 (see titanium alloys A-110			T1-8Mn	1	850
AT)		1	Ti-13V-11Cr-3A1	1	1087
AMS 4928 (see !itanium alloys Ti-6Al- 4V)	<u> </u>		Titanium boride [TiB ₂] (see titanium - boron intermetallic compound)	ni I	
AMS 4929 (see titanium alloys Ti-155			Titanium carbide (TIC)	2	 59 4
AMS 4969 (see titanium alloys Ti-155			Titamum carbide - cobalt cermets	2	725
A) ASTM B 265-58 T, grade 6 (sec			Titanium carbide - cobalt - niobium carbide cermets	2	 726
titanium alloy A-110 AT)			Titanium carbide - nickel - molybdenum - niobium carbide cermets		727
ASTM 265-58 T, grade 7 (see titanium alloy Ti-8Mn)	}		Titanium carbide - nickel - niobium carbide cermets	2	7.30

Material Name	Vol.	Page	Material Name	Vol,	 Page
Titanium mtride (TiN)	2	668	Tungsten - selemum intermetallic compound		-
Titanium dioxide (TiO ₂)	2	202	WSe ₂	1	1368
Deuse titama	2	204	Tungsten - silicon intermetallic compound		
Rutile	2	203	WS12	1	1369
Tl ₂ Plo	1	1349	Tungsten - tellurium intermetallic compound	}	į
Toluene (C ₆ H ₅ CH ₅)	3	242	WTe ₂	1	1370
Tool steel	1	1115, 1233	Tungsten + Thorium dioxide	1	1439
Tool steel, M1 high-speed	1	1195	Tungsten alloy, ferrotungsten (Russian)	1	1090
Tool steel, M10 high-speed	1	1195	Tungsten bornde [WB] (see tungsten - boron intermetallic compound)		
Topaz	2	251	Tungsten caronde (WC)	2	558
Tourmaline	2	855	Tungsten traoxide (WO ₃)	! ! 2	200
Tourmaline, Brazil	. 2	855	Tungsten trioxide + Zinc oxide	2	422
Fransite	. 2	1107	Tungsten disclenide WScoll(see tungsten -		
Triangle beryllia	2	126	selenium intermetallic compound)	: ! !	
Trichloroftuoromethane Cl ₂ CF] (see Freon 11)			Tungsten disilicide WSi ₂] (see tungsten - silicon intermetallic compound)		
Trichloromethane [CHCl3] (see chlorotorm)			Tungsten ditelluride [WTe ₂] (see tungsten = tellurium intermetallie compound)	 	<u> </u>
$ \begin{array}{ll} {\sf Trichlorotrifluoroethuse} \left({\sf CCl_2FCC} \right) {\sf Free} \\ {\sf Freon} \left({\sf 113} \right) \end{array} $	i I		Tungstic acid anhydride 'WO ₃ ' (see tungsten trioxide)	! !	
Frithoroborane [BF ₃] (see boron triflucride)			Tungstic anhydride (WO3) (see tungsten tri-	! [i
$ \begin{array}{c} {\rm Frither otrichlor octhane} \ ^{\circ}{\rm CCl_2FCClF_2}^{\circ} \ ({\rm see} \\ {\rm Freon} \ 113) \end{array} $			oxide) Tungstic oxide [WO ₃] (see tungsten trioxide)		
Trinitrotoluene (CH ₂ C ₆ H ₂ (NO ₂) ₃)	2	1007	UBe 12 (see beryllium - uranium intermetallic	!	
Fripolite briek	2	894	compound)	!	
Fritium	3	87	Uranic oxide [20 ₂] (see uraniam dioxide)		1
fuballoy (same as granium)	1	429	Uranium	1	429
futí	2	 856	Uranium + Aluminum	1	858
fungsten	1	415	Uranium + Chromium	1	859
Fungsten - arseme intermetallic compound		! !	Uranjum + Iron	1	562
₩ ₃ Λs ₇	1	1364	Uranium + Magnesium	1	863
fungsten - boron intermetallic compound			Uranium + Molybdenum	1	864
WB	1	1365	Uranium + Molybdenum + SX ₁	1	1094
Fungsten + Iron + ΣΧ ₁	1	1090	Uranium + Niobium	1	567
Fungsten + Nickel + EX	1	1091	Uramum + Silicon	1	868
rungsten + Rhenium	1	855	Uranium + Uranium dioxide	1	1442
	!	! !	Uranium + Zirconium	1	571

Material Name	Vol.	Page	Material Name	Vol.	Page
Uranium + Zirconium + ŽX	1	1097	Vermiculite brick	2	594
Uranium carbides	-		Vermiculite mica, granulated	2	825
ec	2	601	Vitallium type alloy (see Haynes stellite		! I
UC ₂	2	605	alloy 21)		
Uranium earbide - uranium cermets	2	731	Viton rubber	2	953
Uramum - 3% fissium alloy	1	1095	Vitreous silica	2	184 155
Uranium - 5% lissium alloy	1	1095, 1097	Volcanic ash (see tuff)	:	157
Uranium - 5% fissium alloy	1	1095	Vulcanized fiber	2	1055
Uranium - 10% fissium alloy	1	1095	Vycor-brand glass	. 2	i † 926
Uranium nitride (UN) Uranium oxides	1 2	672	W-2 enromation (see molybdenum - silicon intermetallic compound)	:	:
UO ₂	2	210	Wallboard	2	1131
Մ ₃ O ₈	1 2	237	Walnut	2	1089
Uranium dioxide (UO ₂)	2	210	W_3A_{5}	1	1364
Uranium dioxide + Beryllium oxide	1 2	423	Water (H ₂ O)		: 120
Uranium dioxide + Calcium oxide	3	426	WB	1	i , 1 365
Uranium (liosale – chromium cermets	: 2	 732	White bearing metal	1	. 1070
Uramum dioxide - molybdenum cermets	1 2	735	White cast from	1	1130
Uranium dioxide - niobium cermets	2	735	White oak		1135 11082
Uramum dioxide + (di)Niobium pentoxide	2	427	White pines	1 2	1053
Uranium dioxide - stainless steel cermets	1 2	741	White plate glass	; - ; 2	923
Uranium dioxide - uranium cermets	: 2	744		1	925
Uranium dioxide + Yttrium oxide	2	1 425	White temper east from	i	1137
Gramum dioxide - zircomum cermets	2	746	White wood		1090
Uranium dioxide + Zirconium dioxide	1 2	429	Winchester crushed trap rock	. 2	1 829 830
(tri)Uranium octoxide (U ₃ O ₈)	1 2	; 237	Window glass	: 2	920 924
Uranous uranic oxide [U ₂ O ₈] (see (tri)uranium octoxide)			Wolfram (see tungsten)	•	
Vacromin F	1	1213	Wolfamic acid, anhydrous WO3, isee	;	i :
Valve bronze (see navy M)	:		tungsten trioxide)	:	1
Vanadium	1	441	Wolframite (WO ₃₎ (see tungsten trioxide)	!	
Vanadium + Iron	! 1	874	Wollastonite	. 2	1 859
Vanadium + Yttrium	! 1	577	Wood felt	2	† 11 33
Vanadium alloy, fevrovanadium (Russian)	1	875	Wood fibers	j 2	1091
Yanadium carbide (VC)	2	606	Wood's metal	1	939
 Vegetable fiberboards	. 2	 1129	Wood products	2	1132

Material Name	Vol.	Page	Material Name	Vol.	Page
Wool	2	1092	Zinc - silicon - arsenic intermetallic		
Angora	2	1092	ZnSiAs 2	1	1374
Sheep	$\frac{1}{2}$	1092	Zinc alloys (specific types)	1	1000
Wrought fron	1	1185. 1219	Zamak Nr 400	1	850
WSe _₹	1	1365	Zamak Nr 410	1	1098
WS12	1	1369	Zamak Nr 430	1	1098
WTe ₂	1 1	1:370	Zine diehloride (ZnCl ₂)	$\begin{vmatrix} 1 & 2 & 1 \end{vmatrix}$	626
X-metal (see uranium)			Zinc terrate (ZnFe ₂ O ₄)	2	314
X-ray protection glass	2	924	Zinc germanium phosphide (ZnGeP ₂)	2	792
 Neron	3	85	Zine Gyide (ZnO)	2	243
Nenon - deuterium system	1 3	371	Zinc oxide + Magnesium oxide	2	435
Nenon - hydrogen system	3	374	Zine oxide + Strontium oxide + ΣX_i	2	527
Xenon - mtrogen system	3	377	Zinc oxide + Tin dioxide	2	438
Xenon - oxygen system	.i	.570	Zine oxide + Tin dioxide + \$\Sigma \text{X}_1	į 2	528
Yellow brass	1	951. 952	Zinc selemde ZnSe_(see zinc - selemium intermetallic compound)		
Ytterbium Yttria (sec yttrium oxide)	1	446	Zinc selenium arsenide ZnSiAs ₂ , (see zinc - selenium - arsenie intermetallie compound)		i i
Yttrium	i 1 1	449	Zinc sulfate heptahydrate (ZnSO ₄ * 7H ₂ O)	2	694
Yttrium aluminate $(Y_3Al_tO_{12})$		308	Zirenloy-2	1	1 558
Yttrium terrate Y ₃ Fe ₂ (FeO ₄) ₃	1 2	311	Zircalov-4	1	985
Yttrium iron garnet (see yttrium terrate)			Zircon, Brazil	2	318
Yttrium oxide (Y2O3)	2	240	Zircon 475	2	318
Yttrum oxide + Uranium dioxide	2	432	Zirconia (sce zirconium dioxide)		
"Z" nickel (see duranickel)	Í	Ì	Zircoma, stabilized	2	
Zamak Nr 400	1	880	Zirconia brick	2	1 535,
Zamak Nr 410	1	1098			895) 905
Zamak Nr 430	1	1095	{ Zirconium	1	461
Zinc	1	453	Zirconium, iodide	1	462.
Zinc + Aluminum	1	850			463
Zine + Aluminum + ΣX	1	1005	Zrreonium + Aluminum	1	882
Zine + Cadmium	1	581	Zirconium + Aluminum + ΣX _j	1	1100
Zinc + Lead + ΣX_i	1	1099	Zirconium - boron intermetallic compound		
Zine - selenium intermetallic compound			ZrB	1	1375
ZnSe	1	1371	Zirconium + Hafnium	1	553

Material Name	Vol.	Page	Material Name	Vol.	Page
Zircomum + Hafnium + ΣΧ ₁	1	1101	Zirconium orthosilicate (ZrSiO4) (continucd)		
Zireonium + Molybdenum + EN	1	1104	Zircon	2	318
Zircomum + Niobium	1	886	Zircon tam	2	315
Zirconum + Tantalum + $\Sigma X_{f i}$	1	1105	ZnSb + CdSb	1	1412
Zirconium + Tin	1	887	ZnSe	1	1371
Zirconium + Tin + ΣΧ ₁	1	1108	ZaSiAs ₂	1	1.374
Zircomum - Titanium	1	890	ZrB	1	1375
Zirconum + Uranium	1	891		: 	! }
Zircomum + Uranium + ΣN_{i}	ı	1111		! !	
Zircomum + Zirconium dioxide	i i 1	1444		!	!
Zirconium + ΣX_1	1	1112			
Zircomum alloys (specific types)		1		i i	
Zircaloy-2	1	558			
Zircaloy-4	1	855			
Zirconium boride [ZrB] (see zirconium - boron intermetallic compound)					
Zirconium earbide (ZrC)	2	เกล			} !
Zirconium hydride (ZrII)	1 2	793		 	
Zircomum aitride (ZrN)	$\frac{1}{1}$ 2	675		!	j
Zircomum dioxide (Zr $O_{\mathfrak{J}}$)	j 2	246			İ
Zirconium dioxide + Aluminum oxide	2	441		i	
Zirconium dioxide + Calerum exide	2	442			
Zirconium dioxide + Calcium oxide + \sum_{j}	! 2	531		i	
Zirconium dioxide + Magnesium oxide	1 2	446		i !	
Zirconium dioxide + Silicon dioxide + ΣX_{j}	2	534		:	
Zircomum dioxide - titanium cermets	2	749		!	
Zircomum dioxide + Yttrium oxide	2	449			
Zirconium dioxide + Yttrium oxide + ΣN_{1}	2	537			
Zircomum dioxide - yttrium oxide - zirconium cermets	1 2	753			
Zircomum dioxide - zircomum cermets	2	752			
Zirconium silicate (ZrSiO4) (see zirconium orthosilicate)					
Zirconium silicate, natural (see zircon)					
Zirconium orthosilicate (ZrSiO4)	2	317			
Brazil zircon	2	318		ļ	}